向量共线、定比分点公式及数量积
向量的数量积运算的所有公式
向量的数量积运算的所有公式1.向量的数量积定义:对于两个向量u和v,它们的数量积表示为u·v,即:u·v = ,u,,v,cosθ其中,u,和,v,分别表示向量u和v的长度(或模),θ表示向量u和v之间的夹角。
2.向量的数量积性质:(a)u·v=v·u(交换律,数量积满足交换律)(b)u·u=,u,^2(自身与自身的数量积等于向量的长度的平方)(c) (ku)·v = k(u·v)(数量积与标量的乘积等于标量与数量积的乘积)(d)(u+v)·w=u·w+v·w(数量积的分配律)3.向量的数量积的计算公式:(a)对于二维向量u=(u₁,u₂)和v=(v₁,v₂):u·v=u₁v₁+u₂v₂(b)对于三维向量u=(u₁,u₂,u₃)和v=(v₁,v₂,v₃):u·v=u₁v₁+u₂v₂+u₃v₃4.向量的数量积的几何解释:(a)两个向量u和v之间的数量积u·v等于向量u在向量v方向上的投影长度乘以向量v的长度。
(b)如果u和v之间的夹角θ等于0度,则u·v=,u,,v,(数量积的最大值)(c)如果u和v之间的夹角θ等于90度,则u·v=0(数量积的最小值)5.向量的数量积与向量的垂直性:(a)如果u·v=0,则向量u和v垂直(正交)。
(b)如果u·v≠0,则向量u和v不垂直。
6.向量的数量积与向量的夹角的关系:(a) u·v = ,u,,v,cosθ(b)如果θ=0度,则u·v=,u,,v,(数量积的最大值)(c)如果θ=90度,则u·v=0(数量积的最小值)这些公式是向量的数量积运算的基本公式和性质,可用于求解向量的数量积问题,以及在几何和物理等领域中的应用。
向量公式汇总
向量公式汇总Newly compiled on November 23, 2020向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC二AC。
a+b= (x+x‘ , y+y')。
a+0二0+a二a。
向量加法的运算律:交换律:a+b二b+a;结合律:(a+b) +c二a+ (b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a二-b, b二-a, a+b二0. 0的反向量为0 AB-AOCB.即“共同起点,指向被减”a二(x, y) b= (x f, y')贝!| a-b= (x-x‘,y-y' ).3、数乘向量实数X和向量a的乘积是一个向量,记作入a,且| ha |二丨入| | a |。
当入>0时,Aa与a同方向;当入<0时,入a与a反方向;当入二0时,X a=0,方向任意。
当a二0时,对于任意实数X,都有X a=0o注:按定义知,如果X a=0,那么入二0或a二0。
实数X叫做向量a的系数,乘数向量入a的儿何意义就是将表示向量a的有向线段伸长或压缩。
当丨入丨> 1时,表示向量a的有向线段在原方向(入>0)或反方向(X <0)上伸长为原来的|入|倍;当I入I < 1时,表示向量a的有向线段在原方向(X >0)或反方向(X <0)上缩短为原来的|入|倍。
数与向量的乘法满足下面的运算律结合律:(入a) b二入(ab)二(a入b)。
向量对于数的分配律(第一分配律):(A + U)a=Aa+Ua.数对于向量的分配律(第二分配律):X (a+b)=X a+Xb.数乘向量的消去律:①如果实数入工0且X a=Xb,那么a二b。
②如果aHO且A, a= P a,那么X = p o4、向量的的数量积定义:已知两个非零向量a, b。
作OA=a, OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0W〈a,b〉Wn定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
向量公式汇总
向量公式汇总文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
高中数学必修第二章平面向量公式及定义
平面向量公式1、向量的加法向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=x+x',y+y'.a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a;结合律:a+b+c=a+b+c.2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=x,y b=x',y' 则 a-b=x-x',y-y'.4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向λ>0或反方向λ<0上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律结合律:λa•b=λa•b=a•λb.向量对于数的分配律第一分配律:λ+μa=λa+μa.数对于向量的分配律第二分配律:λa+b=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积内积、点积是一个数量,记作a•b.若a、b不共线,则a •b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.向量的数量积的坐标表示:a•b=x•x'+y•y'.向量的数量积的运算律a•b=b•a交换律;λa•b=λa•b关于数乘法的结合律;a+b•c=a•c+b•c分配律;向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:a•b•c≠a•b•c;例如:a•b^2≠a^2•b^2.2、向量的数量积不满足消去律,即:由 a•b=a•c a≠0,推不出 b=c.3、|a•b|≠|a|•|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积外积、叉积是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a 和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.向量的向量积运算律a×b=-b×a;λa×b=λa×b=a×λb;a+b×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b反向时,右边取等号.定比分点定比分点公式向量P1P=λ•向量PP2设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1x1,y1,P2x2,y2,Px,y,则有OP=OP1+λOP21+λ;定比分点向量公式x=x1+λx2/1+λ,y=y1+λy2/1+λ.定比分点坐标公式我们把上面的式子叫做有向线段P1P2的定比分点公式三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.a//b的重要条件是 xy'-x'y=0.零向量0平行于任何向量.向量垂直的充要条件a⊥b的充要条件是 a•b=0.a⊥b的充要条件是 xx'+yy'=0.零向量0垂直于任何向量.1、线性运算①a+b=b+a ②a+b+c=a+b+c ③λμa=λμa. ④λ+μa=λa+μa. ⑤λa±b=λa±λb ⑥a,b共线→b=λa2、坐标运算,其中ax1,y1, bx2,y2①a+b= x1+x2,y1+y2 ②a-b= x1-x2,y1-y2 ③λa=λx1,λy1 ④点Aa,b,点Bc,d,则向量AB=c-a,b-d ⑤点Aa,b,点Bc,d,则向量BA=a-c,b-d3、数量积运算①ab=∣a∣∣b∣cosθ②ab=ba 交换律③λab=λab =a λb结合律,注意向量间无结合律④a±bc=ac±bc分配律⑤若ab-c=0,则b=c或a垂直于b-c ⑥a±b2=a2±2ab+b2 ⑦a+ba-b=a2-b2⑧ax1,y1, bx2,y2,则ab=x1x2+y1y2,∣a∣2 =x2+y2,∣a∣=√x2+y2 a垂直于b→x1x2+y1y2=0;一般地,a与b夹角θ满足如下条件:cosθ=ab/∣a∣∣b∣=x1x2+y1y2/√x12+y12√x22+y22。
向量公式大全
向量公式设a= (x, y), b=(x' , y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则AB+BC=ACa+b=(x+x' ,y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y')则a-b=(x-x',y-y').4、数乘向量实数入和向量a的乘积是一个向量,记作入a,且I入a l =1X1 ? I a l。
当入〉0时,入a与a同方向;当XV 0时,入a与a反方向;当入=0时,X a=0,方向任意。
当a=0时,对于任意实数X,都有X a=0。
注:按定义知,如果X a=0,那么X =0或a=0。
实数X叫做向量a的系数,乘数向量X a的几何意义就是将表示向量a的有向线段伸长或压缩。
当IXI> 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上伸长为原来的IXI倍;当IXI V 1时,表示向量a的有向线段在原方向(X> 0)或反方向(XV 0)上缩短为原来的IXI倍。
数与向量的乘法满足下面的运算律结合律:(X a)?b= X (a ?b)=(a ?X b)。
向量对于数的分配律(第一分配律):(X +卩)a= X a+卩a.数对于向量的分配律(第二分配律):X (a+b)= X a+X b.数乘向量的消去律:① 如果实数入工0且X a=X b,那么a=b。
②如果a^0 .且X a=(1 a,那么X =卩。
3、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0W〈a,b〉Wn定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。
向量共线、定比分点公式及数量积
向量共线、定比分点公式及数量积一、 平面向量共线定理、定比分点 1. 平面向量共线定理设),(11y x a =,),(22y x b =( b 0),则b a //⇔01221=-y x y x注:不能写成b a //⇔2211x y x y =,因21x x 、为有可能为0. 2.定必分点公式已知),(111y x P ,),(222y x P ,),(y x P ,若21PP P P λ=则OP =λ+111OP +λ+λ12OP 坐标公式⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,(λ≠-1),即,1(21λ+λ+=x x P )121λ+λ+y y 注意:点P 为21P P 所成的比为λ,用数学符号表达即为P P 1=λ2PP .当λ >0时,P为内分点;λ <0时,P 为外分点.二、平面向量的数量积1.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量 |a ||b |cos叫a 与b 的数量积,记作a b ,即a b = |a ||b |cos,(0)θπ≤≤并规定0与任何向量的数量积为02.平面向量的数量积的几何意义:数量积ab 等于a 的长度与b 在a 方向上投影 |b |c os 的乘积.b 在a 方向上的投影:OP aba b ⋅=θ=cos 3.两个向量的数量积的性质:设a 、b 为两个非零向量 (1)-|a ||b |≤|ab | ≤ |a ||b |,当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = -|a ||b |;(2)a b a b = 0(两向量垂直的判定);(3)cos =||||b a b a ⋅,|a |cos =||b b a ⋅,|b |cos =||a ba ⋅(投影式).4.平面向量数量积的运算律 (1)交换律:a b =ba (2) 数乘结合律:(λa )b =λ(a b ) =a (λb )(3)分配律:(b a + )c = ac + bc5.平面向量数量积的坐标表示yP 2 PP 1O x abθθaboPo(1)已知两个向量),(11y x a =,),(22y x b =,则a b 2121y y x x +=.(2)设),(y x a =,则22||y x a +=.(3)平面内两点间的距离公式如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=.(4)向量垂直的判定 :两个非零向量),(11y x a =),(22y x b =b a ⊥⇔02121=+y y x x .(5)两向量夹角的余弦 cos=||||b a b a ⋅⋅(πθ≤≤0) 平面向量共线定理、定比分点1、 a =(1,1),b =(-1,1),c =(4,2),则c =( )A .3a +bB .3a -bC .-a +3bD .a +32、下列各组向量可以作为该平面一组基底的是( )A .)2,1(=a 与)1,2(=bB .)2,1(-=a 与=b 0C .)2,1(=a 与)4,2(--=bD .)1,0(=a 与)1,0(-=b 3、已知)3,2(-A ,)2,3(-=,则点B 和线段AB 的中点M 坐标分别为( )A .)5,5(-B ,)0,0(M B .)5,5(-B ,⎪⎭⎫ ⎝⎛-4,27MC .()1,1B ,)0,0(M D .()1,1B ,⎪⎭⎫ ⎝⎛-4,27M 4、已知向量 a =(1,1),b =(2,x ),若a +b 与4 b -2 a 平行,则实数x 的值是 ( )A .-2B .0C .1D .25、在ABC ∆中,=AB b ,=c ,若点D 满足2=,则=( )A .c b 3132+B .b c 3235-C .c b 3132- D .c b 3231+6、已知向量a 与向量b 不共线,实数y x,满足)2(y x -a +4b =5a +()y x 2-b , 则=+y x ________ ;7、已知ABC ∆三顶点)4,5(),3,2(),2,1(C B A -,则其重心坐标为_____________; 8、如右图所示,在ABC ∆中,已知A(2,3),B(6,-4),G(4,-1)是中线AD AG =GD C 的坐标为____________.9、已知)2,3(),2,1(-==b a ,当k 为何值时,k b a +与b a 3-平行,此时它们方向如何?10、(1) 已知点)4,3(),2,1(--B A ,点P 在直线AB 上,且BP AP 31=,求点P 的坐标;(2)已知点)8,6(),4,2(--B A ,点P 在直线AB =求点P 的坐标.平面向量的数量积1、已知等边ABC ∆的边长为6,则⋅与()CA BC AB ⋅+的值分别为( )A .18-和36B .18-和36-C .18和36-D .18-和36 2、已知2=b ,6-=⋅b a ,则a 在向量b 方向上的投影为( )A .3-B .12-C .3D .无法确定 3、已知向量a =(x ,y), b =( -1,2 ),且a +b =(1,3),则a 等于( ) A . 2 B . 3 C. 5 D. 10 4、已知向量等于则垂直与若a ,b a ),n ,(b ),n ,(a 11-==( ) A .1B .2C .2D .45、已知),(b ),,(a 1623-==,而)b a ()b a (λ-⊥+λ,则λ等于( )A .1或2B .2或-12C . 2D .以上都不对6、若平面向量b 与向量a =(1,-2)的夹角是180o, 且 b 3=则b 等于( ).A. (3,6)-B. (3,6)-C. (6,3)-D. (6,3)-7、已知2,2,1-=⋅==b a b a ,则a 与b 的夹角为_________; 8、已知)4,3(=a ,且10=⋅b a ,求b 在a 的投影_________.9、已知3||,4||==b a ,的夹角为与b a 4π,求||b 2a +,||4b -3a .10、已知,|b |,|a |12==a 与b 的夹角为3π,若向量+a 2k b 与b a +垂直, 求k .11、已知1||,3||==b a ,b a 与的夹角为6π,求b -a b a 与+的夹角的余弦值.12、已知向量4||,3||==b a ,且4)2()(≥-⋅+b a b a ,求a 与b 夹角θ的取值范围.13、ABC ∆中,c AC b BC a AB ===,,,4||,2||,3||===c b a ,求d c c b b a ⋅+⋅+⋅14、已知向量)2,3(),2,1(-==b a ,向量=c k b a +,b a d 3-=(1)当k 为何值时,有d c ⊥;(2)若的夹角为钝角时与 d c ,求k 的取值范围.。
向量公式汇总
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC 。
a+b=(x+x' ,y+y')。
a+0=0+a=a 。
向量加法的运算律:交换律:a+b=b+a ;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b 是互为相反的向量,那么a=-b,b=-a ,a+b=0. 0 的反向量为0AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y')则a-b=(x-x',y-y').3、数乘向量实数入和向量a的乘积是一个向量,记作2a,且I力I =1入I ?l a l。
当0时,2a与a同方向;当2 0时,2与a反方向;当2=0时,2=0,方向任意。
当a=0时,对于任意实数入,都有2a=0o注:按定义知,如果2=0,那么2=0或a=0o实数入叫做向量a的系数,乘数向量2a的几何意义就是将表示向量a的有向线段伸长或压缩。
当I 2I > 1时,表示向量a的有向线段在原方向(2 0)或反方向(入v 0)上伸长为原来的I入I倍;当I入I v 1时,表示向量a的有向线段在原方向(2> 0)或反方向(入v 0)上缩短为原来的I入I倍。
数与向量的乘法满足下面的运算律结合律:(2 a)?b= 2(a?b)=(a?o2b)向量对于数的分配律(第一分配律):(入+卩)a=入a+卩a.数对于向量的分配律(第二分配律):2(a+b)= 2a+2b.数乘向量的消去律:①如果实数入工且入a=,那么a=b。
② 如果a^O且入a=,那么入=卩4、向量的的数量积定义:已知两个非零向量a,b o作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0<〈a,b> <n定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。
若a、b不共线,则a?b=|a|?|b|?cos〈a,b>;若a、b 共线,则a?b=+- I a II b I。
(推荐)高中数学平面向量公式
1、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。
若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a•b=x•x'+y•y'。
向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);向量的数量积的性质a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|4、由 |a|=|b| ,推不出 a=b或a=-b。
2、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。
若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。
若a、b共线,则a×b=0。
向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的。
3、向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b反向时,左边取等号;②当且仅当a、b同向时,右边取等号。
向量公式汇总
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。
若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量
向量百科名片向量在数学与物理中,既有大小又有方向的量叫做向量(亦称矢量),与标量相对目录向量的定义向量的来源向量的表示向量的模和向量的数量特殊的向量向量的运算其他向量的定义向量的来源向量的表示向量的模和向量的数量特殊的向量向量的运算其他向量的表示向量的定义数学中,既有大小又有方向的量叫做向量(亦称矢量)。
注:在线性代数中的向量是指n个实数组成的有序数组,称为n维向量。
α=(a 1,a2,…,an)称为n维向量.其中ai称为向量α的第i个分量。
("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)。
向量的来源向量(或矢量),最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家哈密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪8O年代各自独立完成的.他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数.他们引进了两种类型的乘法,即数量积和向量积.并把向量代数推广到变向量的向量微积分.从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。
向量定理七个公式
向量定理七个公式平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c 上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
输入分数,查看能上的大学测一测能上的大学1向量的加法1、向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).2向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3向量的的数量积1、定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.2、向量的数量积的坐标表示:a•b=x•x'+y•y'.3、向量的数量积的运算律a•b=b•a(交换律);(λa)•b=λ(a•b)(关于数乘法的结合律);(a+b)•c=a•c+b•c(分配律);4、向量的数量积的性质a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.5、向量的数量积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.(2)向量的数量积不满足消去律,即:由a•b=a•c (a≠0),推不出b=c.(3)|a•b|≠|a|•|b|(4)由|a|=|b| ,推不出a=b或a=-b.4数乘向量1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.5向量的向量积1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.6向量的三角形不等式1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号.7定比分点定比分点公式(向量P1P=λ•向量PP2)设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数λ,使向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(OP1+λOP2)(1+λ);(定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(定比分点坐标公式)我们把上面的式子叫做有向线段P1P2的定比分点公式8其他公式1、三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线2、三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心3、向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的重要条件是xy'-x'y=0.4、零向量0平行于任何向量.5、向量垂直的充要条件a⊥b的充要条件是a•b=0.a⊥b的充要条件是xx'+yy'=0.6、零向量0垂直于任何向量.。
向 量 数 量 积
向量数量积
向量的数量积,也称为内积或点积,是两个向量的一种特殊乘法运算。
向量数量积的数学表达式为:如果有两个非零向量a和b,那么它们的数量积定义为|a||b|cosθ,其中θ是向量a与向量b之间的夹角。
在笛卡尔坐标系中,如果向量a=(x₁,y₁)和向量b=(x₁,y₁),那么它们的数量积可以通过它们的坐标进行计算,即a·b=x₁·x₁+y₁·y₁。
向量数量积的几何意义可以理解为一个向量在另一个向量方向上的投影的长度与第二个向量长度的乘积。
这个运算在物理中有着广泛的应用,例如在分析力的作用时,力和位移的点积可以用来计算做功的多少。
向量的数量积是一个非常重要的概念,它在数学、物理以及工程学等领域都有着广泛的应用。
了解其定义和性质对于解决相关问题是非常有帮助的。
向量共线知识点总结
向量共线知识点总结一、向量共线的定义在二维空间中,两个非零向量a和b共线的条件是存在一个实数λ,使得b=λa。
这意味着向量b可以通过向量a按比例缩放得到。
在三维空间中,两个非零向量a和b共线的条件是存在一个实数λ,使得b=λa或者a=λb。
这表示两个向量可以通过比例缩放互相得到。
在n维空间中,两个非零向量a和b共线的条件是存在一个非零实数λ,使得b=λa或者a=λb。
通俗来讲,如果两个向量共线,那么它们可以沿着同一条直线排列。
二、共线向量的判断方法1. 向量的数量积判断法对于二维空间中的向量a(x1,y1)和b(x2,y2),如果它们共线,那么它们的数量积为0。
即a·b=x1*x2+y1*y2=0。
这是因为在二维空间中,两个向量共线就相当于它们的夹角为0度或180度,此时cosθ=1或cosθ=-1,根据向量的数量积的定义,a·b=|a|*|b|*cosθ,所以a·b=0。
2. 向量的叉积判断法对于三维空间中的向量a(x1,y1,z1)和b(x2,y2,z2),如果它们共线,那么它们的叉积为0。
即a×b=(y1*z2-z1*y2)i-(x1*z2-z1*x2)j+(x1*y2-y1*x2)k=0。
这是因为在三维空间中,如果两个向量共线,那么它们的方向向量是相同的,即a×b=0。
3. 向量的比例判断法对于n维空间中的向量a和b,如果它们共线,那么它们的对应分量之比应该相等。
即a1/b1=a2/b2=a3/b3=...=an/bn=λ。
这是因为两个向量共线意味着它们可以通过比例缩放互相得到。
三、共线向量的性质1. 共线向量的线性相关性如果两个向量共线,那么它们一定是线性相关的。
即存在不全为0的实数k1和k2,使得k1a+k2b=0。
2. 共线向量的夹角关系如果两个向量共线,那么它们的夹角为0度或180度。
即cosθ=1或cosθ=-1。
3. 共线向量的共线性如果两个向量a和b共线,那么对于任意实数λ,λa和b也共线。
向量公式汇总
向量公式汇总(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作ab。
向量公式汇总
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)?b=λ(a?b)=(a?λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。
若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
空间向量知识点归纳总结[经典]
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a //。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb。
(3)三点共线:A 、B 、C 三点共线<=>λ=<=>)1(=++=y x y x 其中(4)与共线的单位向量为±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP +=<=>)1(=++++=z y x OC z OB y OA x OP其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量共线、定比分点公式及数量积
一、 平面向量共线定理、定比分点
1. 平面向量共线定理
设),(11y x a =,),(22y x b =( b ?0),则b a //⇔01221=-y x y x 注:不能写成b a //⇔2
2
11x y x y =
,因21x x 、为有可能为0. 2.定必分点公式
已知),(111y x P ,),(222y x P ,),(y x P ,若21PP P P λ=
则OP =λ+111OP +λ+λ12OP 坐标公式⎪⎪⎩
⎪⎪⎨⎧λ+λ+=λ
+λ+=112
121y y y x x x ,(λ≠-1),即,1(21
λ+λ+=x x P )121λ+λ+y y 注意:点P 为21P P 所成的比为λ,用数学符号表达即为P P 1=λ2PP .当λ >0时,P
为内分点;λ <0时,P 为外分点.
二、平面向量的数量积
1.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量 |a ||b |cos? 叫a 与b 的数量积,记作a ?b ,即a ?b = |a ||b |cos?,(0)θπ≤≤并规定0与任何向量的数量积为02.平面向量的数量积的几何意义:数量积a ?b 等于
a 的长度与
b 在a 方向上投影 |b |
c os?的乘积. b
在a 方向上的投影:OP a
b a b ⋅=θ=cos
3.两个向量的数量积的性质:设a 、b 为两个非零向量
(1)-|a ||b |≤|a ?b | ≤ |a ||b |,当a 与b 同向时,a ?b = |a ||b |;当a
与b 反向时,a ?b = -|a ||b |;
(2)a ?b ? a ?b = 0(两向量垂直的判定); (3)cos? =
||||b a b a ⋅,|a |cos? =||b b a ⋅,|b |cos? =|
|a b
a ⋅(投影式).
4.平面向量数量积的运算律
(1)交换律:a ?b =b ?a (2) 数乘结合律:(λa )?b =λ(a ?b ) = a ?(λb )
(3)分配律:(b a + )?c = a ?c + b ?c 5.平面向量数量积的坐标表示
(1)已知两个向量),(11y x a =,),(22y x b =,则a ?b 2121y y x x +=.
y
P 2 P
P 1
O x a
b θ
θ
a
b
o
P
o
(2)设),(y x a =,则22||y x a +=
.
(3)平面内两点间的距离公式
如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221221)()(||y y x x a -+-=.
(4)向量垂直的判定 :两个非零向量),(11y x a =),(22y x b =
b a ⊥⇔02121=+y y x x .
(5)两向量夹角的余弦 cos? =
|
|||b a b
a ⋅⋅2
22
22
1
2
12121y x y x y y x x +++=
(πθ≤≤0)
平面向量共线定理、定比分点
1、 a =(1,1),b =(-1,1),c =(4,2),则c =( )
A .3a +b
B .3a -b
C .-a +3b
D .a +3
2、下列各组向量可以作为该平面一组基底的是( )
A .)2,1(=a 与)1,2(=b
B .)2,1(-=a 与=b 0
C .)2,1(=a 与)4,2(--=b
D .)1,0(=a 与)1,0(-=b 3、已知)3,2(-A ,)2,3(-=AB ,则点B 和线段AB 的中点M 坐标分别为( )
A .)5,5(-
B ,)0,0(M B .)5,5(-B ,⎪⎭⎫ ⎝⎛-4,27M
C .()
1,1B ,)0,0(M D .()1,1B ,⎪⎭
⎫ ⎝⎛-4,27M 4、已知向量 a =(1,1),b =(2,x ),若a +b 与4 b -2 a 平行,则实数x 的值是 ( )
A .-2
B .0
C .1
D .2
5、在ABC ∆中,=AB b ,=AC c ,若点D 满足DC BD 2=,则=AD ( )
A .c b 3132+
B .b c 3235-
C .c b 3
132- D .c b 3231+
6、已知向量a 与向量b 不共线,实数y x,满足)2(y x -a +4b =5a +()y x 2-b , 则=+y x ________ ;
7、已知ABC ∆三顶点)4,5(),3,2(),2,1(C B A -,则其重心坐标为_____________; 8、如右图所示,在ABC ∆中,已知A(2,3),B(6,-4),G(4,-1)是中线AD 上一点,且AG =GD 2,则点C 的坐标为____________.
9、已知)2,3(),2,1(-==b a ,当k 为何值时,k b a +与b a 3-平行,此时它们方向如何
10、(1) 已知点)4,3(),2,1(--B A ,点P 在直线AB 上,且3
1
=
,求点P 的坐标;
(2)已知点)8,6(),4,2(--B A ,点P 在直线AB =求点P 的坐标.
平面向量的数量积
1、已知等边ABC ∆的边长为6,则⋅与()
⋅+的值分别为( )
A .18-和36
B .18-和36-
C .18和36-
D .18-和36 2、已知2=b ,6-=⋅b a ,则a 在向量b 方向上的投影为( )
A .3-
B .12-
C .3
D .无法确定 3、已知向量a =(x ,y), b =( -1,2 ),且a +b =(1,3),则a 等于( ) A . 2 B . 3 C. 5 D. 10 4、已知向量等于则垂直与若a ,b a ),n ,(b ),n ,(a 11-==( ) A .1
B .2
C .2
D .4
5、已知),(b ),,(a 1623-==,而)b a ()b a (λ-⊥+λ,则λ等于( )
A .1或2
B .2或-1
2
C . 2
D .以上都不对
6、若平面向量b 与向量a =(1,-2)的夹角是180o
, 且 b 3=则b 等于( ).
A. (3,6)-
B. (3,6)-
C. (6,3)-
D. (6,3)-
7、已知2,2,1-=⋅==b a b a ,则a 与b 的夹角为_________; 8、已知)4,3(=a ,且10=⋅b a ,求b 在a 的投影_________.
9、已知3||,4||==b a ,的夹角为与b a 4
π,求||b 2a +,||4b -3a .
10、已知,|b |,|a |12==a 与b 的夹角为3
π
,若向量+a 2k b 与b a +垂直, 求k .
11、已知1||,3||==b a ,b a 与的夹角为
6
π
,求b -a b a 与+的夹角的余弦值.
12、已知向量4||,3||==b a ,且4)2()(≥-⋅+b a b a ,求a 与b 夹角θ的取值范围.
13、ABC ∆中,c AC b BC a AB ===,,,4||,2||,3||===c b a ,求d c c b b a ⋅+⋅+⋅
14、已知向量)2,3(),2,1(-==b a ,向量=c k b a +,b a d 3-=
(1)当k 为何值时,有d c ⊥;(2)若的夹角为钝角时与 d c ,求k 的取值范围.。