河南省驻马店市2021届新高考四诊数学试题含解析
河南省驻马店市2021届新高考最新终极猜押数学试题含解析
河南省驻马店市2021届新高考最新终极猜押数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数cos 1ln(),1,(),1x x x f x x ex π⎧->⎪=⎨⎪≤⎩的图象大致是( ) A . B .C .D .【答案】A【解析】【分析】根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当1x >时,()1ln()f x x x=-, 由1,y y x x =-=在()1,+∞递增, 所以1t x x =-在()1,+∞递增 又ln y t =是增函数,所以()1ln()f x x x =-在()1,+∞递增,故排除B 、C当1x ≤时()cos x f x e π=,若()0,1x ∈,则()0,x ππ∈所以cos t x π=在()0,1递减,而t y e =是增函数所以()cos x f x eπ=在()0,1递减,所以A 正确,D 错误故选:A【点睛】 本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.2.已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅u u u r u u u r 的值为( )A .118B .54C .14D .18【答案】D【解析】【分析】设BA a =u u u r r ,BC b =u u u r r ,作为一个基底,表示向量()1122DE AC b a ==-u u u r u u u r r r ,()3324DF DE b a ==-u u u r u u u r r r ,()1324AF AD DF a b a =+=-+-u u u r u u u r u u u r r r r 5344a b =-+r r ,然后再用数量积公式求解. 【详解】设BA a =u u u r r ,BC b =u u u r r , 所以()1122DE AC b a ==-u u u r u u u r r r ,()3324DF DE b a ==-u u u r u u u r r r ,()1324AF AD DF a b a =+=-+-u u u r u u u r u u u r r r r 5344a b =-+r r , 所以531448AF BC a b b b ⋅=-⋅+⋅=u u u r u u u r r r r r . 故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.3.将函数2()22cos f x x x =-图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移8π个单位长度,则所得函数图象的一个对称中心为( ) A .3,08π⎛⎫ ⎪⎝⎭ B .3,18⎛⎫-- ⎪⎝⎭π C .3,08⎛⎫- ⎪⎝⎭π D .3,18⎛⎫- ⎪⎝⎭π 【答案】D【解析】【分析】先化简函数解析式,再根据函数()y Asin x ωϕ=+的图象变换规律,可得所求函数的解析式为22sin 134y x π⎛⎫=-- ⎪⎝⎭,再由正弦函数的对称性得解. 【详解】222cos y x x =-Q()21cos 2x x =-+2sin 216x π⎛⎫=-- ⎪⎝⎭, ∴将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为22sin 136y x π⎛⎫=-- ⎪⎝⎭, 再向右平移8π个单位长度,所得函数的解析式为 22sin 1386y x ππ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦ 22sin 134x π⎛⎫=-- ⎪⎝⎭, 233,3428x k x k k Z ππππ-=⇒=+∈, 0k =可得函数图象的一个对称中心为3,18⎛⎫- ⎪⎝⎭π,故选D. 【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.4.已知i 是虚数单位,若z 211i i =+-,则||z =( )AB .2CD .10 【答案】C【解析】【分析】根据复数模的性质计算即可.【详解】 因为z 211i i=+-, 所以(1)(21)z i i =-+,|||1||21|z i i =-⋅+==,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.5.设函数()f x 定义域为全体实数,令()(||)|()|g x f x f x =-.有以下6个论断:①()f x 是奇函数时,()g x 是奇函数;②()f x 是偶函数时,()g x 是奇函数;③()f x 是偶函数时,()g x 是偶函数;④()f x 是奇函数时,()g x 是偶函数⑤()g x 是偶函数;⑥对任意的实数x ,()0g x ….那么正确论断的编号是( )A .③④B .①②⑥C .③④⑥D .③④⑤ 【答案】A【解析】【分析】根据函数奇偶性的定义即可判断函数()g x 的奇偶性并证明.【详解】当()f x 是偶函数,则()()f x f x -=,所以()()(||)|()|(||)|()|g x f x f x f x f x g x -=---=-=,所以()g x 是偶函数;当()f x 是奇函数时,则()()f x f x -=-,所以()()(||)|()|(||)|()|g x f x f x f x f x g x -=---=-=,所以()g x 是偶函数;当()f x 为非奇非偶函数时,例如:()5f x x =+, 则()27f -=,()23f -=,此时(2)0g ->,故⑥错误;故③④正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.6.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )A .2550100,,777B .252550,,1477C .100200400,,777D .50100200,,777【答案】D【解析】【分析】设羊户赔粮1a 升,马户赔粮2a 升,牛户赔粮3a 升,易知123,,a a a 成等比数列,1232,50q a a a =++=,结合等比数列的性质可求出答案.【详解】设羊户赔粮1a 升,马户赔粮2a 升,牛户赔粮3a 升,则123,,a a a 成等比数列,且公比1232,50q a a a =++=,则1(1a q +)250q +=,故1250501227a ==++,2110027a a ==,23120027a a ==. 故选:D.【点睛】 本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.7.已知非零向量a r ,b r 满足()a a ⊥r r ,()b b ⊥r r ,则a r 与b r 的夹角为( ) A .6π B .4π C .3π D .2π 【答案】B【解析】【分析】由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得a r 与b r 的夹角.【详解】根据平面向量数量积的垂直关系可得()20a a a b ⋅=-⋅=r r r r , ()20b b b b ⋅=⋅=r r r r ,所以22a b b ==⋅r r r ,即a b =r r ,由平面向量数量积定义可得2cos ,a b a b =⋅r r r r ,所以cos ,2a b =r r ,而[],0,a b π∈r r , 即a r 与b r 的夹角为4π. 故选:B【点睛】 本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.8.已知函数()log (|2|)(0a f x x a a =-->,且1a ≠),则“()f x 在(3,)+∞上是单调函数”是“01a <<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】先求出复合函数()f x 在(3,)+∞上是单调函数的充要条件,再看其和01a <<的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】 ()log (|2|)(0a f x x a a =-->,且1a ≠), 由20x a -->得2x a <-或2x a >+,即()f x 的定义域为{2x x a <-或2}x a >+,(0,a >且1a ≠) 令2t x a =--,其在(,2)a -∞-单调递减,(2,)a ++∞单调递增,()f x 在(3,)+∞上是单调函数,其充要条件为2301a a a +≤⎧⎪>⎨⎪≠⎩即01a <<.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.9.已知,m n 表示两条不同的直线,αβ,表示两个不同的平面,且,m n αβ⊥⊂,则“αβ⊥”是“//m n ”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】B【解析】【分析】根据充分必要条件的概念进行判断.【详解】对于充分性:若αβ⊥,则,m n 可以平行,相交,异面,故充分性不成立;若//m n ,则,n n αβ⊥⊂,可得αβ⊥,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.10.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282【答案】B【解析】【分析】 将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长BE 交DF 于A 点,其中16AB AD DD ===,3AE =,4AF =,所以表面积()3436536246302642S ⨯=⨯+⨯+⨯+⨯+=. 故选B 项. 【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题11.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为( )A .3y x =±B .y =C .2y x =±D .y =【答案】C【解析】【分析】利用三角形1OMF ∆与2PF F ∆相似得122PF PF =,结合双曲线的定义求得,,a b c 的关系,从而求得双曲线的渐近线方程。
河南省驻马店市2021届新高考数学二模试卷含解析
河南省驻马店市2021届新高考数学二模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.执行如图所示的程序框图,若输入ln10a =,lg b e =,则输出的值为( )A .0B .1C .2lg eD .2lg10【答案】A 【解析】 【分析】根据输入的值大小关系,代入程序框图即可求解. 【详解】输入ln10a =,lg b e =,因为ln101lg e >>,所以由程序框图知, 输出的值为11ln10ln10ln100lg a b e-=-=-=. 故选:A 【点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.2.函数tan 42y x ππ⎛⎫=-⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】 【分析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果. 【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z ∈k=0时解得x=2, 令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x=3,∴A(2,0),B(3,1),∴()()()2,0,3,1,1,1OA OB AB ===, ∴()()()5,11,1516OA OB AB +⋅=⋅=+=. 故选:A. 【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题. 3.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( ) A .1 B .13C .23D .43【答案】B 【解析】 【分析】首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可. 【详解】联立方程:22y xy x⎧=⎨=⎩可得:11xy=⎧⎨=⎩,2211xy=⎧⎨=⎩,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:)312312211|333S x dx x x⎛⎫==-=⎪⎝⎭⎰.本题选择B选项.【点睛】本题主要考查定积分的概念与计算,属于中等题.4.已知向量(1,4)a =,(2,)b m=-,若||||a b a b+=-,则m=()A.12-B.12C.-8 D.8 【答案】B【解析】【分析】先求出向量a b+,a b -的坐标,然后由||||a b a b+=-可求出参数m的值. 【详解】由向量(1,4)a =,(2,)b m=-,则()1,4a b m+=-+,()3,4a b m-=-(2||1+a b+=(2||3+a b-=又||||ab a b+=-12m=.故选:B【点睛】本题考查向量的坐标运算和模长的运算,属于基础题.5.已知函数22,0,()1,0,x x xf xx x⎧-=⎨+<⎩,则((1))f f-=()A.2 B.3 C.4 D.5 【答案】A【解析】【分析】根据分段函数直接计算得到答案.【详解】因为22,0,()1,0,x x x f x x x ⎧-=⎨+<⎩所以2((1))(2)222f f f -==-=.故选:A . 【点睛】本题考查了分段函数计算,意在考查学生的计算能力.6.△ABC 中,AB =3,BC =AC =4,则△ABC 的面积是( ) A.BC .3D .32【答案】A 【解析】 【分析】由余弦定理求出角A ,再由三角形面积公式计算即可. 【详解】由余弦定理得:2221cos 22AB AC BC A AB AC +-==⋅⋅,又()0,A π∈,所以得3A π=,故△ABC的面积1sin 2S AB AC A =⋅⋅⋅=故选:A 【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.7.若实数,x y 满足的约束条件03020y x y x y ≥⎧⎪+-≤⎨⎪-≥⎩,则2z x y =+的取值范围是( )A .[)4+∞,B .[]06,C .[]04,D .[)6+∞,【答案】B 【解析】 【分析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围. 【详解】实数,x y 满足的约束条件03020y x y x y ≥⎧⎪+-≤⎨⎪-≥⎩,画出可行域如下图所示:将线性目标函数2z x y =+化为2y x z =-+,则将2y x =-平移,平移后结合图像可知,当经过原点()0,0O 时截距最小,min 0z =; 当经过()3,0B 时,截距最大值,max 2306z =⨯+=, 所以线性目标函数2z x y =+的取值范围为[]0,6, 故选:B. 【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题. 8.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交 【答案】D 【解析】 【分析】通过条件判断直线与平面相交,于是可以判断ABCD 的正误. 【详解】根据直线不平行于平面,且可知直线与平面相交,于是ABC 错误,故选D. 【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大. 9.复数5i12i+的虚部是 ( )A .iB .i -C .1D .1-【答案】C 【解析】因为()()()512510*********i i i i i i i i -+===+++- ,所以5i 12i+的虚部是1 ,故选C. 10.已知()21AB =-,,()1,AC λ=,若cos BAC ∠=λ的值是( ) A .-1 B .7C .1D .1或7【答案】C 【解析】 【分析】根据平面向量数量积的坐标运算,化简即可求得λ的值. 【详解】由平面向量数量积的坐标运算,代入化简可得cos 5AB AC BAC AB AC⋅∠===. ∴解得1λ=. 故选:C. 【点睛】本题考查了平面向量数量积的坐标运算,属于基础题.11.已知等差数列{}n a 中,51077,0a a a =+=,则34a a +=( ) A .20 B .18C .16D .14【答案】A 【解析】 【分析】设等差数列{}n a 的公差为d ,再利用基本量法与题中给的条件列式求解首项与公差,进而求得34a a +即可. 【详解】设等差数列{}n a 的公差为d .由51077,0a a a =⎧⎨+=⎩得11147,960a d a d a d +=⎧⎨+++=⎩,解得115,2a d =⎧⎨=-⎩.所以341252155(2)20a a a d +=+=⨯+⨯-=.故选:A 【点睛】本题主要考查了等差数列的基本量求解,属于基础题.12.不等式组201230x yy xx y-≥⎧⎪⎪≥⎨⎪+-≤⎪⎩表示的平面区域为Ω,则()A.(),x y∀∈Ω,23x y+>B.(),x y∃∈Ω,25x y+>C.(),x y∀∈Ω,231yx+>-D.(),x y∃∈Ω,251yx+>-【答案】D【解析】【分析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设1222,1yz x y zx+=+=-,分析12,z z的几何意义,可得12,z z的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组201230x yy xx y-≥⎧⎪⎪≥⎨⎪+-≤⎪⎩其表示的平面区域如图所示,其中()2,1A,()1,2B,设12z x y=+,则122zxy=-+,1z的几何意义为直线122zxy=-+在y轴上的截距的2倍,由图可得:当122zxy=-+过点()1,2B时,直线12z x y=+在y轴上的截距最大,即25x y+≤,当122zxy=-+过点原点时,直线12z x y=+在y轴上的截距最小,即20x y+≥,故AB错误;设221yzx+=-,则2z的几何意义为点(),x y与点()1,2-连线的斜率,由图可得2z最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D. 【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市经济开发区2022年高三第四次模拟考试数学试卷含解析
2021-2022高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数21ai bi i -=-,其中a ,b R ∈,i 是虚数单位,则a bi +=( ) A .12i -+ B .1 C .5 D .52.已知数列{}n a 为等差数列,n S 为其前n 项和,56104a a a +=+,则21S =( )A .7B .14C .28D .843.已知函数()2sin()(0,0)3f x x A ωωπ=->>,将函数()f x 的图象向左平移3π个单位长度,得到函数()g x 的图象,若函数()g x 的图象的一条对称轴是6x π=,则ω的最小值为 A .16 B .23 C .53 D .564.已知复数z 满足(12)43i z i +=+,则z 的共轭复数是( )A .2i -B .2i +C .12i +D .12i -5.已知集合{|4},{|2,}A x N y x B x x n n Z =∈=-==∈,则A B =( ) A .[0,4] B .{0,2,4}C .{2,4}D .[2,4] 6.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .134B .866C .300D .5007.已知x ,y 满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是( )A .4B .34C .211D .14 8.一个正三角形的三个顶点都在双曲线221x ay +=的右支上,且其中一个顶点在双曲线的右顶点,则实数a 的取值范围是( )A .()3,+∞ B.)+∞ C.(,-∞ D .(),3-∞-9.在区间[]3,3-上随机取一个数x ,使得301x x -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( )A .8B .9C .10D .1110.已知抛物线2:2(0)C y px p =>的焦点为F ,对称轴与准线的交点为T ,P 为C 上任意一点,若2PT PF =,则PTF ∠=( )A .30°B .45°C .60°D .75°11.已知正三棱锥A BCD -的所有顶点都在球O 的球面上,其底面边长为4,E 、F 、G 分别为侧棱AB ,AC ,AD 的中点.若O 在三棱锥A BCD -内,且三棱锥A BCD -的体积是三棱锥O BCD -体积的4倍,则此外接球的体积与三棱锥O EFG -体积的比值为( )A. B. C. D.12.已知函数()ln a f x x a x=-+在[]1,e x ∈上有两个零点,则a 的取值范围是( ) A .e ,11e ⎡⎤-⎢⎥-⎣⎦ B .e ,11e ⎡⎫⎪⎢-⎣⎭ C .e ,11e ⎡⎫-⎪⎢-⎣⎭ D .[)1,e - 二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市2021届新高考第四次模拟数学试题含解析
河南省驻马店市2021届新高考第四次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,,,m n l αβαβαβ⊥⊂⊂=,则“m ⊥n”是“m ⊥l”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】【分析】构造长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,然后再在这两个面中根据题意恰当的选取直线为m ,n 即可进行判断.【详解】如图,取长方体ABCD ﹣A 1B 1C 1D 1,令平面α为面ADD 1A 1,底面ABCD 为β,直线AD =直线l 。
若令AD 1=m ,AB =n ,则m ⊥n ,但m 不垂直于l若m ⊥l ,由平面ABCD ⊥平面11ADD A 可知,直线m 垂直于平面β,所以m 垂直于平面β内的任意一条直线n∴m ⊥n 是m ⊥l 的必要不充分条件.故选:B .【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m ⊥n ⇒m ⊥l ?和m ⊥l ⇒m ⊥n ?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析. 2.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212x x f x -=B .()()21x f x x =-C .()ln f x x =D .()1xf x xe =- 【答案】B【解析】【分析】 根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A .【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.3.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A .2728倍B .4735倍C .4835倍D .75倍 【答案】B【解析】【分析】设贫困户总数为a ,利用表中数据可得脱贫率000000002409521090P =⨯⨯+⨯⨯,进而可求解.【详解】设贫困户总数为a ,脱贫率0000000000240952109094a a P a⨯⨯+⨯⨯==,所以000094477035=. 故2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的4735倍. 故选:B【点睛】本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.4.已知点1F 是抛物线C :22x py =的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F ,2F 为焦点的双曲线上,则双曲线的离心率为( ) A.2 B1 C.2 D1【答案】D【解析】【分析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k 的值,设出双曲线方程,求得2a =丨AF 2丨﹣丨AF 11)p ,利用双曲线的离心率公式求得e .【详解】直线F 2A 的直线方程为:y =kx 2p -,F 1(0,2p ),F 2(0,2p -), 代入抛物线C :x 2=2py 方程,整理得:x 2﹣2pkx+p 2=0,∴△=4k 2p 2﹣4p 2=0,解得:k =±1,∴A (p ,2p ),设双曲线方程为:2222y x a b-=1, 丨AF 1丨=p ,丨AF 2丨==,2a =丨AF 2丨﹣丨AF 1丨=(1)p , 2c =p ,∴离心率e c a ===1, 故选:D .【点睛】 本题考查抛物线及双曲线的方程及简单性质,考查转化思想,考查计算能力,属于中档题.5.已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有三个零点,则( )A .1,0a b <-<B .1,0a b <->C .1,0a b >-<D .1,0a b >->【答案】C【解析】【分析】当0x <时,()(1)y f x ax b x ax b a x b =--=--=--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,得1b x a =-;()y f x ax b =--最多一个零点;当0x 时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x =+-',当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b =--最多一个零点.不合题意;当10a +>,即1a >-时,令0y '>得[1x a ∈+,)+∞,函数递增,令0y '<得[0x ∈,1)a +,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点⇔函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点,如图: ∴01b a <-且32011(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,310(116,)b a a >>-+∴>-. 故选C .【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.6.已知复数z 534i =+,则复数z 的虚部为( ) A .45 B .45- C .45i D .45-i 【答案】B【解析】【分析】利用复数的运算法则、虚部的定义即可得出【详解】()()()53453434343455i z i i i i -===-++-, 则复数z 的虚部为45-. 故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题. 7.双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,那么它的离心率为( ) A 3B .5C .62D 5 【答案】D【解析】【分析】 根据双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,列出方程,求出m 的值即可.【详解】 ∵双曲线()221x y m c m-=>的一条渐近线方程为20x y +=, 可得12m =,∴4m =, ∴双曲线的离心率5c e a ==. 故选:D.【点睛】本小题主要考查双曲线离心率的求法,属于基础题.8.若,则( ) A . B . C . D .【答案】B【解析】【分析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公式得,所以 .故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.9.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】【分析】根据f (x )为偶函数便可求出m =0,从而f (x )=2x ﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f (x )为偶函数;∴f (﹣x )=f (x ); ∴2x m --﹣1=2x m -﹣1;∴|﹣x ﹣m|=|x ﹣m|;(﹣x ﹣m )2=(x ﹣m )2;∴mx =0;∴m =0;∴f (x )=2x ﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|0.5log 3|)=f (2log 3),b =f (2log 5),c =f (2);∵0<2log 3<2<2log 5;∴a<c<b .故选B .【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.10.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k 的值为( )A .45B .60C .75D .100【答案】B【解析】【分析】根据程序框图中程序的功能,可以列方程计算.【详解】 由题意12315234S ⨯⨯⨯=,60S =. 故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键.11.已知函数()1ln11x f x x x +=++-且()()12f a f a ++>,则实数a 的取值范围是( ) A .11,2⎛⎫-- ⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭ C .10,2⎛⎫ ⎪⎝⎭ D .1,12⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】构造函数()()1F x f x =-,判断出()F x 的单调性和奇偶性,由此求得不等式()()12f a f a ++>的解集.【详解】构造函数()()11ln 1x F x f x x x +=-=+-,由101x x+>-解得11x -<<,所以()F x 的定义域为()1,1-,且()()111ln ln ln 111x x x F x x x x F x x x x +--⎛⎫-=-=--=-+=- ⎪-++⎝⎭,所以()F x 为奇函数,而()12ln ln 111x F x x x x x +⎛⎫=+=-++ ⎪--⎝⎭,所以()F x 在定义域上为增函数,且()0ln100F =+=.由()()12f a f a ++>得()()1110f a f a -++->,即()()10F a F a ++>,所以1011102111a a a a a ++>⎧⎪-<<⇒-<<⎨⎪-<+<⎩. 故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.12.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A .223B .63C .3D .13【答案】C【解析】【分析】利用建系,假设AB 长度,表示向量AC 与BD ,利用向量的夹角公式,可得结果.【详解】由平面ABD ⊥平面BCD ,AB BD ⊥平面ABD ⋂平面BCD BD =,AB 平面ABD所以AB ⊥平面BCD ,又DC ⊂平面BCD所以AB DC ⊥,又DB DC ⊥ 所以作z 轴//AB ,建立空间直角坐标系B xyz -如图设1AB =,所以1,1,2BD DC BC ===则()()()()0,1,1,0,1,0,1,0,0,0,0,0A B C D所以()()1,1,1,0,1,0AC BD =---所以3cos ,33AC BD AC BD AC BD ⋅=== 故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市2021届新高考数学仿真第四次备考试题含解析
河南省驻马店市2021届新高考数学仿真第四次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.己知a =544log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则( ) A .a b c >> B .a c b >> C .b c a >> D .c a b >>【答案】B 【解析】 【分析】先将三个数通过指数,对数运算变形104661a ==>=,2.95544411log log 10,012133b c ⎛⎫⎛⎫=<=<=<= ⎪⎪⎝⎭⎝⎭再判断. 【详解】因为104661a ==>=, 2.95544411log log 10,012133b c ⎛⎫⎛⎫=<=<=<= ⎪ ⎪⎝⎭⎝⎭, 所以a c b >>, 故选:B. 【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题. 2.关于函数()sin |||cos |f x x x =+有下述四个结论:( )①()f x 是偶函数; ②()f x 在区间,02π⎛⎫- ⎪⎝⎭上是单调递增函数;③()f x 在R 上的最大值为2; ④()f x 在区间[]2,2ππ-上有4个零点. 其中所有正确结论的编号是( ) A .①②④ B .①③C .①④D .②④【答案】C 【解析】 【分析】根据函数()f x 的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号. 【详解】()f x 的定义域为R .由于()()f x f x -=,所以()f x 为偶函数,故①正确.由于1sin cos ,sin cos 66624442f f ππππππ⎛⎫⎛⎫-=+=-=+=⎪⎪⎝⎭⎝⎭,64f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在区间,02π⎛⎫- ⎪⎝⎭上不是单调递增函数,所以②错误.当0x ≥时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=±=±≤ ⎪⎝⎭且存在4x π=,使sin cos 444f πππ⎛⎫=+=⎪⎝⎭. 所以当0x ≥时,()f x ≤;由于()f x 为偶函数,所以x ∈R 时()f x ≤, 所以()f x,所以③错误.依题意,(0)sin 0cos01f =+=,当02x π<≤时,()3sin cos ,0,2223sin cos ,22x x x x f x x x x πππππ⎧+<≤≤≤⎪⎪=⎨⎪-<<⎪⎩或,所以令sin cos 0x x +=,解得74x π=,令sin cos 0x x -=,解得54=x π.所以在区间(]0,2π,()f x 有两个零点.由于()f x 为偶函数,所以()f x 在区间[)2,0π-有两个零点.故()f x 在区间[]2,2ππ-上有4个零点.所以④正确.综上所述,正确的结论序号为①④. 故选:C 【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题. 3.已知直线,m n 和平面α,若m α⊥,则“m n ⊥”是“//n α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .不充分不必要【答案】B 【解析】 【分析】由线面关系可知m n ⊥,不能确定n 与平面α的关系,若//n α一定可得m n ⊥,即可求出答案. 【详解】,m m n α⊥⊥,不能确定αn ⊂还是αn ⊄,//m n n α∴⊥,当//n α时,存在a α⊂,//,n a , 由,m m a α⊥⇒⊥ 又//,n a 可得m n ⊥,所以“m n ⊥”是“//n α”的必要不充分条件, 故选:B 【点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.4.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )AB .23CD .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+,可得:2000232263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.5.已知复数21z i =+ ,其中i 为虚数单位,则z =( ) ABC .2D【答案】D【分析】把已知等式变形,然后利用数代数形式的乘除运算化简,再由复数模的公式计算得答案. 【详解】 解:()()()2121111i z i i i i -===-++- ,则z ==故选:D. 【点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题. 6.已知集合{}15{|},|2M x x N x x =-≤<=<,则MN =( )A .{|12}x x -≤<B .{}|25x x -<<C .{|15}x x -≤<D .{}|02x x <<【答案】A 【解析】 【分析】考虑既属于M 又属于N 的集合,即得. 【详解】{}2|{2,1|2}N x x M N x x =-<<∴⋂=-≤<.故选:A 【点睛】本题考查集合的交运算,属于基础题.7. “2a =”是“直线210ax y +-=与(1)20x a y +-+=互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】利用两条直线互相平行的条件进行判定 【详解】当2a =时,直线方程为2210x y +-=与20x y ++=,可得两直线平行;若直线210ax y +-=与()120x a y +-+=互相平行,则()12a a -=,解得12a =,21a =-,则“2a =”是“直线210ax y +-=与()120x a y +-+=互相平行”的充分不必要条件,故选A本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题. 8.已知函数()5sin 12f x x π⎛⎫=+ ⎪⎝⎭,要得到函数()cos g x x =的图象,只需将()y f x =的图象( ) A .向左平移12π个单位长度B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 【答案】A 【解析】 【分析】根据函数图像平移原则,即可容易求得结果. 【详解】 因为sin cos 122f x x x ππ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 故要得到()g x ,只需将()f x 向左平移12π个单位长度.故选:A. 【点睛】本题考查函数图像平移前后解析式的变化,属基础题.9.已知函数()ln 2f x x ax =-,()242ln ax g x x x=-,若方程()()f x g x =恰有三个不相等的实根,则a的取值范围为( ) A .(]0,eB .10,2e ⎛⎤ ⎥⎝⎦C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】由题意可将方程转化为ln 422ln x ax a x x -=-,令()ln xt x x=,()()0,11,x ∈+∞,进而将方程转化为()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,即()2t x =-或()2t x a =,再利用()t x 的单调性与最值即可得到结论.【详解】由题意知方程()()f x g x =在()()0,11,+∞上恰有三个不相等的实根,即24ln 22ln ax x ax x x-=-,①.因为0x >,①式两边同除以x ,得ln 422ln x axa x x-=-. 所以方程ln 4220ln x axa x x --+=有三个不等的正实根. 记()ln xt x x=,()()0,11,x ∈+∞,则上述方程转化为()()4220at x a t x --+=.即()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,所以()2t x =-或()2t x a =. 因为()21ln xt x x-'=,当()()0,11,x e ∈时,()0t x '>,所以()t x 在()0,1,()1,e 上单调递增,且0x →时,()t x →-∞.当(),x e ∈+∞时,()0t x '<,()t x 在(),e +∞上单调递减,且x →+∞时,()0t x →.所以当x e =时,()t x 取最大值1e,当()2t x =-,有一根. 所以()2t x a =恰有两个不相等的实根,所以102a e<<. 故选:B. 【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题. 10.已知函数())33x x f x x -=+-,不等式()2(50f f x ++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞ B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦【答案】C 【解析】 【分析】确定函数为奇函数,且单调递减,不等式转化为224a x⎫=-+,利用双勾函数单调性求最值得到答案. 【详解】())33(),()x x f xx f x f x --=+-=-是奇函数,())3333x x x x f x x --=+=+--,易知,33x x y y y -==-=均为减函数,故()f x 且在R 上单调递减,不等式()2(50f f x ++,即()2(5f f x --,结合函数的单调性可得25x --,即224ax ⎫=-+, 设t=,2t≥,故1y t t ⎛⎫=-+ ⎪⎝⎭单调递减,故max 52⎫-=-, 当2t =,即0x =时取最大值,所以52a -. 故选:C . 【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.11.已知圆22670x y x +--=与抛物线()220y px p =>的准线相切,则p 的值为()A .1B .2C .12D .4【答案】B 【解析】 【分析】因为圆22670x y x +--=与抛物线()220y px p =>的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知p 的值为2,选B. 【详解】 请在此输入详解!12.已知(1,3),(2,2),(,1)a b c n ===-,若()a c b -⊥,则n 等于( ) A .3 B .4C .5D . 6【答案】C 【解析】 【分析】先求出(1,4)a c n -=-,再由()a c b -⊥,利用向量数量积等于0,从而求得n . 【详解】由题可知(1,4)a c n -=-,因为()a c b -⊥,所以有()12240n -⨯+⨯=,得5n =, 故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市2021届新高考一诊数学试题含解析
河南省驻马店市2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u r u u u r u u u r,x ,y R ∈,则23x y +=( ) A .2 B .53C .43D .32【答案】B 【解析】 【分析】首先根据题中条件和三角形中几何关系求出x ,y ,即可求出23x y +的值. 【详解】如图所示过O 做三角形三边的垂线,垂足分别为D ,E ,F , 过O 分别做AB ,AC 的平行线NO ,MO ,由题知222294cos 607212AB AC BC BC BC AB AC +-++︒==⇒=⋅⋅则外接圆半径212sin 60BC r ==⋅︒ 因为⊥OD AB ,所以22213193OD AO AD =-=-=, 又因为60DMO ∠=︒,所以2133DM AM =⇒=,43MO AN ==, 由题可知AO xAB y AC AM AN =+=+u u u r u u u r u u u r u u u u r u u u r,所以16AM x AB ==,49AN y AC ==,所以5233x y +=. 故选:D. 【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.2.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2A B =-I ,则m =( )A .4B .-4C .8D .-8【答案】B 【解析】 【分析】根据交集的定义,{}2A B =-I ,可知2B -∈,代入计算即可求出m . 【详解】由{}2A B =-I ,可知2B -∈, 又因为{}2|120B x x mx =+-=, 所以2x =-时,2(2)2120m ---=, 解得4m =-. 故选:B. 【点睛】本题考查交集的概念,属于基础题.3.已知双曲线221x y a+=的一条渐近线倾斜角为56π,则a =( )A .3B .C .-D .3-【答案】D 【解析】 【分析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果. 【详解】由双曲线方程可知:0a <,渐近线方程为:y x=,Q 一条渐近线的倾斜角为56π,5tan 63π==-,解得:3a =-.故选:D . 【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于a 的范围的要求.4.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-【答案】C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础. 5.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .i B .i -C .1-D .1【答案】C 【解析】 【分析】21iz =+,分子分母同乘以分母的共轭复数即可. 【详解】 由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C. 【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题. 6.已知集合2{|1}A x x =<,{|ln 1}B x x =<,则 A .{|0e}A B x x =<<I B .{|e}A B x x =<I C .{|0e}A B x x =<<U D .{|1e}A B x x =-<<U【答案】D 【解析】 【分析】 【详解】因为2{|1}{|11}A x x x x =<=-<<,{|ln 1}{|0e}B x x x x =<=<<, 所以{|01}A B x x =<<I ,{|1e}A B x x =-<<U ,故选D .7.由实数组成的等比数列{a n }的前n 项和为S n ,则“a 1>0”是“S 9>S 8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可. 【详解】解:若{a n }是等比数列,则89891,0S a a S q q -==≠, 若10a >,则898910S a a S q -==>,即98S S >成立, 若98S S >成立,则898910S a a S q -==>,即10a >,故“10a >”是“98S S >”的充要条件, 故选:C. 【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键. 8.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .【答案】C 【解析】 【分析】 计算得到,,代入双曲线化简得到答案.【详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,,故,,故,代入双曲线化简得到:,故.故选:. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力. 9.设i 为虚数单位,复数()()1z a i i R =+-∈,则实数a 的值是( ) A .1 B .-1 C .0 D .2【答案】A 【解析】 【分析】根据复数的乘法运算化简,由复数的意义即可求得a 的值. 【详解】复数()()1z a i i R =+-∈, 由复数乘法运算化简可得()11a a i z =++-,所以由复数定义可知10a -=, 解得1a =, 故选:A. 【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题. 10.下列函数中,值域为R 且为奇函数的是( ) A .2y x =+ B .y sinx =C .3y x x =-D .2x y =【答案】C【解析】 【分析】依次判断函数的值域和奇偶性得到答案. 【详解】A. 2y x =+,值域为R ,非奇非偶函数,排除;B. y sinx =,值域为[]1,1-,奇函数,排除;C. 3y x x =-,值域为R ,奇函数,满足;D. 2x y =,值域为()0,∞+,非奇非偶函数,排除; 故选:C . 【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用. 11.执行如图所示的程序框图,输出的结果为( )A .78B .158C .3116D .1516【答案】D 【解析】 【分析】由程序框图确定程序功能后可得出结论. 【详解】执行该程序可得12341111150222216S =++++=. 故选:D . 【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.12.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .38243【答案】C 【解析】 【分析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果. 【详解】从6个球中摸出2个,共有2615C =种结果,两个球的号码之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5)∴摸一次中奖的概率是51153=, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是13, ∴有5人参与摸奖,恰好有2人获奖的概率是35222180()()33243C ⋅⋅=, 故选:C . 【点睛】本题主要考查了n 次独立重复试验中恰好发生k 次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市2021届新高考二诊数学试题含解析
河南省驻马店市2021届新高考二诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数22()2cos (sin cos )2f x x x x =++-的一个单调递增区间是( ) A .,44ππ⎡⎤-⎢⎥⎣⎦ B .3,88ππ⎡⎤-⎢⎥⎣⎦ C .5,88ππ⎡⎤⎢⎥⎣⎦D .59,88ππ⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简()f x 表达式,再根据三角函数单调区间的求法,求得()f x 的单调区间,由此确定正确选项. 【详解】因为22()2cos (sin cos )2f x x x x =++-1cos 21sin 2224x x x π⎛⎫=+++-=+ ⎪⎝⎭,由()f x 单调递增,则222242k x k πππππ-≤+≤+(k ∈Z ),解得388k x k ππππ-≤≤+(k ∈Z ),当1k =时,D 选项正确.C 选项是递减区间,A ,B 选项中有部分增区间部分减区间. 故选:D 【点睛】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.2.0y m -+=过双曲线C :22221(0,0)x y a b a b-=>>的左焦点F ,且与双曲线C 在第二象限交于点A ,若||||FA FO =(O 为坐标原点),则双曲线C 的离心率为A .2B .1C D 1【答案】B 【解析】 【分析】 【详解】0y m -+=的倾斜角为π3,易得||||FA FO c ==.设双曲线C 的右焦点为E ,可得AFE △中,90FAE ∠=,则||AE =,所以双曲线C 的离心率为1e =.故选B .3.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )A BC D 【答案】A 【解析】 【分析】求出双曲线的一条渐近线方程,利用圆P 与双曲线C 的一条渐近线交于,M N 两点,且90MPN ∠=︒,列出方程,求解离心率. 【详解】不妨设双曲线C 的一条渐近线0bx ay -=与圆P 交于,M N ,因为90MPN ∠=︒,所以圆心P 到0bx ay -=222b c ==,即2222c a -=,因为1ce a=>,所以解得e = 故选A . 【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于,a c 的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.4.已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线的倾斜角为θ,且cos θ=率为( )A B C .2 D .4【答案】A 【解析】 【分析】由倾斜角的余弦值,求出正切值,即,a b 的关系,求出双曲线的离心率. 【详解】解:设双曲线的半个焦距为c ,由题意[0,)θπ∈又5cos 5θ=,则25sin 5θ=,tan 2θ=,2b a =,所以离心率215c b e a a ⎛⎫==+= ⎪⎝⎭, 故选:A. 【点睛】本题考查双曲线的简单几何性质,属于基础题 5.已知复数z 满足()()5z i i --=,则z =( ) A .6i B .6i - C .6- D .6【答案】A 【解析】 【分析】由复数的运算法则计算. 【详解】因为()()5z i i --=,所以56z i i i=+=- 故选:A . 【点睛】本题考查复数的运算.属于简单题.6.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122 B .112 C .102 D .92【答案】D 【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.7.已知()f x 为定义在R 上的偶函数,当()1,0x ∈-时,()433xf x =+,则33log 2f ⎛⎫= ⎪⎝⎭( )A .2-B .3C .3-D .2【答案】D 【解析】 【分析】判断321log 03-<<,利用函数的奇偶性代入计算得到答案. 【详解】∵321log 03-<<,∴33332224log log log 223333f f f ⎛⎫⎛⎫⎛⎫=-==+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D 【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.8.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且2PA PB AB ===,3PC =,则PC 与面PAB 所成角的正弦值等于( )A .13B .6 C .3 D .23【答案】A 【解析】 【分析】首先找出PC 与面PAB 所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值. 【详解】由题知ABC 是等腰直角三角形且90ACB ∠=︒,ABP △是等边三角形,设AB 中点为O ,连接PO ,CO ,可知62PO =,2CO =同时易知AB PO ⊥,AB CO ⊥,所以AB ⊥面POC ,故POC ∠即为PC 与面PAB 所成角,有222cos 23PO CO PC POC PO CO +-∠==⋅,故1sin 3POC ∠==. 故选:A. 【点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.9.设双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点()()0,0E t t >.已知动点P 在双曲线C 的右支上,且点2,,P E F 不共线.若2PEF ∆的周长的最小值为4b ,则双曲线C 的离心率e 的取值范围是( )A .3⎛⎫+∞ ⎪ ⎪⎝⎭B .1,3⎛ ⎝⎦C .)+∞D .(【答案】A 【解析】 【分析】依题意可得22221PEF C PE PF EF PE PF EF ∆=++=++1224PF a b ≥-= 即可得到()242a b a c +>+,从而求出双曲线的离心率的取值范围; 【详解】解:依题意可得如下图象,22221PEF C PE PF EF PE PF EF ∆=++=++112PE PF EF a =++- 1224PF a b ≥-=()12242PF a b a c ∴=+>+所以2b c > 则22244c a c -> 所以2234c a >所以22243c e a =>所以e >,即3e ⎛⎫∈+∞ ⎪ ⎪⎝⎭故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题. 10.已知3log 74a =,2log b m =,52c =,若a b c >>,则正数m 可以为( ) A .4 B .23C .8D .17【答案】C 【解析】 【分析】首先根据对数函数的性质求出a 的取值范围,再代入验证即可; 【详解】解:∵3333log 27log 74log 814a =<=<=,∴当8m =时,2log 3b m ==满足a b c >>,∴实数m 可以为8. 故选:C 【点睛】本题考查对数函数的性质的应用,属于基础题.11.已知平面向量()4,2a →=,(),3b x →=,//a b →→,则实数x 的值等于( ) A .6 B .1C .32D .32-【答案】A 【解析】 【分析】根据向量平行的坐标表示即可求解. 【详解】()4,2a →=,(),3b x →=,//a b →→,432x ∴⨯=,即6x =, 故选:A 【点睛】本题主要考查了向量平行的坐标运算,属于容易题.12.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞D .(,1)[2,)-∞⋃+∞【答案】C 【解析】 【分析】 设32y k x -=-,则k 的几何意义为点(,)x y 到点(2,3)的斜率,利用数形结合即可得到结论. 【详解】 解:设32y k x -=-,则k 的几何意义为点(,)P x y 到点(2,3)D 的斜率, 作出不等式组对应的平面区域如图:由图可知当过点D 的直线平行于x 轴时,此时302y k x -==-成立; 32y k x -=-取所有负值都成立; 当过点A 时,32y k x -=-取正值中的最小值,1(1,1)0x A x y =⎧⇒⎨-=⎩,此时3132212y k x --===--;故32y x --的取值范围为(,0][2,)-∞+∞; 故选:C. 【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在. 二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市2021届新高考第二次适应性考试数学试题含解析
河南省驻马店市2021届新高考第二次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .4 【答案】D【解析】【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解【详解】 因为1y a x '=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题2.复数2i z i=-(i 是虚数单位)在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】利用复数的四则运算以及几何意义即可求解.【详解】 解:()()()21212222555i i i i z i i i i +-+====-+--+, 则复数2i z i =-(i 是虚数单位)在复平面内对应的点的坐标为:12,55⎛⎫- ⎪⎝⎭, 位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.3.等腰直角三角形BCD 与等边三角形ABD 中,90C ∠=︒,6BD =,现将ABD △沿BD 折起,则当直线AD 与平面BCD 所成角为45︒时,直线AC 与平面ABD 所成角的正弦值为( )A .33B .22C .32D .33【答案】A【解析】【分析】设E 为BD 中点,连接AE 、CE ,过A 作AO CE ⊥于点O ,连接DO ,得到ADO ∠即为直线AD 与平面BCD 所成角的平面角,根据题中条件求得相应的量,分析得到CAE ∠即为直线AC 与平面ABD 所成角,进而求得其正弦值,得到结果.【详解】设E 为BD 中点,连接AE 、CE ,由题可知AE BD ⊥,CE BD ⊥,所以BD ⊥平面AEC ,过A 作AO CE ⊥于点O ,连接DO ,则AO ⊥平面BDC ,所以ADO ∠即为直线AD 与平面BCD 所成角的平面角, 所以2sin 2AO ADO AD∠==,可得32AO = 在AOE △中可得3OE =, 又132OC BD ==,即点O 与点C 重合,此时有AC ⊥平面BCD , 过C 作CF AE ⊥与点F ,又BD AEC ⊥平面,所以BD CF ⊥,所以CF ⊥平面ABD ,从而角CAE ∠即为直线AC 与平面ABD 所成角,3sin 33CE CAE AE ∠===, 故选:A.【点睛】 该题考查的是有关平面图形翻折问题,涉及到的知识点有线面角的正弦值的求解,在解题的过程中,注意空间角的平面角的定义,属于中档题目.4.下列与函数y x=定义域和单调性都相同的函数是( )A .2log 2x y =B .21log 2x y ⎛⎫= ⎪⎝⎭C .21log y x =D .14y x = 【答案】C【解析】【分析】分析函数y =的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项. 【详解】函数y =的定义域为()0,∞+,在()0,∞+上为减函数. A 选项,2log 2x y =的定义域为()0,∞+,在()0,∞+上为增函数,不符合.B 选项,21log 2x y ⎛⎫= ⎪⎝⎭的定义域为R ,不符合. C 选项,21log y x =的定义域为()0,∞+,在()0,∞+上为减函数,符合. D 选项,14y x =的定义域为[)0,+∞,不符合.故选:C【点睛】本小题主要考查函数的定义域和单调性,属于基础题.5.在复平面内,复数2i i z -=(i 为虚数单位)对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】化简复数为a bi +(a 、)b R ∈的形式,可以确定z 对应的点位于的象限.【详解】 解:复数222(2)(2)12i i i z i i i i i --===--=-- 故复数z 对应的坐标为()1,2--位于第三象限故选:C .【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.6.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为()A.6里B.12里C.24里D.48里【答案】C【解析】【分析】设第一天走1a里,则{}n a是以1a为首项,以12为公比的等比数列,由题意得1661(1)2378112aS-==-,求出1192a=(里),由此能求出该人第四天走的路程.【详解】设第一天走1a里,则{}n a是以1a为首项,以12为公比的等比数列,由题意得:1661(1)2378112aS-==-,解得1192a=(里),∴34111()1922428a a=⨯=⨯=(里).故选:C.【点睛】本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.7.执行如图所示的程序框图,则输出的S的值是()A.8 B.32 C.64 D.128【答案】C【分析】根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,1,1S k ==;第2次循环,满足判断条件,2,2S k ;第3次循环,满足判断条件,8,3S k ==;第4次循环,满足判断条件,64,4S k ==;不满足判断条件,输出64S =.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.sin80cos50cos140sin10︒︒︒︒+=( )A .B .C .12-D .12【答案】D【解析】【分析】利用109080,1409050︒︒︒︒︒=-=+,根据诱导公式进行化简,可得sin80cos50cos80sin 50︒︒︒︒-,然后利用两角差的正弦定理,可得结果.【详解】由809010,1409050︒︒︒︒︒=-=+ 所以()sin10sin 9080cos10︒︒︒︒=-= ()cos140cos 9050sin50︒︒︒︒=+=-, 所以原式()sin80cos50cos80sin50sin 8050︒︒︒︒︒︒=-=- 所以原式1sin 302==故1sin80cos50cos140sin102︒︒︒︒+=故选:D本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.9.已知函数()sinx12sinxf x =+的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )①绕着x 轴上一点旋转180︒;②沿x 轴正方向平移;③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称.A .①③B .③④C .②③D .②④ 【答案】D【解析】【分析】 计算得到()()2f x k f x π+=,22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案.【详解】 ()sin 12sin x f x x=+,()()()()sin 2sin 212sin 212sin x k x f x k f x x k x πππ++===+++,k Z ∈, 当沿x 轴正方向平移2,k k Z π∈个单位时,重合,故②正确;co sin 2212co s s s 12in 2x f x x x x πππ⎛⎫- ⎪⎛⎫⎝⎭-== ⎪+⎛⎫⎝⎭+- ⎪⎝⎭,co sin 2212co s s s 12in 2x f x x x x πππ⎛⎫+ ⎪⎛⎫⎝⎭+== ⎪+⎛⎫⎝⎭++ ⎪⎝⎭, 故22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,函数关于2x π=对称,故④正确; 根据图像知:①③不正确;故选:D .【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.10.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -= B .221515x y -= C .221312y x -= D .221217y x -= 【答案】C【解析】【分析】 判断出已知条件中双曲线C 的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【详解】两条渐近线的夹角转化为双曲渐近线与x 轴的夹角时要分为两种情况.依题意,双曲渐近线与x 轴的夹角为30°或60°,双曲线C 的渐近线方程为3y x =±或y =.A 选项渐近线为3y x =±,B 选项渐近线为y =,C 选项渐近线为12y x =±,D 选项渐近线为y =.所以双曲线C 的方程不可能为221312y x -=. 故选:C【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.11.已知函数()2x f x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 【答案】A【解析】【分析】 根据实数0x 满足的等量关系,代入后将方程变形0000242ln 5x x a a x x -⋅+⋅=+-,构造函数()ln 5h x x x =+-,并由导函数求得()h x 的最大值;由基本不等式可求得00242x x a a -⋅+⋅的最小值,结合存在性问题的求法,即可求得正数a 的取值范围.【详解】函数()2x f x x a =+⋅,()ln 42x g x x a -=-⋅,由题意得()()0000002ln 425x x f x g x x a x a --=+⋅-+⋅=, 即0000242ln 5x x a a x x -⋅+⋅=+-,令()ln 5h x x x =+-,∴()111x h x x x -'=-=, ∴()h x 在()01,上单调递增,在()1+∞,上单调递减,∴()()14max h x h ==,而0024224x x a a a -⋅+⋅≥=,当且仅当00242x x -=⋅,即当01x =时,等号成立,∴44a ≤,∴01a <≤.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.12.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( )A .4πB .16πC .163πD .323π 【答案】D【解析】【分析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【详解】如图,正三棱锥A BCD -中,M 是底面BCD ∆的中心,则AM 是正棱锥的高,ABM ∠是侧棱与底面所成的角,即ABM ∠=60°,由底面边长为3得232BM =⨯=,∴tan 603AM BM =︒==.正三棱锥A BCD -外接球球心O 必在AM 上,设球半径为R ,则由222BO OM BM =+得222(3)R R =-+,解得2R =, ∴3344322333V R πππ==⨯=. 故选:D .【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市2021届新高考数学第二次调研试卷含解析
河南省驻马店市2021届新高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B =( )A .[12]-, B .[1-C .(1-D .⎡⎣【答案】C 【解析】 【分析】计算A ⎡=⎣,(]1,2B =-,再计算交集得到答案.【详解】{|A x y ⎡==⎣=,(]2{|},1012x x B x -=-+=≤,故1(A B -=. 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.2.过点P 的直线l 与曲线y =交于A B ,两点,若25PA AB =,则直线l 的斜率为( )A .2B .2+C .2或2D .21【答案】A 【解析】 【分析】利用切割线定理求得,PA AB ,利用勾股定理求得圆心到弦AB 的距离,从而求得30APO ∠=︒,结合45POx ∠=,求得直线l 的倾斜角为15,进而求得l 的斜率.【详解】曲线y 为圆2213x y +=的上半部分,圆心为()0,0设PQ 与曲线y =Q , 则()2PQ PA PB PA PA AB =⋅=⋅+2225375PA PO OQ -=== 所以5,2PA AB ==,O 到弦AB 的距离为13123-=,23231sin 2262OP APO ===⨯∠,所以30APO ∠=︒,由于45POx ∠=,所以直线l 的倾斜角为453015-=,斜率为()tan 45tan 30tan15tan 4530231tan 45tan 30-=-==-+⨯.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题. 3.已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为( )A 317B .10C .132D .310【答案】C 【解析】因为直三棱柱中,AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R 22125+13,即R =1324.设等比数列{}n a 的前项和为n S ,若2019201680a a +=,则63S S 的值为( )A .32B .12C .78 D .98【答案】C 【解析】【分析】求得等比数列{}n a 的公比,然后利用等比数列的求和公式可求得63S S 的值.【详解】设等比数列{}n a 的公比为q ,2019201680a a +=,32019201618a q a ∴==-,12q ∴=-, 因此,6363317118S q q S q -==+=-. 故选:C. 【点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题. 5.如图,矩形ABCD 中,1AB =,2BC =,E 是AD 的中点,将ABE △沿BE 折起至A BE ',记二面角A BE D '--的平面角为α,直线A E '与平面BCDE 所成的角为β,A E '与BC 所成的角为γ,有如下两个命题:①对满足题意的任意的A '的位置,αβπ+≤;②对满足题意的任意的A '的位置,αγπ+≤,则( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立【答案】A 【解析】 【分析】作出二面角α的补角、线面角β、线线角γ的补角,由此判断出两个命题的正确性. 【详解】①如图所示,过'A 作'AO ⊥平面BCDE ,垂足为O ,连接OE ,作OM BE ⊥,连接'A M .由图可知'A MO πα∠=-,''A EO A MO βπα∠=≤∠=-,所以αβπ+≤,所以①正确.②由于//BC DE ,所以'A E 与BC 所成角''A ED A MO γππα=-∠≤∠=-,所以αγπ+≤,所以②正确.综上所述,①②都正确. 故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.6.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A.24πB.28πC.32πD.36π【答案】C【解析】【分析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为23,高为1的等腰三角形,侧棱长为4,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为23,高为1的等腰三角形,侧棱长为4,如图:由底面边长可知,底面三角形的顶角为120,由正弦定理可得2324sin120AD==,解得2AD=,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以222222OA =+=,该几何体外接球的表面积为:()242232S ππ=⋅=.故选:C 【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.7.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()x e xf x x+=B .()21x f x x -=C .()x e xf x x-=D .()21x f x x+=【答案】A 【解析】 【分析】由函数性质,结合特殊值验证,通过排除法求得结果. 【详解】对于选项B, ()21x f x x -=为 奇函数可判断B 错误;对于选项C,当1x <-时, ()0x e xf x x-=<,可判断C 错误;对于选项D, ()22111=+x f x x x x+=,可知函数在第一象限的图象无增区间,故D 错误; 故选:A. 【点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.8.点M 在曲线:3ln G y x =上,过M 作x 轴垂线l ,设l 与曲线1y x =交于点N ,3OM ONOP +=,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”,则曲线G 上的“水平黄金点”的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】设(,3ln )M t t ,则1,N t t ⎛⎫ ⎪⎝⎭,则21,ln 33tOP t t ⎛⎫=+ ⎪⎝⎭,即可得1ln 03t t +=,设1()ln 3g t t t =+,利用导函数判断g t 的零点的个数,即为所求. 【详解】设(,3ln )M t t ,则1,N t t ⎛⎫⎪⎝⎭,所以21,ln 333OM ON t OP t t +⎛⎫==+ ⎪⎝⎭, 依题意可得1ln 03t t+=, 设1()ln 3g t t t =+,则221131()33t g t t t t -'=-=, 当103t <<时,()0g t '<,则()g t 单调递减;当13t >时,()0g t '>,则()g t 单调递增,所以min1()1ln 303g t g ⎛⎫==-< ⎪⎝⎭,且221120,(1)033e g g e ⎛⎫=-+>=> ⎪⎝⎭,1()ln 03g t t t∴=+=有两个不同的解,所以曲线G 上的“水平黄金点”的个数为2. 故选:C 【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用. 9.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ). A .()1,+∞ B .()(),11,-∞-+∞ C .()1,1- D .()()1,00,1-【答案】B 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由单调性的性质可知()f x 在[)0,+∞上单调递增,由此知()f x 在(],0-∞上单调递减,从而将所求不等式化为1x >,解绝对值不等式求得结果. 【详解】由题意知:()f x 定义域为R ,()()()()()2211ln 1ln 111f x x x f x xx -=+--=+-=++-,()f x ∴为偶函数, 当0x ≥时,()()21ln 11f x x x =+-+, ()ln 1y x =+在[)0,+∞上单调递增,211y x=+在[)0,+∞上单调递减, ()f x ∴在[)0,+∞上单调递增,则()f x 在(],0-∞上单调递减,由()()1f x f >得:1x >,解得:1x <-或1x >,x 的取值范围为()(),11,-∞-+∞.故选:B . 【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式. 10.四人并排坐在连号的四个座位上,其中A 与B 不相邻的所有不同的坐法种数是( ) A .12 B .16 C .20 D .8【答案】A 【解析】 【分析】先将除A ,B 以外的两人先排,再将A ,B 在3个空位置里进行插空,再相乘得答案. 【详解】先将除A ,B 以外的两人先排,有222A =种;再将A ,B 在3个空位置里进行插空,有23326A =⨯=种,所以共有2612⨯=种. 故选:A 【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.11.使得()3nx n N+⎛∈ ⎝的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7【答案】B 【解析】二项式展开式的通项公式为r -n 3x n rr C (),若展开式中有常数项,则3--=02n r r ,解得5=2n r ,当r 取2时,n 的最小值为5,故选B【考点定位】本题考查二项式定理的应用.12.正四棱锥P ABCD -的五个顶点在同一个球面上,它的底面边长为6,侧棱长为23,则它的外接球的表面积为( ) A .4π B .8πC .16πD .20π【答案】C 【解析】 【分析】如图所示,在平面ABCD 的投影为正方形的中心E ,故球心O 在PE 上,计算长度,设球半径为R ,则()222PE R BE R -+=,解得2R =,得到答案.【详解】如图所示:P 在平面ABCD 的投影为正方形的中心E ,故球心O 在PE 上,223BD AB ==,故132BE BD ==,223PE PB BE =-=, 设球半径为R ,则()222PE R BE R -+=,解得2R =,故2416S R ππ==. 故选:C .【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力. 二、填空题:本题共4小题,每小题5分,共20分。
河南省驻马店市2021届新高考三诊数学试题含解析
河南省驻马店市2021届新高考三诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数11i z i +=-,则z 的虚部是( ) A .iB .i -C .1-D .1【答案】C【解析】【分析】化简复数,分子分母同时乘以1i +,进而求得复数z ,再求出z ,由此得到虚部.【详解】 11i z i i+==-,z i =-,所以z 的虚部为1-. 故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.2.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC 的面积是( )A 3B .2C 3D 3【答案】A【解析】【分析】先根据已知求出原△ABC 的高为AO 3△ABC 的面积.【详解】由题图可知原△ABC 的高为AO 3∴S △ABC =12×BC×OA =12×2×33 A 【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.3.总体由编号为01,02,...,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.23 B.21 C.35 D.32【答案】B【解析】【分析】根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在编号01,02,…,39,40内的有:16,26,16,24,23,21,…依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.4.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有()种.A.408 B.120 C.156 D.240【答案】A【解析】【分析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【详解】解:根据题意,首先不做任何考虑直接全排列则有66720A (种),当“乐”排在第一节有55120A =(种),当“射”和“御”两门课程相邻时有2525240A A =(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有242448A A =(种), 则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有72012024048408--+=(种), 故选:A .【点睛】本题考查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题.5.在311(21)x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为( ) A .1B .2C .3D .7【答案】D【解析】【分析】求出3(21)x +展开项中的常数项及含x 的项,问题得解。
河南省驻马店市2021届新高考第四次适应性考试物理试题含解析
河南省驻马店市2021届新高考第四次适应性考试物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.在如图所示的位移图象和速度图象中,给出的四条图线甲、乙、丙、丁分别代表四辆车由同一地点向同一方向运动的情况,则下列说法正确的是()A.甲车做曲线运动,乙车做直线运动B.0~t1时间内,甲车通过的路程大于乙车通过的路程C.丁车在t2时刻领先丙车最远D.0~t2时间内,丙、丁两车的平均速度相等【答案】C【解析】【详解】A.由图象可知:乙做匀速直线运动,甲做速度越来越小的变速直线运动,故A错误;B.在t1时刻两车的位移相等,又都是单向直线运动,所以两车路程相等,故B错误;C.由图象与时间轴围成面积表示位移可知:丙、丁两车在t2时刻面积差最大,所以相距最远,且丁的面积大于丙,所以丁车在t2时刻领先丙车最远,故C正确;D.0~t2时间内,丙车的位移小于丁车的位移,时间相等,平均速度等于位移除以时间,所以丁车的平均速度大于丙车的平均速度,故D错误。
2.下列说法正确的是A.玻尔根据光的波粒二象性,大胆提出假设,认为实物粒子也具有波动性B.铀核裂变的核反应是C.原子从低能级向高能级跃迁,不吸收光子也能实现D.根据爱因斯坦的“光子说”可知,光的波长越大,光子的能量越大【答案】C【解析】A项,1924年,德布罗意大胆的把光的波粒二象性推广到实物粒子,如电子、质子等,他提出实物粒子也具有波动性,故A项错误。
B项,铀核裂变有多种形式,其中一种的核反应方程是,故B项错误。
C项,原子从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞,故C项正确。
D项,根据爱因斯坦的“光子说”可知,光的波长越大,光子的能量越小,故D项错误。
故选C3.如图甲所示,在匀强磁场中有一个N=10匝的闭合矩形线圈绕轴匀速转动,转轴O 1O 2直于磁场方向,线圈电阻为5Ω。
从图甲所示位置开始计时,通过线圈平面的磁通量随时间变化的图像如图乙所示,则( )A .线圈转动一圈的过程中产生的焦耳热210Q π=B .在0.2s t =时,线圈中的感应电动势为零,且电流方向发生改变C .所产生的交变电流感应电动势的瞬时表达式为10cos(5)e t ππ=D .线圈从图示位置转过90º时穿过线圈的磁通量变化率最大 【答案】C 【解析】 【详解】A . 最大感应电动势为:222100.210(V)0.4m m E NBS NBS N T T πππωπ==⋅=Φ⋅=⨯⨯= 感应电动势的有效值为:52(V)22m E π=== 线圈转动一圈的过程中产生的焦耳热222(52)0.44J)5(E Q t R ππ==⨯=故A 错误;B . t=0.2s 时,磁通量为0,线圈中的感应电动势最大,电流方向不变,故B 错误;C . 由图知角速度22rad /s 5rad /s 0.4T ππωπ=== 因为线圈从垂直中性面开始计时,所以交变电流感应电动势的瞬时表达式为 e=10πcos (5πt )V 故C 正确;D . 线圈在图示位置磁通量为0,磁通量的变化率最大,穿过线圈的磁通量变化最快,转过90°,磁通量最大,磁通量变化率为0,故D 错误。
河南省驻马店市2021届新高考四诊物理试题含解析
河南省驻马店市2021届新高考四诊物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.光电效应实验,得到光电子最大初动能E km 与入射光频率ν的关系如图所示。
普朗克常量、金属材料的逸出功分别为( )A .b a ,bB .b a ,1bC .a b ,bD .a b ,1b【答案】A【解析】【分析】【详解】根据km 0E h W ν=-得纵轴截距的绝对值等于金属的逸出功,等于b ,图线的斜率b k h a== 故A 正确,BCD 错误;故选A 。
2.如图甲所示,被称为“魔力陀螺”玩具的陀螺能在圆轨道外侧旋转不脱落,其原理可等效为如图乙所示的模型:半径为R 的磁性圆轨道竖直固定,质量为m 的铁球(视为质点)沿轨道外侧运动,A 、B 分别为轨道的最高点和最低点,轨道对铁球的磁性引力始终指向圆心且大小不变,不计摩擦和空气阻力,重力加速度为g ,则A .铁球绕轨道可能做匀速圆周运动B .铁球绕轨道运动过程中机械能守恒C .铁球在A gRD .轨道对铁球的磁性引力至少为3mg ,才能使铁球不脱轨【答案】B【详解】AB .小铁球在运动的过程中受到重力、轨道的支持力和磁力的作用,其中铁球受轨道的磁性引力始终指向圆心且大小不变,支持力的方向过圆心,它们都始终与运动的方向垂直,所以磁力和支持力都不能对小铁球做功,只有重力会对小铁球做功,所以小铁球的机械能守恒,在最高点的速度最小,在最低点的速度最大.小铁球不可能做匀速圆周运动.故A 错误,B 正确;C .小铁球在运动的过程中受到重力、轨道的支持力和磁力的作用,在最高点轨道对小铁球的支持力的方向可以向上,小铁球的速度只要大于1即可通过最高点,故C 错误;D .由于小铁球在运动的过程中机械能守恒,所以小铁球在最高点的速度越小,则机械能越小,在最低点的速度也越小,根据:F =m 2v R可知小铁球在最低点时需要的向心力越小.而在最低点小铁球受到的重力的方向向下,支持力的方向也向下、只有磁力的方向向上.要使铁球不脱轨,轨道对铁球的支持力一定要大于1.所以铁球不脱轨的条件是:小铁球在最高点的速度恰好为1,而且到达最低点时,轨道对铁球的支持力恰好等于1.根据机械能守恒定律,小铁球在最高点的速度恰好为1,到达最低点时的速度满足mg•2R 12=mv 2,轨道对铁球的支持力恰好等于1,则磁力与重力的合力提供向心力,即:F ﹣mg 2v R =,联立得:F =5mg ,故D 错误.3.半径相同的两个金属小球A 、B 带有等量的电荷,相隔较远的距离,两球之间的吸引力大小为F ,今用第三个半径相同的不带电的金属小球先后与A 、B 两球接触后移开,这时A 、B 两球之间作用力的大小是( )A .4FB .34FC .8FD .38F 【答案】C【解析】【分析】【详解】两球之间是吸引力,故假设A 的带电量为Q ,B 的带电量为-Q ,两球之间的相互吸引力的大小是:22kQ F r=,第三个不带电的金属小球C 与A 接触后,A 和C 的电量都为2Q ,C 与B 接触时先中和再平分,则C 、B 分开后电量均为4Q -,这时,A 、B 两球之间的相互作用力的大小: 22212488Q Q k kQ F F r r '⋅⋅===故C 正确ABD 错误。
河南省驻马店市2021届新高考第四次质量检测物理试题含解析
河南省驻马店市2021届新高考第四次质量检测物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.一带负电的粒子只在电场力作用下沿x轴正方向运动,其电势能E p随位移x变化的关系如图所示,其中0~x2段是关于直线x=x1对称的曲线,x2~x3段是直线,则下列说法正确的是A.x1处电场强度最小,但不为零B.粒子在0~x2段做匀变速运动,x2~x3段做匀速直线运动C.若x1、x3处电势为1、3,则1<3D.x2~x3段的电场强度大小方向均不变【答案】D【解析】E P-x图像的斜率表示粒子所受电场力F,根据F=qE可知x1处电场强度最小且为零,故A错误;B、粒子在0~x2段切线的斜率发生变化,所以加速度也在变化,做变速运动,x2~x3段斜率不变,所以做匀变速直线运动,故B错误;C、带负电的粒子从x1到x3的过程中电势能增加,说明电势降低,若x1、x3处电势为1、3,则1>3,故C错误;D、x2~x3段斜率不变,所以这段电场强度大小方向均不变,故D正确;故选D点睛:E P-x图像的斜率表示粒子所受电场力F,根据F=qE判断各点场强的方向和大小,以及加速度的变化情况。
至于电势的高低,可以利用结论“负电荷逆着电场线方向移动电势能降低,沿着电场线方向移动电势能升高”来判断。
2.如图所示,在平行有界匀强磁场的正上方有一等边闭合的三角形导体框,磁场的宽度大于三角形的高度,导体框由静止释放,穿过该磁场区城,在下落过程中BC边始终与匀强磁场的边界平行,不计空气阻力,则下列说法正确的是()A .导体框进入磁场过程中感应电流为逆时针方向B .导体框进、出磁场过程,通过导体框横截面的电荷量大小不相同C .导体框进入磁场的过程中可能做先加速后匀速的直线运动D .导体框出磁场的过程中可能做先加速后减速的直线运动【答案】D【解析】【分析】【详解】A.导体框进入磁场过程中,磁通量增大,根据楞次定律可知,感应电流为顺时针方向,故A 错误;B.导体框进、出磁场过程,磁通量变化相同,由感应电量公式q n R∆=Φ 则通过导体框横截面的电荷量大小相同,故B 错误;C.导体框进入磁场的过程中因为导体框的加速度22B L v mg R a m-=有效 其中L 有效是变化的,所以导体框的加速度一直在变化,故C 错误;D.导体框出磁场的过程中因为导体框的加速度22B L v mg R a m-=有效 其中L 有效是变化的,则mg 与22B L v R有效大小关系不确定,而L 有效在变大,所以a 可能先变小再反向变大,故D 正确。
2021届河南省驻马店市新蔡县高三12月调研考试数学(文)试题(解析版)
2021届河南省驻马店市新蔡县高三12月调研考试数学(文)试题一、单选题1.已知命题p :(),0x ∀∈-∞,22310x x -+>,命题q :若0x ≥,则22310x x -+≤,则以下命题正确的为( )A .p 的否定为“[0,)x ∃∈+∞,22310x x -+≤”,q 的否命题为“若0x <,则22310x x -+>”B .p 的否定为“(,0)x ∃∈-∞,22310x x -+≤”,q 的否命题为“若0x <,则22310x x -+>”C .p 的否定为“[0,)x ∃∈+∞,22310x x -+≤”,q 的否命题为“若0x ≥,则22310x x -+>”D .p 的否定为“(,0)x ∃∈-∞,22310x x -+≤”,q 的否命题为“若0x ≥,则22310x x -+>”【答案】B【解析】根据命题的否定:全称变特称,只否结论;否命题:条件结论都要否。
即可选出答案。
【详解】p 的否定为“(,0)x ∃∈-∞,22310x x -+≤”,q 的否命题为“若0x <,则22310x x -+>”故选:B 【点睛】本题考查命题的否定与否命题,注意区分命题的否定:全称变特称,只否结论;否命题:条件结论都要否。
属于基础题。
2.命题:3p x y +≠,命题:1q x ≠或2y ≠,则命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】【详解】∵命题:3p x y +≠,命题:1q x ≠或2y ≠,123q x y p x y ==+=¬:且,¬:,q p ∴⇒¬¬,反之不成立,例如1522x y ==,.所以非p 是非q 的必要不充分条件,因此命题p 是命题q 的充分不必要条件. 故选A .3.已知函数()[]f x x =,若函数()2xxg x e e-=--的零点为0x ,则()0g f x =⎡⎤⎣⎦( )A .12e e-- B .2-C .12e e-- D .2212e e-- 【答案】B【解析】先利用导数得出函数()y g x =在R 上单调递增,由零点存在定理得出()00,1x ∈,于是得出()00f x =,于此得出()()00g f x g =⎡⎤⎣⎦可得出结果.【详解】 因为()2x xg x e e-=--,所以()0x x g x e e -+'>=在R 上恒成立,即函数()2x xg x e e-=--在R 上单调递增.又()00220g e e =--=-<,()11120g e e -=-->, 所以()y g x =在()0,1上必然存在零点,即()00,1x ∈, 因此()[]000f x x ==,所以()()002g f x g ==-⎡⎤⎣⎦,故选:B. 【点睛】本题考查函数零点存在定理的应用,考查函数求值,解题的关键就是利用导数判断函数单调性并利用零点存在定理判断出零点所在区间,考查分析问题和解决问题的能力,属于中等题. 4.函数23sin ()1x xf x x -=+在[]-,ππ的图象大致为( )A .B .C .D .【答案】C【解析】判断函数的奇偶性,取特殊值即可判断. 【详解】因为23sin ()()1x xf x f x x --=-=-+,所以函数()f x 为奇函数,故排除A,B 由于2()01f πππ-=<+ ,排除D 故选C. 【点睛】本题主要考查了函数图象的识别,一般要结合函数的奇偶性、定义域、单调性、特殊点等综合来判断,属于中档题.5.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( )A .若m α⊥,m n ⊥,则//n αB .若////m n m α,,则//n αC .若n αβ=,//m α,//m β,则//m n D .若αγ⊥,βγ⊥,则//αβ【答案】C【解析】利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择. 【详解】对于A ,若m α⊥,m n ⊥,则//n α或者 n α⊂;故A 错误; 对于B ,若////m n m α,,则n 可能在α内或者平行于α;故B 错误;对于C ,若n αβ⋂=,//m α,//m β,过m 分作平面γα⋂于1m ,作平面2δm β⋂=,则根据线面平行的性质定理得1//m m ,2//m m ,∴12//m m ,根据线面平行的判定定理,可得1//?m β, 又1 m α⊂,n αβ⋂=,根据线面平行的性质定理可得1//m n ,又1//m m , ∴//m n ;故C 正确;对于D .若αγ⊥,βγ⊥,则α与β可能垂直,如墙角;故D 错误; 故选:C . 【点睛】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.6.已知角的顶点与原点重合,始边与轴非负半轴重合,终边过点,则( )A .B .C .D .【答案】C【解析】利用三角函数定义即可求得:,,再利用余弦的二倍角公式得解. 【详解】因为角的终边过点,所以点到原点的距离所以,所以故选:C 【点睛】本题主要考查了三角函数定义及余弦的二倍角公式,考查计算能力,属于较易题。
河南省驻马店市2021届高三期末数学试卷含答案解析
河南省驻马店市2021届高三期末数学试卷含答案解析一、选择题(每小题5分,共60分)1.已知集合,B={y|y=2x+1,x∈R},则∁R(A∩B)=()A.(﹣∞,1]B.(﹣∞,1)C.(0,1]D.[0,1]2.已知复数z1=﹣i,则下列命题中错误的是()A.z12=z2B.|z1|=|z2|C.z13﹣z23=1 D.z l、z2互为共轭复数3.某三棱锥的三视图如图所示,该三棱锥的体积是()A.B.4 C.2 D.4.已知等比数列{a n},{b n}的公比分别为q1,q2,则q1=q2是{a n+b n}为等比数列的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.执行右面的程序框图,假如输入的N=10,那么输出的S=()A.B.C.D.6.平面直角坐标系中,点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,则t的值为()A.±6或±1 B.6或1 C.6 D.17.已知实数x,y满足,则z=的取值范畴是()A.[0,]B.[,2)C.[,]D.[,+∞)8.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A. B.C.D.9.已知双曲线的中心在原点,焦点在x轴上,若其渐进线与圆x2+y2﹣6y+3=0相切,则此双曲线的离心率等于()A.B.C.D.10.有5盆菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花不同的摆放种数是()A.12 B.24 C.36 D.4811.四面体ABCD的四个顶点均在半径为2的球面上,若AB、AC、AD两两垂直,=2,则该四面体体积的最大值为()A.B.C.2D.712.若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范畴为()A.B.C.[,+∞)D.二、填空题(本大题有4小题,每小题5分,共20分)13.如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.14.如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.15.已知f(x)=lg﹣x,则f(x)的最小值为.16.数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n,则S30为.三、解答题(6小题,70分)17.如图,A、B、C、D为平面四边形ABCD的四个内角.(Ⅰ)证明:tan;(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值.18.某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]芯片甲8 12 40 32 8芯片乙7 18 40 29 6(I)试分别估量芯片甲,芯片乙为合格品的概率;(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;(ii)求生产5件芯片乙所获得的利润许多于140元的概率.19.如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD ∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)若AA1=4,CD=2,梯形ABCD的面积为6,∠ADC=60°,求平面α与底面ABCD所成锐二面角的大小.20.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.21.设函数f (x)=(x+1)lnx﹣a (x﹣1)在x=e处的切线与y轴相交于点(0,2﹣e).(1)求a的值;(2)函数f (x)能否在x=1处取得极值?若能取得,求此极值;若不能,请说明理由.(3)当1<x<2时,试比较与大小.选做题(请在22、23、24三题中任选一题作答,若多做,则按所做的第一题计分)[几何证明选讲]22.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.[坐标系与参数方程]23.在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范畴.[不等式选讲]24.函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.2020-2021学年河南省驻马店市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.已知集合,B={y|y=2x+1,x∈R},则∁R(A∩B)=()A.(﹣∞,1]B.(﹣∞,1)C.(0,1]D.[0,1]【考点】交、并、补集的混合运算.【分析】求出A中不等式的解集确定出A,求出B中y的范畴确定出B,求出A与B的解集,进而确定交集的补角即可.【解答】解:由A中不等式变形得:x(x﹣1)≥0,且x﹣1≠0,解得:x≤0或x>1,即A=(﹣∞,0]∪(1,+∞),由B中y=2x+1>1,即B=(1,+∞),∴A∩B=(1,+∞),则∁R(A∩B)=(﹣∞,1],故选:A.2.已知复数z1=﹣i,则下列命题中错误的是()A.z12=z2B.|z1|=|z2|C.z13﹣z23=1 D.z l、z2互为共轭复数【考点】复数代数形式的乘除运算.【分析】复数z1=﹣i,可得=z2,|z1|=|z2|,,=0.即可判定出.【解答】解:∵复数z1=﹣i,∴=z2,|z1|=|z2|,,因此A,B,D正确.关于C:=0.故选:C.3.某三棱锥的三视图如图所示,该三棱锥的体积是()A.B.4 C.2 D.【考点】由三视图求面积、体积.【分析】由三视图可知:该三棱锥的侧面PBC⊥底面ABC,PD⊥交线BC,AE⊥BC,且AE=3,PD=2,CD=3,DB=1,CE=EB=2.据此即可运算出其体积.【解答】解:由三视图可知:该三棱锥的侧面PBC⊥底面ABC,PD⊥交线BC,AE⊥BC,且AE=3,PD=2,CD=3,DB=1,CE=EB=2.===4.∴V P﹣ABC故选B.4.已知等比数列{a n},{b n}的公比分别为q1,q2,则q1=q2是{a n+b n}为等比数列的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判定.【分析】利用等比数列的定义通项公式、充要条件的判定即可得出.【解答】解:等比数列{a n},{b n}的公比分别为q1,q2,则q1=q2=q⇒==q,因此{a n+b n}为等比数列;反之也成立,设{a n+b n}是公比为q等比数列,则a n+b n=,+=,关于∀n∈N*恒成立,∴q1=q2=q.∴q1=q2是{a n+b n}为等比数列的充要条件.故选:C.5.执行右面的程序框图,假如输入的N=10,那么输出的S=()A.B.C.D.【考点】程序框图.【分析】从赋值框给出的两个变量的值开始,逐步分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【解答】解:框图第一给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判定k>10不成立,执行S=1+,k=2+1=3;判定k>10不成立,执行S=1++,k=3+1=4;判定k>10不成立,执行S=1+++,k=4+1=5;…判定i>10不成立,执行S=,k=10+1=11;判定i>10成立,输出S=.算法终止.6.平面直角坐标系中,点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,则t的值为()A.±6或±1 B.6或1 C.6 D.1【考点】两角和与差的正切函数;任意角的三角函数的定义.【分析】依照任意角的三角函数定义分别求出tanα和tan(α+45°),然后利用两角和与差的正切函数公式及专门角的三角函数值得到一个关于t的方程,求出t的值,然后利用α和α+45°是始边为x轴的非负半轴的角,得到满足题意t的值即可.【解答】解:由题意得tanα=,tan(α+45°)==而tan(α+45°)===,化简得:t2+5t﹣6=0即(t﹣1)(t+6)=0,解得t=1,t=﹣6因为点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,因此t=﹣6舍去则t的值为1故选D7.已知实数x,y满足,则z=的取值范畴是()A.[0,]B.[,2)C.[,]D.[,+∞)【考点】简单线性规划.【分析】由约束条件作出可行域,化z==1+,由其几何意义(动点与定点连线的斜率)得答案.【解答】解:由约束条件作出可行域如图,A(1,0).z==,的几何意义为可行域内的动点与定点P(﹣1,1)连线的斜率,∵.∴z的取值范畴为[,+∞).8.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A. B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判定选项即可.【解答】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,现在φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,现在φ=,满足题意.故选:D.9.已知双曲线的中心在原点,焦点在x轴上,若其渐进线与圆x2+y2﹣6y+3=0相切,则此双曲线的离心率等于()A.B.C.D.【考点】双曲线的简单性质.【分析】利用双曲线﹣=1(a>0,b>0)的一条渐近线y=x与圆x2+y2﹣6y+3=0相切⇔圆心(0,3)到渐近线的距离等于半径r,利用点到直线的距离公式和离心率的运算公式即可得出.【解答】解:取双曲线﹣=1(a>0,b>0)的一条渐近线y=x,即bx﹣ay=0.由圆x2+y2﹣6y+3=0化为x2+(y﹣3)2=6.圆心(0,3),半径r=.∵渐近线与圆x2+y2﹣6y+3=0相切,∴=化为a2=2b2.∴该双曲线的离心率e====.故选:C.10.有5盆菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花不同的摆放种数是()A.12 B.24 C.36 D.48【考点】排列、组合及简单计数问题.【分析】由题设中的条件知,能够先把黄1与黄2必须相邻,可先将两者绑定,又白1与白2不相邻,可把黄1与黄2看作是一盆菊花,与白1白2之外的菊花作一个全排列,由于此两个元素隔开了三个空,再由插空法将白1白2菊花插入三个空,由分析过程知,此题应分为三步完成,由计数原理运算出结果即可.【解答】解:由题意,第一步将黄1与黄2绑定,两者的站法有2种,第二步将此两菊花看作一个整体,与除白1,白2之外的一菊花看作两个元素做一个全排列有A22种站法,现在隔开了三个空,第三步将白1,白2两菊花插入三个空,排法种数为A32则不同的排法种数为2×A22×A32=2×2×6=24.故选B.11.四面体ABCD的四个顶点均在半径为2的球面上,若AB、AC、AD两两垂直,=2,则该四面体体积的最大值为()A.B.C.2D.7【考点】向量在几何中的应用;平面向量数量积的运算.【分析】由题意,=c••=c2=2,进而可得a2+b2=14≥2ab,即可求出四面体体积的最大值.【解答】解:由题意,=c••=c2=2,∵a2+b2+c2=16,∴a2+b2=14≥2ab,∴ab≤7,∴=≤,∴四面体体积的最大值为,故选:A.12.若曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则a的取值范畴为()A.B.C.[,+∞)D.【考点】利用导数研究曲线上某点切线方程.【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为两函数图象有交点求得a的范畴.【解答】解:由y=ax2(a>0),得y′=2ax,由y=e x,得y′=e x,∵曲线C1:y=ax2(a>0)与曲线C2:y=e x存在公共切线,则设公切线与曲线C1切于点(),与曲线C2切于点(),则,将代入,可得2x2=x1+2,∴a=,记,则,当x∈(0,2)时,f′(x)<0.∴当x=2时,.∴a的范畴是[).故选:C.二、填空题(本大题有4小题,每小题5分,共20分)13.如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.【考点】定积分的简单应用;几何概型.【分析】分别求出矩形和阴影部分的面积,利用几何概型公式,解答.【解答】解:由已知,矩形的面积为4×(2﹣1)=4,阴影部分的面积为=(4x﹣)|=,由几何概型公式可得此点取自阴影部分的概率等于;故答案为:.14.如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.【考点】向量在几何中的应用;平面向量数量积的运算.【分析】由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.【解答】解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.15.已知f(x)=lg﹣x,则f(x)的最小值为lg2.【考点】函数的最值及其几何意义.【分析】化简f(x)=lg﹣x=lg=lg(10x+10﹣x),从而利用差不多不等式求最值.【解答】解:f(x)=lg﹣x=lg=lg(10x+10﹣x)≥lg2,(当且仅当x=0时,等号成立);故答案为:lg2.16.数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n,则S30为470.【考点】数列的求和.【分析】利用二倍角公式对已知化简可得,a n=n2(cos2﹣sin2)=n2cos,然后代入到求和公式中可得, +32cos2π+…+302cos20π,求出专门角的三角函数值之后,利用平方差公式分组求和即可求解【解答】解:∵a n=n2(cos2﹣sin2)=n2cos∴+32cos2π+…+302cos20π=+…= [1+22﹣2×32)+(42+52﹣62×2)+…+]= [(12﹣32)+(42﹣62)+…++(22﹣32)+(52﹣62)+…+]= [﹣2(4+10+16…+58)﹣(5+11+17+…+59)]= [﹣2×]=470故答案为:470三、解答题(6小题,70分)17.如图,A、B、C、D为平面四边形ABCD的四个内角.(Ⅰ)证明:tan;(Ⅱ)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan+tan+tan+tan的值.【考点】三角函数恒等式的证明.【分析】(Ⅰ)直截了当利用切化弦以及二倍角公式化简证明即可.(Ⅱ)通过A+C=180°,得C=180°﹣A,D=180°﹣B,利用(Ⅰ)化简tan+tan+tan+tan=,连结BD,在△ABD中,利用余弦定理求出sinA,连结AC,求出sinB,然后求解即可.【解答】证明:(Ⅰ)tan===.等式成立.(Ⅱ)由A+C=180°,得C=180°﹣A,D=180°﹣B,由(Ⅰ)可知:tan+tan+tan+tan==,连结BD,在△ABD中,有BD2=AB2+AD2﹣2AB•ADcosA,AB=6,BC=3,CD=4,AD=5,在△BCD中,有BD2=BC2+CD2﹣2BC•CDcosC,因此AB2+AD2﹣2AB•ADcosA=BC2+CD2﹣2BC•CDcosC,则:cosA===.因此sinA==,连结AC,同理可得:cosB===,因此sinB==.因此tan+tan+tan+tan===.18.某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]芯片甲8 12 40 32 8芯片乙7 18 40 29 6(I)试分别估量芯片甲,芯片乙为合格品的概率;(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;(ii)求生产5件芯片乙所获得的利润许多于140元的概率.【考点】离散型随机变量的期望与方差;等可能事件的概率.【分析】(Ⅰ)分布求出甲乙芯片合格品的频数,然后代入等可能事件的概率即可求解(Ⅱ)(ⅰ)先判定随机变量X的所有取值情形有90,45,30,﹣15.,然后分布求解出每种情形下的概率,即可求解分布列及期望值(ⅱ)设生产的5件芯片乙中合格品n件,则次品有5﹣n件.由题意,得50n﹣10(5﹣n)≥140,解不等式可求n,然后利用独立事件恰好发生k次的概率公式即可求解【解答】解:(Ⅰ)芯片甲为合格品的概率约为,芯片乙为合格品的概率约为.…(Ⅱ)(ⅰ)随机变量X的所有取值为90,45,30,﹣15.;;;.因此,随机变量X的分布列为:X 90 45 30 ﹣15P.…(ⅱ)设生产的5件芯片乙中合格品n件,则次品有5﹣n件.依题意,得50n﹣10(5﹣n)≥140,解得.因此n=4,或n=5.设“生产5件芯片乙所获得的利润许多于140元”为事件A,则.…19.如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD ∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)若AA1=4,CD=2,梯形ABCD的面积为6,∠ADC=60°,求平面α与底面ABCD所成锐二面角的大小.【考点】二面角的平面角及求法.【分析】(1)由已知得平面QBC∥平面A1AD,从而QC∥A1D,由此能证明Q为BB1的中点.(2)法一:在△ADC中,作AE⊥DC,垂足为E,连接A1E,∠AEA1为平面α与底面ABCD 所成二面角的平面角,由此求出平面α与底面ABCD所成二面角的大小.(3)法二:以D为原点,DA,DD1分别为x轴和z轴正方向建立空间直角坐标系,由此利用向量法能求出平面α与底面ABCD所成二面角的大小.【解答】(1)证明:∵BQ∥AA1,BC∥AD,BC∩BQ=B,AD∩AA1=A,∴平面QBC∥平面A1AD,∴平面A1CD与这两个平面的交线相互平行,即QC∥A1D.∴△QBC与△A1AD的对应边相互平行,∴△QBC∽△A1AD,∴,∴Q为BB1的中点.(2)解法一:如图1所示,在△ADC中,作AE⊥DC,垂足为E,连接A1E.又DE⊥AA1,且AA1∩AE=A,因此DE⊥平面AEA1,因此DE⊥A1E.因此∠AEA1为平面α与底面ABCD所成二面角的平面角.因为BC∥AD,AD=2BC,因此S△ADC=2S△BCA.又因为梯形ABCD的面积为6,DC=2,因此S△ADC=4,AE=4.因此tan∠AEA1==1,∠AEA1=.故平面α与底面ABCD所成二面角的大小为.(3)解法二:如图2所示,以D为原点,DA,DD1分别为x轴和z轴正方向建立空间直角坐标系.设∠CDA=θ,BC=a,则AD=2a.=•2sin60°=6,因为S四边形ABCD因此a=.从而可得C(1,,0),A1(,0,4),因此DC=(1,,0),=(,0,4).设平面A1DC的法向量=(x,y,1),由,得,因此=(﹣,,1).又因为平面ABCD的法向量=(0,0,1),因此cos<,>==,故平面α与底面ABCD所成二面角的大小为.20.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别于椭圆交于A、B和C、D,记得到的平行四边形ACBD的面积为S.(1)设A(x1,y1),C(x2,y2),用A、C的坐标表示点C到直线l1的距离,并证明S=2|x1y2﹣x2y1|;(2)设l1与l2的斜率之积为﹣,求面积S的值.【考点】直线与圆锥曲线的综合问题;点到直线的距离公式.【分析】(1)依题意,直线l1的方程为y=x,利用点到直线间的距离公式可求得点C到直线l1的距离d=,再利用|AB|=2|AO|=2,可证得S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,可得直线l1与l2的方程,联立方程组,可求得x1、x2、y1、y2,继而可求得答案.方法二:设直线l1、l2的斜率分别为、,则=﹣,利用A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,可求得面积S的值.【解答】解:(1)依题意,直线l1的方程为y=x,由点到直线间的距离公式得:点C到直线l1的距离d==,因为|AB|=2|AO|=2,因此S=|AB|d=2|x1y2﹣x2y1|;当l1与l2时的斜率之一不存在时,同理可知结论成立;(2)方法一:设直线l1的斜率为k,则直线l2的斜率为﹣,设直线l1的方程为y=kx,联立方程组,消去y解得x=±,依照对称性,设x1=,则y1=,同理可得x2=,y2=,因此S=2|x1y2﹣x2y1|=.方法二:设直线l1、l2的斜率分别为、,则=﹣,因此x1x2=﹣2y1y2,∴=4=﹣2x1x2y1y2,∵A(x1,y1)、C(x2,y2)在椭圆x2+2y2=1上,∴()()=+4+2(+)=1,即﹣4x1x2y1y2+2(+)=1,因此(x1y2﹣x2y1)2=,即|x1y2﹣x2y1|=,因此S=2|x1y2﹣x2y1|=.21.设函数f (x)=(x+1)lnx﹣a (x﹣1)在x=e处的切线与y轴相交于点(0,2﹣e).(1)求a的值;(2)函数f (x)能否在x=1处取得极值?若能取得,求此极值;若不能,请说明理由.(3)当1<x<2时,试比较与大小.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,求出切线的斜率,运用两点的斜率公式,运算化简即可得到a=2;(2)函数f (x)不能在x=1处取得极值.求出导数,讨论x>1,0<x<1函数的单调性,即可得到结论;(3)当1<x<2时,>﹣.运用函数的单调性和不等式的性质,即可得到结论.【解答】解:(1)f′(x)=lnx++1﹣a,依题设得=f′(e),即e+1﹣a(e﹣1)﹣(2﹣e)=e,解得a=2;(2)函数f (x)不能在x=1处取得极值.因为f′(x)=lnx+﹣1,记g(x)=ln x+﹣1,则g′(x)=.①当x>1时,g′(x)>0,因此g(x)在(1,+∞)是增函数,因此g(x)>g(1)=0,因此f′(x)>0;②当0<x<1时,g′(x)<0,因此g(x)在(0,1)是减函数,因此g(x)>g(1)=0,即有f′(x)>0.由①②得f (x)在(0,+∞)上是增函数,因此x=1不是函数f (x)极值点.(3)当1<x<2时,>﹣.证明如下:由(2)得f (x)在(1,+∞)为增函数,因此当x>1时,f(x)>f (1)=0.即(x+1)lnx>2(x﹣1),因此<.①因为1<x<2,因此0<2﹣x<1,>1,因此<=,即﹣<.②①+②得﹣<+=.选做题(请在22、23、24三题中任选一题作答,若多做,则按所做的第一题计分)[几何证明选讲]22.已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.【考点】圆的切线的性质定理的证明;圆內接多边形的性质与判定.【分析】(Ⅰ)连接OC,因为OA=OC,因此∠OAC=∠OCA,再证明OC∥AD,即可证得AC平分∠BAD.(Ⅱ)由(Ⅰ)知,从而BC=CE,利用ABCE四点共圆,可得∠B=∠CED,从而有,故可求BC的长.【解答】(Ⅰ)证明:连接OC,因为OA=OC,因此∠OAC=∠OCA,因为CD为半圆的切线,因此OC⊥CD,又因为AD⊥CD,因此OC∥AD,因此∠OCA=∠CAD,∠OAC=∠CAD,因此AC平分∠BAD.(Ⅱ)解:由(Ⅰ)知,∴BC=CE,连接CE,因为ABCE四点共圆,∠B=∠CED,因此cosB=cos∠CED,因此,因此BC=2.[坐标系与参数方程]23.在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范畴.【考点】简单曲线的极坐标方程;直线与圆的位置关系;参数方程化成一般方程.【分析】(Ⅰ)先利用圆心坐标与半径求得圆的直角坐标方程,再利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆C的极坐标方程.(Ⅱ)设A,B两点对应的参数分别为t1,t2,则|AB|=|t1﹣t2|,化为关于α的三角函数求解.【解答】解:(Ⅰ)∵C(,)的直角坐标为(1,1),∴圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=3.化为极坐标方程是ρ2﹣2ρ(cosθ+sinθ)﹣1=0 …(Ⅱ)将代入圆C的直角坐标方程(x﹣1)2+(y﹣1)2=3,得(1+tcosα)2+(1+tsinα)2=3,即t2+2t(cosα+sinα)﹣1=0.∴t1+t2=﹣2(cosα+sinα),t1•t2=﹣1.∴|AB|=|t1﹣t2|==2.∵α∈[0,),∴2α∈[0,),∴2≤|AB|<2.即弦长|AB|的取值范畴是[2,2)…[不等式选讲]24.函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.【考点】不等式的证明;集合的包含关系判定及应用;函数的定义域及其求法.【分析】(Ⅰ)依照题意,得|x+1|+|x+2|﹣5≥0;求出x的取值范畴,即是f(x)的定义域A;(Ⅱ)由A、B求出B∩C R A,即得a、b的取值范畴,由此证明成赶忙可.【解答】解:(Ⅰ)a=5时,函数f(x)=,∴|x+1|+|x+2|﹣5≥0;即|x+1|+|x+2|≥5,当x≥﹣1时,x+1+x+2≥5,∴x≥1;当﹣1>x>﹣2时,﹣x﹣1+x+2≥5,∴x∈∅;当x≤﹣2时,﹣x﹣1﹣x﹣2≥5,∴x≤﹣4;综上,f(x)的定义域是A={x|x≤﹣4或x≥1}.(Ⅱ)∵A={x|x≤﹣4或x≥1},B={x|﹣1<x<2},∴∁R A=(﹣4,1),∴B∩C R A=(﹣1,1);又∵,而;当a,b∈(﹣1,1)时,(b2﹣4)(4﹣a2)<0;∴4(a+b)2<(4+ab)2,即.2021年7月31日。
河南省驻马店市2021届新高考数学考前模拟卷(1)含解析
河南省驻马店市2021届新高考数学考前模拟卷(1)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知12,F F 是双曲线222:1(0)x C y a a-=>的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于,A B 两点,若2AB =,则2ABF ∆的内切圆半径为( )A .23 B .33C .32D .23【答案】B 【解析】 【分析】 首先由2AB =求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解. 【详解】由题意1b =将x c =-代入双曲线C 的方程,得1y a =±则22,2,3a c a===,由2121222AF AF BF BF a -=-==,得2ABF ∆的周长为2211||22||42||62AF BF AB a AF a BF AB a AB ++=++++=+=,设2ABF ∆的内切圆的半径为r ,则11362232,22r r ⨯=⨯⨯=, 故选:B【点睛】本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题. 2.偶函数()f x 关于点()1,0对称,当10x -≤≤时,()21f x x =-+,求()2020f =( )A .2B .0C .1-D .1【答案】D 【解析】 【分析】推导出函数()y f x =是以4为周期的周期函数,由此可得出()()20200f f =,代值计算即可. 【详解】由于偶函数()y f x =的图象关于点()1,0对称,则()()f x f x -=,()()20f x f x ++-=,()()()2f x f x f x ∴+=--=-,则()()()42f x f x f x +=-+=,所以,函数()y f x =是以4为周期的周期函数,由于当10x -≤≤时,()21f x x =-+,则()()()2020450501f f f =⨯==.故选:D. 【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.3.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )A .122π-B .21π-C .22π-D .24π-【答案】C 【解析】 【分析】根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积. 【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为22高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积, 即21V 12222222ππ=••-•••=-,故选C. 【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.4.空气质量指数AQI是反映空气状况的指数,AQI指数值趋小,表明空气质量越好,下图是某市10月1日-20日AQI指数变化趋势,下列叙述错误的是()A.这20天中AQI指数值的中位数略高于100B.这20天中的中度污染及以上(AQI指数>150)的天数占1 4C.该市10月的前半个月的空气质量越来越好D.总体来说,该市10月上旬的空气质量比中旬的空气质量好【答案】C【解析】【分析】结合题意,根据题目中的20天的AQI指数值,判断选项中的命题是否正确.【详解】对于A,由图可知20天的AQI指数值中有10个低于100,10个高于100,其中第10个接近100,第11个高于100,所以中位数略高于100,故A正确.对于B,由图可知20天的AQI指数值中高于150的天数为5,即占总天数的14,故B正确.对于C,由图可知该市10月的前4天的空气质量越来越好,从第5天到第15天空气质量越来越差,故C错误.对于D,由图可知该市10月上旬大部分指数在100以下,中旬大部分指数在100以上,所以该市10月上旬的空气质量比中旬的空气质量好,故D正确.故选:C【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.5.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A .甲走桃花峪登山线路 B .乙走红门盘道徒步线路 C .丙走桃花峪登山线路 D .甲走天烛峰登山线路【答案】D 【解析】 【分析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可. 【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确. 综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路 故选:D 【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型. 6.设全集为R ,集合{}02A x x =<<,{}1B x x =≥,则()A B =RA .{}01x x <≤ B .{}01x x <<C .{}12x x ≤<D .{}02x x <<【答案】B 【解析】分析:由题意首先求得R C B ,然后进行交集运算即可求得最终结果. 详解:由题意可得:{}|1R C B x x =<, 结合交集的定义可得:(){}01R A C B x ⋂=<<. 本题选择B 选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.7.已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为A .1B .2C .3D .4【答案】D 【解析】 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论. 【详解】作出不等式组表示的平面区域如下图中阴影部分所示,2z x y =+等价于2y x z =-+,作直线2y x =-,向上平移,易知当直线经过点()2,0时z 最大,所以max 2204z =⨯+=,故选D . 【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.8.斜率为1的直线l 与椭圆22x y 14+=相交于A 、B 两点,则AB 的最大值为( )A .2B .455C .105D .8105【答案】C 【解析】 【分析】设出直线的方程,代入椭圆方程中消去y ,根据判别式大于0求得t 的范围,进而利用弦长公式求得|AB|的表达式,利用t 的范围求得|AB|的最大值. 【详解】解:设直线l 的方程为y =x+t ,代入24x +y 2=1,消去y 得54x 2+2tx+t 2﹣1=0,由题意得△=(2t )2﹣1(t 2﹣1)>0,即t 2<1.弦长|AB|=55≤.故选:C . 【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.9.已知命题:p x R ∀∈,20x >,则p ⌝是( ) A .x ∀∈R ,20x ≤B .0x ∃∈R ,200x ≤.C .0x ∃∈R ,200x >D .x ∀∉R ,20x ≤.【答案】B 【解析】 【分析】根据全称命题的否定为特称命题,得到结果. 【详解】根据全称命题的否定为特称命题,可得0:p x R ⌝∃∈,200x ≤本题正确选项:B 【点睛】本题考查含量词的命题的否定,属于基础题.10.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8【答案】B 【解析】 【分析】求出1b ,2b ,3b ,4b ,5b ,6b ,判断出{}n b 是一个以周期为6的周期数列,求出即可. 【详解】解:2107n n a ⎡⎤=⨯⎢⎥⎣⎦.*111(102)n n n b a b a a n n --∈≥N =,=,,∴112027[]a b ===,2200[287]a ==, 2281028b -⨯==,同理可得:332855a b =,=;4428577a b =,=;55285711a b =,=.662857144a b =,=;72857142a =,72b =,…….∴6n n b b +=.故{}n b 是一个以周期为6的周期数列, 则20196336335b b b ⨯+===. 故选:B. 【点睛】本题考查周期数列的判断和取整函数的应用.11.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】由复数的除法运算可整理得到z ,由此得到对应的点的坐标,从而确定所处象限. 【详解】由2z iz i -=+得:()()()()2121313111222i i i i z i i i i ++++====+--+, z ∴对应的点的坐标为13,22⎛⎫⎪⎝⎭,位于第一象限.故选:A . 【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.12.在平面直角坐标系xOy 中,已知点()0,2A -,()1,0N ,若动点M 满足MA MO= ,则·OM ON 的取值范围是( )A .[]0,2B .0,⎡⎣C .[]22-,D .-⎡⎣【答案】D 【解析】 【分析】设出M 的坐标为(,)x y ,依据题目条件,求出点M 的轨迹方程22(2)8x y +-=,写出点M 的参数方程,则·22os OM ON θ=,根据余弦函数自身的范围,可求得·OM ON 结果.【详解】 设(,)M x y ,则∵MA MO=,()0,2A -=∴2222(2)2()x y x y ++=+∴22(2)8x y +-=为点M 的轨迹方程∴点M的参数方程为2x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)则由向量的坐标表达式有:·22os OM ON θ=又∵cos [1,1]θ∈-∴2·2[OM ON θ=∈- 故选:D 【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省驻马店市2021届新高考四诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( ) A .19B .79-C .23-D .13【答案】B 【解析】 【分析】先由三角函数的定义求出sin α,再由二倍角公式可求cos2α. 【详解】解:角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭1cos 3α=,2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭,故选:B 【点睛】考查三角函数的定义和二倍角公式,是基础题.2.已知集合{}21|A x log x =<,集合{|B y y ==,则A B =U ( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞【答案】D 【解析】 【分析】可求出集合A ,B ,然后进行并集的运算即可. 【详解】解:{}|02A x x =<<,{}|0B y y =≥;∴[)0,A B =+∞U .故选D . 【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算.3.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=u u u r u u u r( ) A .134-B .54C .5D .154【答案】B 【解析】 【分析】据题意以菱形对角线交点O 为坐标原点建立平面直角坐标系,用坐标表示出,DE DF u u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果. 【详解】设AC 与BD 交于点O ,以O 为原点,BD u u u r 的方向为x 轴,CA u u u r的方向为y 轴,建立直角坐标系,则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,所以95144DE DF ⋅=-=u u u r u u u r .故选:B. 【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.4.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ). A .[0,)+∞ B .(1,)+∞C .(0,)+∞D .[,1)-∞【答案】B 【解析】 【分析】根据条件可知方程()0f x x a +-=有且只有一个实根等价于函数()y f x =的图象与直线y x a =-+只有一个交点,作出图象,数形结合即可. 【详解】解:因为条件等价于函数()y f x =的图象与直线y x a =-+只有一个交点,作出图象如图,由图可知,1a >, 故选:B . 【点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题.5.若双曲线22214x y a -=3 )A .6B .5C .6D .8【答案】A 【解析】 【分析】依题意可得24b =,再根据离心率求出2a ,即可求出c ,从而得解; 【详解】解:∵双曲线22214x y a -=3所以22413e a=+=,∴22a =,∴6c =26故选:A 【点睛】本题考查双曲线的简单几何性质,属于基础题.6.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右两个焦点分别为1F ,2F ,若存在点P 满足1212::4:6:5PF PF F F =,则该双曲线的离心率为( )A.2 B.52C.53D.5【答案】B【解析】【分析】利用双曲线的定义和条件中的比例关系可求.【详解】122155642F FePF PF===--.选B.【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.7.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为( )A.B.C.D.【答案】A【解析】【分析】设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的半径,最后可求出球的体积.【详解】如图,设三棱柱为,且,高.所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,则圆的半径为.设球心为,则由球的几何知识得为直角三角形,且,所以,即球的半径为,所以球的体积为.故选A . 【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法. (2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率.8.已知抛物线()220y px p =>经过点(2,22M ,焦点为F ,则直线MF 的斜率为( )A .2B .24C .22D .22-【答案】A 【解析】 【分析】先求出p ,再求焦点F 坐标,最后求MF 的斜率 【详解】解:抛物线()220y px p =>经过点(2,22M(2222p =⨯,2p =,()1,0F ,22MF k =故选:A 【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.9.已知函数()()()2sin 0,0f x x ωϕωϕπ=+><<,8f π⎛⎫= ⎪⎝⎭,02f ⎛⎫= ⎪⎝⎭π且在()0,π上是单调函数,则下列说法正确的是( )A .12ω=B .8f π⎛⎫-= ⎪⎝⎭C .函数()f x 在,2ππ⎡⎤--⎢⎥⎣⎦上单调递减D .函数()f x 的图像关于点5,04π⎛⎫⎪⎝⎭对称 【答案】B 【解析】 【分析】根据函数()f x ,在()0,π上是单调函数,确定 01ω<≤,然后一一验证, A.若12ω=,则()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x ,由02f π⎛⎫= ⎪⎝⎭,得34πϕ=,但13sin 84822πππ⎛⎫⨯+≠ ⎛⎫= ⎪⎭⎪⎝⎭⎝f .B.由8f π⎛⎫= ⎪⎝⎭02f π⎛⎫= ⎪⎝⎭,确定()222sin 33π⎛⎫=+ ⎪⎝⎭f x x ,再求解8f π⎛⎫-⎪⎝⎭验证.C.利用整体法根据正弦函数的单调性判断.D.计算54f π⎛⎫⎪⎝⎭是否为0. 【详解】因为函数()f x ,在()0,π上是单调函数, 所以2T ≥π ,即22ππω≥,所以 01ω<≤ ,若12ω=,则()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x ,又因为02f π⎛⎫= ⎪⎝⎭,即1sin 0222ππϕ⎛⎫⎛⎫⨯+= ⎪⎝=⎪⎝⎭⎭f ,解得34πϕ=,而13sin 8482πππ⎛⎫⨯+≠ ⎛⎫=⎪⎭⎪⎝⎭⎝f A 错误. 由2sin 022πωπϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭f ,不妨令2ωπϕπ+= ,得2πωϕπ=-由sin 882ππωϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭f ,得 2+84ππωϕπ⨯+=k 或32+84ππωϕπ⨯+=k当2+84ππωϕπ⨯+=k 时,2=23k πω+,不合题意. 当32+84ππωϕπ⨯+=k 时,22=33k πω+,此时()222sin 33π⎛⎫=+⎪⎝⎭f x x所以222272sin 2sin 2sin 838338312ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+=⨯-+== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭f B 正确. 因为22,,0,2333ππππ⎡⎤⎡⎤∈--+∈⎢⎥⎢⎥⎣⎦⎣⎦x x ,函数()f x ,在0,3π⎛⎫⎪⎝⎭上是单调递增,故C 错误. 525232sin 2sin 043432f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,故D 错误. 故选:B 【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题. 10.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断. 【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B . 【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.11.空气质量指数AQI 是反映空气状况的指数,AQI 指数值趋小,表明空气质量越好,下图是某市10月1日-20日AQI 指数变化趋势,下列叙述错误的是( )A .这20天中AQI 指数值的中位数略高于100B .这20天中的中度污染及以上(AQI 指数>150)的天数占14C .该市10月的前半个月的空气质量越来越好D .总体来说,该市10月上旬的空气质量比中旬的空气质量好 【答案】C 【解析】 【分析】结合题意,根据题目中的20天的AQI 指数值,判断选项中的命题是否正确. 【详解】对于A ,由图可知20天的AQI 指数值中有10个低于100,10个高于100,其中第10个接近100,第11个高于100,所以中位数略高于100,故A 正确.对于B ,由图可知20天的AQI 指数值中高于150的天数为5,即占总天数的14,故B 正确. 对于C ,由图可知该市10月的前4天的空气质量越来越好,从第5天到第15天空气质量越来越差,故C 错误.对于D ,由图可知该市10月上旬大部分指数在100以下,中旬大部分指数在100以上,所以该市10月上旬的空气质量比中旬的空气质量好,故D 正确. 故选:C 【点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.12.已知抛物线220y x =的焦点与双曲线()222210,0x y a b a b-=>>的一个焦点重合,且抛物线的准线被双曲线截得的线段长为92,那么该双曲线的离心率为( )A .54B .53C .52D .5【答案】A 【解析】 【分析】由抛物线220y x =的焦点(5,0)得双曲线()222210,0x y a b a b-=>>的焦点(5,0)±,求出5c =,由抛物线准线方程5x =-被曲线截得的线段长为92,由焦半径公式2292b a =,联立求解.【详解】解:由抛物线220y x =,可得220p =,则10p =,故其准线方程为5x =-, Q 抛物线220y x =的准线过双曲线()222210,0x y a b a b-=>>的左焦点, 5c ∴=.Q 抛物线220y x =的准线被双曲线截得的线段长为92, 2292b a ∴=,又22225c a b +==,4,3a b ∴==,则双曲线的离心率为54c e a ==. 故选:A . 【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率. 弦过焦点时,可结合焦半径公式求解弦长.二、填空题:本题共4小题,每小题5分,共20分。