第九章 结晶态聚合物
聚合物结晶结构课件
contents
目录
• 聚合物结晶基础 • 聚合物结晶结构 • 聚合物结晶性能 • 聚合物结晶与性能关系 • 聚合物结晶的调控与改性 • 聚合物结晶的应用
01
聚合物结晶基础
聚合物结晶的定义
01
02
03
聚合物结晶
是指聚合物分子在一定条 件下,按照一定的规律排 列,形成有序的晶体结构 的过程。
聚合物晶体分类 根据聚合物分子链的排列方式和结晶度,聚合物 晶体可分为完全结晶、部分结晶和无定形等类型。
聚合物晶体结构特点 聚合物晶体的结构特点与单晶不同,其分子链排 列较为复杂,结晶度通常较低,且结晶过程受多 种因素影响。
聚合物晶体结构的测定方法
X射线衍射法
利用X射线在晶体中的衍射现象, 通过分析衍射图谱可以确定晶 体的结构。
律重复排列。
晶体分类
根据晶体内部原子或分子的排列方 式,晶体可分为金属晶体、离子晶 体、共价晶体、分子晶体等。
晶体结构特点
晶体具有固定的熔点、导热性、各 向异性等特性,其内部原子或分子 的排列具有高度的规律性和周期性。
聚合物晶体结构
1 2 3
聚合物晶体定义 聚合物晶体是由长链分子按一定规律排列形成的 固体,其分子链可以呈有序排列,也可以呈部分 有序或无序排列。
结晶结构的排列和取向对聚合物材料的拉伸强度、冲击强度和断裂伸长率等力学性 能具有显著影响。
结晶结构的缺陷,如晶体大小不均、晶体排列不规整等,可能导致聚合物材料的力 学性能下降。
结晶对聚合物热性能的影响
结晶结构的形成能够提高聚合 物材料的耐热性,因为结晶区 域能够承受更高的温度和热稳 定性。
不同结晶度的聚合物材料在热 膨胀系数、热导率和玻璃化转 变温度等方面存在差异。
高分子物理聚合物的结晶态
化学因素对稳定性的影响
某些化学物质可以与聚合物分子发生相互作用,影响晶体结构的稳 定性。
03 聚合物结晶态的结构与性质
晶体结构与形态
晶体结构
聚合物结晶态中分子链以有序的 方式排列,形成晶体结构。晶体 结构决定了聚合物的物理性质, 如硬度、韧性、热稳定性等。
04 聚合物结晶态的转变与动力学
聚合物结晶态的转变
熔融结晶
当温度升高到熔点以上时,聚合物从晶体态转变为液态。
退火结晶
将聚合物加热至高于熔点,然后缓慢冷却,使其重新结晶。
应力结晶
在拉伸或压缩应力的作用下,聚合物发生结晶。
聚合物结晶的动力学
1 2
结晶速率
描述聚合物结晶过程的快慢,通常用结晶速率常 数表示。
晶体缺陷与性质
晶体缺陷
聚合物结晶中存在各种缺陷,如位错、空穴、界面等。这些 缺陷影响聚合物的物理性质,如降低机械性能、耐热性和光 学性能。
性质与应用
聚合物结晶态的性质决定了其在不同领域的应用。例如,在 塑料加工中,通过控制结晶形态和尺寸可以提高产品的机械 性能和热稳定性;在纤维制造中,结晶结构影响纤维的强度 和弹性。
分离与提纯
利用聚合物结晶态的差异,可以实现 混合物中不同组分的分离和提纯,如 利用聚合物吸附剂进行吸附分离和色 谱分离等。
化学反应控制
通过控制聚合物的结晶形态,可以影 响化学反应的速率和选择性,从而实 现化学反应的高效控制。
聚合物结晶态的研究展望
新型聚合物材料的开发
01
随着对聚合物结晶态的深入了解,有望开发出具有优异性能的
无定形态
聚合物分子无序排列,没 有明显的晶体结构。如聚 甲基丙烯酸甲酯、聚碳酸 酯等。
结晶表征
结晶态聚合物的表征用途结晶态是高分子凝聚态的主要形态之一,有关固体聚合物的结晶度、晶体形态、结晶过程以及结晶原理等内容,是高分子凝聚态物理研究的核心内容之一。
而关系到这些学术问题的有关数据又往往和聚合物作为材料使用时的性能密切相关。
(如力学性能、热性能、光学性能、溶解性等)。
同样在聚合物成型加工过程中如何控制加工条件,使成型后的聚合物材料中形成有利于材料性能的结晶形态,也是聚合物加工技术的研究方向。
因此聚合物形态的表征是高分子物理研究和高分子成型加工研究中的重要手段。
表征方法及原理(1)结晶度Wc的表征国际应用化学联合会(IUPAC)1988粘推荐用Wc,a表示质量分率结晶度,下标c为结晶度,另一下标字母a代表用不同方法测得的质量分率结晶度,方法不同下标a将分别是其他字母。
①广角X射线衍射(WAXS)测聚合物结晶度Wc,x用广角X射线衍射仪,对样品做出不同2θ角的衍射曲线,将衍射曲线的峰分解为结晶峰面积和非晶区面积,结晶峰面积与总衍射面积之比,即为Wc,x(下标x代表X射线衍射方法)②密度测量法计算聚合物的结晶度We,d在密度梯度管中配置自上而下密度连续变化的密度梯度液体,并用标准密度的玻璃小球标定密度梯度管不同位置高度的密度值,将待测聚合物样品投入标定后的密度梯度管中,测出聚合物样品的密度,其倒数即为聚合物样品的比容。
再用X射线衍射测得的该聚合物的晶胞参数,计算得到该聚合物“纯晶体“的比容;由膨胀计法测定不同温度下该聚合物熔体的密度,外推到聚合物样品测密度时温度下该聚合物非晶区的比容,按下式计算结晶度:(有时聚合物的,值可从专业手册中查到)③量热法计算聚合物的结晶度的Wc,h用示差扫描量热仪(DSC),测定聚合物样品的熔融热焓(熔融峰的面积)ΔHm,从手册中查找该聚合物100%结晶时的熔融热焓值ΔHm标准,则ΔHm标准也可采用下述方法求得,即用其他方法(如广角X光衍射法WAXD,密度法等)已测得结晶度的该类聚合物的不同样品,分别用DSC法测不同样品的熔融热焓,以测得的熔融焓ΔHm值对结晶度作图,外推到100%结晶度时的熔融热焓值即为ΔHm标准。
第9章 聚合物的降解与老化
不稳定]
(2) PVC的分子量大小对其热稳定性也有一定影响。 [在PVC热加工时,要加入百分之几的酸吸收剂,以提 高其热稳定性]
2)机械降解
聚合物塑炼、熔融挤出,以及高分子溶 液受强烈搅拌或超声波作用时,都有可能使 大分子链断裂而降解。
聚合物机械降解时,分子量随时间的 延长而降低,如下图。
什么是无规断链? 聚合物受热时主链发生随机断裂,分子量迅速下 降,但单体收率很低,这类热解反应即为无规断链。
无轨断链的示例: 例如聚乙烯,断链后形成的自由基活性较高,
分子中又含有许多活泼的仲氢原子,易发生链转移
反应及双基歧化终止,因此单体收率很低。
聚乙烯无规断链反应简示:
CH 2 CH 2
CH2CH2CH H
聚合物老化和防老化
关于防老化的几点问题:
各种聚合物由于化学组成和结构不同,所受环境影
响各不相同,应区别对待。
聚合物材料的结构特点和适应环境能力的差异,在
使用时要合理选择。但不管用于何处,一般都应采取
防老化措施和添加各种助剂。
防老化助剂有热稳定剂、抗氧化剂、紫外光吸收剂
和屏蔽剂、防霉剂和杀菌剂等。
CH 2=CH
(3) 取代基脱除 PVC、PAN、PVAc及PVF等受热时可发生
取代基脱除反应。因而在热失重曲线上,后期
往往出现平台。
PVC在100~120℃即开始脱HCl,在200℃
脱HC1速度很快,因而加工时(180~200℃)往 往出现聚合物色泽变深、强度降低等现象。总 反应可简示如下:
PVC取代基脱除反应
聚苯乙烯的特性粘数与研磨时间的关系 ×-20℃; ○-40℃; · -60℃
华理--高分子物理课后习题答案--高分子科学教程(第二版)--韩哲文
高分子科学教程(第二版)—高分子物理部分第7章 聚合物的结构 P2371.试述聚合物的结构特点2.简述聚合物的结构层次答:高分子结构的内容可分为链结构与聚集态结构两个组成部分。
链结构又分为近程结构和远程结构。
近程结构包括构造与构型,构造是指链中原子的种类和排列、取代基和端基的种类、单体单元的排列顺序、支链的类型和长度等。
构型是指某一原子的取代基在空间的排列。
近程结构属于化学结构,又称一级结构。
远程结构包括分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。
远程结构又称二级结构。
聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。
前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。
织态结构则属于更高级的结构。
3.写出聚异戊二稀的各种可能的构型和名称(只考虑头-尾键接方式)。
解:(1)1,2-聚合:全同立构1,2-聚异戊二稀;间同立构1,2-聚异戊二稀;无规立构1,2-聚异戊二稀。
(2)3,4-聚合:全同(间同,无规)立构-聚3,4-聚异戊二稀。
(3)1,4聚合:顺式(反式)1,4-聚异戊二稀。
注意:一般来说,顺式、反式聚合都是在特定的催化剂下进行的,当催化剂一定时,产物结构就一定,所以不存在无规的几何异构体。
4.已知聚乙烯试样的聚合度为4105⨯,C-C 键长为0.154nm ,键角为109.5︒,试求:(1)若把聚乙烯看作自由旋转链时的聚乙烯试样的均方末端距;(2)若聚乙烯的末端距符合高斯分布时聚乙烯试样的平均末端距和最可几末端距。
解:54101052=⨯⨯=n ;nm l 154.0=; 5.109=θ(1)22522222.4743)154.0(10225.109cos 15.109cos 1cos 1cos 1nm nl nl nl r =⨯⨯==+-⋅=+-⋅=θθ (2)由于聚乙烯的末端距符合高斯分布,因此它应该是自由结合链)(87.44154.014159.33108385nm l n r =⨯⨯⨯=⋅=π)(76.39154.03102325nm l n r =⨯⨯=⋅=*注意:末端距复合高斯分布的链为高斯链,自由结合链和等效自由结合链都是高斯链。
华理--高分子物理课后习题答案--高分子科学教程(第二版)--韩哲文
高分子科学教程(第二版)—高分子物理部分第7章 聚合物的结构 P2371.试述聚合物的结构特点2.简述聚合物的结构层次答:高分子结构的内容可分为链结构与聚集态结构两个组成部分。
链结构又分为近程结构和远程结构。
近程结构包括构造与构型,构造是指链中原子的种类和排列、取代基和端基的种类、单体单元的排列顺序、支链的类型和长度等。
构型是指某一原子的取代基在空间的排列。
近程结构属于化学结构,又称一级结构。
远程结构包括分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。
远程结构又称二级结构。
聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。
前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。
织态结构则属于更高级的结构。
3.写出聚异戊二稀的各种可能的构型和名称(只考虑头-尾键接方式)。
解:(1)1,2-聚合:全同立构1,2-聚异戊二稀;间同立构1,2-聚异戊二稀;无规立构1,2-聚异戊二稀。
(2)3,4-聚合:全同(间同,无规)立构-聚3,4-聚异戊二稀。
(3)1,4聚合:顺式(反式)1,4-聚异戊二稀。
注意:一般来说,顺式、反式聚合都是在特定的催化剂下进行的,当催化剂一定时,产物结构就一定,所以不存在无规的几何异构体。
4.已知聚乙烯试样的聚合度为4105⨯,C-C 键长为0.154nm ,键角为109.5︒,试求:(1)若把聚乙烯看作自由旋转链时的聚乙烯试样的均方末端距;(2)若聚乙烯的末端距符合高斯分布时聚乙烯试样的平均末端距和最可几末端距。
解:54101052=⨯⨯=n ;nm l 154.0=; 5.109=θ(1)22522222.4743)154.0(10225.109cos 15.109cos 1cos 1cos 1nm nl nl nl r =⨯⨯==+-⋅=+-⋅=θθ (2)由于聚乙烯的末端距符合高斯分布,因此它应该是自由结合链)(87.44154.014159.33108385nm l n r =⨯⨯⨯=⋅=π)(76.39154.03102325nm l n r =⨯⨯=⋅=*注意:末端距复合高斯分布的链为高斯链,自由结合链和等效自由结合链都是高斯链。
聚合物结晶态与非晶态教学内容
6. 结晶度与材料性能
(4)结晶度其他意义 ① 结晶度提高耐溶剂性提高; ② 结晶度提高溶解性下降; ③ 结晶度提高对气体和液体的渗透性下降。
7. 尼龙66/CNTs
Adv. Mater. 2005, 17, 1198-1202; Polymer 50 (2009) 953–965
实际高聚物结晶大 多 是晶相与非晶相 共存的, 而各种结 晶模型都有其片 面 性,R.Hosemann 综合了各种结晶模 型,提出了一种折 衷的模型,称为隧 道-折叠链模型。 这个模型综合了在 高聚物晶态结 构中 所可能存在的各种 形态。
2. 结晶过程
聚合物结晶过程是链结构单元从无序堆积到有序排布的相 转变过程,主要分为两步:
一. 结晶态
聚合物
非结晶性 聚合物
结晶性聚 合物
结条 晶件
结晶能力是内因,条件外 因。具有结晶能力的聚合 物,即可是晶形的,也可 是非晶形的。
分子链的对称 性与规整性
非晶 态
晶态
温度、时间
1.晶态高聚物结构模型
(1)缨束状模型
1.晶态高聚物结构模型
(2)折叠链模型
1.晶态高聚物结构模型
(3)隧道-折叠链模 型
6. 结晶度与材料性能
(1)结晶度与热力学 Tm
Tg
例如:聚醚醚酮 (poly ether ether ketone, PEEK)树脂 结晶度间于15%~35%, 玻璃化转变温度143℃, 熔点334℃,可在 250℃下长期使用;聚 苯硫醚 (polyphenylene sulfide,PPS)结晶度 55%-65%,玻璃化转
第九章聚合物的化学反应
第九章聚合物的化学反应思考题9.1 聚合物化学反应浩繁,如何考虑合理分类,便于学习和研究 ?答目前聚合物化学反应尚难按照机理进行分类,但可按结构和聚合度的变化粗分为 3 类:(1)聚合度不变,如侧基反应,端基反应;(2)聚合度增加,如接枝、扩链、嵌段和交联等;(3)聚合度变小,如降解、解聚和热分解。
思考题9.2 聚集态对聚合物化学反应影响的核心问题是什么?举一例子来说明促使反应顺利进行的措施。
答欲使聚合物与低分子药剂进行反应,首先要求反应的基团处于分子级接触,结晶、相态、溶解度不同,都会影响到药剂的扩散,从而反映基团表观活性和反应速率的差异。
对于高结晶度的聚合物,结晶区聚合物分子链间的作用力强,链段堆砌致密,化学试剂不容易扩散进去,内部化学反应难以发生,反应仅限于表面或非结晶区。
此外,玻璃态聚合物的链段被冻结,也不利于低分子试剂的扩散和反应。
因此反应之前,通常将这些固态聚合物先溶解或溶胀来促进反应的顺利进行。
纤维素分子间有强的氢键,结晶度高,高温下只分解而不熔融,也不溶于一般溶剂中,但可被适当浓度的氢氧化钠溶液、硫酸、醋酸所溶胀。
因此纤维素在参与化学反应前,需预先溶胀,以便化学试剂的渗透。
思考题9.3 几率效应和邻近基团效应对聚合物基团反应有什么影响?各举一例说明。
答当聚合物相邻侧基作无规成对反应时,中间往往留有未反应的孤立单个基团,最高转化程度因而受到限制,这种效应称为几率效应。
聚氯乙烯与锌粉共热脱氯成环,按几率计算,环化程度只有86.5%,尚有 13.5%氯原子未能反应,被孤立隔离在两环之间,这就是相邻基团按几率反应所造成的。
高分子中原有基团或反应后形成的新基团的位阻效应和电子效应,以及试剂的静电作用,均可能影响到邻近基团的活性和基团的转化程度,这就是邻近基团效应。
(1)邻近基团的位阻效应当聚合物分子链上参加化学反应的基团邻近的是体积较大的基团时,往往会由于位阻效应而使参与反应的低分子反应物难以接近反应部位,使聚合物基团转化程度受到限制。
结晶态聚合物的表征[汇总]
结晶态聚合物的表征用途结晶态是高分子凝聚态的主要形态之一,有关固体聚合物的结晶度、晶体形态、结晶过程以及结晶原理等内容,是高分子凝聚态物理研究的核心内容之一。
而关系到这些学术问题的有关数据又往往和聚合物作为材料使用时的性能密切相关。
(如力学性能、热性能、光学性能、溶解性等)。
同样在聚合物成型加工过程中如何控制加工条件,使成型后的聚合物材料中形成有利于材料性能的结晶形态,也是聚合物加工技术的研究方向。
因此聚合物形态的表征是高分子物理研究和高分子成型加工研究中的重要手段。
表征方法及原理(1)结晶度Wc的表征国际应用化学联合会(IUPAC)1988粘推荐用Wc,a表示质量分率结晶度,下标c为结晶度,另一下标字母a代表用不同方法测得的质量分率结晶度,方法不同下标a将分别是其他字母。
①广角X射线衍射(WAXS)测聚合物结晶度Wc,x用广角X射线衍射仪,对样品做出不同2θ角的衍射曲线,将衍射曲线的峰分解为结晶峰面积和非晶区面积,结晶峰面积与总衍射面积之比,即为Wc,x(下标x代表X射线衍射方法)②密度测量法计算聚合物的结晶度We,d在密度梯度管中配置自上而下密度连续变化的密度梯度液体,并用标准密度的玻璃小球标定密度梯度管不同位置高度的密度值,将待测聚合物样品投入标定后的密度梯度管中,测出聚合物样品的密度,其倒数即为聚合物样品的比容。
再用X射线衍射测得的该聚合物的晶胞参数,计算得到该聚合物“纯晶体“的比容;由膨胀计法测定不同温度下该聚合物熔体的密度,外推到聚合物样品测密度时温度下该聚合物非晶区的比容,按下式计算结晶度:(有时聚合物的,值可从专业手册中查到)③量热法计算聚合物的结晶度的Wc,h用示差扫描量热仪(DSC),测定聚合物样品的熔融热焓(熔融峰的面积)ΔHm,从手册中查找该聚合物100%结晶时的熔融热焓值ΔHm 标准,则ΔHm标准也可采用下述方法求得,即用其他方法(如广角X光衍射法WAXD,密度法等)已测得结晶度的该类聚合物的不同样品,分别用DSC法测不同样品的熔融热焓,以测得的熔融焓ΔHm值对结晶度作图,外推到100%结晶度时的熔融热焓值即为ΔHm标准。
高分子物理课件:第9讲 聚合物的结晶态
东华大学
DONGHUA UNIVERSITY
聚合物在晶体中的构象
1. 能量最低原则 2. 周期最短原则
东华大学
DONGHUA UNIVERSITY
1.1 结晶聚合物的结构模型
1)缨状胶束模型
缨状胶束模型,又称为两相结构模型,多年来被大家 公认为结晶聚合物的结构模型。 这种模型认为高聚物在结晶时总不能完全结晶,而只 能是部分结晶;有晶区,同时还存在着非晶区,具有 两相同时并存的结构状态;每个高分子链可贯穿好几 个晶区,在非晶区中分子链是卷曲而相互缠结的。
东华大学
DONGHUA UNIVERSITY
如果以h0、h∞和ht分别表示膨胀计的起始、最终和t时间的读数, 将实验得到的数据作(ht-h∞)/(h0-h∞)对t的图,则可得到反 S形的曲线。
东华大学
DONGHUA UNIVERSITY
由于结晶过程所需的全部时间不易测量,通常规定体 积收缩进行到一半所需时间的倒数1/t1/2,作为实验温 度下的结晶速度。
东华大学
DONGHUA UNIVERSITY
2)折叠链结构模型
东华大学
DONGHUA UNIVERSITY
东华大学
DONGHUA UNIVERSITY
东华大学
DONGHUA UNIVERSITY
图3.6支持了规整折叠模型。
图3.7给出了包括多种类型缺陷在内的结构示意图, 由于高分子的分子链很长,结晶速度又很快,因此在 结晶中必然存在很大的缺陷
3、偏光显微镜法 原理:在偏光显微镜下可以直接观察到球晶的轮廓
尺寸。配上热台,就可在等温条件下观察聚合物球 晶的生长过程,测量球晶的半径随时间的变化。
东华大学
DONGHUA UNIVERSITY
聚合物结构的三个层次
1.1 聚合物结构的三个层次近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。
远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。
凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。
包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。
分子链结构是决定聚合物性质最基本、最重要的结构层次。
熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。
关于化学结构与物理结构的确切划分,普遍认同的是H.G .Elias 提出的界定原则:化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。
聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。
物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。
取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。
1.2.1 结构单元的化学组成结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。
尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律:1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。
高分子化学与物理-结晶态聚合物概要PPT教学课件
式中a----非晶区(amorphous region) 式中c----晶区(crystalline region ) (2) 结晶度的测试方法 ①密度法P277 ②DSC差示扫描量热(Differential Scan Calorimetric )法P278 ③X射线衍射法P278
2020/10/16
高分子化学及物理 第九章 结晶态聚合物
2020/10/16
1
9.0 概论
聚合物的结晶:分子链规则有序的排列形成的三维远程有序 晶体结构.
聚合物的结晶能力与下述条件有关:
➢ 分子链的对称性:对称性越高,越易形成规则排列的三维有序 晶体。
➢ 分子链的规整性:分子链的规整性越好,越容易结晶。(例外: 聚三氟氯乙烯虽然主链含不对称碳原子且构型不规整,但链仍可 规整排列进行结晶)
2020/10/16
折叠链模型
10
插线板模型 P276 图9-23a,b:高分子链是完全无规进 入晶体的,在晶片中链段规则平行排列,而相邻排列的两 个分子链段是非近邻的链段和来自不同的分子链段.在形 成多片晶时,一个分子链从一层晶片出来后,并非近邻折 叠回原晶片,而是进入非晶区,再进入到另一层晶片中,或 者以无规方式再返回原晶片中.
球晶的黑十字消光现象
2020/10/1球6 晶的生长过程示意图
7
③纤维晶和串晶 纤维状晶是在外力场(搅拌、拉伸或剪切)的作用下使高
分子链的构象发生畸变,成为沿流动方向平行排列的伸展状态, 在适当的条件下结晶而成。分子链取向与纤维轴平行。
聚合物串晶是一种类似于串珠式的多晶体。
④伸直链晶 由完全伸展的分子链平行规整排列而成的小片状晶体,晶
➢ 分子链的柔性:柔顺性越好,结晶性能越强。
第9章 聚合物化学反应
对小分子物质的 扩散都有着不同 的影响,从而影 响到基团的反应 能力。
1. 物理因素
(1) 聚合物聚集态的影响
处于结晶态的聚合物几乎不能参加化学反应,即使 发生也仅限于聚合物中的非结晶区。
例:PE的氯化(CPE的制备) ➢ 溶液法(CCl4)制得的氯化PE的Tg和硬度较 高
➢ 将PE颗粒悬浮在惰性溶剂(如水)中进行 氯化,制得的氯化PE的Tg和硬度较低。
例2:PVC与锌粉共热脱氯成环
链上氯残 留率降为 13.5%
第九章 聚合物化学反应 9.3 聚合物的基团反应
9.3 聚合物的基团反应
一、 聚合物的相似转变 聚合物与低分子化合物反应,仅限于侧基或端基 转变, 而聚合度基本不变的反应,称为聚合物的 相似转变。
聚合物的侧基官能团反应(酯化、醚化、卤化、 磺化、硝化、酰胺化、缩醛化、水解、醇解等)
例1:PVA的缩甲醛
CH2
+ CH2O 缩醛化
CH CH2 CH CH2 CH2
OH
OH
OH
CH2 CH CH2 CH CH2
O CH2
O
OCH2OH H2C HC H2C
链上羟基残 留率达到6 %~10%
CH CH2 CH2
O
OH
CH2 O
CH
2. 化学因素
(4) 基团的隔离作用或“孤立化”--几率效 应
一、聚合物的相似转变
4.烯烃的氯化和氯磺酰化 5.聚丙烯酰胺—高分子聚电解质 6.环化反应—PVA的缩醛化、PAN热解 7. SBS加氢反应
一、聚合物的相似转变
1. 芳环取代反应
可用离子交换树脂作为示例:
磺化—强酸型正离子交换树脂 氯甲基化—负离子交换树脂
《聚合物的结晶》课件
晶体取向
在结晶过程中,聚合物分 子会沿着特定方向排列, 形成晶体取向,这会影响
聚合物的物理性质。
晶体结构
不同聚合物的晶体结构不 同,包括正交晶、三方晶 、单斜晶等,这些结构会 影响聚合物的光学、电学
和机械性能。
结晶条件与控制
温度
结晶温度是影响聚合物结晶的重要因素,通过控 制结晶温度可以调节结晶速度和晶体质量。
结晶过程与机理
结晶过程
聚合物结晶通常包括晶核的形成和晶 体的生长两个阶段。
结晶机理
聚合物结晶的机理主要包括均相成核 和异相成核两种。均相成核是指聚合 物分子本身形成晶核的过程,而异相 成核则是指聚合物在某些杂质或界面 上形成晶核的过程。
02
聚合物结晶的种类与结构
晶体结构和形态
晶体结构
聚合物晶体具有复杂的分子排列结构,通常由长链分子通过链间相互作用形成 有序堆叠。
溶剂沉淀法
通过改变聚合物的溶剂条件 ,使聚合物从溶液中析出并 形成晶体。
拉伸法
在聚合物处于塑性变形阶段 时,通过拉伸作用诱导聚合 物分子取向,从而促进结晶 的形成。
气相沉积法
在高真空条件下,使聚合物 分子从气态逐渐凝结并形成 晶体。
结晶生长机制
形核与生长
聚合物结晶过程中,首先 需要形成晶核,然后通过 分子扩散和重排,使聚合 物分子在晶核上生长,形
通过控制聚合物的结晶度,可以改善材料的强度、韧性、耐热性等性能。例如,尼龙-66纤维的强度 和韧性可以通过增加结晶度得到提高。
制备功能性材料
利用聚合物的结晶行为,可以制备具有特定功能性的材料,如光、电、磁等。例如,液晶聚合物可以 用于制备显示器。
在高分子科学中的应用
研究高分子链的构象
结晶型聚合物
结晶型聚合物
结晶型聚合物是一种具有高度有序结构的聚合物材料,其分子链排列方式呈现出明显的晶体结构。
这种材料具有优异的物理性质和化学稳定性,因此在材料科学、化学工程、生物医学和电子工程等领域都得到广泛应用。
结晶型聚合物的制备通常采用聚合反应,该反应会使分子链相互交错,从而形成聚合物结晶。
聚合反应可以采用不同的方式进行,如自由基聚合、离子聚合、环氧化合物聚合等。
在聚合反应过程中,需要针对不同的聚合物材料选择不同的反应条件和催化剂,以确保得到高质量和高效率的结晶型聚合物。
结晶型聚合物的物理性质与其化学结构密切相关。
研究表明,聚合物分子链的长度和分子结构对其结晶行为和晶体结构有重要影响。
此外,温度、压力和溶剂等因素也会对结晶型聚合物的形态和性能产生影响。
结晶型聚合物广泛应用于电子工程领域中,如制备高分子材料的膜、塑料器件、光学器件等。
此外,结晶型聚合物还有许多应用领域,如制备高性能纤维、医学材料、光学材料等。
随着科学技术的不断进步,结晶型聚合物的制备和应用将会更加广泛和深入。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1 .3 结晶聚合物的结构模型
缨状微束模型:认为结晶聚 合物中晶区与非晶区互相穿 插,同时存在。在晶区分子 链相互平行排列成规整的结 构,而在非晶区分子链的堆 砌完全无序。该模型也称两 相结构模型。
可解释结晶性聚合物中晶 区和非晶区的共存,但不能 解释单晶和球晶的结构模型。
缨状微束模型
折叠链模型:聚合物晶体中,高分 子链以折叠的形式堆砌起来的。
伸展的分子倾向于相互聚集在一起 形成链束,分子链规整排列的有序链 束构成聚合物结晶的基本单元。这些 规整的有序链束表面能大自发地折叠 成带状结构,进一步堆砌成晶片。
特点:聚合物中晶区与非晶区同时存 在,同一条高分子链可以是一部分结 晶,一部分不结晶;并且同一高分子 链可以穿透不同的晶区和非晶区。但 分子链的折叠方式存在争议。
(1)对力学性能的影响; (2)对密度的影响; (3)对光 学性能的影响;(4) 对塑料使用温度的影响;(5)耐溶 剂性能
结晶使高分子链规整排列,堆砌紧密,因而增强了分子链 间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶 剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用 性能。
但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降, 对以弹性、韧性为主要使用性能的材料是不利的。如结晶会 使橡胶失去弹性,发生爆裂。
9.3 聚合物的结晶过程
9.3.1 聚合物结晶速度及其测定方法 结晶过程:成核 + 晶体生长 成核方式:均相成核,异相成核 1、膨胀计法 2、解偏振光强度法 3、差示扫描量热法
9.3.2 Avrami方程应用于聚合物等温结晶动力学 P281-282
9.3.3 影响结晶速度的因素
1、结晶速度的温度依赖性
分子链的柔性:柔顺性越好,结晶性能越强。
共聚结构:无规和接枝共聚降低结晶性。
其他结构因素:支化,交联,增加高分子间作用力,不利于结晶。
晶态聚合物的力学状态及其转变
在轻度结晶的聚合物中,少量的晶区起类似交联点的作用, 当温度升高时,其中非晶区由玻璃态转变为高弹态,可以观察 到Tg的存在,但晶区的链段由于受晶格能的限制难以运动,使 其形变受到限制,整个材料表现为由于非晶区的高弹态而具有 一定的韧性,由于晶区的存在具有一定的硬度,象皮革。
就一层晶片而言,分子链的排列方式同老式电话交换 台的插线板相似,晶片表面的分子链像插线接头那样毫无 规则,构成非晶区.
9.2 结晶聚合物的结晶度
9.2 .1聚合物结晶度的定义及其测定方法
(1)聚合物的结晶度
质量百分数:fw=Wc/(Wc+Wa)×100%
体积百分数:fv= Vc/(Vc+Va)×100%
①聚合物单晶
具有一定几何外形的薄片
状晶体。一般聚合物的单晶只 能从极稀溶液(质量浓度小于 0.1wt%)中缓慢结晶而成。
单晶
②聚合物球晶
聚合物最常见的结晶形态,为圆球 状晶体,尺寸较大,一般是由结晶性聚 合物从浓溶液(质量浓度大于1wt%)中 析出或由熔体冷却时形成的。球晶在正 交偏光显微镜下可观察到其特有的黑十 字消光或带同心圆的黑十字消光图象。
立方
四方
斜方(正交)
六方Βιβλιοθήκη 单斜 三斜三方(菱形)X射线衍射图
(2)聚合物结晶中的分子链构象
聚乙烯:斜方晶体 ;聚乙烯醇:单斜晶系
聚酰胺:完全伸展的平面锯齿链以氢键联结平行排列成片状体
全同立构乙烯类聚合物:螺旋构象
一些结晶聚合物的晶体结构数据 P271 表9-2
9.1.2结晶聚合物的结晶形态
根据结晶条件不同,又可形成多种形态的晶体:单晶、球晶、 伸直链晶片、纤维状晶片和串晶等。
式中a----非晶区(amorphous region) 式中c----晶区(crystalline region ) (2) 结晶度的测试方法 ①密度法P277 ②DSC差示扫描量热(Differential Scan Calorimetric )法P278 ③X射线衍射法P278
9.2 .2聚合物结晶度对其性能的影响
Tm>Tf
形
变
高结晶度(>40%)
聚合物
Tg
温度
Tm
9.1 结晶聚合物的晶体结构
X射线衍射法是研究晶体结构最重要的方法
9.1.1 结晶聚合物的晶胞和分子链的构象
(1)聚合物的晶胞:晶体结构的最小重复单元,具有平行六面体 的几何形状。晶胞的七个晶系 P268 表9-1
聚合物可以形成除了立方晶系的晶胞之外其它六种晶系晶胞.
球晶的黑十字消光现象
球晶的生长过程示意图
③纤维晶和串晶 纤维状晶是在外力场(搅拌、拉伸或剪切)的作用下使高
分子链的构象发生畸变,成为沿流动方向平行排列的伸展状态, 在适当的条件下结晶而成。分子链取向与纤维轴平行。
聚合物串晶是一种类似于串珠式的多晶体。
④伸直链晶 由完全伸展的分子链平行规整排列而成的小片状晶体,晶
结晶必须在玻璃化温度Tg与熔点Tm之间的温度范围内进行。 聚合物结晶过程与小分子化合物相似,要经历晶核形成和晶 粒生长两过程。温度过高,分子链的热运动过于激烈,会破 坏分子链的有序排列,当温度高于熔点Tm,高分子处于熔融 状态,晶核不易形成;低于Tg,高分子链运动困难,分子链 的链段以上大尺寸单元运动被冻结,难以进行规整排列,晶 核也不能生成,晶粒难以生长。
形 变
Tg 温度
由于晶区限制了形变,因此在晶区熔融之前,聚合物
整体表现不出高弹态。能否观察到高弹态取决于非晶区的 Tf是否大于晶区的Tm。若Tm>Tf,则当晶区熔融后,非晶区 已进入粘流态,不呈现高弹态;若Tm<Tf,晶区熔融后,聚 合物处于非晶区的高弹态,只有当温度>Tf时才进入粘流态。
Tm<Tf
折叠链模型
插线板模型 P276 图9-23a,b:高分子链是完全无规进 入晶体的,在晶片中链段规则平行排列,而相邻排列的两 个分子链段是非近邻的链段和来自不同的分子链段.在形 成多片晶时,一个分子链从一层晶片出来后,并非近邻折 叠回原晶片,而是进入非晶区,再进入到另一层晶片中,或 者以无规方式再返回原晶片中.
高分子化学及物理 第九章 结晶态聚合物
9.0 概论
聚合物的结晶:分子链规则有序的排列形成的三维远程有序 晶体结构. 聚合物的结晶能力与下述条件有关: 分子链的对称性:对称性越高,越易形成规则排列的三维有序 晶体。
分子链的规整性:分子链的规整性越好,越容易结晶。(例外: 聚三氟氯乙烯虽然主链含不对称碳原子且构型不规整,但链仍可 规整排列进行结晶)