工业机器人基础知识共39页文档
工业机器人的基础知识
工业机器人的基础知识工业机器人是能模仿人体某些器官的功能(主要是动作功能)、有独立的控制系统、可以改变工作程序和编程的多用途自动操作装置。
工业机器人在工业生产中能代替人做某些单调、频繁和重复的长时间作业,或是危险、恶劣环境下的作业,例如在冲压、压力铸造、热处理、焊接、涂装、塑料制品成形、机械加工和简单装配等工序上,以及在原子能工业等部门中,完成对人体有害物料的搬运或工艺操作。
“机器人”一词出自捷克文,意为劳役或苦工。
1920年,捷克斯洛伐克小说家、剧作家恰佩克在他写的科学幻想戏剧《罗素姆万能机器人》中第一次使用了机器人一词。
此后被欧洲各国语言所吸收而成为专门名词。
20世纪50年代末,美国在机械手和操作机的基础上,采用伺服机构和自动控制等技术,研制出有通用性的独立的工业用自动操作装置,并将其称为工业机器人;60年代初,美国研制成功两种工业机器人,并很快地在工业生产中得到应用;1969年,美国通用汽车公司用21台工业机器人组成了焊接轿车车身的自动生产线。
此后,各工业发达国家都很重视研制和应用工业机器人。
由于工业机器人具有一定的通用性和适应性,能适应多品种中、小批量的生产,70年代起,常与数字控制机床结合在一起,成为柔性制造单元或柔性制造系统的组成部分。
工业机器人由主体、驱动系统和控制系统三个基本部分组成。
主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。
大多数工业机器人有3,6个运动自由度,其中腕部通常有1,3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
工业机器人按臂部的运动形式分为四种。
直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。
工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。
工业机器人技术基础课件(最全)
无工具参数
Never Stop Improving
— 9—
工具坐标系
1 机器人坐工标业系机器人坐标系
工具坐标系: 建立工具坐标系方法:
直接输入法 三点法(工具末端对一固定点示教三个不同姿态的点) 五点法(工具末端对一固定点示教五个不同姿态的点)
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
pz
Never Stop Improving
— 11 —
2 机器人位姿变换
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
齐次坐标: 如用四个数组成(4×1)列阵
px
p
py
1pz
表示三维空间直角坐标系{A}中点p,则列阵[px py pz 1]T称为三维空间点p的齐次坐标。
— 2—
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
1 机器人坐标系
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
在分析机器人时会牵涉诸多坐标系,一些是操作者不须关心的,另外一些却是和工艺相 关的。常见的坐标系有: ➢ 关节坐标系 ➢ 基座坐标系 ➢ 工具坐标系 ➢ 用户坐标系
右图就处于a)的奇异状态,直角下示教会报警。
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
直角坐标系
Never Stop Improving
— 6—
1 机器人坐工标业系机器人坐标系
机器人系统 关节坐标系
两者关系???
变频器 | PLC | HMI | 伺服驱动器 | 电机 | 大传动 | 新能源
自学工业机器人知识点总结
自学工业机器人知识点总结一、应用领域1. 制造业:工业机器人在制造业中有着广泛的应用。
在汽车制造、电子产品制造、航空航天制造等行业中,工业机器人被用于各种装配、焊接、喷涂、搬运等工作。
2. 医疗行业:工业机器人还被用于医疗行业中,如手术机器人可以进行微创手术,精确操作。
3. 农业:在农业领域中,工业机器人可以应用于农田灌溉、播种、收割等作业。
4. 建筑业:工业机器人在建筑行业中也有应用,如大型机器人臂可以用于建筑物的施工。
5. 其他行业:此外,工业机器人还有应用于食品加工、包装行业等领域。
二、工业机器人的分类1. 按工作方式划分:- 固定式工业机器人- 移动式工业机器人- 可变式工业机器人2. 按结构划分:- 关节式工业机器人- 直线式工业机器人- 并联式工业机器人- 混合式工业机器人3. 按动力来源划分:- 电动工业机器人- 液压式工业机器人- 气动工业机器人4. 按使用环境划分:- 有害环境中使用的工业机器人- 超洁净环境中使用的工业机器人- 无人操作环境中使用的工业机器人三、工业机器人的主要构成部分1. 机械结构机械结构是工业机器人的主体部分,包括基座、关节、执行器、末端执行器等,用于支撑和实现机器人的运动。
2. 控制系统控制系统是工业机器人的大脑,包括控制器、传感器、编码器等,用于控制机器人的运动和动作。
3. 电气系统电气系统包括电动机、传动装置、电缆等,用于提供机器人的动力和能量。
4. 软件系统软件系统包括机器人的编程软件、仿真软件等,用于实现机器人的编程和仿真。
四、工业机器人的工作原理工业机器人的工作原理可以概括为接收控制指令、进行动作执行、实现精确位置控制和多轴协同运动,具体包括以下几个方面:1. 传感器采集环境信息工业机器人通过传感器采集环境信息,如视觉传感器、力传感器等,用于感知周围环境和工作对象的位置、形状、力度等信息。
2. 控制系统实现动作规划控制系统根据采集到的环境信息和控制指令,对机器人的动作进行规划,包括路径规划、速度控制、动作协调等。
工业机器人的基础知识
图1-1 Unimate 机器人
2)初级阶段(20世纪60—70年代) 1961年,德沃尔的Unimation公司为通用汽车生产线安装了第一台用于生产的工
业机器人,它主要用于生产门窗把手、换挡旋钮、灯具和其他汽车内饰用五金件。 1978年,日本山梨大学牧野洋发明SCARA机器人(见图1-2),该机器人具有
将串联机器人和并联机器人有机结合起来的工业机器人,称为混联机 器人。混联机器人既有并联机器人刚度好的优点,又有串联机器人工作范 围大的优点,进一步扩大了机器人的应用范围。
2.按操作机坐标形式分类
工业机器人按操作机坐标形式的不同,可分为直角坐标机器人、圆柱坐标机器人、 球坐标机器人和多关节机器人等。
四个轴和四个运动自由度,特别适合于装配工作,如今被广泛应用于汽车工业、电 子产品工业、药品工业和食品工业等领域。
图1-2 SCARA机器人
3)迅速发展阶段(20世纪80—90年代)
1981年,通用汽车公司第一次将CONSIGHT机器视觉系统成功地应用在了一个 恶劣的制造环境中,利用三台工业机器人以每小时1400个的速度分拣出六种不同的 铸件。
工业机器人基础
工业机器人的基础知识
1.1 工业机器人的定义及特点
用来进行搬运机械部件或工件的、可编程序的多功能操作器,或通过 改变程序可以完成各种工作的特殊机械装置。
工业机器人有以下几个特点:
1.可编程
生产自动化的进一步发展是柔性自动化。工业机器人可随其工作环境 变化的需要而再编程。因此,它在小批量、多品种、均衡、高效的柔性制 造过程中能发挥很好的作用,是柔性制造系统中的一个重要组成部分。
1)高性能 2)机械结构向模块化、可重构化发展 3)本体结构更新加快 4)控制技术的开放化、PC化和网络化 5)多传感器融合技术的实用化 6)多智能体协调控制技术
《工业机器人基础知识》
2.3 坐标系
2.3.1 简介
机器人是由运动轴和连杆组成的,而其运动方式是在不同的坐标系下进 行的,为了掌 握机器人的示教方法,应首先了解机器人的坐标系及各运动轴 在不同坐标系的运动。
主要有: 关节坐标系 绝对坐标系(直角坐标系) 圆柱坐标系 工具坐标系 用户坐标系
关节坐标系 机器人每个轴均可以独立地正向或反向转动,关节坐标系是机器人各关节 上固定的坐标系,用于确定机器人的关节角。
图4-17 工具坐标系及各轴的运动
主运动轴 腕运动轴
表4-4 工具坐标系下机器人的运动方式
轴
运动方式
六轴联动
沿 X 轴方向运动 沿 Y 轴方向运动
沿 Z 轴方向运动
末端点位置不变, 机器人分别绕 X 、Y、Z 轴转动
5. 用户坐标系 用户坐标系是用户根据工作的需要,自行定义的坐标系,用户可根据需要
基坐标系 基坐标系是一个固定定义的直角坐标系,位于位于机器人基座。它是最便 于机器人从一个位置移动到另一个位置的坐标系。
世界坐标系 世界坐标系是固定定义的直角坐标系,默认世界坐标系与基坐标系重合。 世界坐标系可定义机器人单元,所有其他的坐标系均与世界坐标系直接或 间接相 关。它适用于微动控制、一般移动以及处理具有若干机器人或外轴 移动机器人的工作站 和工作单元。
最大值
对于结构固定的机器人 ,其最大行程为定值,因此 额定速度越高,运动循环时 间越短,工作效率也越高。 而机器人每个关节的运动过 程一般包括启动加速、匀速 运动和减速制动三个阶段。 如果机器人负载过大,则会 产生较大的加速度,造成启 动、制动阶段时间增长,从 而影响机器人的工作效率。 对此,就要根据实际工作周 期来平衡机器人的额定速度 。
2.2.3 额定速度
《工业机器人技术基础》单元2 工业机器人的基本原理
2.5 机器人动力学
2.5.2 机器人动力学方程
重复定位精度(mm) ±0.2-0.5 ±0.5 ±0.2-0.3 ±0.08-0.1 ±0.2-0.5
±0.02-0.03 ±0.06-0.08 ±0.06-0.1
2.2 工业机器人性能指标
2.2.2 其他技术参数
2 工作空间
2.2 工业机器人性能指标
2.2.2 其他技术参数
3 最大工作速度 有的厂家指工业机器人主要自由度上最大的稳定速度,有的厂家 指手臂末端最大的合成速度,对此通常都会在技术参数中加以说明。
2.3 工业机器人位姿描述与坐标变换
2.3.1 坐标系
● 2 柱面坐标系
2.3 工业机器人位姿描述与坐标变换
2.3.1 坐标系
● 3 球面坐标系
2.3 工业机器人位姿描述与坐标变换
2.3.2 工业机器人坐标系
1 基坐标系 2 关节坐标系 3 工件坐标系 4 工具坐标系 5 大地坐标系 6 用户坐标系
2.2.1 工业机器人自由度 4 关节机器人的自由度
(1)SCARA型关节 机器人
2.2 工业机器人性能指标
2.2.1 工业机器人自由度
4 关节机器人的自由度 (2)六轴关节机器人
2.2 工业机器人性能指标
2.2.1 工业机器人自由度
5 并联机器人的自由度
2.2 工业机器人性能指标
2.2.2 其他技术参数
2.4 机器人运动学
2.4.2 机器人运动方程 2 PUMA560机器人运动方程
2.5 机器人动力学
2.5.1 机器人动力学概述
机器人的动力学正问题:已知机器人各关节执行器的驱动力或力矩,求解机器人 各关节的位置、速度、加速度
工业机器人技术基础(完整版)
焊接机器人典型应用案例
轿车后桥双机协调弧焊系统
5
车身焊接线
6
轿车座椅骨架弧焊系统
7
火车侧梁弧焊系统
8
激光焊接系统
9
等离子焊接系统
10
1.1 弧焊机器人
• 机器人操作机:日本 MOTOMAN-UP20型6轴关节式机器人 • 机器人控制器:YASNAC XRC UP20型 • 负载能力:20kg • 自由度:6自由度 • 重复定位精度:±0.08mm • 工作范围:半径1658mm • 驱动:交流伺服电机。 • 焊接电源:MOTOWELD-S350, CO2/MAG焊机,可以实现碳钢、低合金高
成具有大批量、高质量要求的工作,如自动化
生产线中的点焊、弧焊
、喷漆、切割、
电子装配及物流系统的搬运 、包装、码垛
等作业的机器人。此外,机器人也可用于软质
材料的切削加工,如陶泥,泡沫,石蜡 ,有机
玻璃等。
3
1、Motoman机器人简介
• 焊接制造工艺由于其工艺的复杂性、劳动强度 、产品质量、批量等要求,使得焊接工艺对自 动化对于其工艺的自动化、机械化的要求极为 迫切,实现机器人焊接代替人工操作成为焊接 工作者追求的目标。
强钢和不锈钢等的焊接; 最大焊接电流350A • 保护气体:CO2、Ar+CO2、 Ar+CO2+O2 • 焊丝:直径0.9、1.2、1.6mm实心焊丝或药芯焊丝,如H08Mn2SiA等
11
1.2 弧焊机器人系统简介
机器人要完成焊接作业必须依赖于控制系统 与辅助设备的支持和配合。完整的焊接机器人系 统一般由如下几部分组成:机器人操作机、变位 机、控制器、焊接系统、焊接传感器、中央控制 计算机和相应的安全设备等。
工业机器人基础知识
机器人的定义美国国家标准局(NBS )的定义:机器人是一种能够进行编程并在自动控制下执行某些操作和移动作业任务的机械装置”。
国际标准化组织(ISO)的定义:机器人是一种自动的、位置可控的、具有编程能力的多功能机械手,这种机械手具有几个轴,能够借助于可编程序操作来处理各种材料、零件、工具和专用装置,以执行种种任务。
”机器人具有以下特性:(1)一种机械电子装置;(2)动作具有类似于人或其他生物体的功能;(3)可通过编程执行多种工作,有一定的通用性和灵活性;(4)有一定程度的智能,能够自主地完成一些操作。
机器人的分类按照日本工业机器人学会(JIRA)的标准,可将机器人分为六类:第一类:人工操作机器人。
由操作员操作的多自由度装置;第二类:固定顺序机器人。
按预定的不变方法有步骤地依此执行任务的设备,其执行顺序难以修改;第三类:可变顺序机器人。
同第二类,但其顺序易于修改。
第四类:示教再现(playback)机器人。
操作员引导机器人手动执行任务,记录下这些动作并由机器人以后再现执行,即机器人按照记录下的信息重复执行同样的动作。
第五类:数控机器人。
操作员为机器人提供运动程序,并不是手动示教执行任务。
第六类:智能机器人。
机器人具有感知外部环境的能力,即使其工作环境发生变化,也能够成功地完成任务。
美国机器人学会(RIA)只将以上第三类至第六类视做机器人。
我国的机器人专家从应用环境出发,将机器人分为两大类,即工业机器人和特种机器人。
所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。
而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人。
机器人技术涉及的研究领域有:1、传感器技术:得到与人类感觉机能相似的传感器技术;2、人工智能计算机科学:得到与人类智能或控制机能相似能力的人工智能或计算机科学;3、假肢技术;4、工业机器人技术:把人类作业技能具体化的工业机器人技术;5、移动机械技术:实现动物行走机能的行走技术;6、生物功能:实现生物机能为目的的生物学技术为了防止机器人伤害人类,科幻作家阿西莫夫于1940年提出了机器人三原则”:(1 )机器人不应伤害人类;(2)机器人应遵守人类的命令,与第一条违背的命令除外;(3)机器人应能保护自己,与第一条相抵触者除外。
工业机器人基础知识
第一部分 工业机器人基础知识
1.1 机型介绍
➢ 码垛机器人: 机型特点 J1: 腰部旋转 J2: 大臂俯仰 J3: 小臂俯仰 J4: 手腕旋转 应用领域(包装、物流自动化): 袋类包装:石化、粮食、建材、化肥、饲料 箱类包装:啤酒、饮料、乳业、医药、食品、家电 桶状包装:桶装水、涂料桶、化学品罐类 负载:50kg-1500kg
额定负载:3kg-300kg 性能要求:重复定位精度、高速(3C产线上下料,流水线 动态抓取) 外部扩展需求:外部轴(行走轴)、视觉、上位机等 ② 打磨机器人: 应用:用于抛光、打磨、去毛刺等应用场合 额定负载:6kg-150kg 性能要求:轨迹重复精度,速度均匀, 外部扩展:外部轴(变位机)、力传感器、视觉等
第一部分 工业机器人基础知识
1.2 机器人系统
1.2.3 减速器 :RV减速器 特点:
主轴承内置:可靠性高、成本低; 二级减速机构:振动小,GD^2小; 双柱支撑机构(曲柄轴):扭矩刚性大、振动小、耐冲击; 滚转接触机构:启动功率小、耐磨损、寿命长、1弧分; 销齿轮机构:齿隙小(1弧分)、耐冲击;
1.2 机器人系统
1.2.3 减速器 :RV和谐波减速机型号转矩指标差异、优势;
谐波减速机
RV减速机:RV-E系列
型号 14 17
20 …… 65
减速比
50 80 100 50 80 100 120 50 80 100 120 160
输入 2000r/min时 的额定转矩
起动、停止时 的容许最大转
矩
第一部分 工业机器人基础知识
1.1 机型介绍
➢ 码垛机器人: 1.基座 2.腰座伺服电机 3.减速机 4.垂直关节同步带 5.垂直关节伺服电机 6.垂直关节滚珠丝杆 7.垂直关节导轨 8.腰座部分 9.后臂 10.前臂
工业机器人基础知识
1. 1 认识工业机器人
• 四轴并联机器人又名蜘蛛手机器人、DELTA 机器人, 四个关节呈并联 结构, 运行速度快, 用于食品、药品分拣等应用领域, 如图1-8 所示。
• 3. 按机器人应用分类 • “中国制造2025” 战略规划的提出, 使制造业向数字化、网络化、智
能化方向发展, 工业机器人作为智能制造领域的重要载体, 已广泛应用 于汽车及其零部件制造业、机械加工行业、3C 行业、橡胶及塑料工 业、食品、医药、陶瓷卫浴、木材与家具制造业等领域, 见表1-1。机 器人产品也已涉及焊接、装配、搬运、上下料、冲压、铸锻、注塑、 折弯、码垛、喷涂等应用。短短40 年内, 机器人技术得到了迅速发展 。
• 1. 1. 3 工业机器人的组成
上一页 下一页 返回
1. 1 认识工业机器人
• 工业机器人由机械系统、驱动系统、控制系统和感知系统组成, 如图 1-1 所示。
• 机械系统即机器人的身体, 包括机座、臂部、手腕、末端执行器、行 走机构等; 驱动系统即机器人的肌肉, 主要有电气驱动、液压驱动和气 压驱动三种类型; 控制系统即机器人的大脑, 由计算机控制软件和硬件 组成; 感知系统即机器人神经系统, 由内部传感器和外部传感器组成。
• 1. 1. 4 工业机器人的分类
• 关于工业机器人的分类, 国际上没有制定统一的标准, 一般按照应用领 域、机械结构特征、自由度数等进行分类。
上一页 下一页 返回
1. 1 认识工业机器人
• 工业机器人还处在起步发展阶段, 需要进行不断完善和发展, 本书主要 介绍如下几种分类方法。
• 1. 按机器人的技术等级分类 • (1) 示教再现机器人(第一代工业机器人) • 能够按照人类预先示教的轨迹、行为、顺序和速度重复作业, 操作员
工业机器人技术与应用-第1章 工业机器人基础知识
为工业增智 为教育赋能
20
1.3 工业机器人的发展概况
1.3.2 工业机器人的现状
经过六十多年的发展,工业机器人已在越来越多的领域得到了应用。在制造业中,尤其是在汽 车产业中,工业机器人得到了广泛的应用,如在毛坯制造、机械加工、焊接、热处理、表面涂覆、 上下料、装配、检测及仓库堆垛等作业中,机器人已逐步取代了人工作业。第1章来自工业机器人基础知识本章目录
1.1 工业机器人的定义与特点 1.2 工业机器人的应用领域 1.3 工业机器人的发展概况 1.4 协作机器人相关知识 1.5 思考与练习
为工业增智 为教育赋能
2
本章要求
知识目标 ✓ 掌握工业机器人的定义和特点; ✓ 了解工业机器人的发展历史和未来趋势; ✓ 熟知工业机器人的典型应用。
为工业增智 为教育赋能
19
1.3 工业机器人的发展概况
1.3.1 工业机器人的历史
中国机器人的发展也很迅速。古代的中国就可找到机器人的影子,如周朝的“歌舞艺人”、三国 时的“木牛流马”。“七五”期间实施了“863”计划。短短的二十年,中国的机器人技术在世界已占有 一席之地。在制造业中陆续出现了喷涂、搬运、装配等机器人。但受市场和资金等因素的制约,目 前装机数量规模比较小,与发达国家相比还存在很大差距。
为工业增智 为教育赋能
7
工业机器人基础知识
1.2
工业机器人的应用领域
为工业增智 为教育赋能
8
1.2 工业机器人的应用领域
1.2.1 码垛 机器人码垛(如图1-1所示)在现代物流行业有着广泛的应用,能为现代生产提供更高的生产 效率。 其优势有: ①码垛机器人能够大大节省劳动力,节省空间,降低人的作业强度; ②运作灵活精准、快速高效,稳定性高,作业效率高; ③工作时间长,能够提高产量、降低成本。
工业机器人技术基础模块一
模块一 工业机器人基础知识
任务一 认识工业机器人
知识目标: 1.掌握工业机器人的定义。 2.熟悉工业机器人的常见分类及行业应用。 3.了解工业机器人的发展现状和趋势。
4.了解工业机器人的安全使用注意事项。
能力目标: 1.能结合工厂自动化生产线说出搬运机器人、码垛机器人、
装配机器人、涂装机器人和焊接机器人的应用场合。 2.能进行简单的机器人操作。
我国在机器人领域的发展尚处于起步阶段,应以美国模式着手,在条件成 熟后逐步向日本模式靠近。整体而言,与国外进口机器人相比,国产工业 机器人在精度、速度等方面不如同类进口产品,特别是在关键核心技术 上还没有取得应用突破。
任务一 认识工业机器人
3.工业机器人的发展趋势
从近几年推出的产品来看,工业机器人技术正向高性能、智能化 、模块化和系统化方向发展,其发展趋势主要为:结构的模块化和 可重构化;控制技术的开放化、PC化和网络化;伺服驱动技术的数 字化和分散化;多传感器融合技术的实用化;工作环境设计的优化 和作业的柔性化。
任务一 认识工业机器人
总之,机器人行业的发展与30年前的计算机行业极为相似。机器人制造 公司没有统一的操作系统软件,流行的应用程序很难在五花八门的装置 上运行。机器人硬件的标准化工作也尚未开始,在一台机器人上使用的 编程代码,几乎不可能在另一台机器人上发挥作用。如果想开发新的机 器人,通常需要从零开始。