温湿度监测系统新
普尔特科技TCMS温湿度监控系统及介绍
普尔特科技TCMS温湿度监控系统及介绍TCMS温湿度监控系统⼀、系统背景温湿度监测系统实际上就是⼀种可以实时监测房间当中的温度和湿度的系统,现在各⾏各业都⼗分重视⽣产管理和仓储存储的环节了,当仓库当中存储了许多重要的东西时,想要保证他们的质量完好就必须要有最合适的温度和湿度的,⽽这个温度和湿度的保持并不是靠⼈⼒可以感受的,所以就需要借助温湿度监测系统的实时监测功能来实现对温度和湿度的良好控制,这样可以更好的储存物品,减少⽣产存储过程中的成本。
⼆、系统概况深圳市普尔特科技技术有限公司TCMS温湿度监控系统,采⽤从瑞⼠进⼝的⾼精密的温湿度探头对药品库房的温度和湿度等相关数据进⾏实时采取和收集,通过不同组⽹⽅式的传输将相关数据实时传输到我们的监控平台软件上进⾏分析存储,并实时监测温湿度数据,如有异常,⽴即报警。
三、系统配置及架构四、系统软件五、系统应⽤六、系统亮点1、免费配系统软件,强⼤的数据库功能,能实时记录、保存数据,图表显⽰和数据导出2、⽤户可根据需要⾃由选配本地声光、短信、电话、邮件等不同的报警⽅式3、组⽹⽅式灵活多样,客户可根据库房和办公⽣产环境选择RS485、RJ45、⽆线WiFi、⽆线Zigbee 等组⽹⽅式七、系统温湿度选型可根据现场情况选取⽆线WIFI温湿度、RJ45温湿度、RS485温湿度、Zigbee温湿度、离线式温湿度、DO报警温湿度。
⼋、⽅案产品详情介绍LD-CJQ-A01型智能⼀体化监控主机LD-CJQ-A01产品概述LD-CJQ-A01型经济型产品,体积⼩巧,安装操作灵活,具备有8路模拟量/数字量兼容的采集输⼊通道,⾜以满⾜⼤部分机房、基站的动⼒环境监控要求;有2路继电器输出,可联动告警,适⽤于钢板房、⼟地建房、承租房、共站(⼆⽹合⼀、三⽹合⼀)、单站等多种类型基站。
有2路红外空调控制接⼝,可以实现对⾮智能空调的远程遥控功能;A型是⼀种既能解决各通信机房/基站内设备的散热,⼜能⼤幅度降低电能消耗以实现节能减排要求的新产品。
温湿度监控系统操作使用说明
温湿度监控系统操作使用说明一、系统简介温湿度监控系统是一种用来实时监测和记录环境温度和相对湿度变化的系统。
该系统通过传感器检测环境温湿度,并将数据传输到监控中心进行实时显示和记录。
系统具有高精度、高稳定性、易操作等特点,适用于各种场所和环境。
二、系统组成1.传感器:用于检测环境的温度和湿度。
2.集控器:接收传感器数据并传输到监控中心。
3.监控中心:显示和记录传感器数据,提供报警功能等。
三、系统安装1.传感器安装:选择合适的位置安装传感器,注意避免阳光直射、水汽等影响温湿度测量的因素。
传感器应固定牢固,避免震动和干扰。
2.集控器安装:将集控器与传感器通过正确的接口连接起来,确保连接稳定。
集控器应安装在通风良好、温度适宜的地方。
3.监控中心安装:安装监控中心软件并按照说明进行设置,确保能够与集控器通信。
四、系统操作1.开机操作:按照监控中心软件的指引启动系统,确保传感器和集控器正常连接,并显示传感器的温湿度数据。
2.数据监测:监控中心会实时显示传感器采集到的温湿度数据,包括当前数值、最高值、最低值等信息。
可以通过图表等形式进行查看和分析。
3.数据记录:系统会将传感器数据保存到数据库中,用户可通过查看历史数据来了解温湿度变化的趋势。
可以根据需要设置保存的时间间隔和记录的数量。
4.报警功能:监控中心可以设置温湿度的报警阈值,当传感器检测到温湿度超出设定的范围时会自动报警,提醒用户进行处理。
报警方式可以通过声音、弹窗、短信等形式进行设置。
5. 数据导出:系统可以将数据导出为Excel或其他格式的文件,方便用户进行数据分析和报表制作。
6.系统设置:监控中心提供一些系统参数的设置选项,用户可以根据需要进行调整,如显示单位、报警阈值、报警方式等。
五、系统维护1.定期校准:传感器的准确度会随着时间的变化而降低,建议定期对传感器进行校准,确保温湿度的测量结果准确可靠。
2.清洁保养:定期清洁传感器和集控器,保持设备的良好状态,避免尘埃或污物的积累对测量结果的影响。
智能家居中的智能环境温湿度监测控制系统研究
智能家居中的智能环境温湿度监测控制系统研究智能家居是基于互联网技术和智能设备的一种智能化居家环境。
智能家居设备图像化、交互化、智能化、个性化的特点,让我们的生活方式发生了革命性的变化。
智能家居设备已经成为21世纪最具前景的产业之一。
目前,智能家居设备涉及了家庭安防、家庭娱乐、环境监测、智能家电、智能化生活用品等多个领域,其中环境监测是智能家居的重要功能之一。
本文将介绍智能家居中的智能环境温湿度监测控制系统研究。
一、智能家居中环境监测的重要性智能家居,就是通过物联网技术将家庭中的所有设备连接在一起,实现家庭智能化。
而环境监测则是智能家居中的重要功能之一。
商家、企业和消费者通过智能家居设备可以实时了解家庭的温度、湿度、空气质量等,实现对家庭环境的控制。
智能家居的环境监测可以给消费者提供一个智能、舒适、省心、环保、健康的生活方式。
二、智能家居中的智能环境温湿度监测控制系统1. 系统结构智能家居中的智能环境温湿度监测控制系统是由传感器、数据采集模块、数据传输模块、数据处理模块、用户交互模块五个部分组成的。
传感器负责采集温湿度信息,数据采集模块将传感器采集的温湿度数据传输到数据传输模块,数据传输模块将数据传输到数据处理模块进行数据处理,处理好后将数据通过用户交互模块反馈给用户。
2. 系统工作原理智能环境温湿度监测控制系统工作原理主要有两种方式,一种是主动传输,另一种是被动传输。
被动传输是指当传感器感应到室内温度或湿度发生变化时,会自动触发数据采集模块采集数据,并进行传输。
而主动传输是指用户可以通过智能家居APP对家庭温湿度进行监测控制,APP可以实时地向数据采集模块请求数据,实现对家庭温湿度的监测和控制。
3. 系统功能智能环境温湿度监测控制系统主要有以下几个功能:(1)实时温湿度监测智能环境温湿度监测控制系统可以实时监测家庭的温度和湿度。
实时监测可以帮助用户了解家庭环境的状态,做到心中有数。
(2)数据趋势分析智能环境温湿度监测控制系统可以对家庭温湿度的数据进行趋势分析,从而让用户更加清晰地了解家庭温湿度的变化趋势。
智能温湿度控制系统
智能温湿度控制系统在现代化的生活中,温湿度控制是一个关键的环节。
不论是家庭、办公场所还是工业生产的场合,我们都希望能够保持适宜的温湿度条件,以确保舒适度和工作效率。
为了满足这一需求,智能温湿度控制系统应运而生。
1. 系统概述智能温湿度控制系统是一种基于先进技术的智能化设备,可以实时监测和调节室内温湿度。
它由多个组件组成,包括传感器、控制器和执行机构。
传感器负责采集室内的温湿度数据,控制器根据这些数据做出合理的控制策略,并通过执行机构实现对温湿度的调节。
2. 系统特点a. 高精度传感器:智能温湿度控制系统采用高精度传感器,能够准确地获取室内温湿度信息。
这些传感器经过严格校准,能够提供可靠的数据,以确保系统的准确性和稳定性。
b. 智能控制算法:控制器部分是智能温湿度控制系统的核心。
它采用了先进的控制算法,能够根据室内温湿度的实时数据做出智能化的决策,以达到最佳的温湿度控制效果。
c. 多通道控制:智能温湿度控制系统可以同时监测和调节多个房间或区域的温湿度。
每个房间都可以独立地设置温湿度目标,并且系统能够根据实际需要进行灵活调整,以满足不同房间的需求。
d. 远程监控与控制:智能温湿度控制系统支持远程监控和控制功能。
用户可以通过手机应用或者云平台实时查看和调节室内的温湿度,实现远程控制和管理,提高用户的便利性和体验。
e. 节能环保:智能温湿度控制系统在实现舒适条件的同时,也注重节能环保。
通过合理的温湿度控制策略,系统可以降低能源消耗,减少对环境的影响,达到可持续发展的目标。
3. 应用场景a. 家庭:智能温湿度控制系统可以应用于家庭的客厅、卧室等区域,帮助人们创造舒适的居住环境,促进健康和睡眠质量。
b. 办公场所:办公室是人们工作和学习的地方,室内温湿度对员工的工作效率和健康状况有着重要的影响。
智能温湿度控制系统可以帮助办公场所提供适宜的工作环境,提高员工的工作效率和满意度。
c. 工业生产:在一些对温湿度要求较高的工业生产场合,如制药、食品加工等行业,智能温湿度控制系统可以保持生产环境的稳定性,提高产品质量和安全性。
温度湿度监测系统开题报告
温度湿度监测系统开题报告一、项目背景温度和湿度是常用的环境参数,对于很多行业和领域来说,对温湿度的实时监测和控制非常重要。
例如,在医疗行业,温湿度监测系统可以帮助提供对手术室、实验室和药物存储室等环境的合适控制和维护;在农业领域,温湿度监测系统可以帮助农民实时监测大棚内的温湿度,从而提供农作物生长的合适环境。
因此,开发一种可靠、实用的温度湿度监测系统具有重要的实际意义。
二、项目目标本项目旨在开发一种基于传感器技术的温度湿度监测系统,通过实时监测环境的温度和湿度变化,提供准确的数据和报警功能。
主要目标包括:1.设计一个硬件系统,包括传感器模块、数据采集模块、数据显示模块等;2.开发一个软件系统,实现数据的采集、处理和显示;3.测试和优化系统的性能,提高数据采集的准确性和系统的稳定性;4.提供报警功能,当温度或湿度超出设定范围时,系统能够及时发送警报。
三、技术方案系统开发需要采用一种高精度、低成本的温度湿度传感器。
常见的温度湿度传感器有DHT11、DHT22等,我们将选择合适的传感器来实现数据的准确采集。
硬件系统主要由传感器模块、数据采集模块、数据显示模块组成。
传感器模块负责采集环境的温度和湿度相关数据,数据采集模块负责将传感器输出的模拟信号转换成数字信号,数据显示模块则通过屏幕等设备直观显示温度和湿度等数据信息。
软件系统主要由数据采集、处理和显示三个模块组成。
数据采集模块负责与硬件系统通信,获取传感器输出的数据;数据处理模块负责对采集到的数据进行处理,例如滤波、校准等;数据显示模块则负责将处理后的数据以直观的方式显示给用户。
四、项目计划本项目的开发计划分为以下几个阶段:1.需求分析:明确系统的功能和性能需求;2.技术选型:选择合适的传感器和开发平台;3.硬件设计:完成传感器模块、数据采集模块和数据显示模块的设计;4.软件设计:设计数据采集、处理和显示的算法和逻辑;5.系统集成:将硬件系统和软件系统进行集成,进行初步测试;6.系统优化:针对系统的性能进行优化和调试;7.最终测试:对系统进行全面测试,确保功能和性能满足需求;8.文档编写:撰写项目文档,包括开题报告、需求规格说明书等。
实验室智能温湿度监控系统设计
设计研发2021.08实验室智能温湿度监控系统设计兰鸽,李川江,徐磊(新疆工程学院,新疆乌鲁木齐,830000)摘要:本设计根据实验室的环境特点,利用单片机结合传感器技术开发一套能实时监测实验室环境并及时报警的温湿度监测仪,DHT11数字温湿度传感器,AT89S51单片机为控制核心与其他电子外设结合而设计的该温湿度监测系统具有灵敏度高,响应速度快,抗干扰能力强,维护方便,安装方便等优点。
监控系统可以通过按键设定报警温度和湿度的上限和下限。
当警报激活时,相应的指示灯亮起,蜂鸣器报警。
关键词:DHT11数字温湿度传感器;AT89S51单片机;监控系统Design of Intelligent Temperature and Humidity MonitoringSystem in LaboratoryLan Ge,Li Chuanjiang,Xu Lei(Xinjiang Institute of engineering,Urumqi Xinjiang,830000)Abstract:According to the environmental characteristics of the laboratory,this design uses SCM combined with sensor technology to develop a set of temperatnre and humidity monitoring instmmerrt which can real-time monitor the laboratory environment and timely alarm,DHT11digital temperature and humidity sensor,AT89S51microcontroller as the control core and other electronic peripherals.The temperature and humidity monitoring system has high sensitivity,fast response speed and anti—int erference ability St r ong,easy to main t ain,easy to ins t all and so on.The mon ito r ing sys tem canset the upper and lower limits of alarm temperature and humidity by pressing the key.When the alarmis activated,the corresponding indicator lights up and the buzzer gives an alarm.Keywords:DHT11digital temperature and humidity sensor;AT89S51single chip microcomputer; monitoring system0引言为了保证实验教学的正常进行,尤其是电类实验室,实验室的环境需要保持在一个相对稳定的状态,使实验设备正常运行,实验室温湿度过高过低都不利于设备的正常运行。
智能农业设施中的温湿度监控与调控系统设计
智能农业设施中的温湿度监控与调控系统设计智能农业设施是现代农业发展的重要方向之一,它通过应用先进的技术手段,提高了农作物的产量和质量,促进了农业生产的可持续发展。
在智能农业设施中,温湿度是影响作物生长的关键因素之一。
为了实现智能农业设施中的有效温湿度监控与调控,需要设计并应用相应的系统。
一、智能温湿度监控系统设计智能温湿度监控系统主要是通过传感器对农业设施中的温湿度进行实时监测,并将监测数据传输到控制中心进行分析和处理。
系统设计的关键是选择合适的传感器,确保监测数据的准确性和稳定性。
1. 选择合适的温湿度传感器在智能农业设施中,常用的温湿度传感器有电阻式传感器、集成式传感器和纳米传感器等。
电阻式传感器价格较低,但对环境要求较高,易受温湿度变化和外界干扰影响;集成式传感器采用数字信号输出,具有较高的精度和稳定性,适用于复杂环境;纳米传感器体积小、灵敏度高,但价格较高。
根据实际需求选择适合的传感器。
2. 确保数据传输的稳定性智能温湿度监控系统需要将传感器采集到的温湿度数据传输到控制中心进行分析和处理。
为了确保数据传输的稳定性,可采用无线传输技术如Zigbee或LoRa等,或者借助物联网技术将数据传输到云端进行存储和管理。
同时,系统应设有网络故障切换和数据加密等功能,确保数据的安全和可靠性。
3. 建立实时监测与报警机制智能温湿度监控系统需要能够实时监测目标区域的温湿度变化,并及时发出报警,以便及时采取措施防范和解决问题。
监测数据可以通过显示屏、手机APP等方式直观地反映出来,同时系统还应具备远程控制和设置报警阈值的功能,以适应不同作物对温湿度要求的差异。
二、智能温湿度调控系统设计智能温湿度调控系统主要通过控制设备如加热器、通风设备、喷灌系统等,对农业设施中的温湿度进行有效调节和控制。
系统设计的关键是选择合适的调控设备和建立精确的控制算法。
1. 选择合适的调控设备温湿度调控系统中常用的调控设备包括加热器、通风设备、喷灌系统等。
温湿度监控系统
温湿度监控系统温湿度监控系统是一种广泛应用于各种场所的设备,可以帮助人们实时监测和控制环境中的温度和湿度。
它在室内的空调系统、温室农业、医疗仓库、实验室等领域起着重要作用。
本文将介绍温湿度监控系统的原理、应用以及优势等方面。
一、原理及工作方式温湿度监控系统是由传感器、数据采集器、数据传输设备以及数据处理和显示系统组成的。
传感器可以实时检测环境的温度和湿度,并将数据传输给数据采集器。
数据采集器将数据通过无线或有线方式传输给数据处理和显示系统,用户可以通过该系统查看和控制环境状态。
二、应用领域1. 室内空调系统:温湿度监控系统可与空调系统结合使用,实现自动调节室内环境,提供人们舒适的工作和生活条件。
系统会根据设定的温湿度范围自动开启或关闭空调设备,提高能源利用效率。
2. 温室农业:温湿度监控系统在农业领域的应用十分广泛。
通过监控和控制温室内的温度和湿度,农民可以及时调整温室的气候,提供适宜的生长环境,促进农作物的生长和发育。
3. 医疗仓库:在医疗领域,温湿度监控系统被广泛应用于药品和医疗器械的储存和运输过程中。
通过及时监测仓库内部环境的温度和湿度,并进行报警和控制,可以保障药品和器械的质量和安全性。
4. 实验室:实验室通常有严格的温湿度要求,例如化学实验需要在特定的温湿度条件下进行。
温湿度监控系统可以帮助实验室工作人员实时监测环境参数,确保实验的准确性和可重复性。
三、优势1. 提高生产效率:在工业生产中,温湿度监控系统可以实现环境参数的自动调节,提高生产过程的稳定性和效率,减少产品质量问题。
2. 节能减排:通过温湿度监控系统,人们可以合理控制室内环境的温度和湿度,避免过度能耗,降低对环境的影响。
3. 数据记录与分析:温湿度监控系统可以记录和存储环境参数的历史数据,为用户提供数据分析和报告生成,帮助用户优化环境管理。
4. 预警功能:系统可以设置温湿度的上下限,并在超出范围时及时发出警报通知用户,防止温湿度异常导致的损失。
《2024年基于UWB定位的智能温室三维温湿度检测系统设计》范文
《基于UWB定位的智能温室三维温湿度检测系统设计》篇一一、引言随着现代农业技术的不断发展,智能温室作为现代农业的重要一环,其温湿度的精确监测与控制显得尤为重要。
本文提出了一种基于UWB(超宽带)定位技术的智能温室三维温湿度检测系统设计。
该系统通过UWB技术实现精准的定位和三维空间内的温湿度信息获取,以提高智能温室的管理效率及作物的生长质量。
二、系统概述本系统主要包括三个部分:UWB定位系统、三维温湿度传感器网络以及上位机监控与管理软件。
其中,UWB定位系统负责在温室内部实现精确的物体定位;三维温湿度传感器网络则负责采集各处的温湿度信息;上位机监控与管理软件则负责接收并处理这些数据,实现智能管理与控制。
三、UWB定位系统设计UWB定位系统是本系统的核心部分之一。
该系统通过布置在温室内的多个UWB锚节点和标签(移动或静止的物体),利用超宽带信号的传播特性,实现精确的距离和角度测量。
通过对多个测量数据的融合和算法处理,可以实现目标物体在三维空间中的精准定位。
这种定位方式不仅精度高,而且对环境影响小,可以在复杂的温室环境中稳定运行。
四、三维温湿度传感器网络设计三维温湿度传感器网络由多个温湿度传感器组成,分布在温室的不同位置。
这些传感器能够实时采集所在位置的温湿度信息,并通过无线网络将数据传输到上位机监控与管理软件中。
为了确保数据的准确性和实时性,本系统采用了高精度的温湿度传感器,并设计了合理的传感器布置方案,以实现对整个温室的三维温湿度覆盖。
五、上位机监控与管理软件设计上位机监控与管理软件是本系统的另一核心部分。
该软件负责接收和处理来自UWB定位系统和三维温湿度传感器网络的数据,实现对温室内环境的实时监控和管理。
软件界面友好,操作简单,可以方便地查看各处的温湿度信息、物体位置以及历史数据等。
此外,软件还具有报警功能,当温湿度超过设定阈值时,可以自动或手动启动相应的控制设备进行调整。
六、系统实现与应用本系统的实现涉及硬件和软件两个方面的设计和开发。
温湿度监控系统验证方案
温湿度监控系统验证方案目录一、项目背景与目标 (3)1. 项目背景 (3)2. 验证目标 (4)二、验证范围与对象 (5)1. 验证范围 (6)2. 验证对象 (6)三、验证准备 (7)1. 团队组建 (8)2. 设备与工具准备 (9)3. 资料准备 (10)四、验证内容与方法 (11)1. 系统硬件验证 (13)1.1 硬件设备清单核对 (14)1.2 设备性能检测 (15)1.3 设备安全性检测 (16)2. 系统软件验证 (17)2.1 软件功能测试 (18)2.2 软件性能评估 (19)2.3 软件易用性评估 (20)3. 系统集成验证 (21)3.1 温湿度数据采集准确性验证 (22)3.2 数据传输稳定性验证 (23)3.3 系统响应速度验证 (24)4. 监控点布局合理性验证 (25)4.1 布局设计审查 (26)4.2 实际监控效果评估 (27)五、验证流程 (28)1. 初步检测与评估 (29)2. 详细测试与记录 (29)3. 问题反馈与整改 (31)4. 再次验证与确认 (32)六、验证结果分析与报告编写 (33)1. 数据整理与分析 (34)2. 问题汇总与解决方案 (36)3. 验证结果评估 (37)4. 报告编写与审批 (37)七、后续工作与维护计划 (38)1. 系统日常运行维护管理 (40)2. 定期巡检与保养计划 (41)3. 故障排查与应急处理机制建设 (42)八、培训与宣传计划 (43)一、项目背景与目标随着现代工业的发展,温湿度作为关键的环境参数,对生产环境及仓储物品的质量有着至关重要的影响。
为了确保生产过程稳定、产品质量可靠,并提高仓储管理的效率,我们计划实施一套完善的温湿度监控系统。
该系统能够实时监测环境的温湿度变化,并在出现异常时及时发出警报,从而确保生产及存储环境的舒适性与稳定性。
本项目旨在通过引入先进的温湿度监控技术,构建一个高效、精准的监控体系。
温湿度监测系统功能验证报告
温湿度监测系统功能验证报告
一、概述
温湿度监测系统是用于实时监测各种环境温度和湿度的系统,它可以
实时采集环境温湿度数据,并将其通过网络传输到控制中心进行监测,从
而实现对环境温度和湿度的自动。
检测和管理。
本报告的主要目的是对温
湿度监测系统的功能进行验证,主要聚焦在系统的特性、使用功能和性能。
二、系统要求
1、传感器要求:采用精度高、抗干扰能力强的传感器,能够获得精
确的温湿度测量数据。
2、系统稳定性要求:系统能够持续运行,准确采集温湿度数据,并
及时传输到控制中心,实现远程数据监控。
3、信息安全性要求:保障数据的安全性,避免因恶意破坏而导致系
统故障及数据丢失。
三、功能验证
1、温度采集和传输功能测试:使用标准温度传感器进行采集,并通
过MODBUS/RS232/RS485等不同接口进行数据传输,检查数据传输的准确
性和稳定性。
2、湿度采集和传输功能测试:使用标准湿度传感器进行采集,并通
过MODBUS/RS232/RS485等不同接口进行数据传输,检查数据传输的准确
性和稳定性。
3、网络通信功能测试:确保温湿度数据能够通过以太网/Wi-Fi/GPRS
等不同网络方式传输到控制中心,实现远程数据监控。
《2024年基于Stm32的温湿度检测系统》范文
《基于Stm32的温湿度检测系统》篇一一、引言随着科技的发展和人们生活品质的提高,对环境的温湿度监测需求日益增长。
STM32系列微控制器以其高性能、低功耗的特点,广泛应用于各种环境监测系统中。
本文将介绍一种基于STM32的温湿度检测系统,详细阐述其设计原理、实现方法和应用场景。
二、系统设计1. 硬件设计本系统以STM32微控制器为核心,搭配温湿度传感器,构成一个完整的温湿度检测系统。
硬件设计主要包括STM32最小系统、温湿度传感器模块、电源模块等。
STM32最小系统包括STM32微控制器、时钟电路、复位电路等,为系统提供稳定的运行环境。
温湿度传感器模块采用高精度的数字式传感器,能够实时检测环境中的温湿度值。
电源模块为系统提供稳定的电源,保证系统长时间稳定运行。
2. 软件设计软件设计主要包括系统初始化、温湿度检测、数据传输等部分。
系统初始化包括配置STM32的时钟、GPIO口、ADC等,为温湿度检测做好准备。
温湿度检测通过温湿度传感器模块实现,将检测到的温湿度值通过ADC转换为数字信号,然后通过SPI或I2C等通信协议传输到STM32微控制器。
数据传输将温湿度值通过串口或网络等方式传输到上位机,实现远程监测。
三、实现方法1. 温湿度传感器选择本系统选用高精度的数字式温湿度传感器,具有响应速度快、抗干扰能力强、长期稳定性好等优点。
传感器通过SPI或I2C等通信协议与STM32微控制器连接,实现温湿度的实时检测。
2. 数据处理与传输STM32微控制器接收到温湿度传感器的数据后,需要进行数据处理,包括数据滤波、数据转换等。
处理后的数据通过串口或网络等方式传输到上位机,实现远程监测。
上位机可以对接收到的数据进行处理、存储、分析等操作,为环境监测提供支持。
四、应用场景基于STM32的温湿度检测系统具有广泛的应用场景,如智能家居、工业控制、环境监测等领域。
在智能家居中,可以实现对室内温度的实时监测和控制,提高居住舒适度。
温湿度控制系统
温湿度控制系统1. 简介温湿度控制系统是一种用于自动调节环境温度和湿度的系统。
它通常由传感器、控制器和执行器组成,用于检测环境的温湿度,并根据设定的目标值自动调节相应的控制设备,例如加热器、冷却器、加湿器或除湿器。
该系统广泛应用于各种场景,例如室内温湿度控制、植物生长环境控制、仓储设备保护等。
通过有效地控制环境温湿度,可以提高生产效率、保护贵重设备以及提供舒适的工作环境。
2. 架构温湿度控制系统通常由以下几个主要组件组成:2.1 传感器传感器用于检测环境的温度和湿度。
常用的温湿度传感器包括热电偶、温度传感器和湿度传感器。
传感器将实时的温湿度数据传输给控制器进行处理。
2.2 控制器控制器是温湿度控制系统的核心组件,负责接收传感器传输的温湿度数据,并根据预设的目标值进行调节控制。
控制器通常具有自动控制和手动控制两种模式,以满足不同的需求。
2.3 执行器执行器根据控制器的指令进行相应的动作。
常见的执行器包括加热器、冷却器、加湿器和除湿器。
执行器根据控制器传输的控制信号来调节环境的温湿度。
2.4 用户界面用户界面提供用户和温湿度控制系统之间的交互。
用户可以通过用户界面设置目标温度和湿度,并监控当前环境的温湿度。
用户界面通常由显示屏、按键和指示灯等组件组成。
3. 工作流程温湿度控制系统的工作流程如下:1.传感器检测环境温湿度,并将采集到的数据传输给控制器。
2.控制器接收传感器传输的数据,并与预设的目标温湿度进行比较。
3.如果当前温湿度超过了预设的目标值,控制器将会发送控制信号给执行器进行调节。
4.执行器根据接收到的控制信号进行相应的动作,例如打开加热器或关闭冷却器。
5.控制器实时监测环境温湿度,并根据实际情况调整控制信号。
6.用户可以通过用户界面设置目标温度和湿度,也可以查看当前环境的温湿度。
4. 应用场景温湿度控制系统广泛应用于各种场景,包括但不限于以下几个方面:•室内温湿度控制:在住宅、办公室、医院等场所中,通过温湿度控制系统可以提供舒适的室内环境,增加生活和工作的舒适度。
基于STM32的温湿度检测系统设计及实现
基于STM32的温湿度检测系统设计及实现一、本文概述本文旨在探讨基于STM32的温湿度检测系统的设计与实现。
我们将详细介绍整个系统的硬件组成、软件设计以及实现方法,并通过实验验证其性能和可靠性。
我们将概述STM32微控制器的特点和优势,以及为什么选择它作为温湿度检测系统的核心。
然后,我们将详细介绍系统的硬件设计,包括温湿度传感器的选择、电路设计和搭建等。
接下来,我们将阐述软件设计思路,包括传感器数据的读取、处理、显示以及传输等关键问题的解决方案。
我们将通过实验数据来验证系统的性能和可靠性,并讨论可能存在的改进和优化方案。
通过本文的阐述,读者可以对基于STM32的温湿度检测系统有一个全面而深入的了解,为相关研究和应用提供参考和借鉴。
二、系统总体设计本设计旨在开发一个基于STM32的温湿度检测系统,该系统能够实现环境温湿度的实时监测,并将数据通过适当的接口进行传输,以便进行后续的数据处理和分析。
设计目标包括高精度测量、低功耗运行、良好的用户界面以及易于扩展和集成。
系统的硬件架构主要由STM32微控制器、温湿度传感器、电源管理模块、通信接口以及显示模块组成。
STM32微控制器作为核心处理器,负责数据的采集、处理和控制逻辑的实现。
温湿度传感器用于实时采集环境中的温度和湿度信息。
电源管理模块负责为系统提供稳定的电源供应,保证系统的稳定运行。
通信接口用于将采集到的数据传输到外部设备或网络,实现远程监控和数据分析。
显示模块则提供用户友好的界面,展示当前的温湿度信息。
软件架构的设计主要包括操作系统选择、任务划分、数据处理流程以及通信协议等方面。
考虑到STM32的性能和功耗要求,我们选择使用嵌入式实时操作系统(RTOS)进行任务管理和调度。
任务划分上,我们将系统划分为数据采集任务、数据处理任务、通信任务和显示任务等,确保各个任务之间的独立性和实时性。
数据处理流程上,我们采用中断驱动的方式,当传感器数据采集完成后,通过中断触发数据处理任务,确保数据的及时处理。
室内温湿度检测系统设计
室内温湿度检测系统设计一、引言随着人们对室内环境舒适度的要求越来越高,室内温湿度的监测和控制变得越来越重要。
尤其是在现代建筑中,室内温湿度不仅影响人们的舒适感,还会影响建筑物的结构和室内设备的正常运行。
设计一套可靠、准确的室内温湿度检测系统对于建筑物的设计和管理至关重要。
本文将介绍一种基于传感器和数据处理技术的室内温湿度检测系统设计方案。
二、系统需求分析1. 准确性和稳定性室内温湿度检测系统需要具有高精度和稳定性,以确保监测数据的准确性。
尤其是在变化较大的室内环境中,系统的响应速度和精度需达到一定标准。
2. 实时监测系统需要能够实时监测室内温湿度,并能够及时反馈监测数据。
这对于建筑物的管理和设备的正常运行至关重要。
3. 数据存储和分析系统需要能够将监测数据进行存储和分析,以便根据历史数据进行预测和调整。
4. 跨平台适配系统需要具有较好的可扩展性和跨平台适配性,能够适用于不同类型的建筑物和环境中。
三、系统设计方案1. 传感器选择室内温湿度检测系统首先需要选择合适的传感器来进行监测。
目前市场上常见的温湿度传感器有电阻式和电容式两种,两者各有优缺点。
在选择传感器时需要考虑监测精度、响应速度、耐用性等因素。
2. 数据采集通过选取合适的数据采集模块,将传感器采集到的温湿度数据进行采集、传输和处理。
数据采集模块需要具有良好的稳定性和数据传输速度,以保证监测数据的实时性和准确性。
3. 数据处理通过嵌入式系统或者单片机进行温湿度数据的处理和分析,可以利用算法进行数据的平滑处理和预测分析,以提高数据的准确度和系统的稳定性。
4. 数据存储与展示将处理后的数据存储到数据库中,并通过网络接口进行实时监测数据的展示。
这样可以方便用户在任何时候对室内温湿度进行监测,并能够方便地进行历史数据的查看和分析。
四、系统实施与应用1. 硬件设计根据系统设计方案进行硬件电路的设计和制作,选择合适的传感器、数据采集模块和数据处理模块进行集成,并保证系统的稳定性和可靠性。
温湿度自动监控系统管理制度
温湿度自动监控系统管理制度一、总则为确保温湿度自动监控系统的正常运行,提高工作效率,保障生产安全,制定本管理制度。
二、系统设置1.温湿度自动监控系统由生产管理部门负责统一设置和管理。
2.系统包括温度、湿度传感器、数据采集设备、数据处理设备、数据显示设备等组成。
3.系统布置应符合现场要求,确保监测数据的准确性和可靠性。
三、运行管理1.系统运行24小时不间断,相关设备不得私自关闭或调整。
2.每天对系统运行情况进行定期检查,发现问题及时处理,确保系统正常运行。
3.定期维护和保养系统设备,保持设备的良好状态。
4.数据采集间隔不得超过1小时,确保数据的准确性和实时性。
5.如发现系统运行异常,应立即通知维修人员,并记录异常情况及处理措施。
四、数据管理1.对采集到的数据进行存储和备份,确保数据的完整性和安全性。
2.对数据进行分类整理,建立数据库,方便查询和分析。
3.对关键数据设置报警值,并及时处理报警信号。
4.定期对历史数据进行分析和总结,提出改进措施。
五、维修和保养1.定期对系统设备进行维修保养,确保设备的正常运行。
2.设备维修和保养由专业人员负责,记录维修保养情况。
3.对设备进行巡检,发现问题及时修复,确保设备的稳定运行。
4.对设备进行更换时,应采购原装配件,并做好设备更换的记录。
六、安全管理1.系统设置应符合安全要求,设备安装牢固,设备电源应有过载和短路保护措施。
2.系统操作人员应经过培训,并负责操作系统,保证系统的正常运行。
3.系统设备严禁私自拆卸、更换或调整,如需更改,应经过有关部门审批。
4.定期对系统进行演练和测试,确保系统应急响应的有效性。
5.确保系统数据的保密性,不得随意泄露或外泄。
七、责任制1.生产管理部门负责制订、修订和执行本管理制度,保证系统的正常运行。
2.系统操作人员负责日常运行和维护保养。
3.现场监管人员负责现场监测和设备运行情况的检查。
八、违纪处罚对于故意破坏系统设备、私自更改系统设置、篡改数据等行为,经查证属实的,将视情节轻重给予相应的纪律处分甚至追究法律责任。
机房温湿度监控系统详细介绍
机房温湿度监控系统详细介绍一、监测方案简介1、系统的目的本系统的目的是为了保障中心机房系统的正常运行,实时监测机房环境的各项指标,遇到机房停电、电源故障、环境温度过高、非法闯入、火灾和漏水等紧急意外情况,能够及时记录、查询和自动快速报警。
我们正处于一个信息高速交换、传播的时代,信息网络已和我们的日常办公与生活学习紧密结合在了一起。
机房作为一个信息处理与交换的重要场所,其位置就显得尤其重要。
保证机房内各设备的正常运行就成了一项非常重要的工作,为此机房综合监测系统应运而生。
[机房环境检测的必须性]计算机设备中,使用了大批的半导体器件、电阻器、电容器等。
在计算机加电工作时,环境温度的升高都会对它们的正常工作造成影响。
当温度过高时,可能会使某些元器件不能正常工作甚至完全失去作用,从而导致计算机设备的故障。
因此,必须按各设备的要求,把温度控制在设备要求的范围之内,我们大型机房内的各设备机房的温度要求就不一样,如神威机房要求15℃左右,克雷机房要求20℃左右,IBM SP机房要求21℃ 左右。
为了确保计算机安全可靠地运行,严格控制温度之外,还要把湿度控制在规定的范围之内。
一般地讲,当相对湿度低于40%时,空气被认为是干燥的;而当相对湿度高于80%时,则认为空气是潮湿的;当相对湿度为100%时,空气处在饱和状态。
在相对湿度保持不变的情况下,温度越高,水蒸气压力增大,水蒸气对计算机设备的影响越大,随着压力增大,水蒸气在元器件或由介质材料表面形成的水膜越来越厚,造成“导电小路”和出现飞弧现象,引起设备故障。
高湿度对电子计算机设备的危害是明显的,而低湿度的危害有时更加严重。
在相同的条件下,相对湿度越低,也就是说越干燥,静电电压越高,影响电子计算机设备的正常工作越明显。
实验表明,当计算机机房的相对湿度为30%时,静电电压为5000v,当相对湿度为20%时,静电电压就到了10000V,而相对湿度降到5%时,则静电电压可高达20000V。
一种新的数字式温湿度监控系统的设计
监测系统 , 结构框 图如 图 1 所示 。温湿度信号 自动
测量 与监 测 功能 实现 的逻 辑 过 程 : 度 与 湿度 传 感 温
器输 出的数字 式 温湿度 信号 输送 到单 片机 进行分 析
种 新 的基 于单 片机 S C 9 5 T 8 C 2的全数 字 式 温 湿度
处理 , 如果 温湿 度信 号超 过设 定 的 阈值 , 则启 动报 警
遵 守严格 的协议 , 按照既定 的步骤 与时序 完成相 应数 据 的传递 与信息 的交流 。在操 作顺 序 ( 步骤 ) 固定 的 前 提下 , 由于各 步骤之 间的时 间间隙多呈 现 为区 间的 形 式 , 方面提 高 了程 序设 计 的灵 活 性 , 这一 同时 也 增
监控 系统 利 用 D 1B 0来 扩 展 温度 的监 控 值 , 仅 S8 2 而
了增强 蜂 鸣 器 的 驱 动 功 率 , 联 接 一 个 P P三 极 串 N 管 , 图 4所 示 。当 P . 如 12引脚 输 出 低 电平 时 , 鸣 蜂
器 报警 。
0~ 0o 相应 精 度 为 ±1℃ , 5 C, 响应 时问 小 于 5S 。可
以看 出, H 1 D T 1的温度 测量 范 围较 窄 , 因此 该 温湿 度
P 2 一 一
2 软 件 开发
单 总线数字式 温 湿度 传感 器 相应 硬件 的 电气 连 接 非常简单 , 温 湿度 信号 的测量 、 制 与显 示 只 能 其 控 通 过相对较 复杂 的软件 结构 来 实现 。基 于一 根 数据 线DT A A的连接 , 传感器 与主机相 互之 间的通信 必须
A w e i n o ur l i ialt m pe a ur nd humi t up r ii g s se ne d sg fp e y d g t e r t ea i d y s e v sn y t m
新版GSP温湿度测点规则
GSP
系统报警(第6条)
当监测的温湿度数据达到设定的临界 值或者超出规定范围 系统应当能够实现就地和在指定地点 进行声光报警 同时采取短信通讯等方式对至少3名指 定人员报警 当发生供电中断的情况时,系统应当 采用短信通讯的方式对至少3名指定人 员发出报警信息
GSP
监测数据管理(第7条)
GSP
温湿度监测系统组成(第2条)
系统由测点终端、管理主机、不间断电 源以及相关软件等组成 各测点终端能够对周边环境温湿度进行 实时数据的采集、传送和报警 管理主机可对各测点终端监测数据进行 收集、处理和记录,并具备发生异常情 况时的报警管理功能
GSP
温湿度监测系统组成
GSP
温湿度监测记录(第3条)
系统各测点终端采集的监测数据应当真实、 完整、准确、有效 (一)测点终端采集的数据应当通过网络自 动传送到管理主机进行处理和记录,并采用 可靠的方式进行数据保存,确保不会丢失和 不被改动; (二)系统应当具有对记录数据不可更改、 删除的功能,不得有反向导入数据的功能 (三)系统不得对用户开放温湿度传感器监 测值修正、调整功能,防止用户随意调整造 成监测数据失真
监测系统管理(第17条、第18条)
企业应当对测点终端每年至少进行一次校准,对 系统设备应当进行定期检查、维修、保养,并建 立档案。 系统应当能满足相关部门实施在线远程监管的条 件
GSP
委托储存运输的审核(第19条)
承担药品委托储存及配送的企业,应 当符合本附录的各项规定
委托药品运输的企业,应当按照《规 范》及本附录的要求,对拟委托企业 进行质量保障能力的审核
新版GSP温湿度自动监测系统验证验证方案
温湿度自动监测系统验证验证方案目的建立库房温湿度验证方案,证明库房温湿度系统是否可以自动运行及监测,24小时内库房的温度和湿度达到规定要求。
范围适用于仓库常温库、阴凉库、冷库温湿度自动监测系统验证。
责任验证领导小组成员、项目验证小组成员、与验证项目相关人员。
依据2013版《药品经营质量管理规范》规程1 概述:商品在贮存的过程中,有温湿度的要求,仓库的温湿度自动监测系统是否符合商品贮存的要求,需进行验证。
1.1 公司现有常温度、阴凉库,冷库位于仓库区,用于存放公司购进的商品。
对于库房温湿度自动监测系统是否能达到规定的自动运行、监测、并使温度和湿度达到规定要求,需验证。
2 验证目的2.1 检查资料和文件是否符合GSP管理要求。
2.2 检查并确认库房空调安装是否符合设计要求。
2.3 检查并确认库房空调运行是否符合设计要求。
2.4 检查并确认温度和湿度是否符合仓储要求。
3 验证小组成员情况3.1 验证小组成员3.2 验证小组职责3.2.1 负责验证方案的起草、审核与批准。
3.2.2 负责按批准的验证方案组织、协调各项验证工作,并组织实施验证工作。
3.2.3 负责验证数据的收集、整理、汇总,并对各项验证结果进行分析与评价。
3.2.4 负责组织、协调完成各项因验证而出现的变更工作。
3.2.5 负责验证报告的起草、审核与批准,并出具验证结果评定及结论。
4 验证实施的必备条件4.1、系统条件:空调系统安装完好,能正常运行。
4.2、文件要求:已制订相应岗位的设备操作程序及岗位标准操作程序。
4.3、仪表校验:用于校验库房的温湿度检测仪需经过合法的校验,并具有合格证书。
4.4、环境卫生:成品阴凉库的清洁卫生应符合相关规定的要求。
4.5、人员培训:参加验证人员应经过验证专项培训工作。
5 验证可接受标准5.1 阴凉库温度控制范围:<20℃;常温库温度控制范围:0~30℃;冷库温度控制范围2~10℃。
5.2库房的湿度控制范围:35%-75%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东科技大学泰山科技学院实训报告嵌入式课程综合实训报告书课题名称:温湿度监测系统系(部):信息工程系专业班级:嵌入式专业方向09班学生姓名:学号:完成日期:山东科技大学泰山科技学院1 绪论嵌入式系统是指操作系统和功能软件集成于计算机硬件系统之中。
简单的说就是系统的应用软件与系统的硬件一体化,类似与BIOS的工作方式。
具有软件代码小,高度自动化,响应速度快等特点。
特别适合于要求实时的和多任务的体系。
嵌入式系统技术具有非常广阔的应用前景,其应用领域可以包括:工业控制、交通管理、信息家电、家庭智能管理系统、POS网络及电子商务、环境工程与自然等。
本课题就是把嵌入式系统的优势利用到仓库的温湿度监控系统中。
在仓库的货物的管理中,防潮、防霉、防腐、防爆是衡量仓库管理质量的重要指标,它直接影响到储备物资的使用寿命和工作可靠性。
为保证日常工作的顺利进行,我们需要实时知道温湿度的具体变化,因此首要问题就是加强仓库内温度和湿度的监测工作。
传统的方法是用与湿度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行监测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。
这种人工测试方法费时费力、效率低、测试的温度湿度误差大随机性大,而且库区的面积越来越大,因此我们需要一种造价低廉、使用方便、测量准确、传输能力强和通信距离远的监控系统来有效地对仓库货物进行监管。
本课题的目的就是利用ARM控制器来实现工业现场温度、湿度的采集和无线传输,在远程可以显示温度和被送到上位机。
1.1设计目的注重培养综合运用所学知识、独立分析和解决实际问题的能力,培养创新意识和创新能力,并获得科学研究的基础训练。
了解所选择的ARM芯片各个引脚功能,工作方式,计数/定时,I/O口,中断等的相关原理,并巩固学习嵌入式的相关内容知识。
通过软硬件设计实现利用ARM芯片对周围环境温度信号的采集及显示。
1.2设计意义嵌入式系统是以应用为中心,以计算机技术为基础,且软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。
它一般由以下几部分组成:嵌入式微处理器、外围硬件设备、嵌入式操作系统。
嵌入式系统是面向用户、面向产品、面向应用的,它必须与具体应用相结合才会具有生命力、才更具有优势。
因此嵌入式系统是与应用紧密结合的,它具有很强的专用性,必须结合实际系统需求进行合理的裁减利用。
嵌入式系统是将先进的计算机技术、半导体技术和电子技术和各个行业的具体应用相结合后的产物,这一点就决定了它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。
嵌入式系统必须根据应用需求对软硬件进行裁剪,满足应用系统的功能、可靠性、成本、体积等要求。
所以,如果能建立相对通用的软硬件基础,然后在其上开发出适应各种需要的系统,是一个比较好的发展模式。
目前的嵌入式系统的核心往往是一个只有几K到几十K微内核,需要根据实际的使用进行功能扩展或者裁减,但是由于微内核的存在,使得这种扩展能够非常顺利的进行。
数据采集(DAQ),是指从传感器和其它待测设备等模拟和数字被测单元中自动采集非电量或者电量信号,送到上位机中进行分析,处理。
数据采集系统是结合基于计算机或者其他专用测试平台的测量软硬件产品来实现灵活的、用户自定义的测量系统。
被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。
采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。
采集的数据大多是瞬时值,也可是某段时间内的一个特征值。
准确的数据量测是数据采集的基础。
数据量测方法有接触式和非接触式,检测元件多种多样。
不论哪种方法和元件,均以不影响被测对象状态和测量环境为前提,以保证数据的正确性。
传统的温度采集系统由于存在响应慢、精度低、可靠性差、效率低、操作繁琐等弊端,已经不能完全适应现代化工业的高速发展。
随着嵌入式技术的迅猛发展,设计高速度、高效率、低成本、高可靠性、操作方便的温度采集系统成为当务之急。
基于ARM的温度采集系统就成为了解决传统温度采集系统各种弊端的优先选择方案。
2 系统可行性与需求分析2.1 课题意义目前,国内大中型库房在仓储管理和花房等需要温湿度控制的场所的现状,多数仅限于对温度进行监测和控制,而没有对湿度采取相应的措施。
当温度不正常时(过低或者过高)便进行强制通风或者加温,但是这样会因为处理不及时(设备、人力、条件有限)仍然造成大量损失。
湿度和温度是众多领域中需要检测的重要环境参数。
不仅在工业、现代农业,还是在气象卫星、仓库保管等领域,对温度和湿度的测量都是随处可见的。
对温度和湿度的测量与监控也是十分有意义的。
对湿度和温度进行合理有效的调控不仅可以节约能源还更有利各行业安全健康的发展。
查阅资料得知人体适宜的健康温度为18℃—25℃,健康湿度为40%—70%RH,在此环境下人体感觉最舒适。
而在温度介于24℃—30℃,湿度小于60%RH时,人体的感觉是热而不闷;在温度高于30℃,湿度大于70%RH时,人体就会感觉到闷热;在温度高于36℃,湿度大于80%RH时,人体的感觉则是严重闷热,而且发汗机制受阻,容易因体内蓄积大量的余热而中暑;工作出错率比平时高十倍,意外工伤事故比率上升。
许多疾病都与温湿度有密切的关系,尤其与过低的湿度有关。
现代医学发现:在45%—55%RH的相对湿度下,病菌平均寿命最短,过高或过低的湿度都会导致病菌寿命延长。
当空气湿度为35%RH时,鼻部和肺部呼吸道粘膜上的纤毛运动减缓,灰尘、细菌等容易附着在粘膜上,刺激喉部引发咳嗽和其它呼吸道疾病。
空气湿度低的时候,流感病毒和能引发感染的革兰氏阳性菌的繁殖速度会加快,而且容易扩散,引发疾病。
此外,过敏性皮炎、哮喘、皮肤瘙痒等过敏性疾病也都和空气干燥有关。
因此检测人们工作空间内的温湿度值,并进行合理的调控对人们的身体健康是十分有意义的。
仓库储藏领域必须对湿度和温度进行检测与控制。
国家的储备粮仓库对温度湿度控制更是非常严格的。
如果储藏粮油等副食品地方的湿度过大、温度过高,就容易导致储藏的粮食发霉变质。
这些地方的温湿度一但出现问题,不仅仅是粮食资源的浪费,更关乎到市场供应、社会秩序的安全与稳定。
故而,需要定期的对仓库内的温湿度值进行监测。
花房内的温度和湿度也需要定期监测,对湿度和温度的控制要求也很高。
这是因为温湿度值的高低直接影响到植物的正常生长发育。
合适的温度和湿度,不仅可以节约植物生长必须的养分和化肥,而且植物开出花朵会更美更大。
科学实验的实验室对温湿度的要求则更高,实验室内温湿度值控制的合适与否,直接影响科学家能否得出正确的实验结果。
库房储藏物和花房的温度变化主要是由于湿度引起的,库房储藏物和花房植物本身水分过高或连续的潮湿天气将导致储藏物和植物新陈代谢加快而放出热量,从而引起的温度变化又使新陈代谢进一步加剧以至发霉变质和植物枯萎。
这种恶性循环一旦形成很难进行有效控制。
因此,库房和花房在进行温度监测的同时,必须重视对空气湿度的检测。
为了更好地测量、控制温度和湿度等影响物品和植物储存的因素,本文设计了以AT89C51单片机为控制器的智能测控系统,通过该系统可以对环境温度、湿度等观测值进行自动控制和适时监测,并利蜂鸣器进行报警及相应的处理。
2.2国内外发展现状及趋势最近几年,国内外库房温湿度测控系统正从结构复杂、功能单一、成本高昂向着集成化、智能化、多参数检测、成本低廉的方向迅速发展,随着科研人员的不断努力,该类型的系统取得了巨大的成就。
这也为开发新一代温湿度测控系统奠定了基础,同时将温度、湿度的测量、控制技术提高到新的水平。
现代温湿度测控系统技术主要以数据采集为依据,主要类型包括:虚拟仪器、智能仪器、数字式仪器等等。
伴随着科学技术及计算机的进一步发展,数据采集系统也发生了日新月异的变化,其整体的性能、实用性方面都有所改进。
因此,依托于数据采集结构而发展的温湿度传感器测量系统在实际应用中也发挥这越来越重要的作用。
目前,国内温湿度测控系统采用的方法主要有:“温—阻”法和“湿—阻”法,即采用电阻型的温湿度传感器,利用其阻值随温湿度的变化测定空气的温度和相对湿度。
然而受传感器灵敏度的影响,这类温湿度测控系统的精度不可能很高 ,难以满足实验室设备等对精度要求颇高的场合。
近些年来,国内许多机构也在传感器测试装置的研发上不断探索、实践。
例如通过采用传统电子仪器进行设计研发而成的多种动态测试系统、自动装置的气体传感器智能测试系统等等,这些成绩都体现了我国在传感器领域取得的成就。
3 总体设计3.1硬件设计3.1.1设计思路3.1.2电源电路设计本系统的电源电路由两部分组成:系统总电源电路和RAM核心模块电源电路。
如图3-2:+12V恒定直流电源经电容滤波,分别进入7809和7805稳压,得到+9V和+5V的稳定电压输出后分别供给ARM核心控制模块和其余电路部分使用。
图中IN4148是为了防止输出端并接高于本稳压模块的输出电压而烧坏7809和7805而特别设计,达到了可靠性电源设计目的。
另外,由于系统正常工作电流较大,因此使用时均应在7809和7805上加散热片散热。
由图可见,系统采用双电源供电,提供了系统正常工作所需的电源电压。
另外,由于考虑到便携目的,本系统采用+12V铅蓄电池提供系统所需的恒定直流电源。
图3-2 系统电源电路原理图如图3-2:I/O 口提供了相应的稳定直流电源。
其中的IN4004是为了防止电源输入反接烧坏集成稳压块而设计的。
由于S3C2440采用2.5V作为ARM 内核电源,使用3.3V 作为I/O 口电压,故ARM核心控制模块电源需要另外单独设计,其电源电路如图3-2所示。
由系统总电源电路提供的+9V稳压电源作为输入,分别经AS1117-5.0、AS1117-3.3、AS1117-2.5稳压后,输出5.0V、3.3V和2.5V恒定电源,为RAM 内核和I/O口提供了相应的稳定直流电源。
其中的IN4004是为了防止电源输入反接烧坏集成稳压块而设计的。
3.1.3温度采集电路设计温度采集模块电路采用AT89S52单片机作为模块的协控制器。
对于温度传感器的选用DS18B20,因为DS18B20是Dallas公司最新单总线数字温度传感器,该传感器集温度变换、A/D转换于同一芯片,输出直接为数字信号,大大提高了电路的效率。
由于现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,且提高了CPU 的效率。
AT89S52单片机的P0 口与8路温度传感器相连,用于采集温度数据;另外,模块提供RS-232串行口与RAM核心控制模块通信,达到数据传输的目的。
温度采集模块电路原理图如图3-3。
图3-3 温度采集电路原理图3.2软件设计3.2.1设计思路本系统软件设计是在CodeWarrior for ADS开发环境下完成的。