最新人教版七年级数学上册目录与知识点汇总
新人教版七年级数学上册重要知识点汇总

新人教版七年级数学上册重要知识点汇总以下是新人教版七年级数学上册的重要知识点汇总:
1. 整数的概念和表示方法,正整数和负整数的比较
2. 整数的加法和减法运算,数轴上的加法和减法运算
3. 整数的乘法和除法运算,同号相乘除法的规律,异号相乘除法的规律
4. 分数的概念和表示方法,分数的大小比较
5. 分数的加法和减法运算,同分母的分数相加减,不同分母的分数相加减
6. 分数的乘法和除法运算,分数乘整数/分数,分数除以整数/分数
7. 小数的概念和表示方法,小数的大小比较
8. 小数的加法和减法运算,同数位的小数相加减
9. 小数的乘法和除法运算,小数乘整数/小数,小数除以整数/小数
10. 比例的概念和表示方法,比例的性质和运算,比例的倒数、倒数的比例
11. 百分数的概念和表示方法,百分数的大小比较,百分数的转化和计算
12. 简单利益的计算,利率的概念和表示方法,复利的计算
13. 平均数的概念和表示方法,算术平均数的计算
14. 数据的收集和整理,可以文章描述的数据和实际情况不符的数据
15. 数据的分组和统计,频数、频率、众数、中位数的计算
以上是新人教版七年级数学上册的重要知识点汇总,希望对你有帮助。
人教版七年级上册数学知识点总结归纳(最新最全)

七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
人教七年级数学上知识点

人教七年级数学上知识点
一、整数及其运算
整数的概念、数轴、绝对值、相反数、加法、减法、乘法、除法及运算法则。
二、平面图形
平面图形的基本概念、直线、线段、射线、角、三角形、四边形、圆等基本图形及其性质。
三、一次函数
一次函数的概念、函数的解析式、函数图象、函数的变化及其含义。
四、数据的收集、整理与分析
数据的调查与应用、频数表、频数直方图、统计量和样本。
五、解方程
一元一次方程的概念和性质,基本解法和应用。
六、数列
数列的概念,等差数列、等比数列,数列的通项公式和前n项和。
七、三角形
三角形的基本性质、三角形的元素、三角形的周长和面积、勾股定理、解决实际问题。
八、比例与相似
比例的概念、比例的性质、比例的应用、相似的概念、相似三角形的性质及其应用。
九、两点间的距离与中点
两点间距离公式、平面直角坐标系、中点公式。
十、几何变换
平移、旋转、翻折及其组合。
以上是人教七年级数学上的基本知识点,学生们在学习过程中需要深入掌握,从而能够进行更深入的应用和解决实际问题。
希望本文对广大师生有所帮助,祝大家学习进步!。
(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级数学上册知识点大全(最新最全)

人教版七年级数学上册知识点大全(最新最全)1.有理数:1) 所有能写成 p/q 形式的数都是有理数,其中 p、q 为整数且p ≠ 0.整数和分数都属于有理数。
注意:有理数既不是正数也不是负数;-a 不一定是负数,+a 也不一定是正数;π 不是有理数。
分类:①有理数。
0,包括正整数和正分数。
②有理数 < 0,包括负整数和负分数。
③零是有理数。
注意:1、-1、0 是有理数中的特殊数,它们将数轴分成了四个区域,每个区域的数都有自己的特性。
2.数轴:数轴是一条直线,规定了原点、正方向和单位长度。
3.相反数:1) 只有符号不同的两个数互为相反数。
2) 注意:a-b+c 的相反数是 -a+b-c;a-b 的相反数是 b-a;a+b 的相反数是 -a-b。
3) 两个数的相反数之和为 0,即 a+b=0.4) 一个数的相反数是它的倒数的相反数。
5) 相反数的绝对值相等。
4.绝对值:1) 正数的绝对值等于它本身,负数的绝对值等于它的相反数。
绝对值表示数轴上某数的点离原点的距离。
2) 绝对值可以表示为 a = |a| 或 a = -|a|。
3) a。
0 时,a/|a| = 1;a < 0 时,a/|a| = -1.4) |a| 是一个非负数,即|a| ≥ 0.5.有理数大小比较:1) 正数大于负数。
2) 正数大于所有负数。
3) 两个负数比较,绝对值大的反而小。
4) 数轴上,右边的数比左边的数大。
5) -1、-2、+1、+4、-0.5 表示与标准质量的差,标准质量为 0.6.特殊的数:相反数等于本身的数:0相反数等于本身的数:1、-1倒数等于本身的数:1、-1绝对值等于本身的数:正数平方等于本身的数:0、1立方等于本身的数:-1、0、17.有理数加法法则:1) 同号两数相加,取相同的符号,并把绝对值相加。
2) 异号两数相加,取绝对值大的符号,并把绝对值相减。
3) 加数和被加数的顺序不影响和的结果。
4) 加数与和的差相等,即 a+b=b+c-a。
人教版七年级上册数学必背知识点归纳总结

人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。
(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
数学书七年级上册的知识点

数学书七年级上册的知识点数学书七年级上册的知识点主要包括以下几个方面:一、数与代数有理数:包括正数、负数和零。
有理数是可以表示为两个整数的比的数,其中分母不为零。
数的运算:有理数的加法、减法、乘法和除法。
重点是掌握运算法则和运算律,特别是乘法交换律、结合律,以及减法运算。
绝对值:理解绝对值的定义,掌握求一个数的绝对值的方法。
有理数的混合运算:要求掌握顺序法则,并熟悉混合运算的步骤。
二、方程与不等式一元一次方程:理解方程的基本概念,掌握方程的解法,包括去括号、移项、合并同类项和系数化为1等步骤。
一元一次不等式:理解不等式的概念,掌握解一元一次不等式的方法,重点是移项和合并同类项。
三、几何初步知识线段:理解线段的基本性质,掌握线段的比较、延长、截取等方法。
角:了解角的基本概念,如锐角、直角、钝角等,以及角的度量单位和方法。
相交线:理解相交线的概念,掌握通过平行线和垂线来定义其他线的关系。
平行线:理解平行线的概念,掌握平行线的性质和判定方法。
四、数据整理与概率初步知识数据整理:了解数据整理的基本概念和方法,如分类、分组、频数等。
概率初步知识:了解概率的基本概念,如必然事件、不可能事件和随机事件等。
五、数学思想方法符号思想:了解数学符号的概念和作用,掌握常见的数学符号及其用法。
方程思想:了解方程的概念和作用,掌握一元一次方程的解法和应用。
转化思想:了解转化的概念和方法,掌握将复杂问题转化为简单问题的技巧。
分类讨论思想:了解分类讨论的概念和方法,掌握分类讨论的步骤和应用。
数形结合思想:了解数形结合的概念和方法,掌握数形结合在解题中的应用。
除了以上几个方面,学生还应该注重培养自己的数学思维能力和问题解决能力。
可以通过多做练习题、参加数学竞赛等方式来提高自己的数学水平。
同时,也应该注重培养自己的数学兴趣和信心,积极探索数学世界的奥秘。
人教版七年级上册数学知识点总结归纳(最新最全)

七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
人教版七年级上册数学课本知识点归纳

人教版七年级上册数学课本知识点归纳人教版七年级上册数学课本知识点归纳第一章有理数一、正负数1.正数:大于0的数。
2.负数:小于0的数。
3.零:既不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
二、有理数1.有理数:由整数和分数组成的数。
包括:正整数、负整数、正分数、负分数。
可以写成两个整数之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的,如π)2.整数:正整数、零、负整数,统称整数。
3.分数:正分数、负分数。
三、数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示0,这个点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
例如:2的相反数是-2,-3的相反数是3.4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
四、有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,结果的符号不变,并把绝对值相加。
异号相加,结果的符号取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.一个数同0相加减,仍得这个数。
3.加法交换律:a+b= b+a,两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c = a+(b+c),三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b = a+(-b),减去一个数,等于加这个数的相反数。
五、有理数乘法1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba。
4.乘法结合律:(ab)c = a(bc)。
5.乘法分配律:a(b+c)=ab+ac。
六、有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。
人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)七年级数学上册知识点总结第一章有理数1.1 正数和负数1.正数和负数的概念正数是比零大的数,负数是比零小的数,而0既不是正数,也不是负数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.(例如,带正号的数不一定是正数,带负号的数也不一定是负数,例如+a和-a都有可能是正数或负数)②正数有时可以在前面加“+”,有时“+”省略不写。
省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,例如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴表示“没有”,例如教室里有个人,就是说教室里没有人;⑵是正数和负数的分界线,既不是正数,也不是负数。
⑶表示一个确切的量。
例如,℃以及有些题目中的基准,比如以海平面为基准,则米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、负整数统称为整数(和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
例如,π是无限不循环小数,不能写成分数形式,不是有理数。
有限小数和无限循环小数都可化成分数,都是有理数。
整数也能化成分数,也是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,例如-2、-4、-6、-8…也是偶数,-1、-3、-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数正有理数负整数正分数有理数有理数(不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数统称为非负整数(也叫自然数)②负整数统称为非正整数③正有理数统称为非负有理数④负有理数统称为非正有理数3.数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
新人教版七年级数学上册知识点汇总

第一章 有理数一、知识框架:二、知识概念:1.正数与负数:大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.2.有理数: ⑴凡能写成(),0qp q p p≠为整数,且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;a -不一定是负数,a +也不一定是正数;π不是有理数. ⑵有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 3.数轴:数轴是规定了原点、正方向、单位长度的一条直线.4.相反数:⑴只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵相反数的和为00a b a b ⇔+=⇔、互为相反数.5.绝对值:⑴正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数.注意:绝对值的意义是数轴上表示某数的点离原点的距离;⑵绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0()0(a a a a a ;绝对值的问题经常分类讨论. 6.有理数比大小:⑴正数大于0,0大于负数,正数大于负数; ⑵两个负数比较,绝对值大的反而小.7.倒数:乘积为1的两个数互为倒数.注意:0没有倒数;若0a ≠,那么a 的倒数是1a;若1,ab a b =⇔互为倒数;若1,ab a b =-⇔互为负倒数. 8.有理数加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加;⑵异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝 对值;⑶一个数与0相加,仍得这个数. 9.有理数加法的运算律:⑴加法的交换律:a b b a +=+;⑵加法的结合律:()()a b c a b a ++=++. 10.有理数减法法则:减去一个数,等于加上这个数的相反数;即()a b a b -=+-. 11.有理数乘法法则:⑴两数相乘,同号为正,异号为负,并把绝对值相乘; ⑵任何数同零相乘都得零;⑶几个数相乘,有一个因数为零,积为零;各个因数都不为零,积的符号 由负因数的个数决定:负因数个数为偶数,积为正数;负因数个数为奇数,积为负数.12.有理数乘法的运算律:⑴乘法的交换律:ab ba =; ⑵乘法的结合律:()()ab c a bc =; ⑶乘法的分配律:()a b c ab ac +=+.13.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a. 14.乘方的定义:⑴求相同因数积的运算,叫做乘方;⑵乘方中,相同的因数叫做底数,相同因数的个数叫做指数,乘方的结 果叫做幂.即na 中,a 为底数,n 为指数,na 的结果为幂. 15.有理数乘方的法则: ⑴正数的任何次幂都是正数;⑵负数的奇次幂是负数;负数的偶次幂是正数.16.科学记数法:把一个大于10的数记成10na ⨯的形式,其中a 是整数数位只有一位的数,110a ≤<,这种记数法叫科学记数法.17.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.18.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.19.混合运算法则:先乘方,后乘除,最后加减,有括号先算括号里的.第二章 整式的加减一、知识框架:二、知识概念:1.单项式:单独由数和字母的积构成的式子叫做单项式,单独一个数或式子也是单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数.5.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.6.合并同类项:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.7.去括号法则:⑴如果括号外面的因数是正数,去括号后原括号内各项的符号与原来的符号相同.⑵如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反.第三章一元一次方程一、知识框架:二.知识概念:1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.等式的性质:⑴等式两边加(或减)同一个数(或式子),结果仍相等.⑵等式两边乘同一个数(或式子),或除以同一个不为0的数(或式子),结果仍相等.3.一元一次方程的标准形式:0ax b+=(x是未知数,a b、是已知数,且0a≠).4.一元一次方程解法的一般步骤:整理方程→去分母→去括号→移项→合并同类项→系数化为1 →(检验方程的解).5.列一元一次方程解应用题:⑴读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.⑵画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.6.列方程解应用题的常用公式:⑴行程问题: 距离=速度×时间 时间距离速度=速度距离时间=; ⑵工程问题: 工作量=工效×工时 工时工作量工效= 工效工作量工时=;⑶比率问题: 部分=全体×比率 全体部分比率=比率部分全体=; ⑷顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;⑸商品价格问题: 售价=定价×折×101,利润=售价-成本, %100⨯-=成本成本售价利润率;⑹周长、面积、体积问题:C 2r π=圆,()C 2b a =+长方形,C 4a =正方形:2S r π=圆,S ab =长方形,2S a =正方形,()22S R r π=-环形;V abc =长方体,3V a =正方体,2V h r π=圆柱 21V h 3r π=圆锥.第四章 图形的认识初步一、知识框架:二.知识概念:1.立体图形:各部分不都在同一平面内的图形叫做立体图形.2.平面图形:各部分都在同一平面内的图形叫做平面图形.3.点、线、面、体:几何体简称为体,包围着体的是面,面与面相交的地方叫线,线与线相交的地方叫点.4.直线的性质:经过两点有一条直线,并且只有一条直线;简称:两点确定一直线.5.线段的性质:两点之间,线段最短;连接两点间的线段的长度,叫做这两点的距离.6.角平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的角平分线.7.余角:如果两个角的和等于90°,就说这两个角互为余角;同角(等角)的余角相等.8.补角:如果两个角的和等于180°,就说这两个角互为补角;同角(等角)的补角相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版新课标七年级上册数学教材目录第一章有理数1.1正数和负数1.2有理数1.3有理数的加减法1.4有理数的乘除法1.5有理数的乘方第二章整式的加减2.1整式2.2整式的加减第三章一元一次方程3.1从算式到方程3.2解一元一次方程(一)——合并同类项与移项3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程第四章几何图形初步4.1几何图形4.2直线、射线、线段4.3角4.4课题学习设计制作长方体形状的包装纸盒第一章有理数1.1正数与负数①正数:大于 0 的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的 0 以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0 既不是正数也不是负数。
0 是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2有理数1、有理数( 1)整数 :正整数、 0、负整数统称整数;( 2)分数 ;正分数和负分数统称分数;( 3)有理数:整数和分数统称有理数。
2、数轴( 1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:( 1)数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
( 2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0。
两个负数,绝对值大的反而小。
1.3有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3、一个数同0 相加,仍得这个数。
加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同 0 相乘,都得 0;乘积是 1 的两个数互为倒数。
乘法交换律 /结合律 /分配律②有理数除法法则:除以一个不等于0 的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0 除以任何一个不等于 0 的数,都得 0。
1.5 有理数的乘方1、求 n 个相同因数的积的运算,叫乘方,乘方的结果叫幂。
在 a 的 n 次方中, a 叫做底数, n 叫做指数。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0 的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10 的数表示成a×10 的 n 次方的形式,使用的就是科学计数法,注意 a 的范围为1≤a <10。
4、从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。
比如: 3.5449 精确到 0.01 就是 3.54 而不是 3.55.第二章整式的加减2.1 整式1、单项式:由数字和字母乘积组成的式子。
系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.2、单项式的系数:是指单项式中的数字因数;3、单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.5、它们都是用字母表示数或列式表示数量关系。
注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2.2 整式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:( 1)所含字母相同;( 2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:一去、二找、三合( 1)如果遇到括号按去括号法则先去括号.(2)结合同类项.(3)合并同类项第三章一元一次方程3.1一元一次方程1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数 x 的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是 1.3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质:1)等式两边同时加(或减)同一个数(或式子),结果仍相等;2)等式两边同时乘同一个数,或除以同一个不为0 的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质 2 时,一定要注意0 这个数 .3.2 、3.3 解一元一次方程在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)移项要变号;④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。
不要分子、分母搞颠倒。
3.4 实际问题与一元一次方程一.概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。
⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。
二、思想方法(本单元常用到的数学思想方法小结)⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为 1 等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式 . 体现了化“未知”为“已知”的化归思想 .⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.三、数学思想方法的学习1.解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.2.寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.3.列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.四、一元一次方程典型例题例 1. 已知方程2x m-3+3x=5是一元一次方程,则m=.解:由一元一次方程的定义可知m- 3=1,解得 m=4.或 m-3=0 ,解得 m=3所以 m=4 或 m=3警示:很多同学做到这种题型时就想到指数是1,从而写成 m=1,这里一定要注意x 的指数是( m -3).例 2. 已知x 2 是方程ax22a 3)x+5=0的解,求a的值.-(-解:∵ x= -2 是方程 ax2-( 2a- 3)x+5=0 的解∴将 x= -2 代入方程,得a·(- 2)2-( 2a- 3)·(- 2) +5=0化简,得4a+4a- 6+5=0∴a=18点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=- 2 代入方程,然后再解关于 a 的一元一次方程就可以了.例3. 解方程2(x+1)-3(4x-3)=9(1-x).解:去括号,得2x+2- 12x+9=9 - 9x,移项,得2+9 - 9=12x - 2x -9x.合并同类项,得2=x,即 x=2.点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成 x=a 的形式 .例4.解方程111x1 3 5 71. 8642解析:方程两边乘以8,再移项合并同类项,得11x 13 5 1642同样,方程两边乘以6,再移项合并同类项,得方程两边乘以4,再移项合并同类项,得x12方程两边乘以2,再移项合并同类项,得x=3.1 x14 2131说明:解方程时,遇到多重括号,一般的方法是从里往外或从外往里运用乘法的分配律逐层去特号,而本题最简捷的方法却不是这样,是通过方程两边分别乘以一个数,达到去分母和去括号的目的。
例 5. 解方程4x 1.55x0.8 1.2 x .0.50.20.1解析:方程可以化为(4 x 1.5)2(5 x 0.8) 5 (1.2x) 100.520.250.110整理,得2(4 x 1.5)5(5 x0.8)10(1.2x)去括号移项合并同类项,得-7x=11 ,所以 x=11 .7说明:一见到此方程,许多同学立即想到老师介绍的方法,那就是把分母化成整数,即各分数分子分母都乘以 10,再设法去分母,其实,仔细观察这个方程,我们可以将分母化成整数与去分母两步一步到位,第一个分数分子分母都乘以2,第二个分数分子分母都乘以5,第三个分数分子分母都乘以 10.例 6. 解方程x x x x1. 6122030解析:原方程可化为x x x x1. 23344556方程即为x x x x x x x x1. 23344556所以有x x21.6再来解之,就能很快得到答案:x=3.知识链接:此题如果直接去分母,或者通分,数字较大,运算烦琐,发现分母6=2×3, 12=3×4,20=4 ×5, 30=5 ×6,联系到我们小学曾做过这样的分式化简题,故采用拆项法解之比较简便.例 7. 参加某保险公司的医疗保险,住院治疗的病人可享受分段报销,?保险公司制度的报销细则如下表,某人今年住院治疗后得到保险公司报销的金额是1260 元,那么此人的实际医疗费是()住院医疗费(元)报销率( %)不超过500 的部分0超过 500~ 1000 的部分60超过 1000 ~ 3000 的部分80⋯⋯⋯A. 2600 元B. 2200 元C. 2575 元D. 2525 元解析:设此人的实际医疗费为x 元,根据题意列方程,得500 ×0+500 ×60%+ ( x- 500- 500)×80%=1260.解之,得 x=2200 ,即此人的实际医疗费是2200 元 . 故选 B.点拨:解答本题首先要弄清题意,读懂图表,从中应理解医疗费是分段计算累加求和而得的.因为 500×60%< 1260< 2000×80%,所以可知判断此人的医疗费用应按第一档至第三档累加计算.例 8. 我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过 7 立方米,则按每立方米 1 元收费;若每月用水超过7 立方米,则超过部分按每立方米 2 元收费 . 如果某户居民今年 5 月缴纳了17 元水费,那么这户居民今年 5 月的用水量为 __________立方米 .解析:由于1×7<17,所以该户居民今年5月的用水量超标 .设这户居民 5 月的用水量为x 立方米,可得方程: 7×1+2( x- 7) =17,解得 x=12.所以,这户居民 5月的用水量为12 立方米 .例 9. 足球比赛的记分规则为:胜一场得 3 分,平一场得 1 分,输一场得0 分,一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了 1 场,得17 分,请问:⑴前 8 场比赛中,这支球队共胜了多少场?⑵这支球队打满14 场比赛,最高能得多少分?⑶通过对比赛情况的分析,这支球队打满14 场比赛,得分不低于29 分,就可以达到预期的目标,请你分析一下,在后面的 6 场比赛中,这支球队至少要胜几场,才能达到预期目标?解析:⑴设这个球队胜了x 场,则平了( 8- 1-x)场,根据题意,得:3x+( 8-1- x) =17.解得 x=5.所以,前8 场比赛中,这个球队共胜了 5 场.⑵打满 14 场比赛最高能得17+( 14- 8)×3=35 分.⑶由题意知,以后的 6 场比赛中,只要得分不低于12 分即可 .∴胜不少于 4 场,一定能达到预期目标. 而胜了 3 场,平 3 场,正好达到预期目标. 所以在以后的比赛中,这个球队至少要胜 3 场.例 10. 国家为了鼓励青少年成才,特别是贫困家庭的孩子能上得起大学,设置了教育储蓄,其优惠在于,目前暂不征收利息税. 为了准备小雷 5 年后上大学的学费6000 元,他的父母现在就参加了教育储蓄,小雷和他父母讨论了以下两种方案:⑴先存一个 2 年期, 2 年后将本息和再转存一个 3 年期;⑵直接存入一个 5 年期.你认为以上两种方案,哪种开始存入的本金较少?[ 教育储蓄(整存整取)年利率一年: 2. 25%;二年: 2. 27%;三年: 3. 24%;五年: 3. 60%. ]解析:了解储蓄的有关知识,掌握利息的计算方法,是解决这类问题的关键,对于此题,我们可以设小雷父母开始存入x 元 . 然后分别计算两种方案哪种开始存入的本金较少.⑴2 年后,本息和为 x( 1+2. 70%×2) =1. 054x ;再存 3 年后,本息和要达到6000 元,则 1. 054x ( 1+3. 24%×3) =6000.解得x≈ 5188.⑵按第二种方案,可得方程x( 1+3. 60%×5) =6000.解得x≈ 5085.所以,按他们讨论的第二种方案,开始存入的本金比较少.例 11. 扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示. 如果长方体盒子的长比宽多 4 cm,求这种药品包装盒的体积.分析:从展开图上的数据可以看出,展开图中两高与两宽和为14cm,所以一个宽与一个高的和为 7cm,如果设这种药品包装盒的宽为xcm,则高为(7- x)cm,因为长比宽多4cm,所以长为( x+4)cm,根据展开图可知一个长与两个高的和为13cm,由此可列出方程.解:设这种药品包装盒的宽为xcm,则高为( 7- x)cm ,长为( x+4) cm.根据题意,得(x+4) +2( 7-x) =13 ,解得x=5,所以 7- x=2 , x+4=9.故长为 9cm,宽为 5cm,高为 2cm.所以这种药品包装盒的体积为:9×5×2=90( cm3) .例 12. 某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得( 1+x)( 1- 5%) =1+ 14%解得 x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:本题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用,也就是本月的石油进口量乘以本月的价格. 设出未知数,分别表示出每一个数量,列出方程进行求解 . 列方程解应用题的关键是找对等量关系,然用代数式表示出其中的量,列方程解答.例 13. 某市参加省初中数学竞赛的选手平均分数为78 分,其中参赛的男选手比女选手多50%,而女选手的平均分比男选手的平均分数高10%,那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此,必须增设男选手或女选手的人数为辅助未知数 . 不妨设男选手的平均分数为x 分,女选手的人数为 a 人,那么女选手的平均分数为 1. 1x分,男选手的人数为 1. 5a 人,从而可列出方程即女选手的平均分数为82. 5 分.1.5a x 1.1x a,解得 x=75 ,所以 1. 1x=82. 5.1.5a78a第四章几何图形初步4.1几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。