2015-2016年山东省济宁市邹城市七年级上学期期中数学试卷带解析答案

合集下载

2015-2016学年新人教版七年级上期中数学试卷3套(含答案)

2015-2016学年新人教版七年级上期中数学试卷3套(含答案)

2015-2016学年七年级(上)期中数学试卷一一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 23.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.比较的大小,结果正确的是()A.B.C.D.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:.(答案不唯一).14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为元.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)16..17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:多项式:整式:.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 2考点:有理数的混合运算;有理数的乘方.分析:此题比较简单.先算乘方,再算加法.解答:解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.点评:此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃考点:有理数的加减混合运算.专题:应用题.分析:在列式时要注意上升是加法,下降是减法.解答:解:根据题意可列式﹣7+11﹣9=﹣5,所以温度是﹣5℃.故选B.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3考点:代数式求值;绝对值.专题:计算题.分析:根据a的取值范围,先去绝对值符号,再计算求值.解答:解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.点评:此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.比较的大小,结果正确的是()A.B.C.D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60考点:规律型:图形的变化类.专题:规律型.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:根据题意得,第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.故选:D.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为x2.考点:合并同类项.分析:根据合并同类项,系数相加字母和字母的指数不变,可得答案.解答:解:原式=(﹣2+3)x2=x2,故答案为:x2.点评:本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是5.考点:数轴.分析:数轴上两点间的距离:数轴上两点对应的数的差的绝对值.解答:解:根据数轴上两点对应的数是﹣2,3,则两点间的距离是3﹣(﹣2)=5.点评:本题考查数轴上两点间距离的求法:右边点的坐标减去左边点的坐标;或两点坐标差的绝对值.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将170000用科学记数法表示为:1.7×105.故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣(﹣1)×2=6,6⊗3=32﹣6×3=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为:﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为﹣1.考点:代数式求值.专题:计算题.分析:原式变形后,将已知等式代入计算即可求出值.解答:解:∵2a﹣b=﹣1,∴原式=2(2a﹣b)+1=﹣2+1=﹣1,故答案为:﹣1点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是4.考点:合并同类项.分析:有题意可知,这两个式子是同类项,再根据同类项的定义可得:2m=4,3﹣n=1.解答:解:由题意可得,2m=4,3﹣n=1.解得,m=2,n=2,∴m+n=4.故答案为:4.点评:此题主要考查同类项的概念,所含字母相同,并且相同字母的指数也相同的项是同类项.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:某人以5千米/时的速度走了x小时,他走的路程是5x千米.(答案不唯一).考点:单项式.专题:开放型.分析:对单项式“5x”,是5与x的积,表示生活中的相乘计算.比如:某人以5千米/时的速度走了x小时,他走的路程是5x千米解答:解:某人以5千米/时的速度走了x小时,他走的路程是5x千米,答案不唯一.点评:本题考查了单项式在生活中的实际意义,只要计算结果为5x的都符合要求.14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200元.考点:有理数的混合运算.专题:应用题;压轴题;分类讨论.分析:分四种情况讨论:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;④先付120元,80元,得到100元的优惠券,再去付60元的书包;分别计算出实际花费即可.解答:解:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;实际花费为:60+80﹣50+120=210元;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;实际花费为:60+120﹣50+80=210元;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;实际花费为:120﹣50+60+80=210元;④先付120元,80元,得到100元的优惠券,再去付60元的书包;实际花费为:120+80=200元;综上可得:他的实际花费为210元或200元.点评:本题旨在学生养成仔细读题的习惯.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)考点:有理数的混合运算.分析:先算乘方,再从左到右依次计算除法、乘法.解答:解:原式=﹣4÷(﹣1)×(﹣5)=4×(﹣5)=﹣20.点评:有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题要特别注意运算顺序以及符号的处理,如﹣22=﹣4,而(﹣2)2=4.16..考点:有理数的混合运算.专题:常规题型.分析:按照有理数混合运算的顺序,先乘除后加减,有括号的先算括号里面的,并且在计算过程中注意正负符号的变化.解答:解:原式===0答:此题答案为0.点评:有理数的运算能力是很重要的一部分,要熟练掌握.17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:0;﹣a;;a2b2多项式:3+a;;3x2﹣2x+1;a2﹣b2整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.考点:整式;单项式;多项式.分析:根据单项式、整式以及多项式进行填空.解答:解:单项式:0;﹣a;;a2b2;多项式:3+a;;3x2﹣2x+1;a2﹣b2;整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.故答案是:0;﹣a;;a2b2;3+a;;3x2﹣2x+1;a2﹣b2;3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.点评:要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.考点:整式的加减—化简求值.分析:本题应先将原式合并同类项,再将x的值代入,即可解出本题.解答:解:原式=2x3+x3﹣3x3+9x2﹣5x2﹣2=4x2﹣2,当x=时,原式=1﹣2=﹣1.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=﹣3;②在①的基础上化简:B﹣2A.考点:多项式.分析:①不含x2项,即x2项的系数为0,依此求得a的值;②先将表示A与B的式子代入B﹣2A,再去括号合并同类项.解答:解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.点评:多项式的加减实际上就是去括号和合并同类项.多项式加减的运算法则:一般地,几个多项式相加减,如果有括号就先去括号,然后再合并同类项.合并同类项的法则:把系数相加减,字母及字母的指数不变.本题注意不含x2项,即x2项的系数为0.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?考点:正数和负数.分析:(1)根据有理数的加法,可得正负数,根据正数在东,负数在西,可得答案;(2)根据单位耗油量乘以行车距离,可得答案.解答:解:(1)+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+12=2km故出租车在体育场东边2 km处;(2)﹙|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+12|﹚•a=60a 升.答:这一天共耗油60a升点评:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意求耗油量时要算每次行驶的绝对值.21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?考点:代数式求值.专题:应用题.分析:(1)将脚印长度为24.5cm代入关系式即可得;(2)借助关系式b=7a﹣3.07,求出身高,再根据概率知识推测谁的可能性大.解答:解:(1)已知如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.若某人脚印长度为24.5cm,即a=24.5,将其代入关系式可得,身高约为7×24.5﹣3.07=168.43≈168cm,即他的身高约为168cm;(2)根据现场测量的脚印长度为26.3cm,将这个数值代入b=7a﹣3.07中可得:罪犯身高为181.03cm≈1.81cm,比较可知:身高1.82m的可疑人员的可能性更大.点评:立意新颖,把数学知识融汇到案件侦破中,既考知识,又增加了学习的乐趣.六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?考点:有理数的混合运算;正数和负数.专题:应用题.分析:(1)先根据表格中找出星期一,星期二及星期三所对应的涨跌情况,把这三个数字相加得到这三天的涨跌情况,与买进时每股的单价相加即可求出星期三收盘时每股的价钱;(2)根据表格中记录的正负数情况得到星期二涨幅最大,星期五跌幅最大,求出星期一与星期二两天的涨幅情况,与买进时每股的价钱相加即可得到每股的最高价;用星期一到星期五五天的涨跌情况,与买进时每股的价格相加即可求出每股的最低价;(3)根据买进时每股的单价与股数相乘,减去手续费即可得到买进时所花费的钱数,然后求出一星期七天的涨跌情况,与买进时每股的价钱相加即可求出卖出时每股的价钱,然后乘以股数,再减去手续费和交易费即可求出卖出时获得的总钱数,用获得的总钱数减去买入时花费的钱数,根据其差得正负情况即可计算出他得收益情况.解答:解:(1)(+4)+(+4.5)+(﹣1)=7.5,则星期三收盘时,每股是27+7.5=34.5元;(2)本周内最高价是27+4+4.5=35.5元;最低价是27+4+4.5﹣1﹣2.5﹣6=26元;(3)买入时,27×1000×(1+1.5‰)=27040.5元,卖出时每股:27+4+4.5﹣1﹣2.5﹣6+2=28元,所以卖出时的总钱数为28×1000×(1﹣1.5‰﹣1‰)=27930元,所以小红爸爸的收益为27930﹣27040.5=889.5元,故赚了889.5元.点评:此题考查了有理数的混合运算,以及正负数的意义.原题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是从中找出解题所需的有效信息,构造相应的数学模型,来解决问题.数学服务于生活,数学来源于生活.2015-2016学年七年级(上)期中数学试卷二一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B. 1 C. 2 D. 34.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×1086.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣19.下列图形中,哪一个是正方体的展开图()A.B.C.D.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是011.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>012.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5二、填空题:本题有4小题,每小题3分,共12分.把答案填在答题卡上.13.﹣a2b的系数是.14.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记米.15.菜场上西红柿每千克a元,白菜每千克b元,学校食堂买30kg西红柿,50kg白菜共需元.16.“*”是规定的一种运算法则:a*b=a2﹣b,则5*(﹣1)的值是.三、解答题:本题有6小题,共52分,解答应写出文字说明或演算步骤.17.(16分)(2014秋•深圳校级期中)计算:(1)8﹣6+(﹣9)(2)﹣24×(﹣+)(3)(﹣0.1)÷×(﹣10)(4)16÷(﹣2)3﹣(﹣)×(﹣4)18.(10分)(2014秋•深圳校级期中)先化简,再求值(1)6a+2a2﹣3a+a2+1的值,其中a=﹣1.(2)x﹣2(x+2y)+3(y﹣2x),其中x=﹣2,y=1.19.画出如图几何体的三视图.20.某一矿井的示意图如图所示:以地面为准,A点的高度是+4米,B、C两点的高度分别是﹣15米与﹣30米.A点比B点高多少?比C点呢?21.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.已知a,b互为相反数,m,n互为倒数,x的绝对值等于3.①由题目可得,a+b=;mn=;x=.②求代数式x2﹣(a+b+mn)x+(a+b)2008+(﹣mn)2008的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.考点:点、线、面、体.分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解答:解:根据以上分析应是圆锥和圆柱的组合体.故选:B.点评:本题考查的是点、线、面、体知识点,可把较复杂的图象进行分解旋转,然后再组合.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B.1 C. 2 D. 3考点:同类项.专题:计算题.分析:根据同类项的定义计算即可:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.解答:解:∵代数式a2b和﹣3a2b y是同类项,∴y=1,故选B.点评:本题考查了同类项的定义,解题时牢记定义是关键,此题比较简单,易于掌握.4.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×108考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:30 000 000=3×107.故选B.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.6.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对考点:绝对值.分析:直接利用“绝对值等于一个正数的数有两个,它们互为相反数”写出答案即可.解答:解:∵|a|=2,∴a=±2,故选C.点评:本题考查了绝对值的求法,属于基础题,比较简单.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣1考点:倒数.专题:常规题型.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1,故选:D.点评:此题考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.9.下列图形中,哪一个是正方体的展开图()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:折叠后,没有上下底面,故不能折成正方体;B、C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故只有D是正方体的展开图.故选D.点评:只要有“田”字格的展开图都不是正方体的表面展开图.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0考点:绝对值;有理数.专题:常规题型.分析:先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.解答:解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.点评:本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.11.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>0考点:有理数大小比较.分析:先化简﹣(﹣2)=2,再根据正数都大于0;负数都小于0;两个负数,绝对值大的反而小求解.解答:解:化简﹣(﹣2)=2,所以﹣(﹣2)>0>﹣2>﹣3.故选C.点评:本题考查了有理数比较大小的方法:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.12.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5考点:规律型:图形的变化类.专题:压轴题;规律型.分析:本题做为一道选择题,学生可把n=1,x=5;n=2,x=9代入选项中即可得出答案.而若作为常规题,学生则需要一一列出n=1,2,3…的能,再对x的取值进行归纳.解答:解:设段数为x则依题意得:n=0时,x=1,。

【鲁教版】七年级数学上期中试题(附答案)

【鲁教版】七年级数学上期中试题(附答案)

一、选择题1.下列合并同类项正确的是 ( ) A .22232x y yx x y -=- B .224x y xy +=C .43xy xy -=D .23x x x +=2.若关于x ,y 的多项式()()222232x xy yxnxy y +---+中不含xy 项,则n 值是( ) A .3-B .3C .32-D .323.下列说法中,正确的是( ) A .单项式21πxy 2的系数12B .单项式25x y -的次数为2C .多项式x 2+2xy+18是二次三项式D .多项式12 x 3 -2 3x 2y 2-1次数最高项的系数是124.下列说法正确的是( ) A .绝对值是本身的数都是正数 B .单项式23x y 的次数是2C .除以一个不为0的数,等于乘以这个数的相反数D .3π是一个单项式5.如图,一个动点从原点O 开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2021秒时所对应的数是( )A .-406B .-405C .-2020D .-20216.如图是由几个相同的小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是( )A .B .C .D .7.下列图形中,不是正方体平面展开图的是( )A .B .C .D .8.图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚90︒,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是( )A .2B .3C .4D .59.我国古代著作《九章算术》在世界数学史上首次正式引入负数,若气温升高3C ︒时,气温变化记作C 3︒+,那么气温下降10C ︒时,气温变化记作( ) A .C 13︒-B .10C ︒-C .7C ︒-D .C 7︒+10.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为( ) A .0.324×108B .32.4×106C .3.24×107D .324×10811.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为2-、1,若点B 与点C 之间的距离是1,则点A 与点C 之间的距离是( ) A .5B .2C .2或4D .2或612.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友二、填空题13.有理数a 、b 、c 在数轴上的位置如图所示,化简:如│a -b│-│a +c│的值为_____.14.用相同的黑色棋子如图所示的方式摆放,第1个图由6个棋子组成,第2个图由15个棋子组成,第3个图由28个棋子组成……按照这样的规律排列下去,第6个图由__________个棋子组成……15.如果定义新运算“&”,满足a&b=a×b+a-b,那么1&3=________.16.已知有理数a在数轴上的位置如图所示,试判断a,2a,1a-三者的大小关系,并用不等号“<”连接起来,则结果是____________________.17.0.47249≈_________(精确到千分位).18.简单多面体是各个面都是多边形组成的几何体,十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)和棱数(E)之间存在一个有趣的关系式,称为欧拉公式.如表是根据左边的多面体模型列出的不完整的表:多面体顶点数面数棱数四面体446长方体86正八面体812现在有一个多面体,它的每一个面都是三角形,它的面数(F)和棱数(E)的和为30,则这个多面体的顶点数V=_____.19.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高________cm.20.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是______.三、解答题21.先化简,再求值:(1)()()2345n n n -+--+,其中54n =-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭,其中7a =,17b =-.22.若21202x y ⎛⎫++-= ⎪⎝⎭,求323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭的值. 23.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升? 24.如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6 (1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.25.如图,是由9个大小相同的小立方块搭成的一个几何体. (1)请在指定位置画出该几何体从正面、上面看到的形状图;(2)在不改变几何体中小立方块个数的前提下,从中移动一个小立方块,使所得新几何体与原几何体相比,从正面、上面看到的形状图保持不变,但从左面看到的形状图改变了.请在指定位置画出一种新几何体从左面看到的形状图.26.如图是一个正方体的平面展开图,标注了A 字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等. ①求x 的值.②如果这个正方体前后左右四个面的数字和为12-,求正面字母A 所表示的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先判断是否是同类项,后合并即可. 【详解】∵22232x y yx x y -=-, ∴选项A 正确;∵2x 与2y 不是同类项,无法计算, ∴选项B 错误; ∵43xy xy xy -=, ∴选项C 错误;∵2x 与x 不是同类项,无法计算, ∴选项D 错误; 故选A. 【点睛】本题考查了整式的加减,熟练判断同类项并灵活进行合并同类项是解题的关键.2.C解析:C 【分析】先合并同类项,令xy 的系数为0即可得出n 的值. 【详解】()()222232x xy y x nxy y +---+ =()()22223222x xy y x nxy y +---+=22223222x xy y x nxy y +--+- =22(32)3x n xy y -++-, ∵多项式()()222232x xy y xnxy y +---+中不含xy 项,∴320n +=, ∴n=32-, 故选C . 【点睛】本题考查了合并同类项法则及对多项式“项”的概念的理解,关键是掌握合并同类项与去括号法则.3.C解析:C 【分析】利用单项式的系数与次数定义,以及多项式项数定义依次判断各项即可. 【详解】 解:A. 单项式21πxy 2的系数12π,故此选项不符合题意; B. 单项式25x y -的次数为3,故此选项不符合题意; C. 多项式x 2+2xy+18是二次三项式,故此选项符合题意; D. 多项式12x 3 -23x 2y 2-1次数最高项是-23x 2y 2,此项的的系数是-23,故此选项不符合题意; 故选:C . 【点睛】此题考查了多项式,单项式,熟练掌握多项式和单项式的有关定义是解本题的关键.4.D解析:D 【分析】根据绝对值的意义、有理数的除法法则、单项式的定义进行判断即可. 【详解】解:A 选项,绝对值是本身的数是正数或0,故原说法错误;B 选项,单项式23x y 的次数是3,故原说法错误;C 选项,除以一个不为0的数,等于乘这个数的倒数,故原说法错误;D 选项,3表示一个数,是一个单项式,故正确;故选:D . 【点睛】本题主要考查了绝对值、单项式的定义以及有理数的除法,熟记相关定义和法则是解答本题的关键.5.B解析:B 【分析】根据每向左运动3秒就向右运动2秒,也就是每经过3+2秒就向左移动1个单位,解答即可. 【详解】解: ∵每向左运动3秒就向右运动2秒,即每经过3+2秒就向左移动1个单位, ∴2021÷5=404……1,即经过404个5秒后,又经过1秒的左移, ∴404+1=405个单位,∴动点运动到第2021秒时所对应的数是-405, 故选B . 【点睛】本题考查了数轴,解题的关键是根据题目给出的条件,找出规律.6.A解析:A 【解析】 【分析】根据从左边看得到的图形是左视图,可得答案. 【详解】该几何体的左视图为故选A . 【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7.B解析:B 【分析】由平面图形的折叠及正方体的展开图解题.解:A、C、D都能够折叠成正方体,而B选项不是正方体的展开图,故选:B.【点睛】本题考查正方体的展开图,熟知正方体的11种展开图是解题的关键.8.D解析:D【分析】根据正方体的表面展开图,可得各个面上的数字,由2019次翻转为第505组的第三次翻转,即可得到答案.【详解】正方体的表面展开图,相对面之间一定相隔一个正方形,“2点”与“5点”是相对面,“3点”与“4点”是相对面,“1点”与“6点”是相对面,÷=,∵201945043∴完成2019次翻转为第505组的第三次翻转,∴骰子朝下一面的点数是5.故选D.【点睛】本题主要考查正方体的表面展开图各个面上的数字规律,掌握相对面上的数字规律,是解题的关键.9.B解析:B【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:如果温度升高3℃记作+3℃,那么温度下降10℃记作-10℃.故选:B.【点睛】本题考查了正数和负数的知识,解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将3240万用科学记数法表示为:3.24×107.故选:C.本题考查了科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.正确掌握知识点是解题的关键;11.C解析:C【分析】分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:由题可知:点C在线段AB内或在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为-2、1,∴AB=3第一种情况:点C在点B右侧,AC=3+1=4;第二种情况:点C在点B左侧,AC=3-1=2故选C.【点睛】本题考查了数轴上点之间的距离,关键是要学会分类讨论的思想,要防止漏解.12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.b +c 【分析】由题意得到然后由绝对值的意义进行化简即可得到答案【详解】解:根据数轴则∴∴;故答案为:【点睛】本题考查数轴绝对值等知识解题的关键是记住绝对值的性质:数a 绝对值要由字母a 本身的取值来确定解析:b +c 【分析】由题意,得到0a b -<,0a c +<,然后由绝对值的意义进行化简,即可得到答案. 【详解】 解:根据数轴,则0c a b <<<,c a >,∴0a b -<,0a c +<,∴()()a b a c a b a c b c --+=--++=+; 故答案为:b c +. 【点睛】本题考查数轴、绝对值等知识,解题的关键是记住绝对值的性质:数a 绝对值要由字母a 本身的取值来确定:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.14.91【分析】根据前3个图形中棋子的个数归纳类推出一般规律由此即可得出答案【详解】由图可知第1个图形中棋子的个数为第2个图形中棋子的个数为第3个图形中棋子的个数为归纳类推得:第n 个图形中棋子的个数为其解析:91 【分析】根据前3个图形中棋子的个数归纳类推出一般规律,由此即可得出答案. 【详解】由图可知,第1个图形中棋子的个数为623(11)(211)=⨯=+⨯⨯+, 第2个图形中棋子的个数为1535(21)(221)=⨯=+⨯⨯+, 第3个图形中棋子的个数为2847(31)(231)=⨯=+⨯⨯+,归纳类推得:第n 个图形中棋子的个数为(1)(21)n n ++,其中n 为正整数, 则第6个图形中棋子的个数为(61)(261)71391+⨯⨯+=⨯=, 故答案为:91. 【点睛】本题考查了用代数式表示图形的规律,正确归纳类推出一般规律是解题关键.15.1【分析】原式利用题中的新定义代入计算即可求出值【详解】解:根据题中的新定义a&b =a×b +a -b 代入得:1&3=1×3+1-3=3+1-3=1故答案为:1【点睛】此题考查了有理数的混合运算熟练掌握解析:1【分析】原式利用题中的新定义代入计算即可求出值.【详解】解:根据题中的新定义a&b =a×b +a -b ,代入得:1&3=1×3+1-3=3+1-3=1.故答案为:1.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【分析】根据数轴可判断出在利用特殊值的方法进行计算即可得到答案【详解】由点在数轴上的位置可得:令则故答案为:【点睛】本题考查了实数的大小比较比较简单利用特殊值的方法进行比较以简化计算 解析:21||a a a<<- 【分析】根据数轴可判断出10a -<<,在利用特殊值的方法进行计算即可得到答案.【详解】由点a 在数轴上的位置可得:10a -<< 令12a =- 则1122a =-= 221124a ⎛⎫== ⎪⎝⎭ 11212a -=-=- 11242<< 21a a a ∴<<- 故答案为:21a a a<<-. 【点睛】本题考查了实数的大小比较,比较简单,利用特殊值的方法进行比较,以简化计算. 17.472【分析】由四舍五入法进行计算即可得到答案【详解】解:0472490472;故答案为:0472【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止所有的数字都是这个解析:472.【分析】由四舍五入法进行计算,即可得到答案.【详解】解:0.47249≈0.472;故答案为:0.472.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.819.或120.国三、解答题21.(1)413n -,18-;(2)22a ab -,99【分析】(1)先去括号合并同类项化简,再将n 的值代入计算即可;(2)先去括号合并同类项化简,再将a 和b 的值代入计算即可.【详解】解:(1)()()2345n n n -+--+=685n n n -+---=413n -, 当54n =-时, 原式=54134⎛⎫⨯-- ⎪⎝⎭=51318--=-; (2)()2222323522a ab b a ab b ⎛⎫----- ⎪⎝⎭ =222236252a ab b a ab b ---++=22a ab -,当7a =,17b =-时, 原式=212777⎛⎫⨯-⨯- ⎪⎝⎭=()2491⨯--=98199+=. 【点睛】本题主要考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握法则是解决本题的关键.22.32+25x x y +;1【分析】整式的加减运算,先去括号,合并同类项化简,然后根据绝对值和偶次幂的非负性确定x 和y 的值,从而代入求值即可.【详解】 解:323211223533x x y x x y ⎛⎫---+ ⎪⎝⎭ =3232124++6533x x y x x y -+ =32+25x x y + 又∵21202x y ⎛⎫++-= ⎪⎝⎭且2120,02x y ⎛⎫+≥-≥ ⎪⎝⎭ ∴20x +=且2102y ⎛⎫-= ⎪⎝⎭,解得:2x =-,1=2y 当2x =-,1=2y 时,原式=()()3212+22584512-⨯-⨯+=-++=. 【点睛】 本题考查整式的加减运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.24.(1)8;(2)见解析;MN 的长度不会发生改变,线段MN =4.【分析】(1)数轴上两点之间的距离等于较大数与较小数的差;(2)根据中点的意义,利用线段的和差可得出答案.【详解】解:(1)AB =|﹣2﹣6|=8,答:AB 的长为8;(2)MN 的长度不会发生改变,线段MN =4,理由如下:如图,因为M 为PA 的中点,N 为PB 的中点,所以MA =MP =12PA ,NP =NB =12PB , 所以MN =NP ﹣MP=12PB ﹣12PA =12(PB ﹣PA ) =12AB =12×8 =4.【点睛】本题考查了数轴上两点之间的距离,数轴上线段中点的意义,熟练掌握两点间距离计算方法,灵活运用中点的意义是解题的关键.25.(1)见解析;(2)见解析【分析】根据从不同方向看几何体的定义画出图形即可.【详解】解:(1)从正面、上面看到的形状图如图所示;(2)新几何体从左面看到的形状图如图所示;【点睛】本题考查从不同方向看几何体-,掌握分别是从物体的正面,左面,上面看几何体得到的相应的平面图形是解题关键.26.①1x =;②12A =-.【解析】【分析】()1正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;()2确定前后左右四个面上的4个数字,然后相加即可和为12-即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“2-”是相对面,“3”与“1”是相对面,-”是相对面,“x”与“3x2()1正方体的左面与右面标注的式子相等,∴=-,x3x2=.解得x1()2正方体前后左右四个面的文字分别是:A、2-、x、3x2-,-++-=-依题意得A2x3x212-++-=-A213212=-.A12【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.。

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学附答案

2015-2016学年度第一学期期中考试七年级数学(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的)。

1.用代数式表示“比m 的相反数大1的数”是:A .m+1B .m-1C .-m-1D .-m+1 2. -21的倒数是: A .2 B .21 C .-2 D .-21 3.若43=-x ax 的解为x=-4,则a 的值是:A .4B .-4C .2D .-24. 下列说法,正确的是: A .5-、a 不是单项式B .2abc-的系数是2- C .223x y -的系数是13-,次数是4D .2x y 的系数是0,次数是25. 方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x x C.1071203110=--+x x D.107102031010=--+x x 6. 实数a ,b 在数轴上的位置如图所示,以下说法正确的是:A. a+b=0B. b <aC. ab >0D. |b|<|a| 7. 现有几种说法:①3的平方等于9 ②平方后等于9的数是3 ③倒数等于本身的数有0,1,-l ; ④平方后等于本身的数是0,1,-1; ⑤如果A 和B 都是四次多项式,则A +B 一定是四次多项式. 其中正确的说法有:A .1个B .2个C .3个D .4个 8. 已知4433xyz xyz -=,则x z y x y z++值为多少:A .1或-1B .1或-3C .-1或3D .3或-3二、填空题(本大题共10题,每题3分,共30分)。

9.如果将盈利2万元记作2万元,那么-4万元表示_________________。

10. 绝对值等于6的数是___________。

11. 2ab+b 2+( )=3ab-b 2。

12. 用“>”连接:-2, 4,-0.5,-(-2),这几个数:___________________________。

济宁市七年级上学期期中数学试卷

济宁市七年级上学期期中数学试卷

济宁市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2017七上·江海月考) 下列说法中,正确的是()A . -与2互为相反数B . 任何负数都小于它的相反数C . 数轴上表示-a的点一定在原点左边D . 5的相反数是︱一5︱2. (2分)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A .B .C .D .3. (2分) (2016七上·单县期中) 下列图形中,属于立体图形的是()A .B .C .D .4. (2分)(2020·宽城模拟) 预计到2025年,中国5G用户将超过460000000,将460000000这个数用科学记数法表示为()A . 0.46×109B . 4.6×109C . 4.6×108D . 46×1075. (2分)下列说法中正确的个数是()(1) a和0都是单项式。

(2)多项式-3a2b+7a2b2-2ab+1的次数是3。

(3)单项式-的系数为-2。

(4)x2+2xy-y2可读作x2、2xy、-y2的和。

A . 1个B . 2个C . 3个D . 4个6. (2分)(﹣2)3的值为()A . -6B . 6C . -8D . 87. (2分)下列结论正确的有()个:① 规定了原点,正方向和单位长度的直线叫数轴② 最小的整数是0 ③ 正数,负数和零统称有理数④ 数轴上的点都表示有理数A . 0B . 1C . 2D . 38. (2分)下列说法不正确的是()A . 球的截面一定是圆B . 组成长方体的各个面中不可能有正方形C . 从三个不同的方向看正方体,得到的都是正方形D . 圆锥的截面可能是圆9. (2分) (2016高二下·抚州期中) 计算(3a2+2a+1)-(2a2+3a-5)的结果是()B . a2-5a-4C . a2-a-4D . a2-a+610. (2分)如图,在数轴上有a,b两个有理数,若表示数a,b的点到原点的距离相等,则下列结论中,不正确的是()A . a+b=0B . a﹣b=2bC . ab=﹣b2D .11. (2分)下面图形中,不能折成无盖的正方体盒子的是()A .B .C .D .12. (2分) (2016七下·濮阳开学考) 甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方高()A . 5mB . 10mC . 25mD . 35m13. (2分)原产量为a千克,增产20%之后的产量应为()A . (1+20%)a千克B . (1-20%)a千克C . (a+20%)千克14. (2分)大于﹣2.7而小于1.5的所有整数的乘积是()A . 0B . -2C . 2D . -115. (2分)若(a﹣1)2+|b﹣2|=0,则(a﹣b)2016的值是()A . -1B . 1C . 0D . 2016二、填空题 (共5题;共8分)16. (1分) (2017七上·洪湖期中) 如果水位升高3m时水位变化记作+3m,那么水位下降2m时水位变化记作:________ m.17. (1分)若a=1954×1946,b=1957×1943,c=1949×1951,则a,b,c的大小关系为________ (用“<”连接).18. (2分) (2017七上·孝南期中) 项式:a,﹣2a2 , 4a3 ,﹣8a4 ,…根据你发现的规律,第7个式子是________,第n个式子是________.19. (3分) (2019七上·天津月考) 的底数是________,指数是________,计算结果是________20. (1分) (2017七上·邯郸月考) 若 =7,则x=________三、解答题 (共5题;共61分)21. (9分)(2020·浙江模拟) 如图1,小明用一张边长为6 dm的正三角形硬纸板设计一个无盖的正三棱柱糖果盒,从三个角处分别剪去一个形状大小相同的四边形,其一边长记为x dm,再折成如图2所示的无盖糖果盒,它的容积记为y dm3.(1) y关于x的函数关系式是________,自变量x的取值范围是________.(2)为探究y随x的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据;x00.51 1.52 2.53y03.125 3.3750.6250②描点:请你把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;③连线:请你用光滑的曲线顺次连接各点.(3)利用函数图象解决:①该糖果盒的最大容积是________;②若该糖果盒的容积超过2 dm3 ,请估计糖果盒的底边长a的取值范围.(保留一位小数)________22. (10分) (2017七上·丹江口期中) 某一出租车一天下午以新合作超市为出发地在东西方向营运,向东为正,向西为负,行车里程(单位km),依先后次序记录如下:+7,-4,-6,+4,-8,+6,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?在新合作的什么方向?(2)若每千米按2.4元收费,该司机一个下午的收入多少?23. (15分) (2016七上·青山期中) 邮递员从邮局出发,先向西骑行3km到达A村,继续骑行2km到达B 村,然后向东行骑行9km到达C村,最后回到邮局.(1)如图,请在以邮局为原点,向东为正方向,1km为1个单位长度的数轴上表示出A、B、C三个村庄的位置;(2) C村离A村有多远?(3)邮递员一共行驶了多少千米?24. (15分) (2019七上·翁牛特旗期中) 某出租车司机从公司出发,在东西方向的人民路上连续接送5批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?25. (12分) (2016七上·江苏期末) 如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1=________;第二个图案的长度L2=________;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系;(3)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共8分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共61分)21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

【鲁教版】七年级数学上期中试题(带答案)(2)

【鲁教版】七年级数学上期中试题(带答案)(2)

一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 2.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个B .3个C .4个D .5个 3.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3 C .m=﹣2,n=3 D .m=3,n=2 4.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 5.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009 6.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 7.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个8.在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2 9.下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32 B .(﹣3)2和32 C .(﹣2)3和﹣23 D .|﹣2|3和|﹣23| 10.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多10 11.下列分数不能化成有限小数的是( ) A .625 B .324 C .412 D .11612.下列计算结果正确的是( )A .-3-7=-3+7=4B .4.5-6.8=6.8-4.5=2.3C .-2-13⎛⎫- ⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子.14.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.15.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.16.在x y +,0,21>,2a b -,210x +=中,代数式有______个.17.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 18.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5) =[____]+46=_____+46=____.19.若两个不相等的数互为相反数,则两数之商为____.20.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .三、解答题21.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦22.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负) 星期 一 二 三 四 五 六 日 增减 5+ 2- 4- 13+ 10- 16+ 9-(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?23.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 24.试写出一个含a 的代数式,使a 不论取何值,这个代数式的值不大于1.25.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.26.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

山东省xx市邹城市七年级数学上学期期中模拟试题12 新人教版

山东省xx市邹城市七年级数学上学期期中模拟试题12 新人教版

山东省济宁市邹城市七年级数学上学期期中模拟试题12 新人教版一、选择题(24分)1.的倒数是()A.2 B.﹣2 C.D.2.计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.63.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3 4.下面说法中正确的有()A.非负数一定是正数 B.有最小的正整数,有最小的正有理数C.﹣a一定是负数 D.正整数和正分数统称正有理数5.如果a的绝对值是1,那么a xx等于()A.1 B.2015 C.xx或﹣xx D.﹣1或16.xx年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106 B.3×105 C.0.3×106 D.30×1047.如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点C C.点A和点B D.点B和点D8.下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2 B.2a2+3a2=6a2 C.4xy﹣3xy=1 D.2m2n﹣2mn2=09.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是()A.十四次多项式 B .七次多项式C.不高于七次多项式或单项式 D.六次多项式10.下列各组数中,数值相等的是()A.﹣23和(﹣2)3B.32和23C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×2211.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B.4 C.7 D.不能确定12.数轴上表示整数的点称为整点.某数轴上的单位长度是1cm,若在这个数轴上随意画出一条长2014cm的线段AB,则线段AB盖住的整点个数是()A.xx个或xx个B.xx个或xx个C.xx个或xx个D.xx个或xx个二、填空题(24分)13.|﹣2|的值等于.14.用四舍五入法取近似值:12.006= (精确到百分位)15.单项式的系数是,次数是.16.若单项式2a m﹣1b3与3a2b n+2同类项,则m= ,n= .17.多项式﹣x2+4x﹣的次数是,常数项是.18.用“>”,“<”,“=”填空:﹣﹣;﹣(﹣)﹣|﹣|.19.若|x+3|+(5﹣y)2=0,则x+y= .20.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是元(用含a,b的代数式表示).三、解答题21.(12分)计算:(1)﹣22×7﹣(﹣3)×6+5;(2)(﹣﹣)×24÷(﹣2);(3)56×1+56×(﹣)﹣56×;(4)(﹣1)4﹣×[2﹣(﹣3)2].22.一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?(5分)23.计算:(8分)(1)(2x﹣3y)﹣(﹣5x﹣4y);(2)5x2y﹣2xy﹣4(x2y﹣xy)24.先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中.(5分)25.重庆出租车司机小李,一天下午以江北机场为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出发点江北机场多远?在江北机场的什么方向?(2)若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?(6分)26.(8分)定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是=.已知,(1)a2是a1的差倒数,则a2= ;(2)a3是a2的差倒数,则a3= ;(3)a4是a3的差倒数,则a4= ,…,依此类推,则a xx= .27.(8分)已知代数式ax5+bx3+3x+c,当x=0时,该代数式的值为﹣1.(1)求c的值;(2)已知当x=1时,该代数式的值为﹣1,试求a+b+c的值;(3)已知当x=3时,该代数式的值为9,试求当x=﹣3时该代数式的值;(4)在第(3)小题的已知条件下,若有3a=5b成立,试比较a+b与c的大小?如有侵权请联系告知删除,感谢你们的配合!。

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷及答案

2015~2016学年第一学期初一数学期中考试试卷(考试时间:90分钟 满分:100分) 一、细心选一选 (每小题3分,共24分)1.下面的计算正确的是 ( )A .6a -5a =1B .a + 2a 2 =3a 3C .-(a -b ) =-a + bD .2(a + b ) =2a + b 2.在(-1)3,(-1)2012,-22,(-3)2这四个数中,最大的数与最小的数的差等于 ( ) A .10 B .8 C .5 D .13 3.下列各组代数式中,是同类项的是 ( )A .5x 2 y 与15xy B .-522 y 与15yx 2 C .5ax 2与15yx 2 D .83与x 34.给出下列判断:①单项式5×103x 2的系数是5;②x -2xy + y 是二次三项式;③多项式-3a 2 b +7a 2b 2-2ab +1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是( )A .1个B .2个C .3个D .4个5.有理数a ,b ,c 在数轴上的位置如图所示, 则a c ++c b --b a += ( )A .-2bB .0C .2cD .2c -2b 6.若m =3,n =5且m -n >0,则m + n 的值是 ( )A .-2B .-8或-2C .-8或8D .8或-27.上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为 ( ) A .a b x y++ B .ax by ab+ C .ax by a b++ D .2x y +8.观察图中每一个正方形各顶点所标数字的规律,2 012应标在 ( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处二、认真填一填 (每小题2分,共20分)9.-23的倒数为 ;绝对值等于3的数是 .10.钓鱼岛是钓鱼岛列岛的主岛,是中国固有领土,位于中国东海,面积4 384 000 m 2,将这个数据用科学记数法可表示为 m 2. 11.比较大小,用“<”“>”或“一”连接:(1) -34--(-23) (2) -3.14 -π-12.已知4x 2m y m+n 与3x 6 y 2是同类项,则m -n = .13.数轴上与表示-2的点距离3个长度单位的点所表示的数是 . 14.已知代数式x -2y 的值是12,则代数式-2x + 4y -1的值是 .15·若a ,b 互为相反数,c ,d 互为倒数,m 到原点的距离为2,则代数式m —cd +a b m+的值为 .16.定义新运算“⊗”,规定:a ⊗b =13a -4b ,则12⊗(-1) = .17.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .18.观察表一,寻找规律.表二,表三,表四分别是从表一中截取的一部分,其中a + b + c的值为 .三、耐心解一解 (共56分)19.计算:(每小题3分,共12分)(1) -10-(-16)+(-24); (2) 5÷(-35)×53(3) -22×7-(-3)×6+5 (4) (113+18-2.75)×(-24)+(-1)2014+(-3)3.20.化简:(每小题3分,共6分)(1) 2x +(5x -3y )一(3x + y ); (2) 3(4x 2-3x +2)-2(1-4x 2-x ).21.(5分) 将-2.5,12,2,-2,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.22.(5分) 已知多项式A,B,其中A=x2-2x + 1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.23.(本题满分8分)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如左下表:(1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(3) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?24.(10分) 在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a格(当a 为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移b格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b).例如,从A到B记为:A→B (+1,+3);从C到D记为:C→D (+1,-2).回答下列问题:(1) 如图1,若点A的运动路线为:A→B→C→A,请计算点A运动过的总路程.(2) 若点A运动的路线依次为:A→M(+2,+3),M→N (+1,-1),N→P(-2,+2),P→Q(+4,-4).请你依次在图2上标出点M,N,P,Q的位置.(3) 在图2中,若点A经过(m,n)得到点E,点E再经过(p,q)后得到Q,则m与p满足的数量关系是;n与q满足的数量关系是.25.(10分) 如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,a +(c-7)2=0.且a,b满足2(1) a=,b=,c=.(2) 若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.2015~2016学年第一学期初一数学期中考试试卷参考答案1.C 2.D 3.B 4.A 5.B 6.B 7.C 8.C 9.-323或-310.4.384×10611.< > 12.4 13.-5,1 14.-2 15. 1 16.8 17.3018.76 19.(1) -18 (2) -1259 (3) -5 (4) 5 20.(1) 4x -4y (2) 20x 2-7x + 421.画图略,-2.5<-2-<0<12<2<-(-3) 22.B =4x 2 + 2 A +B =5x 2-2x + 323.解:(1) +4.4+(-3.2)+1.1+(-1.5) =0.8(km) 答:这架飞机比起飞点高了0.8千米 (2) 2×( 4.4++ 3.2-+ 1.1++ 1.5-=20.4(升),答:4个动作表演完,一共消耗20.5升燃油. (3) 3.8-2.9+1.6-1=1.5, 答:第4个动作下降1.5千米. 24.(1) 1+3+2+1+3+4=14 (2)(3) m + p =5,n + q =0 25.(1) a =2,b =1,c =7 (2) 4 (3) AB =3t + 3,AC =5t + 9,BC =2t + 6 (4) 不变,始终为12.。

2015-2016学年七年级(上)期中数学试卷(解析版)

2015-2016学年七年级(上)期中数学试卷(解析版)

2015-2016学年山东省济南市槐荫区七年级(上)期中数学试卷一、选择题:(共15个小题.每小题3分,丼45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的图形中,是正方体展开图的是()A.①②B.②③C.③④D.①③2.在﹣(﹣8),﹣|﹣7|,﹣|0|,(﹣2)2,﹣32这四个数中,非负数共有()A.4个B.3个C.2个D.1个3.下面几何体的截面不可能是长方形的是()A.长方体B.正方体C.圆柱D.圆锥4.下列说法正确的是()A.0是最小的整数B.任何数的绝对值都是正数C.﹣a是负数D.绝对值等于它本身的数是正数和05.今年国庆黄金周,南部山区农家乐共接待15.8万游客,把15.8万用科学记数法表示为()A.1.58×105B.1.58×l04C.158×103D.0.158×1066.下列几何体中,属于棱柱的有()A.6个B.5个C.4个D.3个7.若数轴上的点A到原点的距离为7,则点A表示的数为()A.7B.﹣7C.7或﹣7D.3.5或﹣3.58.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④C.②③④D.①③④9.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6D.10.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,311.一个长方形周长为30,若一边长用字母x表示,则此长方形的面积()A.x(15﹣x)B.x(30﹣x)C.x(30﹣2x)D.x(15+x)12.已知a﹣7b=﹣2,则﹣2a+14b+4的值是()A.0B.2C.4D.813.若m<0,n>0,m+n<0,则m,n,﹣m,﹣n这四个数的大小关系是()A.m>n>﹣n>﹣m B.﹣m>n>﹣n>m C.m>﹣m>n>﹣n D.﹣m>﹣n>n>m 14.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样15.有一列数a1,a2,a3,a4,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数差,如:a1=3,则a2=1﹣=,a3=1﹣=﹣…,请你计算当a1=2时,a2015的值是()A.2B.C.﹣1D.2015二、填空题(本大题共9个小题.每小題3分,共27分.把答案填在题后横线上)16.某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是.17.单项式的系数是,次数是.18.小华的存款是x元,小林的存款比小华的一半少2元,小林的存款是元.19.若x2=4,|y|=9,其中x<0,y>0,则x﹣y=.20.下面是一个数值转换机的示意图.当输入x=﹣3时,则输出的结果为.21.已知非零有理数a、b满足+=﹣2.则的值为.22.己知有理数a、b、c满足a+b+c=0.则代数式(a+b)(b+c)(c+a)+abc=.23.一只跳蚤在数轴上从原点O开始,第一次向右跳一个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位…,依此规律跳下去,当它跳2016次下落时,落点处离原点O的距离是个单位.24.某种细胞开始有两个,1小时后分裂成4个并死去一个,2个小时后分裂成6个并死去一个,3小时后分裂成10个并死去1个,按此规律,请你计算经过n个小时后,细胞存活的个数为个(结果用含n的代数式表示)三、解答题(本大题共5个小题,共48分)25.计算①﹣10+8②﹣20+(﹣14)﹣(﹣18)﹣13③2﹣2÷(﹣)×3④﹣14﹣×[3﹣(﹣3)2]⑤﹣24×(﹣+﹣)⑥﹣22+3×(﹣2)﹣(﹣4)2÷(﹣8)﹣(﹣1)100.26.一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.27.“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)日期1日2日3日4日5日6日7日+1.8﹣0.6+0.2﹣0.7﹣1.3+0.5﹣2.4人数变化单位:万人(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为万人;(2)七天中旅客人数最多的一天比最少的一天多万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?28.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣4,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?29.如图,在数轴上,点A,B表示的数分别为5,﹣3,线段AB的中点为M.点P以1个单位长度/秒的速度从点A出发,向数轴的负方向运动.同时,动点Q以2个单位长度/秒的速度从点B出发,向数轴的正方向运动.(1)线段AB的长度为个单位长度,点M表示的数为.(2)当点Q运动到点M时,点P运动到点N,则MN的长度为个单位长度.(3)设点P运动的时间为t秒.是否存在这样的t,使PA+QA为5个单位长度?如果存在,请求出t的值和此时点P表示的数;如果不存在,请说明理由.2015-2016学年山东省济南市槐荫区七年级(上)期中数学试卷参考答案与试题解析一、选择题:(共15个小题.每小题3分,丼45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的图形中,是正方体展开图的是()A.①②B.②③C.③④D.①③【考点】几何体的展开图.【分析】根据正方体展开图特点:①图属于正方体展开图的3﹣3型,能够折成一个正方体;③属于正方体展开图的1﹣4﹣1型,能够折成一个正方体;②④两个在正方形在折的过程中会重叠,所以不是正方体展开图.【解答】解:根据正方体展开图特点可得:①③是正方体展开图,故选:D.2.在﹣(﹣8),﹣|﹣7|,﹣|0|,(﹣2)2,﹣32这四个数中,非负数共有()A.4个B.3个C.2个D.1个【考点】有理数.【分析】先把各数化简,再根据非负数包括正数和0,即可解答.【解答】解:﹣(﹣8)=8,﹣|﹣7|=﹣7,﹣|0|=0,(﹣2)2,=4,﹣32=﹣9,非负数有:﹣(﹣8),﹣|0|,(﹣2)2,共3个,故选:B.3.下面几何体的截面不可能是长方形的是()A.长方体B.正方体C.圆柱D.圆锥【考点】截一个几何体.【分析】用一个平面截一个几何体得到的形状叫做几何体的截面.【解答】解:长方体,正方体,圆柱的截面都可能出现长方形,只有圆锥的截面只与圆、三角形有关,故选D.4.下列说法正确的是()A.0是最小的整数B.任何数的绝对值都是正数C.﹣a是负数D.绝对值等于它本身的数是正数和0【考点】有理数.【分析】根据有理数、绝对值,即可解答.【解答】解:A、0是最小的整数,错误,因为整数包括正整数、0和负整数;B、任何数的绝对值都是正数,错误,因为0的绝对值是0;C、﹣a是负数,错误,例如a=﹣2时,﹣a=2是正数;D、绝对值等于它本身的数是正数和0,正确;故选:D.5.今年国庆黄金周,南部山区农家乐共接待15.8万游客,把15.8万用科学记数法表示为()A.1.58×105B.1.58×l04C.158×103D.0.158×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15.8万=158000=1.58×105,故选:A.6.下列几何体中,属于棱柱的有()A.6个B.5个C.4个D.3个【考点】认识立体图形.【分析】有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,由此可选出答案.【解答】解:根据棱柱的定义可得:符合棱柱定义的有第一、三、六个几何体都是棱柱,共三个.故选D.7.若数轴上的点A到原点的距离为7,则点A表示的数为()A.7B.﹣7C.7或﹣7D.3.5或﹣3.5【考点】数轴.【分析】根据数轴上的点A到原点的距离为7,可以得到点A表示的数,本题得以解决.【解答】解:由数轴上的点A到原点的距离为7可得,点A表示的数是:﹣7或7,故选C.8.有理数a,b在数轴上的位置如图所示,则下列各式:①a+b>0;②a﹣b>0;③|b|>a;④ab<0.一定成立的是()A.①②③B.③④C.②③④D.①③④【考点】数轴.【分析】根据数轴可得a>0,b<0,|b|>|a|,从而可作出判断.【解答】解:由数轴可得,a>0,b<0,|b|>|a|,故可得:a﹣b>0,|b|>a,ab<0;即②③④正确.故选C.9.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.10.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3【考点】多项式.【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.11.一个长方形周长为30,若一边长用字母x表示,则此长方形的面积()A.x(15﹣x)B.x(30﹣x)C.x(30﹣2x)D.x(15+x)【考点】列代数式.【分析】周长是30,则相邻两边的和是15,因而一边是x,则另一边是15﹣x,根据长方形的面积公式即可求解.【解答】解:周长是30,则相邻两边的和是15,因而一边是x,则另一边是15﹣x.则面积是:x(15﹣x).故选A.12.已知a﹣7b=﹣2,则﹣2a+14b+4的值是()A.0B.2C.4D.8【考点】代数式求值.【分析】首先化简﹣2a+14b+4,然后把a﹣7b=﹣2代入化简后的算式,求出算式的值是多少即可.【解答】解:∵a﹣7b=﹣2,∴﹣2a+14b+4=﹣2(a﹣7b)+4=﹣2×(﹣2)+4=4+4=8.故选:D.13.若m<0,n>0,m+n<0,则m,n,﹣m,﹣n这四个数的大小关系是()A.m>n>﹣n>﹣m B.﹣m>n>﹣n>m C.m>﹣m>n>﹣n D.﹣m>﹣n>n>m 【考点】有理数大小比较.【分析】根据题意,m<0,n>0,则n>m,m+n<0,则﹣m>n>﹣n,以此可做出选择.【解答】解:∵m<0,n>0,∴n>mm+n<0,∴﹣m>n,∴﹣m>n>﹣n,∴﹣m>n>﹣n>m.故选B.14.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样【考点】列代数式.【分析】设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.【解答】解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选:C.15.有一列数a1,a2,a3,a4,…a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数差,如:a1=3,则a2=1﹣=,a3=1﹣=﹣…,请你计算当a1=2时,a2015的值是()A.2B.C.﹣1D.2015【考点】规律型:数字的变化类.【分析】根据这组数的运算规则找出该数列的前几项,能够发现a4=a1,从而得出该组数量每3项一循环的规律,结合2015÷3余2可得出结论.【解答】解:当a1=2时,a2=1﹣=,a3=1﹣=﹣1,a4=1﹣=2=a1,由此发现,该数列每3个一循环,∵2015÷3=671…2,∴a2015=a2=.故选B.二、填空题(本大题共9个小题.每小題3分,共27分.把答案填在题后横线上)16.某地一天早晨的气温为﹣3℃,中午比早晨上升了7℃,夜间又比中午下降了8℃,则这天的夜间的气温是﹣4℃.【考点】有理数的加减混合运算.【分析】根据题意列出代数式,根据有理数的加减混合运算法则计算即可.【解答】解:﹣3+(+7)+(﹣8)=﹣4,则这天的夜间的气温是﹣4℃.故答案为:﹣4℃.17.单项式的系数是﹣,次数是6.【考点】单项式.【分析】根据单项式的系数、次数的概念求解.【解答】解:单项式的系数是﹣,次数是6.故答案为:﹣,6.18.小华的存款是x元,小林的存款比小华的一半少2元,小林的存款是元.【考点】列代数式.【分析】根据小华的存款是x元,小林的存款比小华的一半少2元,可以用代数式表示小林的存款.【解答】解:由题意可得,小林的存款是:()元.故答案为:.19.若x2=4,|y|=9,其中x<0,y>0,则x﹣y=﹣5.【考点】有理数的减法;绝对值;有理数的乘方.【分析】先根据有理数的乘方法则和绝对值的定义以及x和y的正负求得x的值y,然后再利用减法法则计算.【解答】解:∵x2=4,|y|=9,∴x=±2,y=±3.∵x<0,y>0,∴x=﹣2,y=3.∴x﹣y=﹣2﹣3=﹣5.故答案为:﹣5.20.下面是一个数值转换机的示意图.当输入x=﹣3时,则输出的结果为26.【考点】有理数的混合运算.【分析】把x的值代入数值转换机中计算即可确定出输出结果.【解答】解:根据题意得:(﹣3)2×3﹣1=27﹣1=26,则输出的结果为26,故答案为:2621.已知非零有理数a、b满足+=﹣2.则的值为1.【考点】有理数的除法;绝对值.【分析】先确定a,b的正负,再根据有理数的除法,即可解答.【解答】解:∵非零有理数a、b满足+=﹣2.∴a<0,b<0,∴ab>0,∴==1,故答案为:1.22.己知有理数a、b、c满足a+b+c=0.则代数式(a+b)(b+c)(c+a)+abc=0.【考点】代数式求值.【分析】把a+b+c=0适当变形,整体代入即可求解.【解答】解:由a+b+c=0可得,a+b=﹣c,a+c=﹣b,b+c=﹣a,所以(a+b)(b+c)(c+a)+abc=(﹣c)(﹣a)(﹣b)+abc=﹣abc+abc=0.23.一只跳蚤在数轴上从原点O开始,第一次向右跳一个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位…,依此规律跳下去,当它跳2016次下落时,落点处离原点O的距离是1013个单位.【考点】规律型:图形的变化类.【分析】数轴上点的移动规律是“左减右加”.依据规律计算即可.【解答】解:1﹣2+3﹣4+5﹣6+…+99﹣100+…﹣2016=﹣1×1013=﹣1013,所以落点处离0的距离是1013个单位.故答案为:1013.24.某种细胞开始有两个,1小时后分裂成4个并死去一个,2个小时后分裂成6个并死去一个,3小时后分裂成10个并死去1个,按此规律,请你计算经过n个小时后,细胞存活的个数为2n+1个(结果用含n的代数式表示)【考点】有理数的乘方.【分析】根据细胞分裂过程,归纳总结得到一般性规律,即可得到结果.【解答】解:根据题意得:按此规律,6小时后存活的个数是26+1=65个,经过n个小时后,细胞存活的个数为(2n+1)个.故答案为:2n+1.三、解答题(本大题共5个小题,共48分)25.计算①﹣10+8②﹣20+(﹣14)﹣(﹣18)﹣13③2﹣2÷(﹣)×3④﹣14﹣×[3﹣(﹣3)2]⑤﹣24×(﹣+﹣)⑥﹣22+3×(﹣2)﹣(﹣4)2÷(﹣8)﹣(﹣1)100.【考点】有理数的混合运算.【分析】①原式利用异号两数相加的法则计算即可得到结果;②原式利用减法法则变形,计算即可得到结果;③原式先计算乘除运算,再计算加减运算即可得到结果;④原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;⑤原式利用乘法分配律计算即可得到结果;⑥原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:①原式=﹣(10﹣8)=﹣2;②原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;③原式=2+2×3×3=2+18=20;④原式=﹣1﹣×(﹣6)=﹣1+1=0;⑤原式=20﹣9+2=13;⑥原式=﹣4﹣6+2﹣1=﹣11+2=﹣9.26.一个几何体由大小相同的小立方块搭成,从上面看到几何体的形状如图所示,其中小正方形中的数字表示该位置的小立方块的个数,请画出从正面和从左面看到这个几何体的形状.【考点】作图-三视图;由三视图判断几何体.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,2,4;从左面看有3列,每列小正方形数目分别为2,3,4.据此可画出图形.【解答】解:如图所示:27.“十•一”黄金周期间,武汉东湖风景区在7天假期中每天旅游人数变化如下表(正号表示人数比前一天多,负号表示比前天少)日期1日2日3日4日5日6日7日+1.8﹣0.6+0.2﹣0.7﹣1.3+0.5﹣2.4人数变化单位:万人(1)若9月30日的旅客人数为4.2万人,则10月4日的旅客人数为 4.9万人;(2)七天中旅客人数最多的一天比最少的一天多 4.3万人(3)如果每万人带来的经济收入约为100万元,则黄金周七天的旅游总收入约为多少万元?【考点】有理数的混合运算;正数和负数.【分析】(1)根据题意列得算式,计算即可得到结果;(2)根据表格找出旅客人数最多的与最少的,相减计算即可得到结果;(3)根据表格得出1日到7日每天的人数,相加后再乘以100即可得到结果.【解答】解:(1)根据题意列得:4.2+(1.8﹣0.6+0.2﹣0.7)=4.2+0.7=4.9(万人);(2)根据表格得:七天中旅客最多的是1日为6万人,最少的是7日为1.7万人,则七天中旅客人数最多的一天比最少的一天多6﹣1.7=4.3(万人);(3)根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).故答案为:(1)4.9;(2)4.328.出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米:每次行车都有乘客)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣4,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?【考点】正数和负数.【分析】(1)根据题意计算行车情况的和进行判断即可;(2)根据题意求出每一乘客所付费用求和即可;(3)算出总里程求出所耗油的费用与收入进行比较即可.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣4+6=9(千米).所以小王在下午出车的出发地的正南方向,距下午出车的出发地9千米;(2)10+10+2(5﹣3)+10+10+2(10﹣3)+10+10+10+2(4﹣3)+10+2(6﹣3)=106(元).所以小王这天下午收到乘客所给车费共106元;(3)(2+5+1+10+3+2+4+6)×0.3×6=33×0.3×6=59.4(元),106﹣59.4=46.6(元).所以小王这天下午盈利,盈利46.6元.29.如图,在数轴上,点A,B表示的数分别为5,﹣3,线段AB的中点为M.点P以1个单位长度/秒的速度从点A出发,向数轴的负方向运动.同时,动点Q以2个单位长度/秒的速度从点B出发,向数轴的正方向运动.(1)线段AB的长度为8个单位长度,点M表示的数为1.(2)当点Q运动到点M时,点P运动到点N,则MN的长度为2个单位长度.(3)设点P运动的时间为t秒.是否存在这样的t,使PA+QA为5个单位长度?如果存在,请求出t的值和此时点P表示的数;如果不存在,请说明理由.【考点】一元一次方程的应用;数轴.【分析】(1)数轴上两点间的距离等于表示右边的数减去左边的数,据此求解;(2)求得点P到点M的时间,从而确定点N所表示的数,写出线段MN的长;(3)表示出PA、QA,根据“PA+QA=5”列出方程求解即可.【解答】解:(1)AB=5﹣(﹣3)=8,∵M为AB的中点,∴M距离A点4个单位,∴点M表示的数为1,故答案为:8,1;(2)当点P运动到点M时用时2秒,此时点P运动到3的位置,故MN=3﹣1=2,故答案为:2;(3)设存在这样的t,根据题意得:t+8﹣2t=5,解得:t=3,所以存在时间t=3,使得PA+QA=5.2016年4月26日。

2015七年级上学期期中数学试卷(含答案)

2015七年级上学期期中数学试卷(含答案)

2015-2016学年七年级上学期期中考试数学试卷(满分120分,考试时间120分钟) 座位号_______一、选择题(每题..3分,共3×8=24分) 1. 下列各数中,是负数的是 ( )A. )9(--B. )9(+-C. 9-D. 2)9(-2. (-3)4表示( )A .-3个4相乘 B.4个-3相乘 C. 3个4相乘 D.4个3相乘 3.单项式322xy π-的系数和次数分别是 ( )A.3 , 32 B. -3 , 32C. 3 , 32π-D. 2 , 2- 4. 光年是天文学中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是( )A.131095.0⨯ ㎞B.12105.9⨯ ㎞C.111095⨯ ㎞D.1010950⨯ ㎞5. 下列计算正确的是 ( )(A) 09)3(3=+- (B) 36)9()4(-=-⨯- (C) 13223=÷ (D) 4)2(23=-÷-6. 下列说法正确的是( )A .0.600精确到十分位B .5.7万精确到0.1C .6.610精确到千分位D .410708.2⨯精确到千分位 7.a 、b 为有理数,它们在数轴上的对应点的位置如图所示,把a 、-a 、b 、-b 按照从小到大的顺序排序是 ( )A.-b ﹤-a ﹤a ﹤bB.-a ﹤-b ﹤a ﹤bC.-b ﹤a ﹤-a ﹤bD.-b ﹤b ﹤-a ﹤a8. 以下说法正确的有( )(1)不是正数的数一定是负数;(2) 0C表示没有温度; (3)小华的体重增长了-2 kg 表示小华的体重减少2 kg ;(4)数轴上离原点越远,数就越小;(5) 绝对值等于其本身的有理数只有零A 、1个B 、2个C 、3个D 、4个 二、填空题(每.题.3分,共3×8=24分) 9. -9的相反数是 ,3.0-的倒数是 w10. 倒数等于本身的数是 ,绝对值等于本身的数是 11. 比较大小:① 2-- )2(-- ② -0.5 13--12. 某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点这天的温差是____.C13.a =51,则a1= . 14. 两个有理数之积是1,已知一个数是—712,则另一个数是 15. 若 7=a , 2=b ,且b a >,则b a -= 16. 观察一列数:123456,,,,,2510172637---……根据规律,请你写出第10个数是 。

山东省济宁市邹城八中2016-2017学年七年级(上)期中数学试卷(解析版)

山东省济宁市邹城八中2016-2017学年七年级(上)期中数学试卷(解析版)

2016-2017学年山东省济宁市邹城八中七年级(上)期中数学试卷一、选择题(每题2分,共24分)(下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在后面的答题栏内).1.﹣3的倒数是()A.3 B.﹣3 C.D.2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约45 000 000 000千克,这个数据用科学记数法表示为()A.4.5×1010千克B.45×109千克C.45×109千克D.0.45×1011千克3.在有理数(﹣1)2、﹣(﹣)、﹣|﹣2|、(﹣2)3、﹣22中负数有()个.A.4 B.3 C.2 D.14.下列说法正确的是()A.102.350精确到百分位B.1.12万精确到百分位C.28.120精确到千分位D.3.5×103精确到十分位5.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 6.下列说法不正确的有()①0是绝对值最小的数②3a﹣2的相反数是﹣3a﹣2 ③5πR2的系数是 5 ④一个有理数不是整数就是分数⑤34x3是7次单项式.A.1个 B.2个 C.3个 D.4个7.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a<b C.ab>0 D.>08.下列各题中的两项是同类项的是()A.ab2与﹣B.xy3与x2y2C.x2与y2D.32与﹣59.若(a﹣2)2+|b+3|=0,则(a+b)2015的值是()A.1 B.0 C.2015 D.﹣110.根据如图所示的程序计算,若输入x的值为﹣1,则输出y的值为()A.﹣2 B.1 C.2 D.411.用边长为1的正方形纸板,制成一副七巧板(如图①),将它拼成“小天鹅”图案(如图②),其中阴影部分的面积为()A.B.C.D.12.观察下列等式:21=2,22=4,23=8,24=16,25=52…通过观察,用你所发现的规律确定22015的个位数字是()A.2 B.4 C.6 D.8二、填空题(每题3分,共18分)13.如果零上2℃记作+2℃,那么零下5℃记作℃.14.绝对值小于4的所有整数的和是.15.若﹣32m y3与2x4y n是同类项,那么m﹣n=.16.有一次小明在做24点游戏(24点游戏指的是用“+、﹣、×、÷和括号”将抽到的数字连在一起,使得它们的结果为24 )时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请你写出一个成功的算式:=24.17.若代数式2x2+3y+7的值为8,那么代数式8x2+12y+10的值为.18.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为.三、解答题(共9小题,满分58分)19.计算(1)﹣22+|5﹣8|+24÷(﹣3)×;(2)(﹣1)2014+(﹣2×)2015﹣(﹣3)2﹣(﹣2)3.20.化简(1)3(2x2﹣y2)﹣2(3y2﹣2x2)(2)2(3x2y+5xy2)﹣9x2y﹣(6x2y+2xy2﹣12x2y)21.先化简再求值:5x2﹣[2xy﹣3×(xy+2)+4x2],其中x=﹣2,y=.22.已知:a、b互为相反数,c、d互为倒数,m的绝对值为2.求:m2﹣的值.23.如图,大正方形的边长为a,小正方形的边长为2,求阴影部分的面积.24.我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣2的点和表示数5的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,若|a﹣3|=5,利用数轴及绝对值的几何意义写出a的值是.25.如表记录的是泗河今年某一周内的水位变化情况,上周末(上个星期日)的水位已达到15米,(正号表示水位比前一天上升,负号表示水位比前一天下降)(1)本周哪一天河流的水位最高?哪一天河流的水位最低?最高水位和最低水位分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?(3)由于下周将有大降雨天气,工作人员预测水位将会以每小时0.05米的速度上升,当水位达到16.6米时,就要开闸泄洪,请你计算下,再经过几个小时工作人员就需要开闸泄洪?26.探索规律:观察下列算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=19=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+29=;(2)请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)=;(3)请用上述规律计算:41+43+45+…+77+79.27.一辆大客车从甲地开往乙地,车上原有(5a﹣2b)人,中途停车一次,有一些人下车,此时下车的人数比车上原有人数一半还多2人,同时又有一些上车,上车的人数比(13a﹣10b)少3人.(1)用代数式表示中途下车的人数;(2)用代数式表示中途下车、上车之后,车上现在共有多少人?(3)当a=10,b=9时,求中途下车、上车之后,车上现在的人数?2016-2017学年山东省济宁市邹城八中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题2分,共24分)(下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在后面的答题栏内).1.﹣3的倒数是()A.3 B.﹣3 C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:D.2.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约45 000 000 000千克,这个数据用科学记数法表示为()A.4.5×1010千克B.45×109千克C.45×109千克D.0.45×1011千克【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将45 000 000 000用科学记数法表示为:4.5×1010.故选:A.3.在有理数(﹣1)2、﹣(﹣)、﹣|﹣2|、(﹣2)3、﹣22中负数有()个.A.4 B.3 C.2 D.1【考点】有理数的乘方;正数和负数.【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【解答】解:有理数(﹣1)2=1,﹣(﹣)=、﹣|﹣2|=﹣2、(﹣2)3=﹣8、﹣22=﹣4,其中负数有3个,故选B4.下列说法正确的是()A.102.350精确到百分位B.1.12万精确到百分位C.28.120精确到千分位D.3.5×103精确到十分位【考点】近似数和有效数字.【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、102.350精确到千分位,所以A选项错误;B、1.12万精确到百位,所以B选项错误;C、28.120精确到千分位,所以C选项正确;D、3.5×103精确到百位,所以D选项错误.故选C.5.下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【考点】去括号与添括号;合并同类项.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.6.下列说法不正确的有()①0是绝对值最小的数②3a﹣2的相反数是﹣3a﹣2 ③5πR2的系数是 5 ④一个有理数不是整数就是分数⑤34x3是7次单项式.A.1个 B.2个 C.3个 D.4个【考点】多项式;有理数;相反数;绝对值;单项式.【分析】根据绝对值、相反数、有理数、整式的概念即可求出答案.【解答】解:②3a﹣2的相反数时2﹣3a,故错误;③5πR2的系数是5 π,故错误;⑤34x3是3次单项式,故错误;故选(C)7.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a<b C.ab>0 D.>0【考点】数轴.【分析】根据数轴上的点表示的数的规则进行分析即可.【解答】解:由表示a和b的点位置可知,a<0,b>0;所以a<b,故A不对;B正确;ab<0,>0;故C,D不正确;故选B.8.下列各题中的两项是同类项的是()A.ab2与﹣B.xy3与x2y2C.x2与y2D.32与﹣5【考点】同类项.【分析】根据同类项的定义对四个选项进行逐一分析即可.【解答】解:A、ab2与﹣ba2中所含字母的指数不相等,不是同类项,不符合题意;B、xy3与x2y2中所含字母的指数不相等,不是同类项,不符合题意;C、x2与y2中所含字母不同,不是同类项,不符合题意;D、所有常数项都是同类项,符合题意.故选D.9.若(a﹣2)2+|b+3|=0,则(a+b)2015的值是()A.1 B.0 C.2015 D.﹣1【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,根据乘方法则计算即可.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2015,=﹣1,故选:D.10.根据如图所示的程序计算,若输入x的值为﹣1,则输出y的值为()A.﹣2 B.1 C.2 D.4【考点】有理数的混合运算.【分析】观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:(﹣1)2×2﹣4.由于(﹣1)2×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故选:D.11.用边长为1的正方形纸板,制成一副七巧板(如图①),将它拼成“小天鹅”图案(如图②),其中阴影部分的面积为()A.B.C.D.【考点】七巧板.【分析】根据图示,可得阴影部分的面积等于边长为1的正方形的面积的一半减去两条直角边的长度都是的直角三角形的面积.【解答】解:1×1÷2﹣×÷2=﹣=∴阴影部分的面积为.故选:D.12.观察下列等式:21=2,22=4,23=8,24=16,25=52…通过观察,用你所发现的规律确定22015的个位数字是()A.2 B.4 C.6 D.8【考点】尾数特征.【分析】由题中可以看出,以2为底的幂的末位数字是以2,4,8,6四个数字为一个周期依次循环的,再根据2015÷4=503…3,得出22015的个位数字是8.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴以2为底的幂的末位数字是以2,4,8,6四个数字为一个周期依次循环的,∵2015÷4=503…3,所以22015的个位数字与23的个位数字相同是:8,故选D.二、填空题(每题3分,共18分)13.如果零上2℃记作+2℃,那么零下5℃记作﹣5℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵零上2℃记作+2℃,∴零下5℃记作﹣5℃.故答案为:﹣5.14.绝对值小于4的所有整数的和是0.【考点】有理数的加法;绝对值.【分析】找出绝对值小于4的所有整数,求出之和即可.【解答】解:绝对值小于4的所有整数是﹣3,﹣2,﹣1,0,1,2,3,其和为﹣3+(﹣2)+(﹣1)+0+1+2+3=0.故答案为:015.若﹣32m y3与2x4y n是同类项,那么m﹣n=﹣1.【考点】同类项.【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:2m=4,3=n,∴m=2,n=3,∴m﹣n=2﹣3=﹣1故答案为:﹣116.有一次小明在做24点游戏(24点游戏指的是用“+、﹣、×、÷和括号”将抽到的数字连在一起,使得它们的结果为24 )时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请你写出一个成功的算式:3×7+4﹣1=24.【考点】有理数的混合运算.【分析】利用24点游戏规则判断即可.【解答】解:根据题意得:3×7+4﹣1=24(答案不唯一),故答案为:3×7+4﹣1(答案不唯一)17.若代数式2x2+3y+7的值为8,那么代数式8x2+12y+10的值为14.【考点】代数式求值.【分析】应用代入法,把代数式2x2+3y+7的值代入化简后的代数式8x2+12y+10,求出它的值为多少即可.【解答】解:∵2x2+3y+7=8,∴8x2+12y+10=4(2x2+3y+7)﹣18=4×8﹣18=32﹣18=14故答案为:14.18.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为4a﹣8b.【考点】列代数式.【分析】剪下的两个小矩形的长为a﹣b,宽为(a﹣3b),所以这两个小矩形拼成的新矩形的长为a﹣b,a﹣3b,然后计算这个新矩形的周长.【解答】解:新矩形的周长为2(a﹣b)+2(a﹣3b)=4a﹣8b.故答案为4a﹣8b.三、解答题(共9小题,满分58分)19.计算(1)﹣22+|5﹣8|+24÷(﹣3)×;(2)(﹣1)2014+(﹣2×)2015﹣(﹣3)2﹣(﹣2)3.【考点】有理数的混合运算.【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据幂的乘方、有理数的加法和减法可以解答本题.【解答】解:(1)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3﹣24×=﹣4+3﹣=;(2)(﹣1)2014+(﹣2×)2015﹣(﹣3)2﹣(﹣2)3.=1+(﹣1)2015﹣9﹣(﹣8)=1+(﹣1)+(﹣9)+8=﹣1.20.化简(1)3(2x2﹣y2)﹣2(3y2﹣2x2)(2)2(3x2y+5xy2)﹣9x2y﹣(6x2y+2xy2﹣12x2y)【考点】整式的加减.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2(2)原式=6x2y+10xy2﹣9x2y﹣6x2y﹣2xy2+12x2y=3x2y+8xy221.先化简再求值:5x2﹣[2xy﹣3×(xy+2)+4x2],其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=5x2﹣2xy+xy+6﹣4x2=x2﹣xy+6,当x=﹣2,y=时,原式=4+1+6=11.22.已知:a、b互为相反数,c、d互为倒数,m的绝对值为2.求:m2﹣的值.【考点】代数式求值.【分析】依据相反数、倒数和绝对值的性质得到a+b=0,cd=1,m=±2,然后代入求解即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.当m=2时,原式=4﹣0﹣2+0=2,当m=﹣2时,原式=4﹣0+2+0=6.23.如图,大正方形的边长为a,小正方形的边长为2,求阴影部分的面积.【考点】列代数式.【分析】阴影部分的面积=S△DGF +S△GFB.【解答】解:阴影部分的面积=GF•DG+GF•CG=GF•CD=×2•a.=a.24.我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是5,数轴上表示数﹣2的点和表示数5的点之间的距离是7,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是2.(2)数轴上点A用数a表示,若|a|=5,那么a的值为±5.(3)数轴上点A用数a表示,若|a﹣3|=5,利用数轴及绝对值的几何意义写出a的值是﹣2或8.【考点】数轴;绝对值.【分析】原式各项根据题中数轴上两点距离公式计算即可.【解答】解:(1)数轴上表示数8的点和表示数3的点之间的距离是5,数轴上表示数﹣2的点和表示数5的点之间的距离是7,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是2;(2)数轴上点A用数a表示,若|a|=5,那么a的值为±5;(3)数轴上点A用数a表示,若|a﹣3|=5,即a﹣3=5或a﹣3=﹣5,利用数轴及绝对值的几何意义写出a的值是﹣2或8.故答案为:(1)5,7,2;(2)±5;(3)﹣2或825.如表记录的是泗河今年某一周内的水位变化情况,上周末(上个星期日)的水位已达到15米,(正号表示水位比前一天上升,负号表示水位比前一天下降)(1)本周哪一天河流的水位最高?哪一天河流的水位最低?最高水位和最低水位分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?(3)由于下周将有大降雨天气,工作人员预测水位将会以每小时0.05米的速度上升,当水位达到16.6米时,就要开闸泄洪,请你计算下,再经过几个小时工作人员就需要开闸泄洪?【考点】正数和负数.【分析】(1)根据有理数的加法,有理数的大小比较,可得答案;(2)根据有理数的减法,可得答案;(3)根据水位差除以上升的速度,可得答案.【解答】解:(1)周一15+0.2=15.2m,周二15.2+0.8=16m,周三16﹣0.4=15.6m,周四15.6+0.2=15.8m,周五15.8+0.3=16.1m,周六16.1﹣0.5=15.5m,周日15.5﹣0.2=15.3m,周五水位最高是16.1m,周一水位最低是15.3m.(2)15.3﹣15=0.3m,和上周末相比水位上升了0.3m(3)(16.6﹣15.3)÷0.05=24小时,答:再经过24个小时工作人员就需要开闸泄洪.26.探索规律:观察下列算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=19=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+29=152;(2)请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)=(n+1)2;(3)请用上述规律计算:41+43+45+…+77+79.【考点】规律型:数字的变化类.【分析】(1)根据1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,可知,=2;=3;=4;=5;则得1+3+5+7+9+…+29的值.(2)由(1)可猜到其和为该组数据平均数的平方;(3)将41+43+45+…+77+79看作1+3+5+…+39+41+43+45+…+77+79与1+3+5+…+39的差.【解答】解:(1)有规律可知,1+3+5+7+9+…+29=()2=152,故答案为:152;(2)由(1)可知1+3+5+7+9+…+(2n﹣1)+(2n+1)=[]2=(n+1)2,故答案为:(n+1)2;(3)41+43+45+…+77+79=(1+3+5+...+39+41+43+45+...+77+79)﹣(1+3+5+ (39)=()2﹣()2=1600﹣400=1200.27.一辆大客车从甲地开往乙地,车上原有(5a﹣2b)人,中途停车一次,有一些人下车,此时下车的人数比车上原有人数一半还多2人,同时又有一些上车,上车的人数比(13a﹣10b)少3人.(1)用代数式表示中途下车的人数;(2)用代数式表示中途下车、上车之后,车上现在共有多少人?(3)当a=10,b=9时,求中途下车、上车之后,车上现在的人数?【考点】代数式求值;列代数式.【分析】(1)直接利用下车的人数比车上原有人数一半还多2人,得出中途下车的人数;(2)利用车上原有(5a﹣2b)人﹣下车人数+上车人数=车上现有人数,进而得出答案;(3)利用(2)中所求,将已知数代入求出答案.【解答】解:(1)∵车上原有(5a﹣2b)人,下车的人数比车上原有人数一半还多2人,∴中途下车的人数为:(5a﹣2b)+2;(2)由题意可得:(5a﹣2b)﹣[(5a﹣2b)+2]+(13a﹣10b)﹣3=9a﹣6b﹣5;答:车上现在共有9a﹣6b﹣5人;(3)∵a=10,b=9,∴车上现在的人数=9a﹣6b﹣5=90﹣54﹣5=31(人),答:车上现在的人数31人.2017年2月7日。

鲁教版七年级(上)期中数学试卷(含答案)(五四制)

鲁教版七年级(上)期中数学试卷(含答案)(五四制)

七年级数学上学期期中试题(时间120分钟,满分120分)得分表题号 一 二三总分19 20 21 22 23 24 25 26 得分 阅卷人一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分.把正确选项的字母代号填在下面的答案表中)题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案1.下列各数是无理数的是( )A. 3.14B.16-C.3πD.362.如图,在Rt △ABC 中,∠C =90°,D 为AC 上一点,且DA =DB =5,又△DAB 的面积为10,那么DC 的长是 ( )A. 3B. 4C.5D. 63.如图,在ABC 中,DE 是AC 的垂直平分线,AE =3cm , ABD 的周长为12cm ,ABC 的周长为 ( ) cm .A. 15B. 16C.17D.18 4.在下列长度的四组线段中,不能组成直角三角形的是( ). A .a =9 b =41 c =40 B .a =b =5 C =52 C .a :b :c =3:4:5 D .a =11 b =12 c =15得分 阅卷人 第2题AED CB第3题图5.等腰三角形的腰长为10,底边长为12,则这个等腰三角形的面积是( )A.24 B.48 C.96 D.366.三角形的三个内角比为1∶2∶3,最小的边长为1,则最大的边长为( )A.2 B.4 C.6 D.87.下列图形不是轴对称图形的是()8.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为()A、6cm2B、30cm2C、24cm2D、72cm29.如图所示,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在()(A)在AC、BC两边高线的交点处(B)在AC、BC两边中线的交点处(C)在AC、BC两边垂直平分线的交点处;(D)在A、B两内角平分线的交点处10.BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()(A)25°(B)27°(C)30°(D)45°11. 如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()(A)1︰1︰1 (B)1︰2︰3 (C)2︰3︰4 (D)3︰4︰5第12题图12.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△ADE等于()A.2:5 B.16:25 C.14:25 D.14:21 CBAD AC EB10题ABO第11题图二、填空题(本大题共6小题,每小题3分,共18分, 只要求填出最后结果)13.36的平方根是.14.等腰三角形的一个外角是100°,它的底角__________. 15.如图是“俄罗斯方块”游戏中的一个图案,由四个完全相同的小正方形拼成,则∠ABC 的度数为__________.16.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2,则PQ范围是 .17.如图,一架梯子斜靠在一面墙上,梯子顶端离地面8米,底端距墙面6米,当梯子滑动到与地面成30︒角时,梯子的顶端向下水平滑动了 米18.如图,△ABC 中,AB =AC ,∠BAC 和∠ACD 的平分线相交于点D ,∠ADC =130°,则∠BAC 的度数__________.三、解答题(本大题共8小题,共66分)19.(本题满分6分) 若622=----y x x 求y x 的算术平方根.得分 阅卷人得分 阅卷人第18题第16题 第17题AC用直尺和圆规作图(不写做法,只保留作图痕迹): (1)在线段AB 上找一点P , 使点P 到BC ,AC 所在直线的距离相等;(2)在线段AC 上找一点Q , 使点Q 到点B ,C 的距离相等.21.(本题满分9分) 如图,已知OA=O B.(1)说出数轴上点A 所表示的数; (2)比较点A 所表示的数与-3.5的大小;(3)在数轴上找出表示数17的点.(保留作图痕迹)22.(本题满分9分)如图,△ABC 中,D 是BC 上的一点, 若AB =10,BD =6,AD =8,AC =17, 求△ABC 的面积。

2015—2016学年度第一学期七年级数学期中试卷

2015—2016学年度第一学期七年级数学期中试卷

2015—2016学年度第一学期七年级数学期中试卷注意事项:全卷满分100分,考试时间100分钟.考生答题全部答在答题卡上,答在本试卷上无效.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.答选择题必须用2B 钢笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定地,在其他位置答题一律无效. 作图必须用2B 钢笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2-的相反数是( )A .12 B .2 C .12- D .2- 2.2008年我国的国民生产总值约130800亿元,那么130800用科学记数法表示正确的是( ) A .51.30810⨯ B .413.0810⨯ C .41.30810⨯D .21.30810⨯3.下列各组是同类项的一组是( ) A .5xy 与2xyzB .2与7-C .22x y -与25y xD .3ac 与7bc4.下列各组数中,数值相等的是( ) A .23和32B .23-和()23-C .()32-和32-D .()2--和2--5.单项式222x yz -的系数和次数分别是( )A .2-,2B .2-,5C .12-,2D .12-,56.以下各正方形的边长是无理数的是( ) A .面积为3的正方形 B .面积为1.44的正方形 C .面积为25的正方形 D .面积为16的正方形二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 7.112-的倒数是__________;()20151-=__________. 8.比较大小:234⎛⎫- ⎪⎝⎭__________12-)(填“<”、“=”、“>”).9.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是__________.10.多项式232x x -+-的次数为__________,项数为__________.11.钢笔每支2元,钢笔每支0.5元,n 支钢笔和m 支钢笔共__________元. 12.有理数a 、b 、c 在数轴上的位置如图,化简a b c b +--的结果为__________.13.如图所示的阴影部分面积用代数式表示为__________.14.长方形的周长为53a b +,其中一边长为2a b -,则这个长方形的另一边长为__________.(写出化简后的结果)15.已知2235x x -+的值为9,则代数式2468x x -+的值为__________.16.观察下列图形,它们是按一定规律排列的,依照此规律,第n 个图形有__________个太阳.(图4)(图3)(图2)(图1)三、解答题(本大题共8小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(4分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.132-,4,2.5,1,7,5- 18.计算:((1)(2)每题4分,(3)(4)每题5分,共18分) (1)24+(-14)+(-16)+8;(2)()142722449-÷⨯÷-;(3)()357124468⎛⎫-+-⨯- ⎪⎝⎭;(4)()()341110.5243⎡⎤---÷⨯--⎣⎦.19.计算:(第(1)题4分,第(2)(3)题5分,共14分)(1)3257x y x y -+--(2)()()5322a a b a b +---(3)()()22222222x y xy x y x xy y +---- 20.(6分)先化简再求值:222214332332x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中34x =,1y =-.21.(6分)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由. 22.(5分)如图,两摞规格完全相同的课本整齐叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本课本的厚度为__________cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当56x =时,若从中取走14本,求余下的课本的顶部距离地面的高度.23.(5分)从2开始的连续偶数相加,它们和的情况如下表:(1)根据表中的规律,直接写出24681012+++++=__________.(2)根据表中的规律猜想:24682S n =+++++=__________(用n 的代数式表示) (3)利用上题中的公式计算102104106200++++的值(要求写出计算过程). 24.(10分) 【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()3-④,读作“3-的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(0a ≠)记作n a ,读作“a 的圈n 次方”. 【初步探究】(1)直接写出计算结果:2=█__________,12⎛⎫-= ⎪⎝⎭█__________.(2)关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数n ,1=1█C .3=4██D .负数的圈奇数次方结果是负数,负数的圈子偶数次方结果是正数 【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?=(12)2=2×122④=2÷2÷2÷2除方(1)试一试:依照上面的算式,将下列运算结果直接写成幂.的形式. ()3=-█__________; 5=█__________;1=2⎛⎫- ⎪⎝⎭█__________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于__________; (3)算一算:23111123423⎛⎫⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭███.。

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( ) A 2 B 3 C 6 D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π= ,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分) (1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=-(3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+ 23-+;35-+- ()()35-+-;05+-()05+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分)1.对任意有理数,,,a b c d ,规定一种新运算:bc ad d c b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.若()1111112c a b a b =-++,()2222212c a b a b =-++,()3333312c a b a b =-++…, ()1007100710071007200721b a b ac ++-=.设1231007S c c c c =++++…,求S 的最大值和最小值,并给出相应的分组方案.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>==(2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。

人教版七年级上册试卷2015-2016期中测试答案.docx

人教版七年级上册试卷2015-2016期中测试答案.docx

北京市第五十六中学2015-2016学年度第一学期期中考试初一年级数学参考答案及评分标准二. 11. 水位下降5m 12. 13 ,-3 13. 3-2,3 14.m=1,n=1 15. 10m+n 16. 2 17. 0 18. 619. 17-,18,1(1)-n n三.用心算一算:(本题共24分,每小题4分)20. 原式=12+18-7-15 ------------------------2分=30-22=8 ------------------------4分21. 原式=721272-⨯⨯ ------------------------2分 =12- ------------------------4分 22. 原式=-4-4-8-8 ------------------------2分=-24 ------------------------4分23. 原式=12-52--1 ------------------------2分 =-4 ------------------------4分 四. 化简:(本题共8分,每小题4分)24. 原式=26x - ------------------------4分 25. 原式=222243+-+-x x x x -----------------------2分 =229-+x ------------------------4分 五.先化简,再求值:(本题共5分)26. 原式=224a 2a 64a 4a 10---++ ----------2分= 2a+4 ----------------------------------------4分当a=-1 时,原式= 2 ----------------------------5分六.(本题共23分)27. (1)总收入130万元,总支出35万元?-----------------2分(2)总收入+130万元,总支出-35万元 ---------------4分(3)95万元---------------5分28.215(2) 2.50352-<--<-<<-<----------------2分画图----------------3分29(1)剩余部分的面积24-x ab,二次二项式,二次项系数的和是-3.----------------2分(2)22-x ab----------------2分(3)22-x rπ----------------3分30(1)5 ----------------2分(2)x=-1 ----------------2分(3)x=2,x=-5----------------3分初中数学试卷桑水出品。

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中数学试卷(含答案)

2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A 2B 3C 6D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π=,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分)(1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=- (3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+23+;35-+-)()35-+-;05+-()5+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分) 1.对任意有理数,,,a b c d ,规定一种新运算:bc ad dc b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>== (2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max 100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。

山东省济宁市七年级(上)期中数学试卷1

山东省济宁市七年级(上)期中数学试卷1

8.
E.绝对值等于它本身的数是正数和零 F.立方等于它本身的数只有 1 和 0 G.有理数是自然数和负数的统称
H.有理数就是正有理数、负有理数、整数、分数和零的统称
9. 已知:|a|=3,|b|=4,则 a-b 的值是(
A. −1
B. −1 或−7

C. ±1 或±7
D. 1 或 7
10. 若“!”是一种数学运算符号,并且 1!=1,2!=2×1=2,3!=3×2×1=6,4!

14. 如图,两个正方形的面积分别为 16、9,两阴影部分的面
积分别为 a、b(a>b),则 a-b=

第 1 页,共 9 页
15. 如图,半径为 1 个单位长度的圆从点 A 沿数轴向右滚动(无滑动)一周到达点 B,
若点 A 对应的数是-1,则点 B 对应的数是

三、计算题(本大题共 2 小题,共 18.0 分) 16. 计算:
命名以及整式的概念解答.
8.【答案】A
【解析】
解:A.绝对值等于它本身的数是正数和零,此选项说法正确; B.立方等于它本身的数只有 1,0 和-1,此选项说法错误; C .有理数是整数和分数的统称,此选项说法错误; D.有理数 就是整数、分数的统称,此选项说法错误;
故选:A. 根据绝对值定义,立方的定义和有理数的概念逐一判断可得. 本题主要考查有理数的乘方,解题的关键是掌握绝对值定义,立方的定义和
=4×3×2×1,…,则 100!98!的值为( )
A. 5049
B. 99!
C. 9900
D. 2!
二、填空题(本大题共 5 小题,共 15.0 分)
11. 如果 a 的相反数是 1,那么 a2018 等于

济宁市邹城市2015-2016学年七年级上期中数学试卷含答案解析

济宁市邹城市2015-2016学年七年级上期中数学试卷含答案解析

10.观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第 10 个
单项式应是(
)
A.39x10B.﹣39x10 C.﹣43x10 D.43x10
2015-2016 学年山东省济宁市邹城市七年级(上)期中 数学试卷
一、选择题(共 10 小题,每小题 3 分,满分 30 分)
1.﹣ 的相反数是( )
A. B.﹣ C.5 D.﹣5 【考点】相反数. 【分析】求一个数的相反数,即在这个数的前面加负号.
【解答】解:﹣ 的相反数是 . 故选:A. 【 点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正 数的相反数是负数,一个负数的相反数是正数,0 的相反数是 0.学生易把相反数的意义与 倒数的意义混淆.
2.下列去括号的结果中,正确的是(
)
A.﹣2(a﹣1)=﹣2a﹣1 B.﹣2(a﹣1)=﹣2a+1 C.﹣2(a﹣1)=﹣2a﹣2 D. ﹣2(a﹣1)
=﹣ 2a+2
【考 分点 析】去 根括 据号 去与 括添 号括 法号 则对.四个选项逐一进行分析,要注意括号前面的符号,以选用合适
的法则. 【解答】解:A 、﹣2(a﹣1)=﹣2a+2,故本选项错误;
)
A.﹣22 与(﹣2)2 B. 与( )3 C.﹣|﹣2|与﹣(﹣D2).(﹣ 3)3 与﹣33
8.若有理数 m,n 满足 mn>0,且 m+n<0,则下列说法正确的是(
ቤተ መጻሕፍቲ ባይዱ
)
A.m,n 可能一正一负 B.m,n 都是正数
C.m,n 都是负数 D.m,n 中可能有一个为 0
9.已知 a,b 互为倒数,|c﹣1|=2,则 abc 的值为( ) A.﹣1 或 3 B.﹣1 C.3 D.±2

山东省济宁市 七年级(上)期中数学试卷-(含答案)

山东省济宁市 七年级(上)期中数学试卷-(含答案)

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. -12的倒数为( )A. −12B. 12C. 2D. −22. 一种零件的直径尺寸在图纸上是30±0.020.03(单位:mm ),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过( )A. 0.03mmB. 0.02mmC. 30.03mmD. 29.98mm 3. 2016年我国约有9400000参加高考,将9400000用科学记数法表示为( )A. 9.4×106B. 9.4×105C. 0.94×106D. 94×1044. 多项式1+2xy -3xy 2的次数及最高次项的系数分别是( )A. 5,−3B. 2,−3C. 3,−3D. 2,3 5. 下列各题中,合并同类项结果正确的是( )A. 2a 2+3a 2=5a 2B. 2a 2+3a 2=6a 2C. 4xy −3xy =1D. 2m 2n −2mn 2=06. 关于x 的多项式3x 3+2mx 2-5x +7与多项式8x 2-3x +5相加后不含二次项,则常数m 的值为( ) A. 2 B. −4 C. −2 D. −87. 若3a 2-2b +2的值是-1,则5+4b -6a 2的值是( )A. 1B. 4C. 7D. 11 8. 下列运算中,结果最小的是( )A. −(−3−2)2B. (−3)×(−2)C. (−3)2÷(−2)2D. −32÷−29. 如图,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为().A. 7B. 3C. −3D. −210. 已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测32016的个位数字是( ) A. 1 B. 3 C. 7 D. 9 二、填空题(本大题共5小题,共15.0分)11. 写出一个含有字母x ,y ,系数为-8,次数为4的单项式______ .12. 若-5x n y 2与12xy 2m 是同类项,则(mn )2016= ______ .13. 若|x |=3,y 2=16,且xy <0,则x +y = ______ .14. 已知x 、y 为有理数,现规定一种新运算“※”,满足x ※y =xy +1,则2※4的值为______ .15. 为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是______ 元(用含a,b的代数式表示).三、计算题(本大题共2小题,共17.0分)16.计算:(1)-14-2123+314-213(2)(+23)×14+(-57)×14+(-26)×14(3)-14-[-2+(1-0.2÷35)×(-3)].17.先化简,再求值(1)5(3a2b-ab2)-3(ab2+5a2b),其中a=13,b=-12;(2)-2(2a+b)2-3(2a+b)+8(2a+b)2-6(2a+b),其中a=-54,b=12.四、解答题(本大题共5小题,共38.0分)18.在数-5,1,-3,5,-2中,其中最大的数是a,绝对值最小的是b,(1)求a,b的值;(2)若|x+a|+|y-b|=0,求(x-y)÷y的值.19.济宁市某出租车司机小李,一天下午以汽车南站为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13,+10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出发点汽车南站多远?在汽车南站的什么方向?(2)若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?20. 定义:a 是不为1的有理数,我们把11−a称为a 的差倒数.如:2的差倒数是11−2=-1,-1的差倒数是11−(−1)=12.已知a 1=13.(1)a 2是a 1的差倒数,则a 2= ______ ;(2)a 3是a 2的差倒数,则a 3= ______ ; (3)a 4是a 3的差倒数,则a 4= ______ ; …,以此类推,则a 2016= ______ .21. 已知代数式ax 5+bx 3+3x +c ,当x =0时,该代数式的值为-1.(1)求c 的值;(2)已知当x =1时,该代数式的值为-1,试求a +b +c 的值;(3)已知当x =3时,该代数式的值为9,试求当x =-3时该代数式的值.22. 沙坪坝三社电器销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“11/11”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x 台(x >10).(1)若该客户按方案一购买,需付款______ 元.(用含x 的代数式表示) 若该客户按方案二购买,需付款______ 元.(用含x 的代数式表示) (2)若x =30,通过计算说明此时按哪种方案购买较为合算?(3)当x =30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.答案和解析1.【答案】D【解析】解:-的倒数为-2.故选:D.依据倒数的定义回答即可.本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.【答案】C【解析】解:一种零件的直径尺寸加工超过标准尺寸时,记为+0.03,低于标准尺寸时,记作-0.02,∴加工要求尺寸最大不超过30+0.03=30.03mm,故选C.首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解题关键是理解“正”和“负”的相对性,注意正负数在实际生活中的应用.3.【答案】A【解析】解:9400000=9.4×106,故选:A.数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查的是科学记数法.仸意一个绝对值大于10或绝对值小于1的数都可写成a×10n的形式,其中1≤|a|<10.对于绝对值大于10的数,指数n等于原数的整数位数减去1.4.【答案】C【解析】解:多项式1+2xy-3xy2的次数是3,最高次项是-3xy2,系数是-3.故选:C.根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是-3xy2,系数是数字因数,故为-3.此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别.5.【答案】A【解析】解:A、2a2+3a2=5a2,正确;B、2a2+3a2=5a2,错误;C、4xy-3xy=xy,错误;D、原式不能合并,错误,故选:A.原式各项合并得到结果,即可做出判断.此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.6.【答案】B【解析】解:3x3+2mx2-5x+7+8x2-3x+5=3x3+(2m+8)x2-8x+12令2m+8=0,∴m=-4,故选(B)将两个多项式相加后,然后合并同类项,令含x2的项的系数化为0即可.本题考查多项式加减,不含某一项只需要令其系数为0即可.7.【答案】D【解析】解:由题意可知:3a2-2b=-3,∴5+4b-6a2=5-2(3a2-2b)=5+6=11故选(D)根据题意可知3a2-2b+2=-1,所以3a2-2b=-3,然后整体代入即可求出答案.本题考查代数式求值,解题的关键是根据题意得出3a2-2b=-3,本题考查整体思想,属于基础题型8.【答案】A【解析】解:A、原式=-(-5)2=-25,B、原式=6,C、原式=9÷4=,D、原式=-9÷(-2)=4.5,-25<<4.5<6,故选A.根据有理数的运算法则分别计算,再比较大小即可求解.本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.也考查了有理数大小比较.9.【答案】D【解析】【分析】本题考查数轴上点的坐标变化和平移规律:左减右加.首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解. 【解答】解:设A点表示的数为x,由题意得:x-2+5=1,解得:x=-2.故选D.10.【答案】A【解析】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2016÷4=504,∴32016的个位数字与循环组的第4个数的个位数字相同,是1.故选:A.观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2016÷3,根据余数的情况确定答案即可.本题考查了尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.11.【答案】-8x3y【解析】解:根据单项式系数和次数的定义,一个含有字母x、y且系数为-8,次数为4的单项式可以写为:-8x3y.故答案为:-8x3y.要根据单项式系数和次数的定义来写,单项式中数字因数叫做单项式的系数,所有字母指数的和是单项式的次数.此题主要考查了单项式,要注意所写的单项式一定要符合单项式系数和次数的定义.12.【答案】1【解析】解:∵-5x n y2与12xy2m是同类项,∴n=1,2m=2,解得m=1,∴(mn)2016=(1×1)2016=1,故答案为:1.由同类项的定义可求得m、n的值,代入可求得答案.本题主要考查同类项的定义,掌握同类项中相同字母的指数相同是解题的着急.13.【答案】-1或1【解析】解:∵|x|=3,y2=16,∴x=±3,y=±4,∵xy<0,∴x=3,y=-4;x=-3,y=4,∴x+y=3-4=-1或x+y=-3+4=1,故答案为:-1或1.由|x|=3,得出x=±3;y2=16,得出y=±4.再利用xy<0这一条件确定x和y的具体取值,然后代入x+y,从而得出结果.本题考查了有理数的加法,解决此类问题的关键是先根据绝对值和平方的定义求出未知数的值,再利用所给的条件对值进行筛选,必须同时满足题中条件的未知数的值才是所求的代数式中未知数的值,代入求解.14.【答案】9【解析】解:根据题意得:原式=8+1=9,故答案为:9原式利用题中的新定义计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【答案】(100a+60b)【解析】解:100a+(160-100)b=100a+60b.故答案为:(100a+60b).因为160>100,所以其中100度是每度电价按a元收费,多出来的60度是每度电价按b元收费.该题要分析清题意,要知道其中100度是每度电价按a元收费,多出来的60度是每度电价按b元收费.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.16.【答案】解:(1)-14-2123+314-213=(-14+314)+(-2123-213)=3-24 =-21(2)(+23)×14+(-57)×14+(-26)×14=(+23-57-26)×14=(-60)×14=-15(3)-14-[-2+(1-0.2÷35)×(-3)]=-1-[-2+23×(-3)]=-1-[-2-2]=-1+4=3【解析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)首先计算小括号里面的运算,然后计算中括号里面的运算,最后计算中括号外面的运算,求出算式的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法、乘法运算定律的应用.17.【答案】解:(1)原式=15a2b-5ab2-3ab2-15a2b=-8ab2,当a=13,b=-12时,原式=-23;(2)原式=6(2a+b)2-9(2a+b),当a=-54,b=12时,2a+b=-2,则原式=24+18=42.【解析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,以及整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.18.【答案】解:(1)因为|-5|=5,|1|=1,|-3|=3,|5|=5,|-2|=2,5>3>2>1所以绝对值最小的数是1,即b=1.因为5>1>-2>-3>-5,所以最大的数是5,即a=5.答:a=5,b=1(2)因为|x+a|+|y-b|=0,即|x+5|+|y-1|=0所以|x+5|=0,|y-1|=0所以x=-5,y=1原式=(-5-1)÷1=-6.【解析】(1)先计算5个数的绝对值,再比较它们的大小,确定a、b;(2)根据非负数的和为0,计算出x、y的值,再计算(x-y)÷y的值.本题考查了绝对值、有理数的大小比较、非负数的和为0及有理数的运算.一个数的偶次方、一个数的绝对值、一个非负数的偶次方根都是非负数.若几个非负数的和为0,那么这几个非负数分别为0.19.【答案】解:(1)+15-2+5-13+10-7-8+12+4-5+6=17(千米).答:小李距下午出车时的出发点17千米,在汽车南站的北面;(2)15+2+5+13+10+7+8+12+4+5+6=87(千米),87×3.5=304.5(元).答:这天下午小李的营业额是304.5元.【解析】(1)把所有行车记录相加,然后根据和的正负情况确定最后的位置;(2)求出所有行车记录的绝对值的和,再乘以3.5即可.此题考查了正数和负数,以及有理数加减法的应用,弄清题意是解本题的关键.20.【答案】32;-2;13;-2【解析】解:(1)当a1=时,a2===,故答案为:;(2)当a2=时,a3===-2,故答案为:-2;(3)当a3=-2时,a4===,故答案为:;(4)由a1=、a2=、a3=-2、a4=可知,这列数每3个数一循环,∴2016÷3=672,∴a2016=a3=-2,故答案为:-2.(1)根据差倒数的定义列式计算可得;(2)根据差倒数的定义列式计算可得;(3)根据差倒数的定义列式计算可得;(4)由a1=、a2=、a3=-2、a4=可知,这列数每3个数一循环,据此可得.此题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.21.【答案】解:(1)∵当x=0时,该代数式的值为-1,∴c=-1;(2)∵当x=1时,该代数式的值为-1,∴a+b+3+c=-1,∴a+b+c=-4;(3)∵当x=3时,该代数式的值为9,∴243a+27b+9+c=9,∴243a+27b+9=9-c,则当x=-3时,ax5+bx3+3x+c=-243a-27b-9+c=-(243a+27b+9)+c=c-9+c=2c-9=2×(-1)-9=-11.【解析】(1)将x=0时,代数式的值为-1代入可得;(2)将x=1时,代数式的值为-1代入即可得;(3)由x=3时,代数式的值为9可得243a+27b+9+c=9,即243a+27b+9=9-c,再整体代入x=-3时,ax5+bx3+3x+c=-243a-27b-9+c=-(243a+27b+9)+c.本题主要考查代数式的求值,熟练掌握整体代入得思想是解题的关键.22.【答案】200x+6000;180x+7200【解析】解:(1)800×10+200(x-10)=200x+6000(元),(800×10+200x)×90%=180x+7200(元);(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10微波炉送10台,再按方案二购买20台微波炉,共10×800+200×20×90%=11600(元).(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买10微波炉送10台,再按方案二购买20台微波炉更合算.本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年山东省济宁市邹城市七年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的相反数是()A.B.﹣ C.5 D.﹣52.(3分)下列去括号的结果中,正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.﹣2(a﹣1)=﹣2a+1 C.﹣2(a﹣1)=﹣2a ﹣2 D.﹣2(a﹣1)=﹣2a+23.(3分)如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.b>a>0>c B.a<b<0<c C.b<a<0<c D.a<b<c<04.(3分)某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃5.(3分)下列说法中不正确的是()A.最小的正整数是1 B.最大的负整数是﹣1C.有理数分为正数和负数D.绝对值最小的有理数是06.(3分)下面运算正确的是()A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+5x2=7x4D.5y2﹣2y2=3y2 7.(3分)下面各组数中,相等的一组是()A.﹣22与(﹣2)2 B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣338.(3分)若有理数m,n满足mn>0,且m+n<0,则下列说法正确的是()A.m,n可能一正一负B.m,n都是正数C.m,n都是负数D.m,n中可能有一个为09.(3分)已知a,b互为倒数,|c﹣1|=2,则abc的值为()A.﹣1或3 B.﹣1 C.3 D.±210.(3分)观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x10二、填空题(共8小题,每小题3分,满分24分)11.(3分)若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作米.12.(3分)比较大小:(用“>或=或<”填空).13.(3分)某文具店的钢笔每支m元,练习本每本n元,小颖买了2支钢笔和3本练习本,应付元.14.(3分)请写出一个与5a2b是同类项的代数式.15.(3分)太阳的半径约为696 000千米,用科学记数法表示数696 000为.16.(3分)已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为.17.(3分)若﹣1<a<3,则化简|﹣1﹣a|+|3﹣a|的结果为.18.(3分)用火柴按图中的方式撘图形:按照这种方式撘下去,撘第n个图形需要根火柴.三、解答题(共7小题,满分46分)19.(6分)已知下列各有理数:5,﹣3.5,0,,2,﹣.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“>”号把这些数连接起来.20.(6分)计算:(1)(﹣15)+(+7)﹣(﹣3);解:原式=(2).解:原式=21.(6分)如图,小刚有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题.(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是,,最大值是.(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是,,最大值是.(3)从中抽出4张卡片,用学过的运算方式,使结果为24,请写出一个运算式子:.22.(6分)(1)化简:4x﹣5﹣3(x﹣2);(2)先化简,再求值:x2y+5xy﹣3(2x2y+xy),其中x=﹣,y=4.23.(6分)如图是一所住宅的建筑平面图(图中长度单位:m).(1)这所住宅的建筑面积是多少(用字母x,y的代数式表示)?(2)若x=3m,y=2.5m,要把卧室和客厅铺上木地板,则至少需要购买多少平方米的木地板?24.(8分)“十•一”黄金周期间,一农家花博园统计了10月1日至10月6日每天参观的人数及变化,如表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若10月1日的游客人数记为a人,请用a的代数式表示10月3日的游客人数(直接在横线上写出结果):.(2)若a=1000,花博园门票每人20元,问10月1日至6日期间游客人数最多一天门票收入多少元?25.(8分)阅读材料大数学家高斯在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:1×2=.2×.3×.如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4=;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21=;1×2+2×3+3×4+4×5+…+n(n+1)=.2015-2016学年山东省济宁市邹城市七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣的相反数是()A.B.﹣ C.5 D.﹣5【解答】解:﹣的相反数是.故选:A.2.(3分)下列去括号的结果中,正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.﹣2(a﹣1)=﹣2a+1 C.﹣2(a﹣1)=﹣2a ﹣2 D.﹣2(a﹣1)=﹣2a+2【解答】解:A、﹣2(a﹣1)=﹣2a+2,故本选项错误;B、﹣2(a﹣1)=﹣2a+2,故本选项错误;C、﹣2(a﹣1)=﹣2a+2,故本选项错误;D、2(a﹣1)=﹣2a+2,故本选项正确;故选:D.3.(3分)如图所示,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.b>a>0>c B.a<b<0<c C.b<a<0<c D.a<b<c<0【解答】解:因为在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0<c.故选:C.4.(3分)某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.5.(3分)下列说法中不正确的是()A.最小的正整数是1 B.最大的负整数是﹣1C.有理数分为正数和负数D.绝对值最小的有理数是0【解答】解:A、最小的正整数是1,正确;B、最大的负整数是﹣1,正确;C、有理数分为正数、零和负数,错误;D、绝对值最小的有理数是0,正确;故选:C.6.(3分)下面运算正确的是()A.3ab+3ac=6abc B.4a2b﹣4b2a=0 C.2x2+5x2=7x4D.5y2﹣2y2=3y2【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、合并同类项,系数相加字母和字母的指数不变,故C错误;D、合并同类项,系数相加字母和字母的指数不变,故D正确;故选:D.7.(3分)下面各组数中,相等的一组是()A.﹣22与(﹣2)2 B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【解答】解:A、﹣22=﹣4,(﹣2)2=4,故本选项错误;B、=,()3=,故本选项错误;C、﹣|﹣2|=﹣2,﹣(﹣2)=2,故本选项错误;D、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确.故选:D.8.(3分)若有理数m,n满足mn>0,且m+n<0,则下列说法正确的是()A.m,n可能一正一负B.m,n都是正数C.m,n都是负数D.m,n中可能有一个为0【解答】解:若有理数m,n满足mn>0,则m,n同号,排除A,D选项;且m+n<0,则排除m,n都是正数的可能,排除B选项;则说法正确的是m,n都是负数,C正确,故选:C.9.(3分)已知a,b互为倒数,|c﹣1|=2,则abc的值为()A.﹣1或3 B.﹣1 C.3 D.±2【解答】解:∵a,b互为倒数,∴ab=1,∵|c﹣1|=2,∴c=3或﹣1,∴abc=﹣1或3,故选:A.10.(3分)观察下列单项式的排列规律:3x,﹣7x2,11x3,﹣15x4,19x5,…,照这样排列第10个单项式应是()A.39x10B.﹣39x10C.﹣43x10D.43x10【解答】解:第n个单项式的符号可用(﹣1)n+1表示;第n个单项式的系数可用(4n﹣1)表示;第n个单项式除系数外可表示为x n.∴第n个单项式表示为(﹣1)n+1(4n﹣1)x n,∴第10个单项式是(﹣1)10+1(4×10﹣1)x10=﹣39x10.故选:B.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作+3米.【解答】解:若一个物体向东运动5米记作﹣5米,则该物体向西运动3米记作+3米.故答案为:+3.12.(3分)比较大小:<(用“>或=或<”填空).【解答】解:∵>,∴<;故答案为:<.13.(3分)某文具店的钢笔每支m元,练习本每本n元,小颖买了2支钢笔和3本练习本,应付2m+3n元.【解答】解:应付(2m+3n)元.故答案为:2m+3n.14.(3分)请写出一个与5a2b是同类项的代数式a2b.【解答】解:与5a2b是同类项的为a2b.故答案为:a2b.15.(3分)太阳的半径约为696 000千米,用科学记数法表示数696 000为 6.96×105.【解答】解:696 000=6.96×105,故答案为:6.96×105.16.(3分)已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为﹣1.【解答】解:原式=b+c﹣a+d=c+d﹣a+b=(c+d)﹣(a﹣b)=2﹣3=﹣1.17.(3分)若﹣1<a<3,则化简|﹣1﹣a|+|3﹣a|的结果为4.【解答】解:∵﹣1<a<3,∴﹣1﹣a<0,3﹣a>0,|﹣1﹣a|+|3﹣a|=﹣(﹣1﹣a)+(3﹣a)=1+a+3﹣a=4.故答案为:4.18.(3分)用火柴按图中的方式撘图形:按照这种方式撘下去,撘第n个图形需要2n+2根火柴.【解答】解:∵撘第1个图形需要4根火柴,撘第2个图形需要4+2=6根火柴,撘第3个图形需要4+2+2=8根火柴,…∴撘第n个图形需要4+2(n﹣1)=2n+2根火柴.故答案为:2n+2.三、解答题(共7小题,满分46分)19.(6分)已知下列各有理数:5,﹣3.5,0,,2,﹣.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“>”号把这些数连接起来.【解答】解:(1)如图所示,;(2)由图可知,5>2>>0>﹣>﹣3.5.20.(6分)计算:(1)(﹣15)+(+7)﹣(﹣3);解:原式=(2).解:原式=【解答】解:(1)原式=﹣15+7+3=﹣5;(2)原式=×4﹣+=+=.21.(6分)如图,小刚有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各题.(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是+3,+4,最大值是7.(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是﹣3,﹣5,最大值是15.(3)从中抽出4张卡片,用学过的运算方式,使结果为24,请写出一个运算式子:(﹣3)×(+4)×[(﹣5)+(+3)] .【解答】解:(1)从中抽出2张卡片,使这两张卡片上的数字之和最大,可抽取的卡片是+3,+4,最大值是7;(2)从中抽出2张卡片,使这两张卡片上的数字乘积最大,可抽取的卡片是﹣3,﹣5,最大值是15;(3)从中抽出4张卡片,用学过的运算方式,使结果为24,写出一个运算式子为(﹣3)×(+4)×[(﹣5)+(+3)].故答案为:(1)+3;+4;7;(2)﹣3;﹣5;15;(3)(﹣3)×(+4)×[(﹣5)+(+3)]22.(6分)(1)化简:4x﹣5﹣3(x﹣2);(2)先化简,再求值:x2y+5xy﹣3(2x2y+xy),其中x=﹣,y=4.【解答】解:(1)原式=4x﹣5﹣3x+6=x+1;(2)原式=x2y+5xy﹣6x2y﹣3xy=﹣5x2y+2xy,当x=﹣,y=4时,原式=﹣5﹣4=﹣9.23.(6分)如图是一所住宅的建筑平面图(图中长度单位:m).(1)这所住宅的建筑面积是多少(用字母x,y的代数式表示)?(2)若x=3m,y=2.5m,要把卧室和客厅铺上木地板,则至少需要购买多少平方米的木地板?【解答】解:(1)这所住宅的建筑面积是8xy+2xy+4xy+xy=15xy;(2)把x=3m,y=2.5m代入8xy+4xy=90(平方米).24.(8分)“十•一”黄金周期间,一农家花博园统计了10月1日至10月6日每天参观的人数及变化,如表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若10月1日的游客人数记为a人,请用a的代数式表示10月3日的游客人数(直接在横线上写出结果):a+450.(2)若a=1000,花博园门票每人20元,问10月1日至6日期间游客人数最多一天门票收入多少元?【解答】解:(1)10月3日的游客人数是a+450,故答案为:a+450;(2)10月1日人数:1000,10月2日人数:1000+(﹣100)=900,10月3日人数:900+(+550)=1450,10月4日人数:1450+(﹣200)=1250,10月5日人数:1250+(+600)=1850,10月6日人数:1850+(﹣300)=1550,故10月5日人数最多1850,最多一天门票收入37000元.25.(8分)阅读材料大数学家高斯在上学时,曾经研究过这样一个问题:1+2+3+4+5+…+100=?经过研究,这个问题的一般性结论是:1+2+3+4+5+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+4×5×…+n(n+1)=?观察下面三个特殊的等式:1×2=.2×.3×.如果将这三个等式的两边相加,你会有怎样的发现呢?解决问题要求:直接在横线上写出结果(式子或数值),不必写过程.(1)将材料中的三个特殊的等式两边相加,可以得到:1×2+2×3+3×4=×3×4×5;(2)探究并计算:1×2+2×3+3×4+4×5+…+20×21=×20×21×22;1×2+2×3+3×4+4×5+…+n(n+1)=n(n+1)(n+2).【解答】解:(1)三式相加得:1×2+2×3+3×4=(1×2×3﹣0×1×2+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=×3×4×5;(2)归纳总结得:原式=×20×21×22;原式=n(n+1)(n+2).故答案为:(1)×3×4×5;(2)×20×21×22;n(n+1)(n+2).。

相关文档
最新文档