极差、方差·要点详析
极差、方差、标准差
课程解读一、学习目标:1. 掌握极差、方差、标准差的概念。
2. 理解极差、方差、标准差均可反映一组数据的稳定性大小。
二、重点、难点:重点:掌握极差、方差和标准差的概念,理解极差、方差、标准差是刻画数据离散程度的几个统计量;会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性。
难点:理解数据的离散程度与三个“差”之间的关系。
三、考点分析:近几年来,与统计相关的知识以解答题的形式出现且逐年增多,从试题内容上看,由原来简单的求平均数、中位数、众数、方差等到要求用所学统计知识分析和处理数据,解决实际问题,试题考查从知识立意转向能力立意,选取与实际生活有关的问题,关注社会热点,题型越来越新颖。
知识梳理一、极差定义:一组数据中的最大数据与最小数据的差叫这组数据的极差. 表达式:极差=最大值-最小值 总结:1. 极差是刻画数据离散程度的最简单的统计量2. 特点是计算简单3. 极差利用了一组数据两端的信息,但不能反映出中间数据的分散状况注意:极差反映一组数据两个极端值之间的差异情况,仅由两个数据评判一组数据是不科学的,还要了解其他的统计量。
二、方差的概念:在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即:()()()[]2222121xx x x x x n s n -++-+-= .方差的计算: (1)基本公式:()()()[]2222121x x x x x x ns n -++-+-=.(2)简化计算公式(I ):])[(12222212x n x x x n s n -+++=.也可写成2222212)(1x x x x n s n -+++=.此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方. (3)简化计算公式(II ):]')'''[(12222212x n x x x n s n -+++=.当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,])'''[(12222212x n x x x n s n'-+++=,也可写成2222212)(1x x x x n s n '-'++'+'= .此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方. (4)新数据法:原数据1x ,2x ,…,n x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得1'x ,2'x ,…,n x '的方差就等于原数据的方差.三、标准差的概念和计算方差的算术平方根叫做这组数据的标准差,用“s ”表示,即:])()()[(1222212x x x x x x n s s n -++-+-== .方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.典型例题知识点一:极差例1.(1)一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 。
数据分析极差和方差
如果一组数据的方差较大,可能存在异常值,需 要进一步检查。
预测模型评估
在预测模型中,可以使用历史数据的方差来评估 模型的预测准确性。
方差在数据分析中的作用
描述数据分布
方差可以用来描述数据分布的情况, 了解数据的集中趋势和离散程度。
比较数据集
决策依据
在数据分析中,方差可以作为决策的 依据,例如在市场调研中,可以根据 不同产品的方差大小来决定产品的市 场策略。
提高效率
数据分析有助于优化业务流程,提高工作效率,降低 成本。
极差和方差的定义
极差
极差是一组数据中的最大值和最小值之差,用于描述数 据的离散程度。
方差
方差是一组数据与其平均值之差的平方的平均值,用于 描述数据的离散程度。
02
极差
极差的计算方法
01 极差定义
极差是一组数据中最大值与最小值之差,用于衡 量数据的离散程度。
通过比较不同数据集的方差大小,可 以了解它们之间的差异。
04
极差和方差的比较
极差和方差的优缺点
极差 优点:计算简单,容易理解,能够反
映数据的变化范围。
缺点:对异常值敏感,容易受到极端 值的影响,不能反映数据的离散程度。
方差
优点:能够反映数据的离散程度,不 受极端值影响,可以用于比较不同数 据集的离散程度。
极差和方差的计算方法
目前极差和方差的计算方法主要是基于统计学的理论,未来可以 考虑结合机器学习算法,提高计算效率和准确性。
极差和方差的应用领域
目前极差和方差主要应用于统计学和数据分析领域,未来可以考虑 将其应用ห้องสมุดไป่ตู้其他领域,如金融、医学等。
极差和方差的优化算法
目前极差和方差的计算算法较为简单,未来可以考虑优化算法,提 高计算效率。
【精品】2020年中考数学复习 --《极差、方差和标准差》知识点
【精品】2020年中考数学复习 --《极差、方差和标准差》知识点 极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.一、定义理解1、极差极差是用来反映一组数据变化范围的大小.我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.极差=最大值-最小值极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.2、方差方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均.”通常用2S 表示一组数据的方差,用x 表示一组数据的平均数,1x 、2x 、…n x 表示各数据. 方差计算公式是: s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2];3、标准差在计算方差的过程中,可以看出2S 的数量单位与原数据的不一致,因而在实际应用时常常将求出的方差再开平方,这就是标准差. 标准差=方差,方差=标准差2.一组数据的标准差计算公式是S =其中x 为n 个数据12n x x x ,,…,的平均数. 方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.二、例题讲析例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102(1) 求甲、乙两队的平均分和极差?(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?解:(1)3.100100101101104103102969997100101)=(=甲+++++++++⨯x 3.10010210310410410010295999797101)=(=乙+++++++++⨯x甲队的极差=104-96=8; 甲队的极差=104-95=9(2)61.5])3.100100()3.10099()3.100100[(1012222=甲-++-+-=S 21.9])3.100102()3.10097()3.10097[(1012222=乙-++-+-= S 甲队的标准差:37.261.5≈; 乙队的标准差:03.321.9≈ 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:甲组:25,23,28,22,27乙组:27,24,24,27,23(1)10盆花的花期最多相差几天?(2)施用何种花肥,花的平均花期较长?(3)施用哪种保花肥效果更好?分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越小,波动越小,效果越好! 解:(1)28-22=6(天) 所以,10盆花的花期最多相差6天.(2)由平均数公式得:252722282325(51)==甲++++x252327242427(51)==乙++++x得乙甲=x x ,所以,无论用哪种花肥,花的平均花期相等.(3)由方差公式得: 2.5])2527()2522()2528()2523()2525[(101222222=甲-+-+-+-+-=S 8.2])2523()2527()2524()2524()2527[(51222222=乙-+-+-+-+-=S 得22S 乙甲<S 故施用乙种花肥,效果比较可靠三、反馈练习1.一组数据5,8,x ,10,4的平均数是2x ,则这组数据的方差是________.2.五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm ):2,-2,-1,1,0, 则这组数据的极差为______cm .方差是_______,标准差是______3.若样本1,2,3,x 的平均数为5,又样本1,2,3,x ,y 的平均数为6,则样本1,2,3,x ,y 的极差是_______,方差是_______,标准差是______.4.已知一组数据0,1,2,3,4的方差为2,则数据20,21,22,23,24的方差为_____, 标准差为________.5.一组数据-8,-4,5,6,7,7,8,9的极差是______,方差是_____,标准差是______.6.若样本x 1,x 2,……,x n 的平均数为 =5,方差S 2=0.025,则样本4x 1,4x 2,……,4x n 的平均数x '=_____,方差S '2=_______.。
极差.方差与标准差(知识点讲解)
极差.方差与标准差(知识点讲解)极差、方差与标准差一、本节知识导学本节以自主探索为主,并初步体验:对图的观察和分析是科学研究的重要方法。
通过例题发现极差(最大值-最小值)的作用:用来表示数据高低起伏的变化大小;同时也希望同学们通过深入思考发现极差的不足之处:极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感。
因此有必要重新找一个对整组数据的波动情况更敏感的指标, 构造方差前请同学们注意以下几个方面: 1.为什么要用“每次成绩”和“平均成绩”相减。
2.为什么要“平方”。
3.为什么“求平均数”比“求和”更好。
同时请同学们意识到:比较两组数据的方差有一个前提条件是,两组数据要一样多。
对于方差的学习,重点在于方差公式的导出和对于方差概念的理解,而不是数字的计算,应充分利用计算器和计算机去完成繁杂的计算。
对于方差与标准差之间除了计算公式不一样,数量单位也不一样但通过求算术平方根运算又可以将他们联系在一起。
二、例题1.不通过计算,比较图中(1)(2)两组数据的平均值和标准差分析:平均值是反映一组数据的平均水平,标准差是反映一组数据与其平均值的离散程度。
本例不通过计算,从折线图来估算标准差,应先估算平均值的大小。
解:从图(1)(2)中可以看出,两组数据的平均值相等。
(图(1)中数据与图(2)中前10个数据相等, 且图(2)中后几个数据不影响平均值)。
图(1)的标准差比图(2)的标准差大。
(因为图(1)中各数据与其平均值离散程度大,图(2)中前10个数据与其平均值的离散程度与图(1)相同,而后几个数据与其平均值的离散程度小。
因此整体上说图(2)所有数据与其平均值的离散程度小于图(1)。
)2.求下列数据的方差(小数点后保留两位):5,7,9,9,10,11,13,14。
分析:要求方差,必须先求平均数。
解:= (5+7+9+9+10+11+13+14)=9.75方差s 2= =7.69[(5-9.75)2+(7-9.75)2+……+(14-9.75) 2]3.求下列一组数据的极差、方差和标准差(小数点后保留两位):50,55,96,98,65,100,70,90,85,100分析:由于标准差是方差的变形所以一般情况下先求方差解:极差为100-50=50平均数为=(50+55+96+98+65+100+70+90+85+100)=80.9方差为:s 2= =334.69 标准差为:s=[(50-80.9)2+(55-80.9)2+……+(100-80.9) 2]=18.294.在某次数学竞赛中,甲、乙两班的成绩如下已经算出两班的平均数都是80分,请你根据已有的统计知识分析两个班的成绩。
2极差、方差与标准差点拨极差、方差、标准差
点拨极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.一、极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,实际生活中我们经常用到极差.如一支足球队队员中的最大年龄与最小年龄的差,一个公司成员中最高收入与最低收入的差等都是极差的例子.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,则该组数据方差的计算公式为: ])()()[(1222212x x x x x x nS n -++-+-= . 三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.5.典型例析例1 从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:(单位:cm ) 甲: 21 42 39 14 19 22 37 41 40 25乙: 27 16 40 41 16 44 40 40 27 44(1)根据以上数据分别求甲、乙两种玉米的极差、方差和标准差.(2)哪种玉米的苗长得高些;(3)哪种玉米的苗长得齐.分析:本题既是一道和极差、方差和标准差计算有关的问题,又是利用方差解决实际问题的一道题目.要求极差,只要用数据中最大值减去最小值,求到差值即可.利用方差的计算公式可以求到方差,将方差开平方就得标准差.解: 甲的极差: 42-14=28(cm);乙的极差:44-16=28(cm).甲的平均值:)()(甲cm x 3025404137221914394221101=+++++++++= 乙的平均值:)(31)44274040441641401627(101cm x =+++++++++=乙 甲的方差:)(2.10410)3025()3042()3021(22222cm S =-++-+-= 甲, 乙的方差:)(8.12810)3144()3116()3127(22222cm S =-++-+-= 乙(2)因为甲种玉米的平均高度小于乙种玉米的平均高度,所以一种玉米的苗长的高.(3)因为22乙甲S S ≤,所以甲种玉米的苗长得整齐.例2 市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m )如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m 才能得冠军呢?解析:本题是一道数据分析有关的实际问题,主要考查数据的平均数、方差的计算方法及处理数据的能力.根据平均数及方差的计算公式可得(1)甲x =)67.165.170.1(81+++ =1.69(m), 乙x =)75.173.160.1(81+++ =1.68(m ). (2)])69.167.1()69.165.1()69.170.1[(812222-++-+-= 甲S =0.0006(m 2), ])68.175.1()68.173.1()68.160.1[(812222-++-+-= 乙S =0.0035(m 2),因为22s s 乙甲,所以甲稳定.(3)可能选甲参加,因为甲8次成绩都跳过1.65m 而乙有3次低于1.65m; 可能选乙参加,因为甲仅3次超过1.70m.。
初三数学极差、方差、标准差
【知识点】
(1)极差是用来反映一组数据变化范围的大小.一组数据中的最大数据与最小数据所得的
差来称为极差;
(2)方差记作 S 2
1 n
[(
x1
x)2
(x2
x)2
(xn
x)2 ]
;在实际应用时常常将求出
的方差 算术平方根,这就是标准差.
【例题】
1、(2016 广西百色)一组数据 2,4,a,7,7 的平均数 x =5,则方差 S2=
C.甲和乙一样稳定
D.甲、乙稳定性没法对比
3、下面是甲、乙两人 10 次射击成绩(环数)的条形统计图,则下列说法正确的是( )
A.甲比乙的成绩稳定 C.甲、乙两人的成绩一样稳定
B.乙比甲的成绩稳定 D.无法确定谁的成绩更稳定
4.已知 A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是 A 样
A.平均数 3
B.众数是﹣2
C.中位数是 1
D.极差为 8
2.在一次射击训练中,甲、乙两人各射击 10 次,两人 10 次射击成绩的平均数均是 9.1 环, 方差分别是 S 甲 2=1.2,S 乙 2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确 的是( )
A.甲比乙稳定
B.乙比甲稳定
本数据每个都加 2,则 A,B 两个样本的下列统计量对应相同的是( )
A.平均数
B.标准差
C.中位数
D.众数
【练习解析】
1、【答案】D.
2、【答案】A 【解析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小, 表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
数学《极差方差和标准差》知识点
八年级数学《极差、方差和标准差》知识点极差、方差、标准差都是用来研究一组数据的离散程度,表示一组数据离散程度的指标.一、定义理解1极差极差是用来反映一组数据变化范围的大小. 我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差就称为极差.极差=最大值-最小值极差仅只表示一组数据变化范围的大小,只对极端值较为敏感,而不能表示其它更多的意义.2、方差方差是反映一组数据的整体波动大小的指标,它是指一组数据中各数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.求一组数据的方差可以简记为:“先平均,再求差,然后平方,最后再平均•"通常用S表示一组数据的方差,用X表示一组数据的平均数,x“ x2、… X n表示各数据.方差计算公式是:s2=1[(x 1- x) 2+(x2- x) 2+—+(X n- x) 2];3、标准差在计算方差的过程中,可以看出S2的数量单位与原数据的不一致,因而在实际应用时常常将求出的方差再幵平方,这就是标准差.标准差=..方差,方差=标准差2.一组数据的标准差计算公式是S j1~xi~x X2—"X ~ xn~x ,其中X为n个数据X i, X2,…,X n的平均数.方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.方差较大的波动较大,方差较小的波动较小,方差的单位是原数据的单位平方,标准差的单位与原数据的单位相同.在解决实际问题时,常用样本的方差来估计总体方差方法去考察总体的波动情况.二、例题讲析例1、甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102(1)求甲、乙两队的平均分和极差?(2)计算甲、乙两队的方差与标准差,并判断哪支球队发挥更为稳定?解:(1) x= (100 97 99 96 102 103 104 101 101 100)= 100.3?10甲队的极差=104-96= 8; 甲队的极差=104-95= 9(2) S 甲2丄[(100 100.3)2(99 100.3)2(100 100.3)2 ]=5.6110甲队的标准差:-.5.61 2.37 ; 乙队的标准差:.9.21 3.03 所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发挥更为稳定一些.例2、对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成两组,每组5盆,记录其花期:甲组:25, 23, 28, 22, 27乙组:27, 24, 24, 27, 23(1)10盆花的花期最多相差几天?(2)施用何种花肥,花的平均花期较长?(3)施用哪种保花肥效果更好?分析:花期的极差就是花期最多相差的天数,花的平均花期就是分别求得甲、乙两组数据的平均数,而看哪种保花肥效果好,关键是比较方差,方差越小,波动越小,效果越好!解:(1) 28- 22= 6 (天) 所以,10盆花的花期最多相差6天._ 1(2)由平均数公式得:x= -(25 23 28 22 27)= 25?5得站=心,所以,无论用哪种花肥,花的平均花期相等.(3)由方差公式得:得S B2 s乙故施用乙种花肥,效果比较可靠三、反馈练习1. 一组数据5, 8, x, 10, 4的平均数是2x,则这组数据的方差是____________ .2. 五名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm): 2,-2, —1, 1, 0,则这组数据的极差为______ cm.方差是_________ ,标准差是______3. 若样本1, 2, 3, x的平均数为5,又样本1, 2, 3, x, y的平均数为6,则样本1, 2, 3, x, y的极差是 _________ ,方差是_______ ,标准差是______ .4. 已知一组数据0, 1, 2, 3, 4的方差为2,则数据20, 21, 22, 23, 24的方差为 ____ ,标准差为________ .5. 一组数据—8,- 4, 5, 6, 7, 7, 8, 9的极差是 ________ ,方差是______ ,标准6. 若样本X1,X2,……,X n的平均数为 =5,方差S2= 0.025,贝肪羊本4X I,4X2,4X n的平均数X /= _______ ,方差S7 2= _______ .。
极差方差标准差(整理)
北京四中撰稿:张扬责编:姚一民数据的波动一.基本知识点讲解:1.极差:是指一组数据中最大数据与最小数据的差。
极差=数据中的最大数-数据中的最小数2. 方差与标准差:S^2=[(x1-x的平均数)^2+(x2-x的平均数)^2+...+(xn-x的平均数)^2]设在一组数据x1 x2 x3……x n中各数据与它们的平均数的差的平方分别是(x1-)2, (x2-)2……(x n-)2,则他们的平均数:方差可以用来衡量这组数据的波动的大小,一组数据的方差越大,就说明这组数据的波动也越大,这波动的大小是指偏离平均数的大小。
3. 标准差:一组数据的方差的算术平方根叫做这组数据的标准差,用S来表示,即:标准差也只是来衡量一组数据波动大小的量,它虽然比计算方差多开一次平方,但它的度量单位与原数据的度量单位是一致的,所以有时用标准差比较方便。
4. 计算方差的三个公式公式①是方差的定义,一组数据的每个数都减去它们的平均数的平方,再求这些平方的和,比较麻烦,因此可用公式②以使计算过程较为简单,当不是整数时尤为简单。
接近这组数据的平均数的一个常数。
二.例题解析:(1)应用公式①例1. 计算数据9.9、9.7、10.3、9.8、9.8、10、10.1、10.4的方差与标准差。
解:例2. 甲乙两组进行投篮比赛,每组选派10名队员参加,每人投10次,每次投中的人数如下:甲组:7、6、8、8、5、9、7、7、6、7乙组:6、7、8、4、10、9、7、6、6、7求:甲、乙两组哪一组的投篮情况比较稳定解:∴甲乙两组的平均命中率相同,但甲组的投篮比较稳定,所以甲组的投篮情况较好。
(2)应用公式②例3. 甲、乙两人在相同条件下各射靶10次,各次命中环数如下:甲:4、7、10、9、5、6、8、6、8、8乙:7、8、6、6、7、8、7、8、5、9求甲、乙两人谁的射击成绩比较稳定解:(3)应用公式③例4. 求以下数据的方差(精确到0.1)10、13、9、11、8、10、11、12、8、14、10、9解:设a=10,每个数都减去10,有三:小结:1. 方差是以平均数为基数,揭示数据波动的大、小,所以首先要把平均数算准确。
极差、方差与标准差
极差、方差与标准差要点1 极差一组数据中的最大数据和最小数据的差叫做极差.例1 八年级上学期数学考试成绩甲、乙两班最高分数与最低分数的情况如下:甲班:最高分100,最低分32;乙班:最高分100,最低分54;分别求甲、乙量班的极差.【析解】 极差=最大值-最小值:甲班68,乙班46.要点2 方差方差是各个数据与平均数之差的平方的平均数,即例2 求下列一组数据的方差(小数点后保留两位):50,55,96,98,65,100,70,90,85,100.【分析】 根据公式①,先求出平均数,再计算方差.解 平均数为x =101(50+55+96+98+65+100+70+90+85+100)=80.9, 方差为:s2=101[(50-80.9)2+(55-80.9)2+……+(100-80.9)2]=334.69.要点3 标准差标准差是方差的算术平方根,它的计算公式是:要点4 极差、方差与标准差联系与区别1、联系我们已经知道:描述一组数据的集中趋势的特征数有三个:平均数、中位数和众数. 而表示一组数据离散程度的特征数也有三个:极差、方差、标准差.一般情况下,一组数据的极差、方差或标准差越小,这组数据就越稳定。
2、区别“极差”是表示数据波动状况的量度之一,是用来反映一组数据变化范围的大小.极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感.一般情况下,方差和标准差可以更为精细的刻画了数据的波动情况。
例3 甲、乙两支篮球队在一次联赛中,各进行10次比赛得分如下:甲队:100,97,99,96,102,103,104,101,101,100乙队:97,97,99,95,102,100,104,104,103,102求甲、乙两队的平均分和方差,并判断哪个队在比赛中的成绩较为稳定。
【分析】x 甲×=+++++++++110100979996102103104101101100()=1003. x 乙×=+++++++++11097979995102100104104103102()=1003.S 甲×…222211010010039910031001003=-+-++-[(.)(.)(.)] =5.61;S 乙×…22221109710039710031021003=-+-++-[(.)(.)(.)] =9.21;由此可以判断甲队在联赛中发挥更为稳定一些。
方差极差标准差
方差、极差和标准差都是度量数据分布离散程度或波动性的统计指标。
它们各自的计
算和含义略有不同,以下是对这三个指标的详细说明:
1. 方差(Variance):方差表示各数据与其平均值之差的平方的平均值。
它反映了数
据的离散程度,值越大,说明数据波动性越大。
计算公式为:σ^2 = (Σ(x\_i - μ)^2) / N。
其中,σ^2 是总体方差,x\_i 是数据,μ 表示数据集的平均值,N 是数据个数。
2. 极差(Range):极差表示数据集最大值和最小值之间的差距。
它描述的是数据的
分布范围,但受最大值和最小值的影响较大,对于数据集中的集中趋势敏感度较低。
计算公式为:R = Max(X) - Min(X)。
其中,R 是极差,Max(X) 表示数据集中的最大值,Min(X) 表示数据集中的最小值。
3. 标准差(Standard Deviation):标准差是方差的平方根,用于衡量数据的离散程度。
它是一种常用的数据分布稳定性和可预测性的指标。
与方差相比,标准差的量纲与原
始数据相同,因此更容易理解和比较。
计算公式为:σ = √((Σ(x\_i - μ)^2) / N)。
其中,σ 是总体标准差,x\_i 是数据,μ 表示数据集的平均值,N 是数据个数。
在实际数据分析中,可以根据需求选择合适的离散程度指标。
通常情况下,标准差是
最广泛使用的指标,因为它能更直观地反映数据的波动性和集中趋势。
然而,在某些
特定场景下,如对数据极值较关心的情况,极差也是一个有用的考量。
数学数据的波动极差和方差
数据的波动——极差与方差一、一周知识概述1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差.极差能够反映数据的变化范围,生活中经常用到极差.说明:极差是最简单的一种度量数据波动情况的量,但它受极端值的影响较大.2、方差(1)在一组数据x1、x2、…、x n中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用“s2”表示,即:(2)方差的计算方法:①定义法,就是用上面方差的定义公式进行计算;②原始数据简化计算法:;③新数据简化计算法:当一组数据中的数据较大且比较集中时,可以依照简化平均数的计算方法,将每个数据同时减去它们的平均数接近的常数a,得到一组新数据x′=x1-a,x′2=x2-a,…x′n=x n-a;那么13、标准差:方差的算术平方根叫做这组数据的标准差,即标准差=.详解:(1)极差、方差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,方差越小的,波动越小,即与其平均值的离散程度较小,从而它比较稳定;极差计算方便,但只对极端值较为敏感;(2)求方差的步骤可以概括为:“先平均,再求差,然后平方,最后再平均”,得到的结果表示一组数据偏离平均值的情况;(3)方差的数量单位是原数据单位的平方.4、用计算器求一组数据的标准差、方差:具体操作应由不同型号的计算器的功能决定.二、典型例题剖析例1、在2005年的高考中,参加高考的考生年龄最大的68岁,年龄最小的是13岁,求2005年高考考生年龄的极差,说明了什么?你有什么感慨,用一句话表述.分析:极差=最大值-最小值.解答:年龄极差=68-13=55(岁)从年龄极差看,我国高考制度已日趋完善,考生不再受年龄诸多因素的限制.感慨:大学的校门永远向你敞开.例2、为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75 g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量如下(单位:g):甲厂:7574747673767577777474757576737673787772 乙厂:7578727774757379727580717677737871767375 把这些数据整理成图.(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量吗?(2)求出它们的平均质量,并在图中画出表示平均质量的直线;(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?乙厂呢?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪个厂的鸡腿?与同学交流.分析:(1)根据数据组和分布图易估计这两个厂家鸡腿的平均质量,它们都接近75 g;(2)利用平均数可以表示一组数据的平均水平;(3)平均质量只能反映总体的集中趋势,并不能反映个体的变化情况.从上图看出,甲厂的产品更符合要求.解答:(1)估计平均质量都是75 g.(2)[(75-75)+(74-75)+…+(72-75)]+75=75[(75-75)+(78-75)+…+(75-75)]+75=75.(3)甲厂鸡腿质量的极差:78-72=6 (g);乙厂鸡腿质量的极差:80-71=9 (g).(4)应购买甲厂的鸡腿.方法总结:极差是刻画数据离散程度的一个统计量,极差越大,偏离平均数越大,产品的质量性能越不稳定.例3、从甲、乙两种玉米中各抽10株,分别测得它们的株高如下(单位:cm):甲:25414037221419392142乙:27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?分析:长得高和长得齐是两个不同的概念,看哪种玉米的苗长得高,只要比较甲、乙两种玉米的平均高度即可;要比较哪种玉米苗长得整齐,只要看两种玉米的苗高的方差即可.解答:(1) (25+41+40+37+22+14+19+39+21+42)=×300=30(cm).(27+16+44+27+44+16+40+40+16+40)=×310=31(cm).因为,所以乙种玉米的苗长得高.(2) [(25-30)2+(41-30)2+(40-30)2+…+(42-30)2]= ×1042=104.2(cm2)[(27-31)2+(16-31)2+(44-31)2+…+(40-31)2]= ×1288=128.8(cm2) 因为,所以甲种玉米的苗长得整齐.例4、设一组数据x1,x2, (x)n,其标准差为sx,另一组数据3x1+a,3x2+a, (3x)n+a,其标准差为s y,求s x与s y的关系式.分析:分别利用标准差的计算公式进行整体代换.解答:设x1、x2…xn的平均数为,则3x1+a,3x2+a, (3x)n+a的平均数为3+a.点评:一组数据x1,x2, (x)n的方差为s2,则x1±b,x2±b,…x n±b的方差为s2;ax1±b,ax2±b,…ax n±b的方差为a2s2.方法技巧:方差反映了数据的波动大小,在实际问题中,如长得是否速度一致,是否稳定等都是波动的体现,方差越大,波动越大.例5、为迎接世界无烟日的到来,小明对10名戒烟成功者戒烟前和戒烟5星期后的体重作了认真统计,(1)求这(2)求这10人在戒烟前和戒烟后的体重的方差;(3)通过上述数据,你能得到什么结论?分析:用计算器求一组数据的平均数、方差,要严格按教材上的说明和不同型号的计算器的不同功能进行操作,否则极易出错;问题(3)具有一定的开放性,要注卷找出数学问题与实际问题的结合点,确定思考的方向,并用简洁和准确的语言加以表述.解答:(1)将数据按大小重新排列:戒烟前:52,52,55,55,60,60,64,67,69,80;戒烟后:52,54,55,57,58,62,67,68,70,81;用计算器求得:=61.4(kg), =62.4(kg).(2) =70.44, =73.84.(3)从戒烟前后两组数据的统计量知:①从平均数看戒烟后这10人的平均体重增加了l kg;②从方差看,戒烟后数据的波动比戒烟前数据的波动大,说明戒烟对不同的人所发生的变化程度是不同的,通过对这两组数据的统计分析,得出结论:吸烟有害健康,戒烟对身体健康是有益的.例6、竞赛中成绩谁优谁次,并说明理由.分析:这是一道开放型问题,要判断这两个组竞赛成绩的优次,应从众数、方差、中位数、高分段人数等多角度分析.解答:(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些;(2) [2(50-80)2+5(60-80)2+10(70-80)2+13(80-80)2+14(90-80)2+6(100-80)2]=172同理可算出=256.因为,所以甲组成绩较乙组成绩好.(3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上的有33人,乙组成绩在80分以上的有26人,从这一角度看甲组的成绩总体较好.(4)从成绩统计表看,甲组成绩高于90分的人数为14+6=20(人),乙组成绩高于90分的人数为12+12=24(人).所以乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组的成绩较好.方法总结:(1)解这类题目要抓住问题中的关键词语,全方位地进行必要的计算,而不能习惯性地仅由方差的大小决定哪一组的优劣,应从实际出发做多角一度的分析;(2)要在恰当地作出评估后组织好正确的语言作出结论;(3)这类开放型题是知识的综合运用,必须要有扎实的功底、综合解题的能力和较好的语言表述能力.。
八年级数学《极差、方差和标准差》知识点教学文案
解: ( 1) 28- 22=6(天)
所以, 10 盆花的花期最多相差 6 天.
( 2) 由 平 均 数 公 式 得 :
x乙= 1 (27 24 24 27 23)=25 5
1 x甲= (25
5
23 28
22 27)=25
得 x甲=x乙 ,所以,无论用哪种花肥,花的平均花期相等.
( 3)由方差公式得:
(102 100.3) 2 ]=9.21
甲队的标准差:
5.61 2.37 ; 乙队的标准差:
9.21 3.03
所以,由此可以判断甲队的得分方差小,标准差也相应较小,因此他们在联赛中发 挥更为稳定一些. 例 2、对 10 盆同一品种的花施用甲、乙两种花肥,把 10 盆花分成两组,每组 5 盆,记录其 花期:
标准
差的单位与原数据的单位相同. 在解决实际问题时, 常用样本的方差来估计总体方差方法去
考察总体的波动情况.
二、例题讲析
例 1、甲、乙两支篮球队在一次联赛中,各进行
10 次比赛得分如下:
甲队: 100, 97, 99, 96, 102, 103, 104,101, 101, 100
乙队: 97, 97,99, 95,102, 100, 104,104, 103, 102
2
S甲
1 [( 25 25) 2 (23 25) 2 (28 25) 2 ( 22 25) 2 (27 25)2 ]=5.2
10
S乙 2 1 [( 27 25) 2 (24 25)2 (24 25) 2 5
得 S甲2 S乙2 故施用乙种花肥,效果比较可靠
(27 25)2
(23 25) 2 ]=2.8
资料收集于网络,如有侵权请联系网站删除
湘教版数学七年级下册_方差、标准差、极差学习要点
方差、标准差、极差学习要点目标篇1.理解一组数据(补充)极差、方差、标准差的含义,知道三个统计量之间的区别与联系.2.会计算极差、方差、标准差并能用它们来比较不同样本的波动情况. 3.通过实验和探索,体会用三个统计量表示数据波动情况的合理性,并能用它们解决有关实际问题.概念篇1.(补充)极差:指一组数据中的最大数据与最小数据的差,即极差=最大值-最小值.极差虽然反映了一组数据波动情况,但由于易受数据中极端数据的影响,所以在有些情况下用极差难以准确地说明问题.注意:极差一定要带单位,它只表示这一组数据中两个极端值之间的差. 2.方差:一组数据中,各个数据与平均数之差的平方的平均数叫做这组数据的方差,通常用2s 表示.对于一组数据n x x x x ,,,321,其平均数为x ,则方差2s =+-21)[(1x x n22)(x x -+…])(2x x n -.注意:方差的计算需要先算出这组数据的平均数;方差的单位与原数据的单位不一致,是原数据单位的平方.3.标准差:方差的算术平方根叫做这组数据的标准差,用符号“s”表示,即s=2S .注意:(1)标准差的单位与原数据的单位一致;(2)已知方差可以求标准差,同样已知标准差也可以求方差.作用篇“三差”都可以刻画一组数据波动情况,对于极差来说,一组数据的极差越大,说明数据的波动范围越大;反之,波动范围越小.对于方差和标准差来说,一组数据的方差(或标准差)越大,说明数据的波动越大,稳定性越差;反之,波动越小,稳定性越好.极差的计算较简单方便,但有时不能反映数据的全貌;而方差、标准差能更好地刻画一组数据波动情况,特别是标准差,其单位与数据的单位一致,用起来较方差更方便些.计算篇例1 已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为 .析解:极差是一组数据的最大值与最小值的差,因此求一组数据极差的关键是找出这组数据的最大值与最小值.因为数据1,2,0,-1,x ,1的平均数是1,所以61(1+2+0-1+x+1)=1,求得x=3.在1,2,0,-1,3,1中,最大值是3,最小值是-1,所以这组数据的极差为3-(-1)=4.例2 甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:(2)甲队队员身高的平均数为 厘米,乙队队员身高的平均数为 厘米; (3)你认为哪支仪仗队更为整齐?简要说明理由.析解:要判断哪支仪仗队更为整齐,就要分别算出甲、乙两支仪仗队队员身高数据的方差,然后再根据方差的特征,确定结果.(1)(2)178,178; (3)甲仪仗队更为整齐.因为甲队队员身高数据的方差2S 甲=101[ (177-178)2×3+(178-178)2×4+(179-178)2×3]= 0.6;乙队队员身高数据的方差2S 乙=101[ (176-178)2×2+(177-178)2+(178-178)2×4+(179-178)2×1+(180-178)2×2]=1.8.因此,可以认为甲仪仗队更为整齐.。
方差和极差
方差和极差方差和极差是统计学中常用的两个概念。
方差是指一组数据的离散程度,而极差则是指数据的范围。
本文将从概念、计算方法、应用等方面对方差和极差进行详细讲解。
一、方差的概念方差是指一组数据的离散程度。
离散程度越大,数据分布越分散,方差就越大;离散程度越小,数据分布越集中,方差就越小。
方差的计算方法是:先求出每个数据与平均数之差的平方,然后将这些平方数相加,再除以数据个数减一即可。
例如,有以下一组数据:3,5,7,9,11。
先求出平均数:(3+5+7+9+11)÷5=7。
然后计算每个数据与平均数之差的平方:(3-7)=16,(5-7)=4,(7-7)=0,(9-7)=4,(11-7)=16。
最后将这些平方数相加:16+4+0+4+16=40。
因此,这组数据的方差为40÷(5-1)=10。
二、极差的概念极差是指一组数据的范围。
计算方法是将最大值减去最小值即可。
极差越大,数据分布的范围就越广,反之则越窄。
例如,有以下一组数据:3,5,7,9,11。
最大值为11,最小值为3,因此这组数据的极差为11-3=8。
三、方差和极差的应用方差和极差在统计学中有着广泛的应用。
以下是一些常见的应用场景:1.质量控制在制造业中,方差常用于评估产品的质量稳定性。
如果产品的方差较大,说明产品的质量不稳定,需要进行调整;如果方差较小,说明产品的质量稳定,可以继续生产。
2.投资风险评估在金融领域中,方差和极差常用于评估投资的风险。
如果一个投资组合的方差较大,说明投资组合的风险较高,需要谨慎投资;如果方差较小,说明投资组合的风险较低,可以考虑增加投资。
3.市场调查在市场调查中,方差和极差常用于分析消费者的反应。
如果一个产品的反应方差较大,说明消费者的反应不稳定,需要进行改进;如果方差较小,说明消费者的反应较为一致,可以继续生产。
4.教育评估在教育领域中,方差和极差常用于评估学生的学习成绩。
如果一个班级的方差较大,说明学生的学习成绩分布较为分散,需要加强教学管理;如果方差较小,说明学生的学习成绩分布较为集中,可以继续推进教学计划。
专题21 极差与方差
专题21 极差与方差知识要点1.方差:设有n个数据x1,x2,…,x n,各数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x) 2,…,(x n-x) 2,我们用它们的平均数,即用1n[(x1-x)2+(x2-x) 2+…+(x n-x)2]来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作s2.2.极差:一组数据中最大值与最小值的差.3.方差公式的变形:s2=1n[21x+22x+…+2nx-n2x]=1n(21x+22x+…+2nx)-2x.4.运用方差比较波动性大小的前提:通过方差比较数据波动性的前提是各组数据的平均值相等或非常接近.两组数据的平均值差别比较大时,则不使用方差.典例精析例1 一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格,成绩达到9分为优秀.这次测验中甲、乙两组学生成绩分布的条形统计图如图21-1所示:(1)请补充完成上面的成绩统计分析表;(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.【分析】根据条形统计图得到数据信息,再填表格,利用表格中的信息对结论进行解释.【解】(1)甲组中位数7,乙组平均分7,中位数7;(2)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲、乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;③因为乙组7分(含7分)以上人数多于甲组7分(含7分)以上人数,所以乙组学生的成绩好于甲组.【点评】在应用方差对数据进行评价的过程中,需要平均分相差不大,这样的评价才是有效的泙价.拓展与变式1射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环)(1)完成表中填空:①___________,②____________; (2)请计算甲六次测试成绩的方差; (3)若乙六次测试成绩的方差为43,你认为推荐谁参加比赛更合适,请说明理由. 注:方差公式:s 2=1n[(x 1-x )2+(x 2-x ) 2+…+(x n -x ) 2] 【答案】(1)①9 ②9 (2)s 2=16[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=23. (3)∵x 甲=x 乙乙,且2s 甲<2s 乙,∴甲、乙平均分相等,且甲的成绩更加稳定,∴推荐甲参加比赛.拓展与变式2 某体育老师对自己任教的55名男生进行一百米摸底测试.若规定男生成绩为16s 合格,下表是随机抽取的10名男生分A ,B 两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负)(1)请你估算这55名男生中合格的人数;(2)通过相关的计算,说明哪个组的成绩比较均匀;(3)至少举出三条理由说明A 组成绩好于B 组成绩,或找出一条理由来说明B 组好于A 组. 【答案】(1)∵从所抽的10名男生的成绩可知样本的合格率为63105=, ∴5名男生中合格人数约为55×35=33人:(2)∵ 1.5 1.51215A x -+---=+16=15,133235B x +-+-=+16=16,2A s =15[(-0.5)2+(2.5)2+(0)2+(-1)2+(-1)2]2B s =15[12+32+(-3)2+22+(-3)2]=6.4∴2A s <2B s .∴A 组的成绩比B 组的成绩更均匀.(3)A 组成绩好于B 组的理由是: ①A x <B x ,A 组的平均成绩更好:②2A s <2B s ,A 组的成绩更稳定:③∵∴A ,B 组的合格率分别为80%与40%,∴A组的合格率大于B组的合格率.或B组成绩比A组好的理由是:∵A组成绩的众数是14s,B组成绩的众数是13s,∴B组成绩好于A组.【反思】利用方差进行数据波动的说理问题中,最关键的是先比较平均数的大小,只有当平均数接近时,利用方差解释才是有效的说理.例2截至2012年5月31日,“中国飞人”刘翔在国际男子110m栏比赛中,共7次突破13s关卡.成绩分别是(单位:s):12.97,12.87,12.91,12.88,12.93,12.92,12.95(1)求这7次成绩的中位数、极差;(2)求这7次成绩的平均数(精确到0.01s)【分析】先将数据进行从小到大的排列,再计算平均数与极差【解】(1)将7次成绩从小到大排列为12.87,12.88,12.91,12.92,12.93,12.95,12.97,位置处于中间的是12.92s,故这7次成绩的中位数为12.92s,极差为12.97-12.87=0.1(s);(2)这7次成绩的平均数:12.9712.8712.9112.8812.9312.92271.9++++++=12.92(s)【点评】极差与中位数的计算均要在对数据进行从小到大(或从大到小)排列之后再进行计算.拓展与变式3有一组数据2,3,4,5,x.(1)当这组数据的极差为10时,写出x的值;(2)当这组数据的平均数等于中位数时,求出x的值.【答案】(1)当x最大时,x-2=10,解得x=12:当x最小时,5-x=10,解得x=-5:(2)由于这组数据的中位数可以是3,4,x,∴当(2+3+4+5+x)÷5=4时,解得x=6:当(2+3+4+5+x)÷5=3时,解得x=1;当(2+3+4+5+x)÷5=x时,解得x=3.5.拓展与变式4一组数据—1,0,2,3,x,这组数据的极差是5,那么这组数据的平均数是________.【答案】1.6或0.4 提示:这组数据-1,0,2,3,x的极差是5,当x为最大值时,x-(-1)=5,x=4,平均数是(-1+0+2+3+4)÷5=1.6;当x为最小值时,3-x=5,x=-2,平均数是(-1+0+2+3-2)÷5=0.4.所以这组数据的平均彀是1.6或0.4.拓展与变式5若10个数的平均数是3,极差是4,将这10个数都扩大10倍,则这组新数据的平均数是___________,极差是___________.【反思】在数据处理的过程中,若出现的数据是未知数,则在处理过程中要分类讨论,这是我们在计算过程中要注意的.【答案】30 40 提示:设原来的10个数是x1,x2,…,x10,其中最大值是x1,最小值是x10,则平均数是(x1+x2+…+x10)÷10=3,极差是x1-x10=4.将这10个数都扩大10倍,得到的数组是10x1,10x2,…,10x1,则平均数是(10x1+10x2+…+10x10)÷10=x1+x2+…+x10=30,极差是10x1-10x10=10(x1-x10)=40.∴这组数据的平均数是30,极差是40.专题突破1.已知一个样本的方差s2=112(x1-205) 2+(x2-205) 2+…+(x12-205) 2],则此样本的平均数是__________,样本容量是___________.【答案】205 122现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队人员月工资的方差___________(填“变大”、“变小”或“不变”).【答案】变大3.一组数据有n个数,方差为a.若将每个数据都乘以2,得到的一组新的数据的方差是______.【答案】3a4.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.【答案】(1)由折线统计图可知,甲组成绩从小到大排列为3,6,6,6,6,6,7,9,9,10,∴中位数a=6,乙组成绩的平均分b=(5×2+6×1+7×2+8×3+9×2)÷10=7.2;(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,∴小英属于甲组学生:(3)①乙组的平均分高于甲组,即乙组的总体平均水平高:②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.。
点拨_极差、方差、标准差
(补充)平均数、中位数和众数的关系:平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.一、 极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,实际生活中我们经常用到极差.如一支足球队队员中的最大年龄与最小年龄的差,一个公司成员中最高收入与最低收入的差等都是极差的例子.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大. 二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x nS n -++-+-=.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.典型例析1.一组数据5,8,x,•10,•4•的平均数是2x,•则这组数据的方差是( 34/5 ).解析:先求出x,再利用公式求方差。
4.2极差与方差、标准差
4.在数据统计中,能反映一组数据变化 范围大小的指标是 (
A)
A.极差 B.方差 C.标准差 D.以上都不对 5.已知一个样本1, 3, 2, 5,X,若它的平均 数是3,则这个样本的标准差是 ______ 2 . 6.若样本x1 , x 2 ,,x n的方差为0,则表示 ( A.x 0 B.x1 x 2 x n
数据 xi 5 7 7 x 8 8 8 xi-x -3 -1 -1 (xi-x)2 9 1 1
8 10
11
8 8
8
0 2
3
0 4
9
s 2=
.
9+1+1+0+4+9 ——————— =4; 6
s 4 2
所以这组数据的标准差是2.
例2.计算数据89,93,88,91,94,90, 88,87的方差和标准差。(标准差结果 精确到0.1) 1 解:x 90 (1 3 2 1 4 0 2 3) 90
(1)若x1 , x 2 , , xn的方差为4,那么 x1 3, x2 3, , x n
4 3的方差为 ____
练习:
(2)若x1 , x 2 , , xn的方差为2,那么
32 这组数据均乘以4后的方差为 ____ (3)若k1,k2,…, k8的方差为3,则2(k1-3), 2(k2-3), …, 2(k8-3)的方差为________ 12
解:甲品种的样本平均数为10,样本方差 为 [(9.8-10)2 +(9.9-10)2+(10.1-10)2+ (10-10)2+(10.2-10)2]÷5=0.02.
乙品种的样本平均数也为10,样本方差 为 [(9.4-10)2+(10.3-10)2+(10.8-10)2+ (9.7-10)2+(9.8-10)2]÷5=0.24. 因为0.24>0.02, 所以,由这组数据可以认为甲种水稻 的产量比较稳定。
极差和方差
极差和方差在统计学中,极差和方差是两个重要的概念,它们用来描述数据中变量之间的变化情况。
极差是一种统计用来衡量数据集中两个最大值之间的变量。
方差也是统计学中的重要概念,它用来衡量数据集中变量的离散程度,即统计分布的离散程度。
极差(Range)是指某数据集中最大值与最小值之间的差值。
极差可以用来衡量数据集中变量的变化程度。
它的定义是数据集中最大值减去最小值所得的差值。
极差是一种较粗略的统计方法,因为它不考虑数据集中除最大值和最小值之外的其他值的存在。
但是,极差仍然是一种很有用的统计方式,它能够比较出不同数据集中变量的变化程度。
方差(Variance)是指某一数据集中样本值与数据集的平均值之间的差值的平方和除以样本个数所得的值。
方差衡量统计分布的离散程度,是一种比较精细的统计方法。
方差通过求取数据集中每一个数据值与平均值的差值,然后将它们平方后求和,最后再除以样本个数,计算出数据集和其平均值之间的离散程度。
方差往往会比极差更加准确,因为它考虑了数据集中每一个样本值与平均值之间的差值,进而衡量数据集中变量的离散程度。
极差和方差在统计学中扮演着重要的角色,它们都有助于更好地理解数据集中变量之间的变化情况。
极差比较容易计算,能够准确衡量出数据集中最大值和最小值之间的变化程度。
而方差则更加准确,它能够考虑数据集中每一个样本值和平均值之间的差值,从而更好地衡量出数据集和其平均值之间的离散程度。
极差和方差在数据分析中都有重要的作用,例如在探索数据分析中,它们都可以用来更好地理解数据集中变量变化情况。
此外,极差和方差还可以用来评估统计模型的拟合情况,例如最小二乘法和最大似然法。
在可视化分析中,它们也可以用来衡量数据之间的相似度,从而进一步帮助数据分析中的模型构建。
总而言之,极差和方差都是统计学中的重要概念,它们都有助于更好地理解数据集中变量之间的变化情况。
极差比较容易计算,能够准确衡量出数据集中最大值和最小值之间的变化程度;而方差则更加准确,它能够考虑数据集中每一个样本值和平均值之间的差值,从而更好地衡量出数据集和其平均值之间的离散程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极差、方差·要点详析
重点
计算一组数据的方差及方差概念的理解.
1.方差是一种描述数据波动情况的统计量,常用来比较两组数据的波动大小.用方差比较两组数据波动的情况时,首先使两组数据的个数相同,其次两组平均数相等或比较接近时,则可用方差观察这两组数据偏离平均数的程度,若方差较小则表示波动小,稳定性较好.
2.一组数据中的每个数据都加上(或减去)同一个数后,所得的一组新数据的波动情况与原数据的波动情况一样,即方差不变.
3.如果样本x 1,x 2,…,x n 的方差是S 2,那么样本ax 1,ax 2,…,ax n 的方差是a 2S 2.
4.当一组数据的每一个数据较复杂,且都与某一个常数接近时,则用方差
公式S 2=n 1(x ′12+x ′22+…+x ′n 2)-2x '计算较方便.
5.如果一组数据中每个数据的平方部容易算出时,则这组数据的方差用公式S 2=n 1(x 12+x 22+…+x n 2)-2x 计算较方便.
6.方差的两个简化计算公式:
S 2=n 1[(x 12+x 22+…+x n 2)-n 2x ] ①
S 2=n 1[(x ′12+x ′22+…+x ′n 2)-n 2x '] ②
其中,x ′1=x 1-a ,x ′2=x ′2-a ,…,x ′n =x n -a ,a 是接近原数据的平
均数的一个较“整”的常数.这两个公式可根据数据情况选择运用.数据较小时,可用公式①计算,当数据较大时,可建立一组对应的新数据,再利用简化公式②计算.
7.一般规律:
若数据x 1,x 2,…,x n 的方差是S 2则新数据:
(1)x 1+k ,x 2+k ,…,x n +k 的方差仍是S 2(k 为常数).
(2)mx 1,mx 2,…,mx n 的方差是m 2S 2,标准差为|m |S (m 为常数).
(3)mx 1+k ,mx 2+k ,…,mx n +k 的方差是m 2S 2,标准差为|m |S (k 、m 为
常数).
难点
方差的意义
方差是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.
方差较大的数据波动较大,方差较小的数据波动较小.。