备战2020年高考数学考点一遍过考点03逻辑联结词、全称量词与存在量词文(含解析)

合集下载

2020高考数学 最后突破抢分:第3讲 全称量词与存在量词、简单的逻辑联结词

2020高考数学 最后突破抢分:第3讲 全称量词与存在量词、简单的逻辑联结词

第3讲全称量词与存在量词、简单的逻辑联结词一、知识梳理1.全称量词与存在量词(1)全称量词和存在量词的含义量词名称常见量词含义全称量词所有、一切、任意、全部、每一个等在指定范围内,表示整体或全部存在量词存在一个、至少有一个、有一个、有些、某些等在指定范围内,表示个别或一部分命题名称定义否定形式真假判断1全称命题含有全称量词的命题特称命题要说明一个全称命题是错误的,只需找出一个反例就可以了,实际上是要说明这个全称命题的否定是正确的命题名称定义否定形式真假判断特称命题含有存在量词的命题全称命题要说明一个特称命题“存在一些对象满足某一性质”是错误的,就要说明所有的对象都不满足这一性质.实际上是要说明这个特称命题的否定是正确的(1)逻辑联结词通常是指“且”“或”“非”.(2)命题p且q,p或q,非p的真假判断.p q p且q p或q 非p(﹁p)2真真真真假真假假真假假真假真真假假假假真常用结论1.一组关系否命题命题的否定区别否命题既否定其条件,又否定其结论命题的否定只是否定命题的结论否命题与原命题的真假无必然联系命题的否定与原命题的真假总是相对立的,即一真一假2.(1)p或q→见真即真.(2)p且q→见假即假.(3)p与綈p→真假相互.3.四组等价关系(1)p或q真⇔p,q至少一个真⇔(﹁p)且(﹁q)假.3旗开得胜4(2)p 或q 假⇔p ,q 均假⇔(﹁p )且(﹁q )真.(3)p 且q 真⇔p ,q 均真⇔(﹁p )或(﹁q )假.(4)p 且q 假⇔p ,q 至少一个假⇔(﹁p )或(﹁q )真.二、教材衍化1.命题“存在x ∈R ,log 2x +2<0”的否定是________________________.答案:对任意的x ∈R ,log 2x +2≥02.在一次驾照考试中,甲、乙两名学员各试驾一次.设p 是“甲试驾成功”,q 是“乙试驾成功”,则“两名学员至少有一人没有试驾成功”可表示为________.答案:(﹁p )或(﹁q)一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)命题p 且q 为假命题,则命题p 、q 都是假命题.( )(2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p 、q 至少有一个是真命题,则p 或q 是真命题. ( )(4)写特称命题的否定时,存在量词变为全称量词.( )旗开得胜5(5)存在x ∈M ,p (x )与对任意的x ∈M ,﹁p (x )的真假性相反. ( )答案:(1)× (2)√ (3)√ (4)√ (5)√二、易错纠偏常见误区|K(1)全称命题或特称命题的否定出错;(2)不会利用真值表判断命题的真假;(3)复合命题的否定中出现逻辑联结词错误;(4)判断命题真假时忽视对参数的讨论.1.命题“正方形都是矩形”的否定是________.答案:存在一个正方形,这个正方形不是矩形2.已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y,则x <y .在命题①p 且q ;②p或q ;③p 且(﹁q );④(﹁p )或q 中,真命题是________.(填序号)解析:由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p 且q 为假命题;②p 或q 为真命题;③﹁q 为真命题,则p 且(﹁q )为真命题;④﹁p 为假命题,则(﹁p )或q 为假命题.答案:②③3.已知命题“若ab =0,则a =0或b =0”,则其否命题为________.。

2020年高考理科数学一轮总复习:简单的逻辑联结词、全称量词与存在量词

2020年高考理科数学一轮总复习:简单的逻辑联结词、全称量词与存在量词

2020年高考理科数学一轮总复习:简单的逻辑联结词、全称量词与存在量词第3讲 简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”. (2)命题p ∧q 、p ∨q 、﹁p 的真假判断(1)全称量词和存在量词导师提醒 1.明晰一种关系逻辑联结词与集合的关系:“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.巧用一个口诀含有逻辑联结词的命题真假判断口诀:p ∨q →见真即真,p ∧q →见假即假,p 与﹁p →真假相反.3.记准两类否定(1) ﹁(p ∧q )⇔( ﹁p )∨(﹁q ). (2) ﹁(p ∨q )⇔( ﹁p )∧(﹁q ). 4.辨明一组关系判断正误(正确的打“√”,错误的打“×”) (1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( ) (2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题.( ) (4)写特称命题的否定时,存在量词变为全称量词.( ) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,﹁p (x )的真假性相反.( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√已知命题p :∃x ∈⎝⎛⎭⎫0,π2,使得cos x ≤x ,则綈p 为( )A .∃x ∈⎝⎛⎭⎫0,π2,使得cos x >xB .∃x ∈⎝⎛⎭⎫0,π2,使得cos x <xC .∀x ∈⎝⎛⎭⎫0,π2,总有cos x >xD .∀x ∈⎝⎛⎭⎫0,π2,总有cos x ≤x解析:选C.原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.若命题p :对任意的x ∈R ,都有x 3-x 2+1<0,则綈p 为( ) A .不存在x ∈R ,使得x 3-x 2+1<0 B .存在x ∈R ,使得x 3-x 2+1<0 C .对任意的x ∈R ,都有x 3-x 2+1≥0 D .存在x ∈R ,使得x 3-x 2+1≥0解析:选D.命题p :对任意的x ∈R ,都有x 3-x 2+1<0的否定﹁p :存在x ∈R ,使得x 3-x 2+1≥0.故选D.下列命题中的假命题是( ) A .∃x ∈R ,log 2x =0 B .∀x ∈R ,x 2>0 C .∃x ∈R ,cos x =1D .∀x ∈R ,2x >0解析:选B.对于A ,令x =1,成立;对于B ,x =0时,不成立;对于C ,令x =0,成立;对于D ,根据指数函数的性质,成立.故选B.已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y ,则x <y .在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是________.(填序号)解析:由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题;②p ∨q 为真命题;③﹁q 为真命题,则p ∧(﹁q )为真命题;④﹁p 为假命题,则(﹁p )∨q 为假命题.答案:②③全称命题与特称命题(多维探究) 角度一 全称命题、特称命题的否定(1)(2019·西安模拟)命题“∀x >0,xx -1>0”的否定是( )A .∃x <0,xx -1≤0B .∃x >0,0≤x ≤1C .∀x >0,xx -1≤0D .∀x <0,0≤x ≤1(2)已知命题p :∃m ∈R ,f (x )=2x -mx 是增函数,则綈p 为 ( ) A .∃m ∈R ,f (x )=2x -mx 是减函数 B .∀m ∈R ,f (x )=2x -mx 是减函数C .∃m ∈R ,f (x )=2x -mx 不是增函数D .∀m ∈R ,f (x )=2x -mx 不是增函数 【解析】 (1)因为x x -1>0,所以x <0或x >1,所以x x -1>0的否定是0≤x ≤1,所以命题的否定是∃x >0,0≤x ≤1,故选B.(2)由特称命题的否定可得﹁p 为“∀m ∈R ,f (x )=2x -mx 不是增函数”. 【答案】 (1)B (2)D角度二 全称命题、特称命题的真假判断 (1)下列命题中的假命题是( ) A .∀x ∈R ,x 2≥0 B .∀x ∈R ,2x -1>0C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,sin x 0+cos x 0=2 (2)下列命题中的假命题是( ) A .∀x ∈R ,e x >0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sinπ2x 0=1 【解析】 (1)A 显然正确;由指数函数的性质知2x -1>0恒成立,所以B 正确;当0<x <10时,lg x <1,所以C 正确;因为sin x +cos x =2sin ⎝⎛⎭⎫x +π4,所以-2≤sin x +cos x≤2,所以D 错误.(2)对于B.当x =0时,x 2=0,因此B 中命题是假命题. 【答案】 (1)D (2)B(1)对全称命题与特称命题进行否定的方法①改变量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改变;②否定结论:对原命题的结论进行否定. (2)全称命题与特称命题的真假判断方法①要判断一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判断全称命题是假命题,只要能找出集合M 中的一个x =x 0,使得p (x 0)不成立即可(这就是通常所说的“举出一个反例”);②要判断一个特称命题是真命题,只要在限定集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可,否则,这一特称命题就是假命题.[提醒] 因为命题p 与﹁p 的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:选D.“f (n )∈N *且f (n )≤n ”的否定为“f (n )∉N *或f (n )>n ”,全称命题的否定为特称命题,故选D.2.下列命题是假命题的是( )A .∃α,β∈R ,使cos(α+β)=cos α+cos βB .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点解析:选B.取α=π2,β=-π4,cos(α+β)=cos α+cos β,A 正确;取φ=π2,函数f (x )=sin ⎝⎛⎭⎫2x +π2=cos 2x 是偶函数,B 错误;对于三次函数y =f (x )=x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又f (x )在R 上为连续函数,故∃x 0∈R ,使x 30+ax 20+bx 0+c =0,C 正确;当f (x )=0时,ln 2x +ln x -a =0,则有a =ln 2x +ln x =⎝⎛⎭⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=ln 2 x +ln x -a 有零点,D 正确,综上可知,选B.含有逻辑联结词的命题的真假判断(师生共研)(1)(2019·石家庄模拟)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p ∨qB .p ∧qC .qD .﹁p(2)给定下列命题:p 1:函数y =a x +x (a >0,且a ≠1)在R 上为增函数; p 2:∃a ,b ∈R ,a 2-ab +b 2<0;p 3:cos α=cos β成立的一个充分不必要条件是α=2k π+β(k ∈Z ).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∧p 3 C .p 1∨(﹁p 3)D .(﹁p 2)∧p 3【解析】 (1)取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.(2)对于p 1:令y =f (x ),当a =12时,f (0)=⎝⎛⎭⎫120+0=1,f (-1)=⎝⎛⎭⎫12-1-1=1,所以p 1为假命题;对于p 2:a 2-ab +b 2=⎝⎛⎭⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3:由cos α=cos β,可得α=2k π±β(k ∈Z ),所以p 3是真命题,所以(綈p 2)∧p 3为真命题.【答案】 (1)B (2)D(1)判断含有逻辑联结词命题真假的关键及步骤①判断含有逻辑联结词的命题真假的关键是正确理解“或”“且”“非”的含义;②判断命题真假的步骤:确定命题的构成形式―→判断其中简单命题的真假―→判断复合命题的真假(2)含逻辑联结词命题真假的等价关系①p ∨q 真⇔p ,q 至少一个真⇔(﹁p )∧(﹁q )假; ②p ∨q 假⇔p ,q 均假⇔(﹁p )∧(﹁q )真; ③p ∧q 真⇔p ,q 均真⇔(﹁p )∨(﹁q )假; ④p ∧q 假⇔p ,q 至少一个假⇔(﹁p )∨(﹁q )真; ⑤綈p 真⇔p 假;﹁p 假⇔p 真.1.命题p :函数y =log 2(x -2)的单调增区间是[1,+∞),命题q :函数y =13x +1的值域为(0,1).下列命题是真命题的为( )A .p ∧qB .p ∨qC .p ∧(﹁q )D .﹁q解析:选B.由于y =log 2(x -2)在(2,+∞)上是增函数, 所以命题p 是假命题.由3x >0,得3x +1>1,所以0<13x +1<1,所以函数y =13x +1的值域为(0,1),故命题q 为真命题.所以p ∧q 为假命题,p ∨q 为真命题,p ∧(﹁q )为假命题,﹁q 为假命题. 2.已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(﹁q )”是假命题;③命题“(﹁p )∨q ”是真命题;④命题“(﹁p )∨(﹁q )”是假命题,其中正确的是________(把所有正确结论的序号都填上).解析:因为对任意实数x ,|sin x |≤1,而sin x 0=52>1,所以p 为假;因为x 2+x +1=0的判别式Δ<0,所以q 为真.故②③正确. 答案:②③由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).[迁移探究1] (变问法)在本例条件下,若p ∧q 为真,求实数m 的取值范围. 解:依题意知p ,q 均为真命题,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. [迁移探究2] (变问法)在本例条件下,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围.解:若p ∧q 为假,p ∨q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略(1)全称命题可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解.1.(2019·福建三校联考)若命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,则实数a 的取值范围是________.解析:命题“∃x 0∈R ,使得3x 20+2ax 0+1<0”是假命题,即“∀x ∈R ,3x 2+2ax +1≥0”是真命题,故Δ=4a 2-12≤0,解得-3≤a ≤ 3.答案:[-3,3]2.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是________.解析:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).答案:(-∞,-12)∪(-4,4)与逻辑联结词有关的参数求解问题中的核心素养已知c >0,且c ≠1,设p :函数y =log c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p ∧q ”为假,“p ∨q ”为真,求实数c 的取值范围. 【解】 因为函数y =log c x 在R 上单调递减,所以0<c <1,即p :0<c <1. 因为c >0且c ≠1,所以綈p :c >1.又因为f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,所以c ≤12.即q :0<c ≤12,因为c >0且c ≠1,所以綈q :c >12且c ≠1.又因为“p ∨q ”为真,“p ∧q ”为假,所以p 与q 一真一假.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.解决本题的关键是将题目条件“p ∧q ”为假,“p ∨q ”为真转化为命题p 和q 一真一假,充分体现了“逻辑推理”的核心素养.当a >0时,设命题P :函数f (x )=x +ax 在区间(1,2)上单调递增;命题Q :不等式x 2+ax +1>0对任意x ∈R 都成立.若“P 且Q ”是真命题,则实数a 的取值范围是( )A .0<a ≤1B .1≤a <2C .0≤a ≤2D .0<a <1或a ≥2解析:选A.因为函数f (x )=x +ax 在区间(1,2)上单调递增,所以f ′(x )≥0在区间(1,2)上恒成立, 所以1-ax 2≥0在区间(1,2)上恒成立,即a ≤x 2在区间(1,2)上恒成立, 所以a ≤1.且a >0,①又不等式x 2+ax +1>0对任意x ∈R 都成立, 所以Δ=a 2-4<0, 所以-2<a <2,② 若“P 且Q ”是真命题, 则P 与Q 都是真命题, 故由①②的交集得:0<a ≤1, 则实数a 的取值范围是0<a ≤1. 故选A.[基础题组练]1.已知命题p :所有的指数函数都是单调函数,则綈p 为( ) A .所有的指数函数都不是单调函数 B .所有的单调函数都不是指数函数C .存在一个指数函数,它不是单调函数D .存在一个单调函数,它不是指数函数解析:选C.命题p :所有的指数函数都是单调函数,则綈p :存在一个指数函数,它不是单调函数.2.已知命题p :∃x 0∈R ,log 2(3x 0+1)≤0,则( ) A .p 是假命题;﹁p :∀x ∈R ,log 2(3x +1)≤0 B .p 是假命题;﹁p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;﹁p :∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;﹁p :∀x ∈R ,log 2(3x +1)>0解析:选B.因为3x >0,所以3x +1>1,则log 2(3x +1)>0,所以p 是假命题,﹁p :∀x ∈R ,log 2(3x +1)>0.故应选B.3.(2019·玉溪模拟)有四个关于三角函数的命题: P 1:∃x ∈R ,sin x +cos x =2; P 2:∃x ∈R ,sin 2x =sin x ; P 3:∀x ∈⎣⎡⎦⎤-π2,π2,1+cos 2x2=cos x ; P 4:∀x ∈(0,π),sin x >cos x . 其中真命题是( ) A .P 1,P 4 B .P 2,P 3 C .P 3,P 4D .P 2,P 4解析:选B.因为sin x +cos x =2sin ⎝⎛⎭⎫x +π4,所以sin x +cos x 的最大值为2,可得不存在x ∈R ,使sin x +cos x =2成立,得命题P 1是假命题;因为存在x =k π(k ∈Z ),使sin 2x =sin x 成立,故命题P 2是真命题; 因为1+cos 2x 2=cos 2x ,所以1+cos 2x 2=|cos x |,结合x ∈⎣⎡⎦⎤-π2,π2得cos x ≥0,由此可得1+cos 2x2=cos x ,得命题P 3是真命题; 因为当x =π4时,sin x =cos x =22,不满足sin x >cos x ,所以存在x ∈(0,π),使sin x >cos x 不成立,故命题P 4是假命题. 故选B.4.“p ∨q 为真”是“﹁p 为假”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.因为﹁p 为假,所以p 为真,所以“p ∨q 为真”,反之不成立,可能q 为真,p 为假,﹁p 为真.所以“p ∨q 为真”是“﹁p 为假”的必要不充分条件.故选B.5.已知命题p :若a >|b |,则a 2>b 2;命题q :若x 2=4,则x =2.下列说法正确的是( ) A .“p ∨q ”为真命题 B .“p ∧q ”为真命题 C .“﹁p ”为真命题D .“﹁q ”为假命题解析:选A.由a >|b |≥0,得a 2>b 2,所以命题p 为真命题.因为x 2=4⇔x =±2,所以命题q 为假命题.所以“p ∨q ”为真命题,“p ∧q ”为假命题,“﹁p ”为假命题,“﹁q ”为真命题.综上所述,可知选A.6.(2019·安徽芜湖、马鞍山联考)已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,e x>x ,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(﹁q )是真命题D .命题p ∨(﹁q )是假命题解析:选B.显然,当x =10时,x -2>lg x 成立,所以命题p 为真命题.设f (x )=e x -x ,则f ′(x )=e x -1,当x >0时,f ′(x )>0,当x <0时,f ′(x )<0,所以f (x )≥f (0)=1>0,所以∀x ∈R ,e x >x ,所以命题q 为真命题.故命题p ∧q 是真命题,故选B.7.(2019·惠州第一次调研)设命题p :若定义域为R 的函数f (x )不是偶函数,则∀x ∈R ,f (-x )≠f (x ).命题q :f (x )=x |x |在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误的是( )A .p 为假命题B .﹁q 为真命题C .p ∨q 为真命题D .p ∧q 为假命题解析:选C.函数f (x )不是偶函数,仍然可∃x ,使得f (-x )=f (x ),p 为假命题;f (x )=x |x |=⎩⎪⎨⎪⎧x 2(x ≥0),-x 2(x <0)在R 上是增函数,q 为假命题.所以p ∨q 为假命题,故选C. 8.(2019·辽宁五校协作体联考)已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析:选D.因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.9.已知命题p :对任意x ∈R ,总有2x <3x ;q :“x >1”是“x >2”的充分不必要条件.下列命题为真命题的是( )A .p ∧qB .(綈p )∧(綈q )C .(﹁p )∧qD .p ∧(﹁q )解析:选B.由20=30知,p 为假命题;命题q :“x >1”不能推出“x >2”,但是“x >2”能推出“x >1”,所以“x >1”是“x >2”的必要不充分条件,故q 为假命题.所以(﹁p )∧(﹁q )为真命题.故选B.10.(2019·湖北荆州调研)已知命题p :方程x 2-2ax -1=0有两个实数根;命题q :函数f (x )=x +4x 的最小值为4.给出下列命题:①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨(﹁q ),则其中真命题的个数为( )A .1B .2C .3D .4解析:选C.由于Δ=4a 2+4>0,所以方程x 2-2ax -1=0有两个实数根,即命题p 是真命题;当x <0时,f (x )=x +4x 的值为负值,故命题q 为假命题.所以p ∨q ,p ∧(﹁q ),(﹁p )∨(﹁q )是真命题,故选C.11.(2019·沈阳期中)有下列四个命题: (1)命题p :∀x ∈R ,x 2>0为真命题; (2)设p :xx +2>0,q :x 2+x -2>0,则p 是q 的充分不必要条件; (3)命题:若ab =0,则a =0或b =0,其否命题是假命题; (4)非零向量a 与b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为30°. 其中真命题有( ) A .3个 B .2个 C .1个D .0个解析:选C.对于(1),∀x ∈R ,x 2≥0,故(1)为假命题;对于(2),设p :xx +2>0,q :x 2+x -2>0,可得p ∶x >0或x <-2;q :x >1或x <-2.由p 推不到q ,但由q 推得p ,则p 是q 的必要不充分条件,故(2)为假命题;对于(3),命题:若ab =0,则a =0或b =0,其否命题为:若ab ≠0,则a ≠0且b ≠0,其否命题是真命题,故(3)为假命题;对于(4),非零向量a 与b 满足|a |=|b |=|a -b |,可设OA →=a ,OB →=b ,OC →=a +b ,BA →=a -b ,可得△OAB 为等边三角形,四边形OACB 为菱形,OC 平分∠AOB ,可得a 与a +b 的夹角为30°,故(4)为真命题.故选C.12.(2019·保定模拟)有下面四个命题: p 1:若x >1,则0.3x >0.3; p 2:若x =log 23,则⎝⎛⎭⎫12x +1=16; p 3:若sin x >33,则cos 2x <13; p 4:若f (x )=tanπx3,则f (x )=f (x +3). 其中真命题的个数为( ) A .1 B .2 C .3D .4解析:选C.对于p 1,由y =0.3x 在R 上递减,且x >1,可得0.3x <0.3,故p 1是假命题; 对于p 2,若x =log 23,可得2x=3,⎝⎛⎭⎫12x +1=12×13=16,故p 2是真命题; 对于p 3,若sin x >33,可得cos 2x =1-2sin 2x <1-2×13=13,故p 3是真命题; 对于p 4,若f (x )=tan πx3,可得f (x )的最小正周期为3,即有f (x +3)=f (x ),故p 4是真命题.则其中真命题的个数为3.故选C.[综合题组练]1.(创新型)在射击训练中,某战士射击了两次,设命题p 是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是( )A .(﹁p )∨(﹁q )为真命题B .p ∨(﹁q )为真命题C .(﹁p )∧(﹁q )为真命题D .p ∨q 为真命题解析:选A.命题p 是“第一次射击击中目标”,命题q 是“第二次射击击中目标”,则命题﹁p 是“第一次射击没击中目标”,命题﹁q 是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(﹁p )∨(﹁q )为真命题,故选A.2.(2019·河北武邑中学模拟)给出下列四个命题: ①若x ∈A ∩B ,则x ∈A 或x ∈B ; ②∀x ∈(2,+∞),x 2>2x ;③若a ,b 是实数,则“a >b ”是“a 2>b 2”的充分不必要条件;④“∃x 0∈R ,x 20+2>3x 0”的否定是“∀x ∈R ,x 2+2≤3x ”.其中真命题的序号是________.解析:①若x ∈A ∩B ,则x ∈A 且x ∈B .所以①为假命题; ②当x =4时,x 2=2x ,所以②为假命题;③取a =0,b =-1,则a >b ,但a 2<b 2;取a =-2,b =-1,则a 2>b 2,但a <b ,故若a ,b 是实数,则“a >b ”是“a 2>b 2”的既不充分也不必要条件,所以③为假命题;④“∃x 0∈R ,x 20+2>3x 0”的否定是“∀x ∈R ,x 2+2≤3x ”,所以④为真命题.答案:④3.(应用型)若∃x 0∈⎣⎡⎦⎤12,2,使得2x 20-λx 0+1<0成立是假命题,则实数λ的取值范围是________.解析:因为∃x 0∈⎣⎡⎦⎤12,2,使得2x 20-λx 0+1<0成立是假命题,所以∀x ∈⎣⎡⎦⎤12,2,使得2x 2-λx +1≥0恒成立是真命题,即∀x ∈⎣⎡⎦⎤12,2,使得λ≤2x +1x 恒成立是真命题,令f (x )=2x +1x ,则f ′(x )=2-1x 2,当x ∈⎣⎡⎭⎫12,22时,f ′(x )<0,当x ∈⎝⎛⎦⎤22,2时,f ′(x )>0,所以f (x )≥f ⎝⎛⎭⎫22=22,则λ≤2 2. 答案:(-∞,22]4.(应用型)已知命题p :∀x ∈R ,不等式ax 2+22x +1<0的解集为空集;命题q :f (x )=(2a -5)x 在R 上满足f ′(x )<0,若命题p ∧(綈q )是真命题,则实数a 的取值范围是________.解析:因为∀x ∈R ,不等式ax 2+22x +1<0的解集为空集,所以当a =0时,不满足题意;当a ≠0时,必须满足⎩⎨⎧a >0,Δ=(22)2-4a ≤0,解得a ≥2.由f (x )=(2a -5)x 在R 上满足f ′(x )<0,可得函数f (x )在R 上单调递减,则0<2a -5<1,解得52<a <3.若命题p ∧(綈q )是真命题,则p 为真命题,q 为假命题,所以⎩⎪⎨⎪⎧a ≥2,a ≤52或a ≥3,解得2≤a ≤52或a ≥3,则实数a 的取值范围是⎣⎡⎦⎤2,52∪[3,+∞).答案:⎣⎡⎦⎤2,52∪[3,+∞)。

2020届高考数学(理)一轮必刷题 专题03 简单的逻辑联结词、全称量词与存在量词(解析版)

2020届高考数学(理)一轮必刷题 专题03 简单的逻辑联结词、全称量词与存在量词(解析版)

考点03 简单的逻辑联结词、全称量词与存在量词1.“∀x∈R,x2-πx≥0”的否定是()A.∀x∈R,x2-πx<0B.∀x∈R,x2-πx≤0C.∃x0∈R,x20-πx0≤0 D.∃x0∈R,x20-πx0<0【答案】D【解析】全称命题的否定是特称命题,所以“∀x∈R,x2-πx≥0”的否定是“∃x0∈R,x20-πx0<0”.故选D. 2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数【答案】C【解析】.将原命题的条件和结论互换的同时进行否定即得逆否命题,因此“若x,y都是偶数,则x+y也是偶数”的逆否命题是“若x+y不是偶数,则x,y不都是偶数”,所以选C.3.下列命题错误的是()A.命题“ ,”的否定是“,”;B.若是假命题,则,都是假命题C.双曲线的焦距为D.设,是互不垂直的两条异面直线,则存在平面,使得,且【答案】B【解析】对于选项A,由于特称命题的否定是特称命题,所以命题“ ,”的否定是“,”,是正确的.对于选项B, 若是假命题,则,至少有一个是假命题,所以命题是假命题.对于选项C, 双曲线的焦距为2c=2,所以是真命题.对于选项D, 设,是互不垂直的两条异面直线,则存在平面,使得,且,是真命题.故答案为:B.4.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是()A.(¬p)∨(¬q)为真命题B.p∨(¬q)为真命题C.(¬p)∧(¬q)为真命题D.p∨q为真命题【答案】A【解析】.命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题¬p是“第一次射击没击中目标”,命题¬q是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(¬p)∨(¬q)为真命题,故选A.5.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞) B.(-∞,3) C.(1,3) D.【答案】C【解析】由“”是真命题可知命题p,q均为真命题,若命题p为真命题,则:,解得:,若命题q为真命题,则:,即,综上可得,实数a的取值范围是,表示为区间形式即.本题选择C选项.6.已知a,b都是实数,那么“2a>2b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】.充分性:若2a>2b,则2a-b>1,∴a-b>0,即a>b.当a=-1,b=-2时,满足2a>2b,但a2<b2,故由2a>2b不能得出a2>b2,因此充分性不成立.必要性:若a2>b2,则|a|>|b|.当a=-2,b=1时,满足a2>b2,但2-2<21,即2a<2b,故必要性不成立.综上,“2a>2b”是“a2>b2”的既不充分也不必要条件.故选D.7.已知命题,使;命题,都有,下列结论中正确的是A.命题“p∧q”是真命题B.命题“p∧q”是真命题C.命题“p∧q”是真命题D.命题“p∨q”是假命题【答案】A【解析】由判断,所以为假命题;命题,所以为真命题,所以命题“p∧q”是真命题,故选A.8.已知命题p :存在x 0∈R ,x 0-2>lg x 0;命题q :任意x ∈R ,x 2+x +1>0.给出下列结论: ①命题“p 且q ”是真命题;②命题“p 且¬q ”是假命题; ③命题“¬p 或q ”是真命题;④命题“p 或¬q ”是假命题. 其中所有正确结论的序号为( ) A .②③ B .①④ C .①③④ D .①②③【答案】D【解析】对于命题p ,取x 0=10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,方程x 2+x +1=0,Δ=1-4×1<0,故方程无解,即任意x ∈R ,x 2+x +1>0,所以命题q 为真命题.综上“p 且q ”是真命题,“p 且¬q ”是假命题,“¬p 或q ”是真命题,“p 或¬q ”是真命题,即正确的结论为①②③.故选D.9.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1【答案】A【解析】.因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合可得a ≤0或a >1.观察选项,根据集合间的关系{a |a <a |a ≤0或a >1},故选A.10.下列命题正确的是( ) A . 命题的否定是:B . 命题中,若,则的否命题是真命题C . 如果为真命题,为假命题,则为真命题,为假命题D .是函数的最小正周期为的充分不必要条件【答案】D【解析】在A 中,命题的否定是:,故A 错误;在B 中,命题中,若,则的否命题是假命题,故B 错误;在C 中,如果为真命题,为假命题,则与中一个是假命题,另一个是真命题,故C 错误;在D 中,∴ω=1⇒函数f (x )=sin ωx-cos ωx 的最小正周期为2π,函数f (x )=sin ωx-cos ωx 的最小正周期为2π⇒ω=±1.∴是函数的最小正周期为的充分不必要条件,故D 正确.故选:D .11.设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 【答案】C【解析】.|a -3b |=|3a +b |⇔|a -3b |2=|3a +b |2⇔a 2-6a ·b +9b 2=9a 2+6a ·b +b 2⇔2a 2+3a ·b -2b 2=0,又∵|a |=|b |=1,∴a ·b =0⇔a ⊥b ,故选C.12.(2018·温州模拟)下面四个条件中,使a >b 成立的充分不必要条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3【答案】A【解析】.由选项中的不等式可得a >b ,a >b 推不出选项中的不等式.选项A 中,a >b +1>b ,反之a >b 推不出a >b +1;选项B 中,a >b >b -1,反之a >b -1推不出a >b ,为必要不充分条件;选项C 为既不充分也不必要条件;选项D 为充要条件,故选A.13.已知命题p :对任意x ∈(0,+∞),log 4x <log 8x ;命题q :存在x ∈R ,使得tan x =1-3x ,则下列命题为真命题的是( ) A .p ∧q B .(¬p )∧(¬q ) C .p ∧(¬q ) D .(¬p )∧q 【答案】D【解析】.当x =1时,log 4x =log 8x ,所以命题p 是假命题;函数y =tan x 的图象与y =1-3x 的图象有无数个交点,所以存在x ∈R ,使得tan x =1-3x ,即命题q 是真命题,故(¬p )∧q 是真命题,选D. 14.有关下列说法正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的必要不充分条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则¬p :∀x ∈R ,x 2-x -1<0 C .命题“若x 2-1=0,则x =1或x =-1”的否命题是“若x 2-1≠0,则x ≠1或x ≠-1” D .命题p 和命题q 有且仅有一个为真命题的充要条件是(¬p ∧q )∨(¬q ∧p )为真命题 【答案】D【解析】对于A ,由f (0)=0,不一定有f (x )是奇函数,如f (x )=x 2;反之,函数f (x )是奇函数,也不一定有f (0)=0,如f (x )=1x.∴“f (0)=0”是“函数f (x )是奇函数”的既不充分也不必要条件.故A 错误;对于B ,若p :∃x 0∈R ,x 20-x 0-1>0,则¬p :∀x ∈R ,x 2-x -1≤0.故B 错误;对于C ,命题“若x 2-1=0,则x =1或x =-1”的否命题是“若x 2-1≠0,则x ≠1且x ≠-1”.故C 错误;对于D ,若命题p 和命题q 有且仅有一个为真命题,不妨设p 为真命题,q 为假命题,则¬p ∧q 为假命题,¬q ∧p 为真命题,则(¬p ∧q )∨(¬q ∧p )为真命题;反之,若(¬p ∧q )∨(¬q ∧p )为真命题,则¬p ∧q 或¬q ∧p 至少有一个为真命题.若¬p ∧q 真,¬q ∧p 假,则p 假q 真;若¬p ∧q 假,¬q ∧p 真,则p 真q 假;不可能¬p ∧q 与¬q ∧p 都为真.故命题p 和命题q 有且仅有一个为真命题的充要条件是(¬p ∧q )∨(¬q ∧p )为真命题.故选D.15.若“∀x ∈⎣⎡⎦⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________. 【答案】1【解析】由x ∈⎣⎡⎦⎤-π4,π3可得-1≤tan x ≤ 3.∴1≤tan x +2≤2+3,∵“∀x ∈⎣⎡⎦⎤-π4,π3,m ≤tan x +2”为真命题,∴实数m 的最大值为1.16.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x +2<0的解集是{x |1<x <2}.现有以下结论: ①命题“p ∧q ”是真命题;②命题“p ∧¬q ”是假命题; ③命题“¬p ∨q ”是真命题;④命题“¬p ∨¬q ”是假命题. 其中正确结论的序号为________. 【答案】①②③④【解析】∵当x =π4时,tan x =1,∴命题p 为真命题,命题¬p 为假命题. 由x 2-3x +2<0,解得1<x <2, ∴命题q 为真命题,命题¬q 为假命题.∴命题“p ∧q ”是真命题,命题“p ∧¬q ”是假命题,命题“¬p ∨q ”是真命题,命题“¬p ∨¬q ”是假命题. 17.已知函数f (x )=a 2x -2a +1.若命题“∀x ∈(0,1),f (x )≠0”是假命题,则实数a 的取值范围是________. 【答案】⎝⎛⎭⎫12,1∪(1,+∞)【解析】已知函数f (x )=a 2x -2a +1,命题“∀x ∈(0,1),f (x )≠0”是假命题, ∴原命题的否定是“∃x 0∈(0,1),使f (x 0)=0”是真命题,显然a ≠0.∴f (1)f (0)<0, 即(a 2-2a +1)(-2a +1)<0, 即(a -1)2(2a -1)>0, 解得a >12,且a ≠1,∴实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞).18.设p :实数a 满足不等式3a ≤9,q :函数f (x )=13x 3+3(3-a )2x 2+9x 无极值点.已知“p ∧q ”为真命题,并记为r ,且t :a 2-⎝⎛⎭⎫2m +12a +m ⎝⎛⎭⎫m +12>0,若r 是¬t 的必要不充分条件,则正整数m 的值为________. 【答案】1【解析】若p 为真,则3a ≤9,得a ≤2.若q 为真,则函数f (x )无极值点,∴f ′(x )=x 2+3(3-a )x +9≥0恒成立, 得Δ=9(3-a )2-4×9≤0,解得1≤a ≤5. ∵“p ∧q ”为真命题, ∴p 、q 都为真命题,∴⎩⎪⎨⎪⎧a ≤2,1≤a ≤5⇒1≤a ≤2. ∵a 2-⎝⎛⎭⎫2m +12a +m ⎝⎛⎭⎫m +12>0, ∴(a -m )⎣⎡⎦⎤a -⎝⎛⎭⎫m +12>0, ∴a <m 或a >m +12,即t :a <m 或a >m +12,从而¬t :m ≤a ≤m +12,∵r 是¬t 的必要不充分条件, ∴¬t ⇒r ,r ⇒/ ¬t , ∴⎩⎪⎨⎪⎧m ≥1,m +12<2或⎩⎪⎨⎪⎧m >1,m +12≤2, 解得1≤m ≤32,又∵m ∈N *,∴m =1.。

2020年高考数学(理)高频考点 集合与常用逻辑用语 专题03 简单的逻辑联结词、全称量词与存在量词解析版

2020年高考数学(理)高频考点 集合与常用逻辑用语 专题03 简单的逻辑联结词、全称量词与存在量词解析版

集合与常用逻辑用语03 简单的逻辑联结词、全称量词与存在量词一、具体目标:1.简单的逻辑联结词:了解逻辑联结词“或”“且”“非”的含义; 全称量词与存在量词:(1)理解全称量词与存在量词的意义;(2)能正确地对含有一个量词的命题进行否定.分析目标:会判断含有一个量词的全称命题或特称命题的真假;能正确地对含有一个量词的命题进行否定;能用逻辑联结词“或”“且”“非”正确地表达相关的数学命题;全称命题与特称命题的表述方法是高考的热点;本节在高考中的分值为5分左右,属中低档题. 二、知识概述: 1.逻辑联结词与复合命题命题q p ∧读作“p 且q ”;命题q p ∨读作“p 或q ”;命题p ⌝读作“非q ”;或者“p 的否定”命题与集合的关系:命题的“且”“或”“非”对应集合的“交”、“并”、“补”命题与电路的关系:命题p ∧q 对应着“串联”电路,便是p ∨q 对应着“并联”电路,命题p ⌝对应着线路的“断开与闭合”. 2.复合命题及其否定形式命题 否定形式p 或q p ⌝且q ⌝ p 且q p ⌝或q ⌝ Pp ⌝复合命题真值表p q 非p p 或q p 且q 真 真 假 真 真 真假假真假【考点讲解】假 真 真 真 假 假假真假假3.全称命题与全称量词、特称命题与存在量词全称量词 指定范围否定形式 全称命题所有的 任何的 任意的 整体或全部 有些 有的 存在对M 中任何x ,有p (x )成立 记:M x ∈∀,()p x都是不都是对M 中任何x ,p (x )不成立记:M x ∈∀,)(x p ⌝存在量词 指定范围 否定形式 特称命题有一个、存在整体的 一部分没有、 不存在 在M 中存在某x ,有p (x ) 成立记:M x ∈∃,p (x ) 至少有一个 一个也没有 在M 中存在某x ,p (x )不成立记:M x ∈∃,)(x p ⌝至多有一个至少有两个命题否定形式之间的关系:全称命题的否定是特称命题,特称命题的否定是全称命题.1.【2019优选题】命题“0x ∀>,1ln 1x x≥-”的否定是( )A .00x ∃≤,01ln 1x x ≥-B .00x ∃>,01ln 1x x <-C .00x ∃>,01ln 1x x ≥-D .00x ∃≤,01ln 1x x <-【真题分析】【解析】由全称命题与存在性命题的关系,可得命题“0x ∀>,1ln 1x x≥-”的否定是“00x ∃>,01ln 1x x <-”,故选B . 【答案】B2.【2019优选题】下列命题中正确的是( )A .若p q ∨为真命题,则p q ∧为真命题B .若0x >,则sin x x >恒成立C .命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()00,x ∀∉+∞,00ln 1x x ≠-”D .命题“若22x =,则2x =或2x =-”的逆否命题是“若2x ≠或2x ≠-,则22x ≠. 【解析】令()sin f x x x =-,()1cos 0f x x '=-≥恒成立,()sin f x x x =-在()0,+∞单调递增, ∴()()00f x f >=,∴sin x x >,B 为真命题或者排除A 、C 、D .故选B . 【答案】B3.【2016高考浙江】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x ≤【解析】本题的考点:全称命题与特称命题的否定.全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x ≤.故选D . 【答案】D4.【2018优选题】下列说法错误的是( )A .对于命题:p x ∀∈R ,210x x ++>,则0:p x ⌝∃∈R ,2010x x ++≤. B .“1x =”是“2320x x -+=”的充分不必要条件.C .若命题p q ∧为假命题,则p ,q 都是假命题. D .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠.【解析】根据全称命题的否定是特称命题知A 正确;由于1x =可得2320x x -+=,而由2320x x -+=得1x =或2x =,∴“1x =”是“2320x x -+=”的充分不必要条件正确;命题p q ∧为假命题,则p ,q 不一定都是假命题,故C 错;根据逆否命题的定义可知D 正确,故选C .题p :“0a ∀>,不等式22log a a >成立”;命题q :“函数()212log 21y x x =-+的单调递增区间是(],1-∞”,【答案】C5.【2019优选题】命题“所有能被2整除的数都是偶数”的否定..是( ) A.所有不能被2整除的数都是偶数 B.所有能被2整除的数都不是偶数 C.存在一个不能被2整除的数是偶数 D.存在一个能被2整除的数不是偶数 【解析】本题考查全称命题的否定.把全称量词改为存在量词,并把结果否定. 【答案】D【变式】若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( ) A. 不存在x R ∈,使得3210x x -+< B. 存在x R ∈,使得3210x x -+< C. 对任意的x R ∈,都有3210x x -+≥ D. 存在x R ∈,使得3210x x -+≥【解析】命题:p 对任意的x ∈R ,都有3210x x -+<的否定为32:10p x x x ⌝∈-+≥R 存在,使得; 故选D. 【答案】D6.【17山东理】已知命题p :0>∀x ,()01ln >+x ;命题q :若b a >,则22b a >.下列命题为真命题的是( )A .q p ∧B .q p ⌝∧C .q p ∧⌝D .q p ⌝∧⌝【解析】本题考点是1.简易逻辑联结词.2.全称命题.解答简易逻辑联结词相关问题,关键是要首先明确各命题的真假,利用或、且、非真值表,进一步作出判断.().1ln ,110是真命题有意义,知时,由P x x x +>+>.()()是假命题,可知由q ,21,21,12,122222-<-->->>即q p ⌝,均是真命题,所以选B. 【答案】B7.【2019优选题】在射击训练中 ,某战士射击了两次 ,设命题p 是“ 第一次射击击中目标”,命题是“ 第二次射击击中目标 ”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是 ( ) A. ()()p q ⌝∨⌝ 为真命题 B. ()p q ∨⌝ 为真命题 C. ()()p q ⌝∧⌝ 为真命题 D. p q ∨ 为真命题【解析】两次射击中至少有一次没有击中目标包括三个事件,第一次没有击中目标而第二次击中目标;第一次击中目标第二次没有击中目标;第一次和第二次都没有击中目标;三个事件统一表达为第一次没有击中或第二次没有击中,即()()p q ⌝∨⌝ 为真命题.选A . 【答案】A8.【2018优选题】已知命题()x xx P 32,0,:>∞-∈∀;命题⎪⎭⎫ ⎝⎛∈∃2,0:πx q ,x x >sin ,则下列命题为真命题的是( )A .q p ∧ B . ()q p ∨⌝ C .()q p ∧⌝ D .()q p ⌝∧【解析】分析:由()132,0,:>⎪⎭⎫ ⎝⎛∞-∈∀xx P ,即x x 32>,可得是真命题,命题⎪⎭⎫ ⎝⎛∈∃2,0:πx q ,令()x x x f sin -=,利用导数研究其单调性可得是假命题,逐一判断选项中的命题真假即可的结果.命题由()132,0,:>⎪⎭⎫ ⎝⎛∞-∈∀xx P ,即x x 32>,可得是真命题,命题命题⎪⎭⎫ ⎝⎛∈∃2,0:πx q ,令()x x x f sin -=,()0cos 1>-='x x f ,因此函数()x f 在⎪⎭⎫ ⎝⎛2,0π单调递增,所以()()00=>f x f ,所以x x x <⎪⎭⎫ ⎝⎛∈∀sin 2,0,π,因此是假命题,()q p ⌝∧为真命题,故选D.【答案】D9.【河北省唐山市2018届三模理】已知命题p 在ABC ∆中,若B A sin sin =,则B A =;命题()π,0:∈∀x q ,2sin 1sin >+xx .则下列命题为真命题的是( ) A.q p ∧ B . ()q p ⌝∨ C .()()q p ⌝∧⌝ D . ()q p ∨⌝【解析】命题p 在ABC ∆中,因为π=+B A ,根据正弦函数的性质可以判断当B A sin sin =时,B A =是成立的,所以命题p 是真命题.命题当2sin 1sin 2=+=x x x 时,π,所以()π,0:∈∀x q ,2sin 1sin >+xx 是不成立的,为假命题. 故选B. 【答案】B【变式】 【2014高考重庆理第6题】 已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件,则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【解析】本题主要考查了指数函数的性质,充要条件,判断复合命题的真假,属于中档题,先根据指数函数及充要条件的知识判断出每一个命题的真假,再利用真值表得出结论. 由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题;所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D. 考点:1、指数函数的性质;2、充要条件;3、判断复合命题的真假. 【答案】D10.【2019优选题】给出下列三个命题: ①“若2230x x +-≠,则1x ≠”为假命题; ②若p q ∧为假命题,则,p q 均为假命题;③命题:,20xp x R ∀∈>,则00:,20xp x R ⌝∃∈≤,其中正确的个数是( )A .0B .1C .2D .3【解析】本题考查的是命题真假性的判断问题,若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判断即可.以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p ∨q ”“p ∧q ”“非p ”形式命题的真假,列出含有参数的不等式(组)求解即可.“若2230x x +-≠,则1x ≠”的逆否命题为“若1x =,则2230x x +-=”,为真命题;若p q ∧为假命题,则,p q 至少有一为假命题;命题:,20xp x R ∀∈>,则00:,20x p x R ⌝∃∈≤,所以正确的个数是1,选B. 【答案】B1.命题p :“0a ∀>,不等式22log a a >成立”;命题q :“函数()212log 21y x x =-+的单调递增区间是(],1-∞”,则下列复合命题是真命题的是( ) A .()()p q ⌝∨⌝B .p q ∧C .()p q ⌝∨D .()()p q ∧⌝【解析】由题意,命题p :“0a ∀>,不等式22log a a >成立”;根据指数函数与对数函数的图象可知是不正确的,∴命题p 为假命题;命题q :“函数()212log 21y x x =-+的单调递增区间应为()1-∞,”,∴为假命题, ∴()()p q ⌝∨⌝为真命题,故选A . 【答案】A2.命题“x R ∃∈,2x x =”的否定是( ) A .x R ∀∉,2x x ≠ B .x R ∀∈,2x x ≠C .x R ∃∉,2x x ≠D .x R ∃∈,2x x ≠【模拟考场】【解析】命题“x R ∃∈,2x x =”的否定是x R ∀∈,2x x ≠,选B. 【答案】B3.下列说法正确的是( )A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C. “若tan 3α≠,则3πα≠”是真命题D.()0,0x ∃∈-∞使得0034xx<成立 【解析】“若1a >,则21a >”的否命题是“若1≤a,则21a ≤”,故选项A 错误,在ABC ∆中,“A B >” 是“22sin sin A B >”充要条件,故B 错误,当()0,0x ∃∈-∞时,函数)1(00<=x x y x 在()∞+,0上单调递减,所以043xx >,故D 错误;故选C .【答案】C4.已知命题“R ∈∃x ,使021)1(22≤+-+x a x ”是假命题,则实数a 的取值范围是( ) A. )1,(--∞ B.)3,1(- C.),3(+∞- D.)1,3(- 【解析】原命题是假命题,则其否定是真命题,即()21,2102x R x a x ∀∈+-+>恒成立,故判别式()()2140,1,3a a --<∈-.【答案】B5.设命题()0:0,p x ∃∈+∞, 0013x x +>;命题: ()2,x ∀∈+∞, 22x x >,则下列命题为真的是( ) A. ()p q ∧⌝ B. ()p q ⌝∧ C. p q ∧ D. ()p q ⌝∨ 【解析】命题:p ()00,x ∃∈+∞, 0013x x +>,当03x =时即可,命题为真;命题: ()2,x ∀∈+∞, 22x x >,当4x =是,两式相等,命题为假; 则()p q ∧⌝为真,故选A. 【答案】A6.下列命题中:①“0x R ∃∈,20010x x -+≤”的否定;②“若260x x +-≥,则2x >”的否命题;③命题“若2560x x -+=,则2x =”的逆否命题;其中真命题的个数是( )A .0个B .1个C .2个D .3个【解析】“0x R ∃∈,20010x x -+≤”的否定为“0x R ∀∈,22000131()024x x x -+=-+>”为真命题;“若260x x +-≥,则2x >”的否命题为“若26032x x x +-<⇒-<<,则2x ≤”为真命题;命题“若2560x x -+=,则2x =”为假命题,所以其逆否命题为假命题;所以选C. 【答案】C7.命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >【解析】本题主要考查的是命题的否定,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称 (存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义根据全称命题的否定是特称命题,可知选D. 【答案】D.8.设,,a b c r r r 是非零向量,已知命题P :若0a b •=r r ,0b c •=r r ,则0a c •=r r ;命题q :若//,//a b b c r r r r,则//a c r r ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝【解析】试题分析:本题考查平面向量的数量积、共线向量及复合命题的真假. 本题将平面向量、简易逻辑联结词结合在一起综合考查考生的基本数学素养,体现了高考命题“小题综合化”的原则.本题属于基础题,难度不大,关键是要熟练掌握平面向量的基础知识,熟记“真值表”.由题意可知,两个非零向量都与第三个向量垂直,但这两个向量未必垂直,所以命题P 是假命题;两个非零向量都与第三个向量平行,那么这两个向量一定平行,所以命题q 是真命题,故p q ∨为真命题. 【答案】A9.已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④【解析】本题考查的是复合命题的真假性判断,复合命题的真假判定主要是根据简单命题的真假结合逻辑联结次进行判断即可,如果p 或q 真(假)则需分三种情况讨论,如果p 且q 真(假)则p,q 真(p 真q 假或p,q 假,p 真q 假,p 假q 真),如果p 真,则非p 一定假.当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,而⌝p 是假命题,当1,2x y ==-时,因为2214x y =<=,所以命题q 为假命题,则q ⌝为真命题,所以根据真值表可得②③为真命题,故选C.【答案】C10.下列判断错误的是( )A .“||||am bm <”是“||||a b <”的充分不必要条件B .命题“,0x R ax b ∀∈+≤”的否定是“00,0x R ax b ∃∈+>”C .若()p q ⌝∧为真命题,则,p q 均为假命题D .命题“若p ,则q ⌝”为真命题,则“若q ,则p ⌝”也为真命题 【解析】:本题考查的是四种命题及其相互关系,充要条件,常用逻辑用语.由题意可知:由||||am bm <可以得到||||a b <,反之不一定成立.命题“,0x R ax b ∀∈+≤”的否定是全称命题的否定,先转换量词,然后要否定结论,所以有“00,0x R ax b ∃∈+>”.而()p q ⌝∧为真命题,那么p q ∧为假命题,故,p q 至少有一个假命题,命题“若p ,则q ⌝”为真命题,它的逆否命题也是真命题,所以“若q ,则p ⌝”也为真命题.故C 选项判读错误,选C.【答案】C11.已知命题p :函数12x y a +=-的图象恒过定点()1,2;命题:q 函数()1y f x =-为偶函数,则函数()y f x = 的图象关于直线1x =对称,则下列命题为真命题的是 ( )A .p q ∨B .p q ∧C .p q ⌝∧D .p q ∨⌝【解析】本题考查的是复合命题的真假判断,同时也是命题与函数的综合运用,要求掌握的知识点要全面,由题意可知,函数12x y a +=-恒过定点(1,1)-,所以命题p 为假命题,函数(1)y f x =-是偶函数,它的图象关于直线0x =对称,因此()y f x =的图象关于直线1x =-对称,命题q 也为假命题,所以只有p q ∨⌝为真命题,故选D .【答案】D12.下列说法正确的是( )A .若a R ∈,则“11a<”是“1a >”的必要不充分条件 B .“p q ∧为真命题”是 “p q ∨为真命题”的必要不充分条件 C .若命题p :“x R ∀∈,sin cos 2x x +≤”,则p ⌝是真命题D .命题“0x R ∃∈,200230x x ++<”的否定是“x R ∀∈,2230x x ++>”【解析】:由题意可知1110a a a <⇔><或,所以“11a<”是“1a >”的必要不充分条件;若p q ∧为真命题,则,p q 皆为真命题, 若p q ∨为真命题,则,p q 至少有一个为真命题,所以“p q ∧为真命题”是 “p q ∨为真命题”的充分不必要条件;因为sin cos 2sin(x )24x x π+=+≤,所以命题p 为真命题,p ⌝是假命题;命题“0x R ∃∈,200230x x ++<”的否定是“x R ∀∈,2230x x ++≥”,因此正确的是A.【答案】A13.设命题[]21:1,2,ln 0,2p x x x a ∀∈--≥命题2000:,2860q x R x ax a ∃∈+--≤使得, 如果命题“p 或q ”是真命题,命题“p 且q ”是假命题,求实数a 的取值范围.【分析】对命题p ,先分离常数21ln 2a x x ≤-,利用导数求出右边函数在区间[]1,2上的最小值为12,得12a ≤.对命题q ,2424320a a ∆=++≥,解得4,2a a ≤-≥-.p 或q 真,p 且q 假也就是说明两者一真一假,分成两类来求a 的取值范围.【解析】命题p: []211,2,ln ,2x a x x ∀∈≤-令[]21()ln ,1,22f x x x x =-∈, 1()f x x x '=-=210x x ->,min 1()2f x =,12a ∴≤. 命题q: 22860x ax a +--≤解集非空,2424320a a ∆=++≥, 4,2a a ∴≤-≥-或命题“p 或q ”是真命题,命题“p 且q ”是假命题,p 真q 假或p 假q 真。

2020届高考数学理一轮(新课标通用)考点测试3 简单的逻辑联结词、全称量词与存在量词

2020届高考数学理一轮(新课标通用)考点测试3 简单的逻辑联结词、全称量词与存在量词

考点测试3简单的逻辑联结词、全称量词与存在量词高考概览本考点是高考的常考知识点,题型为选择题,分值5分,低难度考纲研读1.了解逻辑联结词“或”“且”“非”的含义2.理解全称量词与存在量词的意义3.能正确地对含有一个量词的命题进行否定一、基础小题1.命题“所有实数的平方都是正数”的否定为()A.所有实数的平方都不是正数B.有的实数的平方是正数C.至少有一个实数的平方是正数D.至少有一个实数的平方不是正数★答案★D解析根据全称命题的否定为特称命题知,把“所有”改为“至少有一个”,“是”的否定为“不是”,故命题“所有实数的平方都是正数”的否定为“至少有一个实数的平方不是正数”,故选D.2.若命题(綈p)∧q为真命题,则命题p,q的真假情况是()A.p真,q真B.p假,q真C.p真,q假D.p假,q假★答案★B解析因为命题(綈p)∧q为真命题,所以綈p真且q真,所以p假,q真.3.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()A.綈p:∀x∈A,2x∉B B.綈p:∀x∉A,2x∉BC.綈p:∃x∉A,2x∈B D.綈p:∃x∈A,2x∉B★答案★D解析因全称命题的否定是特称命题,故命题p的否定为綈p:∃x∈A,2x∉B.故选D.4.命题“∀x>0,xx-1>0”的否定是()A.∃x<0,xx-1≤0 B.∃x>0,0≤x≤1C.∀x>0,xx-1≤0 D.∀x<0,0≤x≤1★答案★B解析命题“∀x>0,xx-1>0”的否定是“∃x>0,xx-1≤0或x=1”,即“∃x>0,0≤x≤1”,故选B.5.已知集合A={x|x>2},集合B={x|x>3},以下命题正确的个数是()①∃x0∈A,x0∉B;②∃x0∈B,x0∉A;③∀x∈A,都有x∈B;④∀x∈B,都有x∈A.A.4 B.3 C.2 D.1★答案★C解析因为A={x|x>2},B={x|x>3},所以B A,即B是A的真子集,所以①④正确,②③错误,故选C.6.以下四个命题既是特称命题又是真命题的是()A.锐角三角形有一个内角是钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,使1 x>2★答案★B解析选项A中,锐角三角形的所有内角都是锐角,所以A是假命题;选项B中,当x=0时,x2=0,所以B既是特称命题又是真命题;选项C中,因为2+(-2)=0不是无理数,所以C是假命题;选项D中,对于任意一个负数x,都有1x <0,不满足1x >2,所以D 是假命题.故选B .7.已知命题p :若x >y ,则-x <-y ;命题q :若x <y ,则x 2>y 2.给出下列命题:①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q . 其中的真命题是( )A .①③B .①④C .②③D .②④ ★答案★ C解析 由题意可知,命题p 为真命题,命题q 为假命题.故p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假,故真命题为②③.故选C .8.下列命题中的假命题为( ) A .∀x ∈R ,e x >0 B .∀x ∈N ,x 2>0C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin πx 02=1 ★答案★ B解析 由函数y =e x 的图象可知,∀x ∈R ,e x >0,故选项A 为真命题;当x =0时,x 2=0,故选项B 为假命题;当x 0=1e 时,ln 1e =-1<1,故选项C 为真命题;当x 0=1时,sin π2=1,故选项D 为真命题.综上选B .9.已知命题p :∀a ∈R ,方程ax +4=0有解;命题q :∃m >0,直线x +my -1=0与直线2x +y +3=0平行.给出下列结论,其中正确的有( )①命题“p ∧q ”是真命题; ②命题“p ∧(綈q )”是真命题; ③命题“(綈p )∨q ”是真命题; ④命题“(綈p )∨(綈q )”是真命题. A .1个 B .2个 C .3个 D .4个 ★答案★ B解析 因为当a =0时,方程ax +4=0无解,所以命题p 是假命题;当1-2m =0,即m =12时两条直线平行,所以命题q 是真命题.所以綈p 是真命题,綈q 是假命题,所以①②错误,③④正确.故选B .10.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(綈p)∨(綈q) B.p∨(綈q)C.(綈p)∧(綈q) D.p∨q★答案★A解析綈p表示甲没有降落在指定范围,綈q表示乙没有降落在指定范围,命题“至少有一位学员没有降落在指定范围”,也就是“甲没有降落在指定范围或乙没有降落在指定范围”.故选A.11.已知p:∃x∈R,x2+2x+a≤0,若p是假命题,则实数a的取值范围是________.(用区间表示)★答案★(1,+∞)解析由题意知∀x∈R,x2+2x+a>0恒成立,∴关于x的方程x2+2x+a=0的根的判别式Δ=4-4a<0,∴a>1.∴实数a 的取值范围是(1,+∞).12.已知全集U=R,A⊆U,B⊆U,如果命题p:x∈(A∩B),那么綈p是________.★答案★x∉A或x∉B解析x∈(A∩B)即x∈A且x∈B,所以其否定为:x∉A或x∉B.二、高考小题13.(2015·全国卷Ⅰ)设命题p:∃n∈N,n2>2n,则綈p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n★答案★C解析根据特称命题的否定为全称命题,所以綈p:∀n∈N,n2≤2n,故选C.14.(2016·浙江高考)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是() A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D .∃x ∈R ,∀n ∈N *,使得n <x 2 ★答案★ D解析 先将条件中的全称量词变为存在量词,存在量词变为全称量词,再否定结论.故选D .15.(2015·湖北高考)命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x 0∈(0,+∞),ln x 0≠x 0-1 D .∃x 0∉(0,+∞),ln x 0=x 0-1 ★答案★ A解析 特称命题的否定为全称命题,所以∃x 0∈(0,+∞),ln x 0=x 0-1的否定是∀x ∈(0,+∞),ln x ≠x -1,故选A .16.(2015·浙江高考)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 ★答案★ D解析 “f (n )∈N *且f (n )≤n ”的否定为“f (n )∉N *或f (n )>n ”,全称命题的否定为特称命题,故选D .17.(2017·山东高考)已知命题p :∀x >0,ln (x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q ) ★答案★ B解析 ∵∀x >0,x +1>1,∴ln (x +1)>0,∴命题p 为真命题;当b <a <0时,a 2<b 2,故命题q 为假命题.由真值表可知B 正确,故选B .18.(2015·山东高考]若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.★答案★ 1解析 ∵0≤x ≤π4,∴0≤tan x ≤1. ∵“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,∴m ≥1,∴实数m 的最小值为1. 三、模拟小题19.(2018·河南适应性考试)已知f (x )=sin x -tan x ,命题p :∃x 0∈0,π2,f (x 0)<0,则( )A .p 是假命题,綈p :∀x ∈0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈0,π2,f (x 0)≥0 C .p 是真命题,綈p :∀x ∈0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈0,π2,f (x 0)≥0 ★答案★ C解析 x ∈0,π2时,sin x <tan x 恒成立,所以命题p 是真命题,排除A ,B ;綈p :∀x ∈0,π2,f (x )≥0,故选C .20.(2019·豫西五校联考)若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( )A .∀x ∈R ,f (-x )≠f (x )B .∀x ∈R ,f (-x )=-f (x )C .∃x 0∈R ,f (-x 0)≠f (x 0)D .∃x 0∈R ,f (-x 0)=-f (x 0) ★答案★ C解析 由题意知∀x ∈R ,f (-x )=f (x )是假命题,则其否定为真命题,即∃x 0∈R ,f (-x 0)≠f (x 0)是真命题,故选C .21.(2018·湖南雅礼月考八)下列命题中的假命题是()A.∀x∈R,x2+x+1>0B.存在四边相等的四边形不是正方形C.“存在实数x,使x>1”的否定是“不存在实数x,使x≤1”D.若x,y∈R且x+y>2,则x,y中至少有一个大于1★答案★C解析x2+x+1=x+122+34≥34,A是真命题;菱形的四边相等,但不是正方形,B是真命题;“存在实数x,使x>1”的否定是“对于任意实数x,有x≤1”,C是假命题;“若x,y∈R且x+y>2,则x,y中至少有一个大于1”的逆否命题是“若x,y均不大于1,则x+y≤2”是真命题,D是真命题,故选C.22.(2018·湖南湘东五校4月联考)已知命题“∃x∈R,4x2+(a-2)x+14≤0”是假命题,则实数a的取值范围为() A.(-∞,0) B.[0,4]C.[4,+∞) D.(0,4)★答案★D解析因为命题“∃x∈R,4x2+(a-2)x+14≤0”是假命题,所以其否定命题“∀x∈R,4x2+(a-2)x+14>0”是真命题,则Δ=(a-2)2-4×4×14=a2-4a<0,解得0<a<4,故选D.23.(2019·太原五中阶段测试)已知命题p:∃x0∈(0,+∞),x0>x20;命题q:∀x∈12,+∞,2x+21-x>22.则下列命题中是真命题的为()A.綈q B.p∧(綈q) C.p∧q D.(綈p)∨(綈q)★答案★C解析取x0=12,可知12>122,故命题p为真;因为2x+21-x≥22x·21-x=22,当且仅当x=12时等号成立,故命题q为真;故p∧q为真,即选项C正确,故选C .24.(2018·湖北八市3月联考)已知平面α,β,直线a ,b .命题p :若α∥β,a ∥α,则a ∥β;命题q :若a ∥α,a ∥β,α∩β=b ,则a ∥b ,下列为真命题的是( )A .p ∧qB .p ∨(綈q )C .p ∧(綈q )D .(綈p )∧q ★答案★ D解析 命题p 中,直线a 与平面β可能平行,也可能在平面β内,所以命题p 为假命题,綈p 为真命题;由线面平行的性质定理知命题q 为真命题,綈q 为假命题,所以(綈p )∧q 为真命题,故选D .25.(2018·江西赣州摸底)已知命题m :“∀x 0∈0,13,12x 0<log 13x 0”,n :“∃x 0∈(0,+∞),12x 0=log 13x 0>x 0”,则在命题p 1:m ∨n ,p 2:m ∧n ,p 3:(綈m )∨n 和p 4:m ∧(綈n )中,真命题是( )A .p 1,p 2,p 3B .p 2,p 3,p 4C .p 1,p 3D .p 2,p 4 ★答案★ A解析 如图,由指数函数y =12x 与对数函数y =log 13x 的图象可以判断命题m 是真命题,命题n 也是真命题,根据复合命题的性质可知p 1,p 2,p 3均为真命题,故选A .26.(2018·广东华南师大附中测试三)设有两个命题: p :关于x 的不等式a x >1(a >0,且a ≠1)的解集是{x |x <0}; q :函数y =lg (ax 2-x +a )的定义域为R .如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围是________. ★答案★ 0<a ≤12或a ≥1解析 当命题p 是真命题时,0<a <1.当命题q 是真命题时,ax 2-x +a >0,x ∈R 恒成立,则⎩⎨⎧a >0,Δ=1-4a 2<0,解得a >12.由p ∨q 为真命题,p ∧q 为假命题可得命题p ,q 中一真一假,若p 真q 假,则⎩⎪⎨⎪⎧0<a <1,a ≤12;若p 假q 真,则⎩⎪⎨⎪⎧a ≤0或a ≥1,a >12,则0<a ≤12或a ≥1.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2018·河南郑州月考)已知p :方程x 2+mx +1=0有两个不相等的实数根,q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求实数m 的取值范围.解 p 或q 为真,p 且q 为假,由这句话可知p ,q 命题为一真一假. ①当p 真q 假时,⎩⎨⎧m 2-4>0,16(m -2)2-16≥0,解得m <-2或m ≥3.②当p 假q 真时,⎩⎨⎧m 2-4≤0,16(m -2)2-16<0, 解得1<m ≤2.综上所述,m 的取值范围是{m |m <-2或1<m ≤2或m ≥3}.2.(2018·山西联考)已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2.若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0,求m 的取值范围.解 由题意知m ≠0,∴f (x )=m (x -2m )(x +m +3)为二次函数,若∀x ∈R ,f (x )<0或g (x )<0,必须抛物线开口向下,即m <0.f (x )=0的两根x 1=2m ,x 2=-m -3,则x 1-x 2=3m +3.(1)当x1>x2,即m>-1时,必须大根x1=2m<1,即m<1 2.(2)当x1<x2,即m<-1时,大根x2=-m-3<1,即m>-4.(3)当x1=x2,即m=-1时,x1=x2=-2<1也满足条件.∴满足条件①的m的取值范围为-4<m<0.若∃x∈(-∞,-4),f(x)g(x)<0,则满足方程f(x)=0的小根小于-4.(1)当m>-1时,小根x2=-m-3<-4且m<0,无解.(2)当m<-1时,小根x1=2m<-4且m<0,解得m<-2.(3)当m=-1时,f(x)=-(x+2)2≤0恒成立,∴不满足②.∴满足①②的m的取值范围是{m|-4<m<-2}.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

高考数学专题知识突破:考点3 简单的逻辑联结词、全称量词与存在量词

高考数学专题知识突破:考点3 简单的逻辑联结词、全称量词与存在量词

考点简单的逻辑联结词、全称量词与存在量词知识梳理1.简单的逻辑联结词(1) 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联接词.(2) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(3) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(4) 一个命题p的否定记作¬p,读作“非p”或“p的否定”.2.复合命题及其真假判断(1) 复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题.(2) 复合命题p∧q,p∨q,非p以及其真假判断:简记为:p∧q中p、q有假则假,同真则真;p∨q有真为真,同假则假;p与¬p必定是一真一假.3. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.4. 含有一个量词的命题的否定x ∈M ,p (x ),,典例剖析题型一 含有一个量词的命题的否定例1 命题“存在一个无理数,它的平方是有理数”的否定是_________________________. 答案 任意一个无理数,它的平方不是有理数解析 根据特称命题的否定是全称命题可知,原命题的否定为“任意一个无理数,它的平方不是有理数”.变式训练 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :任意x ∈A,2x ∈B ,则p 是________.答案 存在x ∈A,2x ∉B解析 命题p :任意x ∈A,2x ∈B 是一个全称命题,其命题的否定p 应为:存在x ∈A,2x ∉B . 解题要点 ①要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”;②在写出全称命题(或存在性命题)的否定时,一般要在两个地方做出变化:一是量词符号,全称量词要改为存在量词,存在量词要改为全称量词;二是命题中结论要进行否定. ③弄清命题的否定与否命题的区别“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.题型二 复合命题真假判断例2 下列命题中的假命题是________.①存在x ∈R ,sin x =52②存在x ∈R ,log 2x =1 ③任意x ∈R ,(12)x >0 ④任意x ∈R ,x 2≥0 答案 ①解析 因为任意x ∈R ,sin x ≤1<52,所以①是假命题;对于②,存在x =2,log 2x =1;对于③,根据指数函数图象可知,任意x ∈R ,(12)x >0;对于④,根据二次函数图象可知,任意x ∈R ,x 2≥0.变式训练 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是________.①p∧q②p∧q③p∧q④p∧q答案④解析因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、p为假命题,q为真命题,p∧q、p∧q为假命题,p∧q为真命题,故选④.解题要点若要判断一个含有逻辑联结词的命题即复合命题的真假,其步骤如下:(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据“或”——有真则真,“且”——有假则假,“非”——真假相反,作出判断即可.题型三由命题真假求参数范围例3命题“存在x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围为________.答案[-22,22]解析由题可知原命题的否定“任意x∈R,2x2-3ax+9≥0”为真命题,因此只需Δ=9a2-4×2×9≤0,即-22≤a≤2 2.变式训练已知命题p:“任意x∈[1,2],x2-a≥0”,命题q:“存在x∈R,使x2+2ax +2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是________.答案{a|a≤-2或a=1}解析由题意知,p为真,则a≤1;q为真,即方程x2+2ax+2-a=0有实数解,从而Δ≥0,解得a≤-2或a≥1,∵“p且q”为真命题,∴p、q均为真命题,∴a≤-2或a=1.解题要点以命题真假为依据求参数的取值范围时,首先求出两命题分别为真时参数满足的条件,然后依据“p且q”“p或q”“¬p”形式命题的真假,列出含有参数的不等式(组)求解.当堂练习x≥”的否定为.1. 命题“对任意x∈R,都有202.若p,q是两个简单命题,且“p或q”是假命题,则必有.(填序号)①p真q真②p真q假③p假q假④p假q真3.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是.(填序号)①¬p或q②p且q③¬p且¬q④¬p或¬q4.已知p:2+2=5,q:3>2,则下列判断正确的是.(填序号)①“p或q”为假,“非q”为假②“p或q”为真,“非q”为假②“p且q”为假,“非p”为假④“p且q”为真,“p或q”为假5.已知命题p:若x>y,则-x<-y,命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是.课后作业1.命题“对任意的x∈R,x3-x2+1≤0”的否定是_______.(填序号)①不存在x∈R,x3-x2+1≤0 ②存在x∈R,x3-x2+1≤0③存在x∈R,x3-x2+1>0 ④对任意的x∈R,x3-x2+1>02.下列命题中正确的是_______.(填序号)①若p∨q为真命题,则p∧q为真命题②“x=5”是“x2-4x-5=0”的充分不必要条件③命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”④已知命题p:x∈R,x2+x-1<0,则¬p:∃x∈R,x2+x-1≥03.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是_______.(填序号)①p∧q②¬p∧¬q③¬p∧q④p∧¬q4.已知命题p:x0∈R,x20+2x0+2≤0,则¬p为____________________.5.对于下述两个命题p:对角线互相垂直的四边形是菱形;q:对角线互相平分的四边形是菱形.则命题“p∨q”、“p∧q”、“¬p”中真命题的个数为_______.6.下列命题中的假命题是_______.(填序号)①x∈R,2x-1>0 ②x∈N*,(x-1)2>0 ③x∈R,lg x<1 ④x∈R,tan x=2 7.若命题“x0∈R,使得x20+mx0+2m-3<0”为假命题,则实数m的取值范围是_______.答案[2,6]8.已知命题p:x∈R,2x2-2x+1≤0,命题q:x∈R,使sin x+cos x=2,则下列判断:①p且q是真命题;②p或q是真命题;③q是假命题;④非p是真命题其中正确的是_______.(填序号)9.命题“x∈R,|x|≤0”的否定是“________________”.10.若命题“x∈R使x2+2x+m≤0”是假命题,则m的取值范围是______________.11.命题:“对任意k>0,方程x2+x-k=0有实根”的否定是________.12.命题“任意两个等边三角形都相似”的否定为________________________.13.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.当堂练习1. 答案对任意x∈R,使得20x<2.答案③解析∵“p或q”为假命题,∴p,q均为假命题.3.答案④解析不难判断命题p为真命题,命题q为假命题,从而¬p或¬q为真命题.4.答案②解析∵p为假命题,q为真命题,∴p或q真,非q假.5.答案②③解析当x>y时,-x<-y,故命题p为真命题,从而¬p为假命题.当x>y时,x2>y2不一定成立,故命题q为假命题,从而¬q为真命题.由真值表知,①p∧q为假命题;②p∨q为真命题;③p∧(¬q)为真命题;④(¬p)∨q为假命题.课后作业1.答案③2.答案②解析若p∨q为真命题,则p,q有可能一真一假,此时p∧q为假命题,故①错;易知由“x=5”可以得到“x2-4x-5=0”,但反之不成立,故②正确;选项③错在把命题的否定写成了否命题;特称命题的否定是全称命题,故④错.3.答案④解析依题意,命题p是真命题.由x>2⇒x>1,而x>1x>2,因此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则¬q是真命题,p∧¬q是真命题,选④.4.答案∀x∈R,x2+2x+2>0解析根据含有量词的命题的否定形式,所以该题中¬p为:x∈R,x2+2x+2>0. 5.答案 1解析由题可得p假q假,∴p∧q,p∨q均为假命题,¬p为真命题.6.答案②解析①项,∵x∈R,∴x-1∈R,由指数函数性质得2x-1>0;②项,∵x∈N*,∴当x=1时,(x-1)2=0与(x-1)2>0矛盾;③项,当x=110时,lg 110=-1<1;④项,当x∈R时,tan x∈R,∴x∈R,tan x=2.故选②. 7.答案[2,6]解析 ∵命题“x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,∴命题“x ∈R ,使得x 2+mx +2m -3≥0”为真命题,∴Δ≤0,即m 2-4(2m -3)≤0,∴2≤m ≤6.8.答案 ②④解析 由题意知p 假q 真,故②④正确.9.答案 x ∈R ,|x |>0解析 根据“x ∈M ,p (x )”的否定为“x ∈M ,p (x )”可直接写出答案. 10.答案 m >1解析 由题意得x 2+2x +m >0恒成立,∴4-4m <0,得m >1.11.答案 存在k >0,方程x 2+x -k =0无实根12.答案 存在两个等边三角形,它们不相似13.答案 [-8, 0]解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,得-8≤a <0. 综上,-8≤a ≤0.。

2020年高考文科数学一轮总复习:简单的逻辑联结词、全称量词与存在量词

2020年高考文科数学一轮总复习:简单的逻辑联结词、全称量词与存在量词

2020年高考文科数学一轮总复习:简单的逻辑联结词、全称量词与存在量词第3讲 简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”、“且”、“非”. (2)命题p ∧q 、p ∨q 、﹁p 的真假判断2.(1)全称量词和存在量词常用知识拓展1.含逻辑联结词命题真假的判断 (1)p ∧q 中一假则假,全真才真. (2)p ∨q 中一真则真,全假才假. (3)p 与﹁p 真假性相反.2.全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.(2)否定结论:对原命题的结论进行否定.判断正误(正确的打“√”,错误的打“×”)(1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( ) (2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p ,q 至少有一个是真命题,则p ∨q 是真命题.( ) (4)写特称命题的否定时,存在量词变为全称量词.( ) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,﹁p (x )的真假性相反.( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√(教材习题改编)命题“∃x 0∈R ,x 20-x 0-1>0”的否定是( ) A .∀x ∈R ,x 2-x -1≤0 B .∀x ∈R ,x 2-x -1>0 C .∃x 0∈R ,x 20-x 0-1≤0 D .∃x 0∈R ,x 20-x 0-1≥0解析:选A.依题意得,命题“∃x 0∈R ,x 20-x 0-1>0”的否定是“∀x ∈R ,x 2-x -1≤0”,选A.已知命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A .p ∧(﹁q )B .(﹁p )∧qC .(﹁p )∧(﹁q )D .p ∧q解析:选A.因为命题p 为真命题,q 为假命题,故﹁q 为真命题,所以p ∧(﹁q )为真命题.(教材习题改编)命题“所有可以被5整除的整数,末位数字都是0”的否定为________________________________________________________________________.答案:“有些可以被5整除的整数,末位数字不是0”若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.解析:因为0≤x ≤π4,所以0≤tan x ≤1,又因为∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ,故m ≥1,即m 的最小值为1.答案:1全称命题、特称命题(多维探究) 角度一 全称命题、特称命题的否定已知命题p :∃m ∈R ,f (x )=2x -mx 是增函数,则﹁p 为( )A .∃m ∈R ,f (x )=2x -mx 是减函数B .∀m ∈R ,f (x )=2x -mx 是减函数C .∃m ∈R ,f (x )=2x -mx 不是增函数D .∀m ∈R ,f (x )=2x -mx 不是增函数【解析】 本题考查特称命题的否定.由特称命题的否定可得﹁p 为“∀m ∈R ,f (x )=2x -mx 不是增函数”.【答案】 D角度二 判断全称命题、特称命题的真假性(2019·长沙统一模拟考试)已知函数f (x )=x 12,则( )A .∃x 0∈R ,f (x 0)<0B .∀x ∈[0,+∞),f (x )≥0C .∃x 1,x 2∈[0,+∞),f (x 1)-f (x 2)x 1-x 2<0D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),f (x 1)>f (x 2)【解析】 幂函数f (x )=x 12的值域为[0,+∞),且在定义域上单调递增,故A 错误,B 正确,C 错误,D 选项中,当x 1=0时,结论不成立,选B. 【答案】 B全称命题与特称命题真假的判断方法[定的真假.(2019·河南商丘模拟)已知f (x )=sin x -x ,命题p :∃x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0B .p 是假命题,﹁p :∃x ∈⎝⎛⎭⎫0,π2,f (x )≥0C .p 是真命题,﹁p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝⎛⎭⎫0,π2,f (x )≥0解析:选C.易知f ′(x )=cos x -1<0,所以f (x )在⎝⎛⎭⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝⎛⎭⎫0,π2,f (x )<0是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0,故选C.含有逻辑联结词的命题的真假判断(师生共研)(1)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( ) A .p ∨q B .p ∧q C .qD .﹁p(2)(2019·唐山市五校联考)已知命题p :“a >b ”是“2a >2b ”的充要条件;q :∃x ∈R ,|x +1|≤x ,则( )A .(﹁p )∨q 为真命题B .p ∨q 为真命题C .p ∧q 为真命题D .p ∧(﹁q )为假命题【解析】 (1)取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.(2)由函数y =2x 是R 上的增函数,知命题p 是真命题. 对于命题q ,当x +1≥0,即x ≥-1时,|x +1|=x +1>x ; 当x +1<0,即x <-1时,|x +1|=-x -1, 由-x -1≤x ,得x ≥-12,无解,因此命题q 是假命题.所以(﹁p )∨q 为假命题,A 错误; p ∨q 为真命题,B 正确;p ∧q 为假命题,C 错误;p ∧(﹁q )为真命题,D 错误.故选B. 【答案】 (1)B (2)B(1)“p ∨q ”“p ∧q ”“ ﹁p ”形式命题真假的判断步骤 ①确定命题的构成形式; ②判断命题p ,q 的真假;③根据真值表确定“p ∨q ”“p ∧q ”“ ﹁p ”形式命题的真假. (2)含逻辑联结词命题真假的等价关系①p ∨q 真⇔p ,q 至少一个真⇔(﹁p )∧(﹁q )假; ②p ∨q 假⇔p ,q 均假⇔(﹁p )∧(﹁q )真; ③p ∧q 真⇔p ,q 均真⇔(﹁p )∨(﹁q )假; ④p ∧q 假⇔p ,q 至少一个假⇔(﹁p )∨(﹁q )真; ⑤﹁p 真⇔p 假;﹁p 假⇔p 真.已知命题p :“若x 2-x >0,则x >1”;命题q :“若x ,y ∈R ,x 2+y 2=0,则xy =0”.下列命题是真命题的是( )A .p ∨(﹁q )B .p ∨qC .p ∧qD .(﹁p )∧(﹁q )解析:选B.若x 2-x >0,则x >1或x <0,故p 是假命题;若x ,y ∈R ,x 2+y 2=0,则x =0,y =0,xy =0,故q 是真命题.则p ∨q 是真命题,故选B.由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,即-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).[迁移探究1] (变结论)本例条件不变,若p 且q 为真,则实数m 的取值范围为________. 解析:依题意知p ,q 均为真命题,当p 是真命题时,有m <0;当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 答案:(-2,0)[迁移探究2] (变结论)本例条件不变,若p 且q 为假,p 或q 为真,则实数m 的取值范围为________.解析:若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2). 答案:(-∞,-2]∪[0,2)[迁移探究3] (变条件)本例中的条件q 变为:存在x 0∈R ,x 20+mx 0+1<0,其他不变,则实数m 的取值范围为________.解析:依题意,当q 是真命题时,Δ=m 2-4>0, 所以m >2或m <-2.由题意知,p ,q 均为假命题,所以⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,得0≤m ≤2,所以m 的取值范围是[0,2]. 答案:[0,2](1)由含逻辑联结词的命题真假求参数的方法步骤 ①求出每个命题是真命题时参数的取值范围; ②根据每个命题的真假情况,求出参数的取值范围. (2)全称命题可转化为恒成立问题含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决. [注意] 要注意分类讨论思想的应用,如本例的迁移探究(2),由于p 和q 一真一假,因此需分p 真q 假与p 假q 真两种情况讨论求解.(2019·河南师范大学附属中学开学考)已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”,若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .(4,+∞)B .[1,4]C .(-∞,1]D .[e ,4]解析:选D.命题p 等价于ln a ≥x 对x ∈[0,1]恒成立,所以ln a ≥1,解得a ≥e ;命题q 等价于关于x 的方程x 2+4x +a =0有实根,则Δ=16-4a ≥0,所以a ≤4.因为命题“p ∧q ”是真命题,所以命题p 真,命题q 真,所以实数a 的取值范围是[e ,4],故选D.[基础题组练]1.下列命题中的假命题是( ) A .∀x ∈R ,e x >0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1 D .∃x 0∈N *,sinπ2x 0=1 解析:选B.对于B ,当x =0时,x 2=0,因此B 中命题是假命题.2.(2019·太原模拟试题(一))已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b ,则下列为真命题的是( )A .p ∧qB .p ∧(﹁q )C .(﹁p )∧qD .(﹁p )∧(﹁q )解析:选B.对于命题p ,当x 0=0时,1≥0成立,所以命题p 为真命题,命题﹁p 为假命题;对于命题q ,当a =-1,b =1时,1a <1b ,所以命题q 为假命题,命题﹁q 为真命题,所以p ∧(﹁q )为真命题,故选B.3.(2019·辽宁五校协作体联考)已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析:选D.因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D.4.(2019·湖北八校联考)下列说法正确的个数是( )①“若a +b ≥4,则a ,b 中至少有一个不小于2”的逆命题是真命题; ②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个真命题;③“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x >0”; ④“a +1>b ”是“a >b ”的一个必要不充分条件. A .0 B .1 C .2D .3解析:选C.对于①,原命题的逆命题为“若a ,b 中至少有一个不小于2,则a +b ≥4”,而a =4,b =-4满足a ,b 中至少有一个不小于2,但此时a +b =0,故①不正确;对于②,此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,为真命题,所以原命题也是真命题,故②正确;对于③,“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x ≥0”,故③不正确;对于④,由a >b 可推得a +1>b ,但由a +1>b 不能推出a >b ,故④正确.故选C.5.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为____________________. 解析:因为p 是﹁p 的否定,所以只需将全称量词变为特称量词,再对结论否定即可. 答案:∃x 0∈(0,+∞),x 0≤x 0+16.已知命题p :x 2+4x +3≥0,q :x ∈Z ,且“p ∧q ”与“﹁q ”同时为假命题,则x =________.解析:若p 为真,则x ≥-1或x ≤-3, 因为“﹁q ”为假,则q 为真,即x ∈Z ,又因为“p ∧q ”为假,所以p 为假,故-3<x <-1, 得x =-2. 答案:-27.由命题“存在x 0∈R ,使x 20+2x 0+m ≤0”是假命题,求得m 的取值范围是(a ,+∞),则实数a 的值是________.解析:因为命题“存在x 0∈R ,使x 20+2x 0+m ≤0”是假命题,所以命题“∀x ∈R ,x2+2x +m >0”是真命题,故Δ=22-4m <0,即m >1,故a =1.答案:18.设命题p :函数y =log a (x +1)在区间(-1,+∞)内单调递减,q :曲线y =x 2+(2a -3)x +1与x 轴有两个不同的交点.若p ∧(綈q )为真命题,求实数a 的取值范围.解:函数y =log a (x +1)在区间(-1,+∞)内单调递减⇔0<a <1,曲线y =x 2+(2a -3)x +1与x 轴有两个不同的交点⇔Δ=(2a -3)2-4>0⇔a <12或a >52.所以若p 为真命题,则0<a <1; 若q 为真命题,则a <12或a >52.因为p ∧(﹁q )为真命题, 所以p 为真命题,q 为假命题. 由⎩⎪⎨⎪⎧0<a <112≤a ≤52,解得12≤a <1, 所以实数a 的取值范围是⎣⎡⎭⎫12,1.[综合题组练]1.已知命题p :∃x ∈R ,x 2+1<2x ;命题q :若mx 2-mx +1>0恒成立,则0<m <4,那么( )A .“﹁p ”是假命题B .q 是真命题C .“p ∨q ”为假命题D .“p ∧q ”为真命题解析:选C.因为x 2+1<2x ,即x 2-2x +1<0,也即(x -1)2<0,所以命题p 为假;若mx 2-mx +1>0恒成立,则m =0或⎩⎪⎨⎪⎧m >0,Δ=m 2-4m <0,则0≤m <4,所以命题q 为假,故选C. 2.已知命题p :∀x ∈R ,2x <3x ,命题q :∃x ∈R ,x 2=2-x ,若命题(﹁p )∧q 为真命题,则x 的值为( )A .1B .-1C .2D .-2解析:选D.因为﹁p :∃x ∈R ,2x ≥3x ,要使(﹁p )∧q 为真,所以﹁p 与q 同时为真.由2x≥3x得⎝⎛⎭⎫23x≥1,所以x ≤0,由x 2=2-x 得x 2+x -2=0,所以x =1或x =-2,又x ≤0,所以x =-2.3.下面说法正确的是( )A .命题“存在x ∈R ,使得x 2+x +1≥0”的否定是“任意x ∈R ,使得x 2+x +1≥0”B .实数x >y 是1x <1y成立的充要条件C .设p ,q 为简单命题,若“p 或q ”为假命题,则“﹁p 或﹁q ”也为假命题D .命题“若x 2-3x +2=0,则x =1”的逆否命题为假命题解析:选D.命题“存在x ∈R ,使得x 2+x +1≥0”的否定是“任意x ∈R ,使得x 2+x +1<0”,故A 说法错误.当实数x >0>y 时,1x >1y ,则1x <1y 不成立,故B 说法错误.“p 或q ”为假命题,则命题p 和q 都是假命题,则﹁p 是真命题,﹁q 是真命题,所以﹁p 或﹁q 为真,故C 说法错误.若x 2-3x +2=0,则x =1或x =2,所以原命题为假命题,故其逆否命题也为假命题,D 说法正确.故选D.4.(应用型)已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________.解析:由“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,可知原命题必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方.故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝⎛⎭⎫56,+∞. 答案:⎝⎛⎭⎫56,+∞.。

2020年高考数学一轮复习考点03简单的逻辑联结词全称量词与存在量词必刷题理含解析

2020年高考数学一轮复习考点03简单的逻辑联结词全称量词与存在量词必刷题理含解析

考点03 简单的逻辑联结词、全称量词与存在量词1.“∀x∈R,x2-πx≥0”的否定是( )A.∀x∈R,x2-πx<0 B.∀x∈R,x2-πx≤0C.∃x0∈R,x20-πx0≤0 D.∃x0∈R,x20-πx0<0【答案】D【解析】全称命题的否定是特称命题,所以“∀x∈R,x2-πx≥0”的否定是“∃x0∈R,x20-πx0<0”.故选D.2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数【答案】C【解析】.将原命题的条件和结论互换的同时进行否定即得逆否命题,因此“若x,y都是偶数,则x+y也是偶数”的逆否命题是“若x+y不是偶数,则x,y不都是偶数”,所以选C.3.下列命题错误的是()A.命题“ ,”的否定是“,”;B.若是假命题,则,都是假命题C.双曲线的焦距为D.设,是互不垂直的两条异面直线,则存在平面,使得,且【答案】B【解析】对于选项A,由于特称命题的否定是特称命题,所以命题“ ,”的否定是“,”,是正确的.对于选项B, 若是假命题,则,至少有一个是假命题,所以命题是假命题.对于选项C, 双曲线的焦距为2c=2,所以是真命题.对于选项D, 设,是互不垂直的两条异面直线,则存在平面,使得,且,是真命题.故答案为:B.4.在射击训练中,某战士射击了两次,设命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是( )A.(¬p)∨(¬q)为真命题B.p∨(¬q)为真命题C.(¬p)∧(¬q)为真命题D.p∨q为真命题【答案】A【解析】.命题p是“第一次射击击中目标”,命题q是“第二次射击击中目标”,则命题¬p是“第一次射击没击中目标”,命题¬q是“第二次射击没击中目标”,故命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是(¬p)∨(¬q)为真命题,故选A.5.已知.若“”是真命题,则实数a的取值范围是A. (1,+∞) B. (-∞,3) C. (1,3) D.【答案】C【解析】由“”是真命题可知命题p,q均为真命题,若命题p为真命题,则:,解得:,若命题q为真命题,则:,即,综上可得,实数a的取值范围是,表示为区间形式即.本题选择C选项.6.已知a,b都是实数,那么“2a>2b”是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】.充分性:若2a>2b,则2a-b>1,∴a-b>0,即a>b.当a=-1,b=-2时,满足2a>2b,但a2<b2,故由2a>2b不能得出a2>b2,因此充分性不成立.必要性:若a2>b2,则|a|>|b|.当a=-2,b=1时,满足a2>b2,但2-2<21,即2a<2b,故必要性不成立.综上,“2a>2b”是“a2>b2”的既不充分也不必要条件.故选D.7.已知命题,使;命题,都有,下列结论中正确的是A.命题“p∧q”是真命题 B.命题“p∧q”是真命题C . 命题“p ∧q ”是真命题D . 命题“p ∨q ”是假命题 【答案】A【解析】由判断 ,所以为假命题; 命题,所以为真命题,所以命题“p ∧q ”是真命题,故选A .8.已知命题p :存在x 0∈R ,x 0-2>lg x 0;命题q :任意x ∈R ,x 2+x +1>0.给出下列结论:①命题“p 且q ”是真命题;②命题“p 且¬q ”是假命题; ③命题“¬p 或q ”是真命题;④命题“p 或¬q ”是假命题. 其中所有正确结论的序号为( ) A .②③ B .①④ C .①③④ D .①②③【答案】D【解析】对于命题p ,取x 0=10,则有10-2>lg 10,即8>1,故命题p 为真命题;对于命题q ,方程x 2+x +1=0,Δ=1-4×1<0,故方程无解,即任意x ∈R ,x 2+x +1>0,所以命题q 为真命题.综上“p 且q ”是真命题,“p 且¬q ”是假命题,“¬p 或q ”是真命题,“p 或¬q ”是真命题,即正确的结论为①②③.故选D.9.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1【答案】A【解析】.因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合可得a ≤0或a >1.观察选项,根据集合间的关系{a |a <a |a ≤0或a >1},故选A.10.下列命题正确的是( ) A . 命题的否定是:B . 命题中,若,则的否命题是真命题C . 如果为真命题,为假命题,则为真命题,为假命题D .是函数的最小正周期为的充分不必要条件【答案】D【解析】在A中,命题的否定是:,故A错误;在B中,命题中,若,则的否命题是假命题,故B错误;在C中,如果为真命题,为假命题,则与中一个是假命题,另一个是真命题,故C错误;在D中,∴ω=1⇒函数f(x)=sinωx-cosωx的最小正周期为2π,函数f(x)=sinωx-cosωx的最小正周期为2π⇒ω=±1.∴是函数的最小正周期为的充分不必要条件,故D正确.故选:D.11.设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】.|a-3b|=|3a+b|⇔|a-3b|2=|3a+b|2⇔a2-6a·b+9b2=9a2+6a·b+b2⇔2a2+3a·b-2b2=0,又∵|a|=|b|=1,∴a·b=0⇔a⊥b,故选C.12.(2018·温州模拟)下面四个条件中,使a>b成立的充分不必要条件是( )A.a>b+1 B.a>b-1C.a2>b2D.a3>b3【答案】A【解析】.由选项中的不等式可得a>b,a>b推不出选项中的不等式.选项A中,a>b+1>b,反之a>b推不出a>b+1;选项B中,a>b>b-1,反之a>b-1推不出a>b,为必要不充分条件;选项C为既不充分也不必要条件;选项D为充要条件,故选A.13.已知命题p:对任意x∈(0,+∞),log4x<log8x;命题q:存在x∈R,使得tan x=1-3x,则下列命题为真命题的是( )A.p∧q B.(¬p)∧(¬q)C.p∧(¬q) D.(¬p)∧q【答案】D【解析】.当x=1时,log4x=log8x,所以命题p是假命题;函数y=tan x的图象与y=1-3x的图象有无数个交点,所以存在x∈R,使得tan x=1-3x,即命题q是真命题,故(¬p)∧q是真命题,选D.14.有关下列说法正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的必要不充分条件B .若p :∃x 0∈R ,x 20-x 0-1>0,则¬p :∀x ∈R ,x 2-x -1<0C .命题“若x 2-1=0,则x =1或x =-1”的否命题是“若x 2-1≠0,则x ≠1或x ≠-1” D .命题p 和命题q 有且仅有一个为真命题的充要条件是(¬p ∧q )∨(¬q ∧p )为真命题 【答案】D【解析】对于A ,由f (0)=0,不一定有f (x )是奇函数,如f (x )=x 2;反之,函数f (x )是奇函数,也不一定有f (0)=0,如f (x )=1x.∴“f (0)=0”是“函数f (x )是奇函数”的既不充分也不必要条件.故A 错误;对于B ,若p :∃x 0∈R ,x 20-x 0-1>0,则¬p :∀x ∈R ,x 2-x -1≤0.故B 错误;对于C ,命题“若x2-1=0,则x =1或x =-1”的否命题是“若x 2-1≠0,则x ≠1且x ≠-1”.故C 错误;对于D ,若命题p 和命题q 有且仅有一个为真命题,不妨设p 为真命题,q 为假命题,则¬p ∧q 为假命题,¬q ∧p 为真命题,则(¬p ∧q )∨(¬q ∧p )为真命题;反之,若(¬p ∧q )∨(¬q ∧p )为真命题,则¬p ∧q 或¬q ∧p 至少有一个为真命题.若¬p ∧q 真,¬q ∧p 假,则p 假q 真;若¬p ∧q 假,¬q ∧p 真,则p 真q 假;不可能¬p ∧q 与¬q ∧p 都为真.故命题p 和命题q 有且仅有一个为真命题的充要条件是(¬p ∧q )∨(¬q ∧p )为真命题.故选D.15.若“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,则实数m 的最大值为________.【答案】1【解析】由x ∈⎣⎢⎡⎦⎥⎤-π4,π3可得-1≤tan x ≤ 3.∴1≤tan x +2≤2+3,∵“∀x ∈⎣⎢⎡⎦⎥⎤-π4,π3,m ≤tan x +2”为真命题,∴实数m 的最大值为1. 16.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :x 2-3x +2<0的解集是{x |1<x <2}.现有以下结论:①命题“p ∧q ”是真命题;②命题“p ∧¬q ”是假命题; ③命题“¬p ∨q ”是真命题;④命题“¬p ∨¬q ”是假命题. 其中正确结论的序号为________. 【答案】①②③④【解析】∵当x =π4时,tan x =1,∴命题p 为真命题,命题¬p 为假命题. 由x 2-3x +2<0,解得1<x <2, ∴命题q 为真命题,命题¬q 为假命题.∴命题“p ∧q ”是真命题,命题“p ∧¬q ”是假命题,命题“¬p ∨q ”是真命题,命题“¬p ∨¬q ”是假命题.17.已知函数f (x )=a 2x -2a +1.若命题“∀x ∈(0,1),f (x )≠0”是假命题,则实数a 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 【解析】已知函数f (x )=a 2x -2a +1,命题“∀x ∈(0,1),f (x )≠0”是假命题, ∴原命题的否定是“∃x 0∈(0,1),使f (x 0)=0”是真命题,显然a ≠0.∴f (1)f (0)<0, 即(a 2-2a +1)(-2a +1)<0, 即(a -1)2(2a -1)>0, 解得a >12,且a ≠1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 18.设p :实数a 满足不等式3a≤9,q :函数f (x )=13x 3+3(3-a )2x 2+9x 无极值点.已知“p ∧q ”为真命题,并记为r ,且t :a 2-⎝ ⎛⎭⎪⎫2m +12a +m ⎝ ⎛⎭⎪⎫m +12>0,若r 是¬t 的必要不充分条件,则正整数m 的值为________. 【答案】1【解析】若p 为真,则3a≤9,得a ≤2.若q 为真,则函数f (x )无极值点,∴f ′(x )=x 2+3(3-a )x +9≥0恒成立, 得Δ=9(3-a )2-4×9≤0,解得1≤a ≤5. ∵“p ∧q ”为真命题, ∴p 、q 都为真命题,∴⎩⎪⎨⎪⎧a ≤2,1≤a ≤5⇒1≤a ≤2. ∵a 2-⎝ ⎛⎭⎪⎫2m +12a +m ⎝ ⎛⎭⎪⎫m +12>0,∴(a -m )⎣⎢⎡⎦⎥⎤a -⎝ ⎛⎭⎪⎫m +12>0, ∴a <m 或a >m +12,即t :a <m 或a >m +12,从而¬t :m ≤a ≤m +12,∵r 是¬t 的必要不充分条件, ∴¬t ⇒r ,r ⇒/ ¬t ,∴⎩⎪⎨⎪⎧m ≥1,m +12<2或⎩⎪⎨⎪⎧m >1,m +12≤2,解得1≤m ≤32,又∵m ∈N *,∴m =1.。

【名师揭秘高频考点】2020年高考数学(理)专题03 简单的逻辑联结词、全称量词与存在量词(理)(解析版)

【名师揭秘高频考点】2020年高考数学(理)专题03 简单的逻辑联结词、全称量词与存在量词(理)(解析版)

集合与常用逻辑用语03 简单的逻辑联结词、全称量词与存在量词一、具体目标:1.简单的逻辑联结词:了解逻辑联结词“或”“且”“非”的含义; 全称量词与存在量词:(1)理解全称量词与存在量词的意义;(2)能正确地对含有一个量词的命题进行否定.分析目标:会判断含有一个量词的全称命题或特称命题的真假;能正确地对含有一个量词的命题进行否定;能用逻辑联结词“或”“且”“非”正确地表达相关的数学命题;全称命题与特称命题的表述方法是高考的热点;本节在高考中的分值为5分左右,属中低档题. 二、知识概述: 1.逻辑联结词与复合命题命题q p ∧读作“p 且q ”;命题q p ∨读作“p 或q ”;命题p ⌝读作“非q ”;或者“p 的否定”命题与集合的关系:命题的“且”“或”“非”对应集合的“交”、“并”、“补”命题与电路的关系:命题p ∧q 对应着“串联”电路,便是p ∨q 对应着“并联”电路,命题p ⌝对应着线路的“断开与闭合”. 2.复合命题及其否定形式命题 否定形式p 或q p ⌝且q ⌝ p 且q p ⌝或q ⌝ Pp ⌝pq非pp 或q p 且q【考点讲解】真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假假真假假3.全称命题与全称量词、特称命题与存在量词全称量词 指定范围否定形式 全称命题所有的 任何的 任意的 整体或全部 有些 有的 存在对M 中任何x ,有p (x )成立 记:M x ∈∀,()p x都是不都是对M 中任何x ,p (x )不成立记:M x ∈∀,)(x p ⌝存在量词 指定范围 否定形式 特称命题有一个、存在整体的 一部分没有、 不存在 在M 中存在某x ,有p (x ) 成立记:M x ∈∃,p (x ) 至少有一个 一个也没有 在M 中存在某x ,p (x )不成立记:M x ∈∃,)(x p ⌝至多有一个至少有两个1.【2019优选题】命题“0x ∀>,1ln 1x x≥-”的否定是( )A .00x ∃≤,01ln 1x x ≥-B .00x ∃>,01ln 1x x <-【真题分析】C .00x ∃>,01ln 1x x ≥-D .00x ∃≤,01ln 1x x <-【解析】由全称命题与存在性命题的关系,可得命题“0x ∀>,1ln 1x x≥-”的否定是“00x ∃>,01ln 1x x <-”,故选B . 【答案】B2.【2019优选题】下列命题中正确的是( )A .若p q ∨为真命题,则p q ∧为真命题B .若0x >,则sin x x >恒成立C .命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()00,x ∀∉+∞,00ln 1x x ≠-”D .命题“若22x =,则x =或x =x ≠x ≠22x ≠. 【解析】令()sin f x x x =-,()1cos 0f x x '=-≥恒成立,()sin f x x x =-在()0,+∞单调递增, ∴()()00f x f >=,∴sin x x >,B 为真命题或者排除A 、C 、D .故选B . 【答案】B3.【2016高考浙江】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x ≤【解析】本题的考点:全称命题与特称命题的否定.全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定.∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x ≤.故选D . 【答案】D4.【2018优选题】下列说法错误的是( )A .对于命题:p x ∀∈R ,210x x ++>,则0:p x ⌝∃∈R ,2010x x ++≤. B .“1x =”是“2320x x -+=”的充分不必要条件.C .若命题p q ∧为假命题,则p ,q 都是假命题.D .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠.【解析】根据全称命题的否定是特称命题知A 正确;由于1x =可得2320x x -+=,而由2320x x -+=得1x =或2x =,∴“1x =”是“2320x x -+=”的充分不必要条件正确;命题p q ∧为假命题,则p ,q 不一定都是假命题,故C 错;根据逆否命题的定义可知D 正确,故选C .题p :“0a ∀>,不等式22log a a >成立”;命题q :“函数()212log 21y x x =-+的单调递增区间是(],1-∞”,【答案】C5.【2019优选题】命题“所有能被2整除的数都是偶数”的否定..是( ) A.所有不能被2整除的数都是偶数 B.所有能被2整除的数都不是偶数 C.存在一个不能被2整除的数是偶数 D.存在一个能被2整除的数不是偶数 【解析】本题考查全称命题的否定.把全称量词改为存在量词,并把结果否定. 【答案】D【变式】若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( ) A. 不存在x R ∈,使得3210x x -+< B. 存在x R ∈,使得3210x x -+< C. 对任意的x R ∈,都有3210x x -+≥ D. 存在x R ∈,使得3210x x -+≥【解析】命题:p 对任意的x ∈R ,都有3210x x -+<的否定为32:10p x x x ⌝∈-+≥R 存在,使得; 故选D. 【答案】D6.【17山东理】已知命题p :0>∀x ,()01ln >+x ;命题q :若b a >,则22b a >.下列命题为真命题的是( )A .q p ∧B .q p ⌝∧C .q p ∧⌝D .q p ⌝∧⌝【解析】本题考点是1.简易逻辑联结词.2.全称命题.解答简易逻辑联结词相关问题,关键是要首先明确各命题的真假,利用或、且、非真值表,进一步作出判断.().1ln ,110是真命题有意义,知时,由P x x x +>+>.()()是假命题,可知由q ,21,21,12,122222-<-->->>即q p ⌝,均是真命题,所以选B. 【答案】B7.【2019优选题】在射击训练中 ,某战士射击了两次 ,设命题p 是“ 第一次射击击中目标”,命题是“ 第二次射击击中目标 ”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是 ( ) A. ()()p q ⌝∨⌝ 为真命题 B. ()p q ∨⌝ 为真命题 C. ()()p q ⌝∧⌝ 为真命题 D. p q ∨ 为真命题【解析】两次射击中至少有一次没有击中目标包括三个事件,第一次没有击中目标而第二次击中目标;第一次击中目标第二次没有击中目标;第一次和第二次都没有击中目标;三个事件统一表达为第一次没有击中或第二次没有击中,即()()p q ⌝∨⌝ 为真命题.选A . 【答案】A8.【2018优选题】已知命题()x xx P 32,0,:>∞-∈∀;命题⎪⎭⎫⎝⎛∈∃2,0:πx q ,x x >sin ,则下列命题为真命题的是( )A .q p ∧ B . ()q p ∨⌝ C .()q p ∧⌝ D .()q p ⌝∧【解析】分析:由()132,0,:>⎪⎭⎫ ⎝⎛∞-∈∀xx P ,即x x 32>,可得是真命题, 命题⎪⎭⎫ ⎝⎛∈∃2,0:πx q ,令()x x x f sin -=,利用导数研究其单调性可得是假命题,逐一判断选项中的命题真假即可的结果.命题由()132,0,:>⎪⎭⎫ ⎝⎛∞-∈∀xx P ,即x x 32>,可得是真命题,命题命题⎪⎭⎫ ⎝⎛∈∃2,0:πx q , 令()x x x f sin -=,()0cos 1>-='x x f ,因此函数()x f 在⎪⎭⎫ ⎝⎛2,0π单调递增,所以()()00=>f x f ,所以x x x <⎪⎭⎫ ⎝⎛∈∀sin 2,0,π,因此是假命题,()q p ⌝∧为真命题,故选D.【答案】D9.【河北省唐山市2018届三模理】已知命题p 在ABC ∆中,若B A sin sin =,则B A =;命题()π,0:∈∀x q ,2sin 1sin >+xx .则下列命题为真命题的是( ) A.q p ∧ B . ()q p ⌝∨ C .()()q p ⌝∧⌝ D . ()q p ∨⌝【解析】命题p 在ABC ∆中,因为π=+B A ,根据正弦函数的性质可以判断当B A sin sin =时,B A =是成立的,所以命题p 是真命题.命题当2sin 1sin 2=+=x x x 时,π,所以()π,0:∈∀x q ,2sin 1sin >+xx 是不成立的,为假命题. 故选B. 【答案】B【变式】 【2014高考重庆理第6题】 已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件,则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【解析】本题主要考查了指数函数的性质,充要条件,判断复合命题的真假,属于中档题,先根据指数函数及充要条件的知识判断出每一个命题的真假,再利用真值表得出结论. 由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题;所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D. 考点:1、指数函数的性质;2、充要条件;3、判断复合命题的真假. 【答案】D10.【2019优选题】给出下列三个命题: ①“若2230x x +-≠,则1x ≠”为假命题; ②若p q ∧为假命题,则,p q 均为假命题;③命题:,20xp x R ∀∈>,则00:,20xp x R ⌝∃∈≤,其中正确的个数是( )A .0B .1C .2D .3【解析】本题考查的是命题真假性的判断问题,若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判断即可.以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p ∨q ”“p ∧q ”“非p ”形式命题的真假,列出含有参数的不等式(组)求解即可.“若2230x x +-≠,则1x ≠”的逆否命题为“若1x =,则2230x x +-=”,为真命题;若p q ∧为假命题,则,p q 至少有一为假命题;命题:,20xp x R ∀∈>,则00:,20x p x R ⌝∃∈≤,所以正确的个数是1,选B. 【答案】B1.命题p :“0a ∀>,不等式22log a a >成立”;命题q :“函数()212log 21y x x =-+的单调递增区间是(],1-∞”,则下列复合命题是真命题的是( ) A .()()p q ⌝∨⌝B .p q ∧C .()p q ⌝∨D .()()p q ∧⌝【解析】由题意,命题p :“0a ∀>,不等式22log a a >成立”;根据指数函数与对数函数的图象可知是不正确的,∴命题p 为假命题;命题q :“函数()212log 21y x x =-+的单调递增区间应为()1-∞,”,∴为假命题, ∴()()p q ⌝∨⌝为真命题,故选A . 【答案】A2.命题“x R ∃∈,2x x =”的否定是( )【模拟考场】A .x R ∀∉,2x x ≠ B .x R ∀∈,2x x ≠C .x R ∃∉,2x x ≠D .x R ∃∈,2x x ≠【解析】命题“x R ∃∈,2x x =”的否定是x R ∀∈,2x x ≠,选B. 【答案】B3.下列说法正确的是( )A. “若1a >,则21a >”的否命题是“若1a >,则21a ≤”B. 在ABC ∆中,“A B >” 是“22sin sin A B >”必要不充分条件C.“若tan α≠3πα≠”是真命题D.()0,0x ∃∈-∞使得0034xx<成立 【解析】“若1a >,则21a >”的否命题是“若1≤a,则21a ≤”,故选项A 错误,在ABC ∆中,“A B >” 是“22sin sin A B >”充要条件,故B 错误,当()0,0x ∃∈-∞时,函数)1(00<=x x y x 在()∞+,0上单调递减,所以043xx >,故D 错误;故选C .【答案】C4.已知命题“R ∈∃x ,使021)1(22≤+-+x a x ”是假命题,则实数a 的取值范围是( ) A. )1,(--∞ B.)3,1(- C.),3(+∞- D.)1,3(- 【解析】原命题是假命题,则其否定是真命题,即()21,2102x R x a x ∀∈+-+>恒成立,故判别式()()2140,1,3a a --<∈-.【答案】B5.设命题()0:0,p x ∃∈+∞, 0013x x +>;命题: ()2,x ∀∈+∞, 22x x >,则下列命题为真的是( ) A. ()p q ∧⌝ B. ()p q ⌝∧ C. p q ∧ D. ()p q ⌝∨【解析】命题:p ()00,x ∃∈+∞, 0013x x +>,当03x =时即可,命题为真; 命题: ()2,x ∀∈+∞, 22x x >,当4x =是,两式相等,命题为假; 则()p q ∧⌝为真,故选A. 【答案】A6.下列命题中:①“0x R ∃∈,20010x x -+≤”的否定;②“若260x x +-≥,则2x >”的否命题;③命题“若2560x x -+=,则2x =”的逆否命题;其中真命题的个数是( )A .0个B .1个C .2个D .3个【解析】“0x R ∃∈,20010x x -+≤”的否定为“0x R ∀∈,22000131()024x x x -+=-+>”为真命题;“若260x x +-≥,则2x >”的否命题为“若26032x x x +-<⇒-<<,则2x ≤”为真命题;命题“若2560x x -+=,则2x =”为假命题,所以其逆否命题为假命题;所以选C. 【答案】C7.命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >【解析】本题主要考查的是命题的否定,全称(存在性)命题的否定与一般命题的否定有着一定的区别,全称 (存在性)命题的否定是将其全称量词改为存在量词(或把存在量词改为全称量词),并把结论否定;而一般命题的否定则是直接否定结论即可,全称量词与特称量词的意义根据全称命题的否定是特称命题,可知选D. 【答案】D.8.设,,a b c r r r 是非零向量,已知命题P :若0a b •=r r ,0b c •=r r ,则0a c •=r r ;命题q :若//,//a b b c r r r r,则//a c r r ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝【解析】试题分析:本题考查平面向量的数量积、共线向量及复合命题的真假. 本题将平面向量、简易逻辑联结词结合在一起综合考查考生的基本数学素养,体现了高考命题“小题综合化”的原则.本题属于基础题,难度不大,关键是要熟练掌握平面向量的基础知识,熟记“真值表”.由题意可知,两个非零向量都与第三个向量垂直,但这两个向量未必垂直,所以命题P 是假命题;两个非零向量都与第三个向量平行,那么这两个向量一定平行,所以命题q 是真命题,故p q ∨为真命题. 【答案】A9.已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④【解析】本题考查的是复合命题的真假性判断,复合命题的真假判定主要是根据简单命题的真假结合逻辑联结次进行判断即可,如果p 或q 真(假)则需分三种情况讨论,如果p 且q 真(假)则p,q 真(p 真q 假或p,q 假,p 真q 假,p 假q 真),如果p 真,则非p 一定假.当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,而⌝p 是假命题,当1,2x y ==-时,因为2214x y =<=,所以命题q 为假命题,则q ⌝为真命题,所以根据真值表可得②③为真命题,故选C.【答案】C10.下列判断错误的是( )A .“||||am bm <”是“||||a b <”的充分不必要条件B .命题“,0x R ax b ∀∈+≤”的否定是“00,0x R ax b ∃∈+>”C .若()p q ⌝∧为真命题,则,p q 均为假命题D .命题“若p ,则q ⌝”为真命题,则“若q ,则p ⌝”也为真命题 【解析】:本题考查的是四种命题及其相互关系,充要条件,常用逻辑用语.由题意可知:由||||am bm <可以得到||||a b <,反之不一定成立.命题“,0x R ax b ∀∈+≤”的否定是全称命题的否定,先转换量词,然后要否定结论,所以有“00,0x R ax b ∃∈+>”.而()p q ⌝∧为真命题,那。

2020年高考数学一轮复习专题03简单的逻辑联结词、全称量词与存在量词(含解析)

2020年高考数学一轮复习专题03简单的逻辑联结词、全称量词与存在量词(含解析)

专题03简单的逻辑联结词、全称量词与存在量词最新考纲1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词和存在量词的意义.3.能正确地对含有一个量词的命题进行否定.基础知识融会贯通1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断p q p且q p或q 非p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x0∈M,綈p(x0)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0)∀x∈M,綈p(x)【知识拓展】1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3) p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则q”,否命题是“若⌝p,则⌝q”.重点难点突破【题型一】含有逻辑联结词的命题的真假判断【典型例题】已知命题p:函数y=sin(2x)和y=cos(2x)的图象关于原点对称;命题q:若平行线6x+8y+a=0与3x+by+22=0之间的距离为a,则a=b=4.则下列四个判断:“p∨q是假命题、p∧q是真命题、(¬p)∨q是真命题、p∨(¬q)是真命题”中,正确的个数为()A.1 B.2 C.3 D.4【解答】解:y=cos(2x)=sin[(2x)]=sin(2x)=﹣sin(2x)则函数y=sin(2x)关于原点对称的函数为﹣y=sin(﹣2x),即y=﹣sin(2x),即命题p 是真命题,若两直线平行则得b=4,∴两平行直线为6x+8y+a=0与6x+8y+44=0,平行直线的距离为═a,即|a﹣44|=10a,a>0,则a﹣44=10a或a﹣44=﹣10a,得a=4或(舍),则a=b=4,即命题q是真命题,则“p∨q是真命题、p∧q是真命题、(¬p)∨q是真命题、p∨(¬q)是真命题,正确的命题有3个,故选:C.【再练一题】已知命题p:函数f(x)是定义在实数集上的奇函数;命题q:直线x=0是g(x)=x的切线,则下列命题是真命题的是()A.p∧q B.¬q C.(¬p)∧q D.¬p【解答】解:f(﹣x)f(x),即f(x)是奇函数,故命题p是真命题,函数的导数g′(x),当x=0时,g′(x)不存在,此时切线为y轴,即x=0,故命题q是真命题,则p∧q是真命题,其余为假命题,故选:A.思维升华“p∨q”“p∧q”“⌝p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∧q”“p∨q”“⌝p”等形式命题的真假.【题型二】含有一个量词的命题命题点1 全称命题、特称命题的真假【典型例题】已知命题p:∀x∈(0,π),tan x>sin x;命题q:∃x>0,x2>2x,则下列命题为真命题的是()A.p∧q B.¬(p∨q)C.p∨(¬q)D.(¬p)∧q【解答】解:命题p:∀x∈(0,π),tan x>sin x;当x时,命题不成立.故命题p为假命题.命题q:∃x>0,x2>2x,当x=3时,命题为真命题.故¬p∧q为真命题.故选:D.【再练一题】下列四个命题:p1:任意x∈R,2x>0;p2:存在x∈R,x2+x+1<0,p3:任意x∈R,sin x<2x;p4:存在x∈R,cos x>x2+x+1.其中的真命题是()A.p1,p2B.p2,p3C.p3,p4D.p1,p4【解答】解:p1:任意x∈R,2x>0,由指数函数的性质得命题p1是真命题;p2:存在x∈R,x2+x+1<0,由x2+x+1=(x)2,得命题p2是假命题;p3:任意x∈R,sin x<2x,由x时,sin x>2x,得命题p3是假命题;p4:存在x∈R,cos x>x2+x+1.命题p4是真命题.故选:D.命题点2 含一个量词的命题的否定【典型例题】设命题,则¬p为()A.B.C.D.【解答】解:命题是全称命题,则命题的否定是特称命题,即¬p:∃x0∈[0,),sin x0≥cos x0,故选:A.【再练一题】命题“∃x0∈R,”的否定形式是()A.∀x∈R,B.∃x∈R,C.∃x∈R,D.∀x∈R,【解答】解:命题是特称命题,则否定是:∀x∈R,,故选:D.思维升华 (1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内找到一个x=x0,使p(x0)成立.(2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;②对原命题的结论进行否定.【题型三】含参命题中参数的取值范围【典型例题】已知函数f(x)=lg[(a2﹣1)x2+(a﹣1)x+1],设命题p:“f(x)的定义城为R”;命题q:“f(x)的值域为R”.(Ⅰ)若命题p为真,求实数a的取值范围;(Ⅱ)若命题p∨q为真命题,且p∧q为假命题,求实数a的取值范围.【解答】解:(Ⅰ)命题p为真,即f(x)的定义城为R,等价于(a2﹣1)x2+(a﹣1)x+1>0恒成立,等价于a=1或解得或a≥1.故实数a的取值范围为.(Ⅱ)命题q为真,即f(x)的值域是R,等价于g(x)=(a2﹣1)x2+(a﹣1)x+1取遍所有的正数,即值域为包含(0,+∞),等价于a=﹣1或解得a≤﹣1.若p∨q为真命题,且p∧q为假命题,则“p真q假”或“p假q真”,即或,解得a≤﹣1或a≥1.故实数a的取值范围是(﹣∞,﹣1]∪[1,+∞)【再练一题】已知两函数f(x)=8x2+16x﹣m,g(x)=2x3+5x2+4x,(m∈R)若对∀x1∈[﹣3,3],∃x2∈[﹣3,3],恒有f(x1)>g(x2)成立,求m的取值范围.【解答】解:若对∀x1∈[﹣3,3],∃x2∈[﹣3,3],恒有f(x1)>g(x2)成立,只需在∈[﹣3,3]上f (x)min>g(x)min即可.f(x)=8x2+16x﹣m=8(x+1)2﹣m﹣8,f(x)min=f(﹣1)=﹣m﹣8g(x)=2x3+5x2+4x,g′(x)=6x2+10x+4=(x+1)(6x+4),在x∈(﹣3,﹣1)∪(,3],g′(x)>0,(﹣3,﹣1)与(,3]是g(x)单调递增区间.在x∈(﹣1,),g′(x)<0,(﹣1,,]是g(x)单调递减区间.g(x)的极小值为g(),又g(﹣3)=﹣21,所以g(x)min=﹣21所以﹣m﹣8>﹣21,解得m的范围为m<13.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.基础知识训练1.已知曲线的方程为,给定下列两个命题:,则曲线为双曲线;若曲线是焦点在轴上的椭圆,则,其中是真命题的是( )A. B. C. D.【答案】B【解析】若,则曲线C是焦点在x轴上的双曲线,即命题p是真命题,由4﹣k=k﹣3时,2k=7,得k=时,方程不表示椭圆,即命题是假命题,则为真命题,其余为假命题,故选:B.2.“为真”是“为真”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【答案】B【解析】若“为真”可能p假q真,不一定有“为真”,充分性不成立;若“为真”,则一定有“为真”,必要性成立,综上可得:“为真”是“为真”的必要不充分条件.本题选择B选项.3.已知命题;命题:若,则.下列命题为真命题的是()A. B. C. D.【答案】B【解析】当时,,则命题p为真命题;取,满足,不满足,命题q为假命题;据此可得:是假命题;是真命题;是假命题;是假命题.本题选择B选项.4.在一次数学测试中,成绩在区间[125,150]上成为优秀,有甲、乙两名同学,设命题p是“甲测试成绩优秀”,是“乙测试成绩优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”可表示为()A. B. C. D.【答案】A【解析】“甲测试成绩不优秀”可表示为,“乙测试成绩不优秀”可表示为,“甲、乙中至少有一位同学成绩不是优秀”即“甲测试成绩不优秀”或“乙测试成绩不优秀”,表示形式为:.本题选择A选项.5.已知命题:“”,命题:“”.若命题“”是真命题,则实数的取值范围是()A. B.C. D.【答案】D【解析】解:当命题为p真时,即:“∀x∈[1,2],x2﹣a≥0“,即当x∈[1,2]时,(x2﹣a)min≥0,又当x=1时,x2﹣a取最小值1﹣a,所以1﹣a≥0,即a≤1,当命题q为真时,即:∃x∈R,x2+2ax+2﹣a=0,所以△=4a2﹣4(2﹣a)≥0,所以a≤﹣2,或a≥1,又命题“¬p且q”是真命题,所以p假q真,即,即实数a的取值范围是:a>1,故选:D.6.已知命题;命题.则以下是真命题的为A. B. C. D.【答案】B【解析】判断命题p的正误:,显然是假命题;判断命题q的正误:,显然是真命题;∴是真命题故选:B7.已知命题:若,则,命题,则下列命题为真命题的是( )A. B. C. D.【答案】A【解析】命题:若,则,是真命题.命题:∵,则,因此不,是假命题.则下列命题为真命题的是.故选:A.8.已知命题:函数的图像恒过定点;命题:若函数为偶函数,则函数的图象关于直线对称,则下列命题为真命题的是()A. B. C. D.【答案】B【解析】函数的图象可看作把y=的图象先向右平移1个单位,再向上平移1个单位得到,而y=的图象恒过(1,0),所以函数y=恒过(2,1)点,所以命题p假,则¬p真;函数f(x﹣1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x﹣1)向左平移了1个单位,所以f(x)的图象关于直线x=﹣1对称,所以命题q假,则命题¬q真.综上可知,四个选项只有命题为真命题.故选:B.9.命题“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得【答案】D【解析】由题意可知;全称命题“,使得”的否定形式为特称命题“,使得”故选:D.10.设命题p:,则A. B.C. D.【答案】C【解析】命题是全称命题,则命题的否定是特称命题,即,故选:C.11.命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是无理数【答案】B【解析】命题“存在一个无理数,它的平方是有理数”的否定是“任意一个无理数,它的平方不是有理数”,答案为B12.命题“,5-3x0≥0”的否定是( )A.不存在x0∈R,5-3x0<0 B.,5-3x0<0 C.,5-3x≤0 D.,5-3x<0 【答案】D【解析】题干中的是特称命题,它的否定是全称命题,换量词,否结论,条件不变即可,即:,5-3x<0.故答案为:D.13.已知命题p:,则A. B.C. D.【答案】A【解析】命题“”是全称命题,否定时将量词对任意的变为,再将不等号变为即可.即已知命题p:,则.故选:A.14.已知集合A是奇函数集,B是偶函数集若命题p:,则A. B.C. D.【答案】C【解析】根据全称命题与存在性命题的关系,可知命题是全称命题,则命题的否定为:,故选:C.15.已知p:方程表示椭圆;q:双曲线的离心率.是真命题,求m的取值范围;是真命题,是假命题,求m的取值范围.【答案】(1);(2)【解析】解:方程表示椭圆;则,则,得,得,即p:;双曲线的离心率.则,得,则,即,则q:,是真命题,则都是真命题,则,得.是真命题,是假命题,则一个为真命题,一个为假命题,若假,则,得,若真,则,此时,综上.16.已知p:复数所对应的点在复平面的第四象限内其中,q:其中.如果“p或q”为真,求实数a的取值范围;如果“p且”为真,求实数a的取值范围.【答案】(1);(2).【解析】若复数所对应的点在复平面的第四象限内,为真命题则,即若,则,即(1)如果“”为真,则至少一个为真;求出均为假的的范围,取补集正确结果:(2)如果“”为真,则假即正确结果:17.已知命题:方程表示焦点在轴上的双曲线;命题:函数上单调递增.(1)若命题为真命题,求实数的取值范围;(2)若命题为假命题,且“”为真命题,求实数的取值范围.【答案】(1)(2)【解析】解:(1)由函数上单调递增得恒成立,因为,即,即上恒成立,所以,即,因为命题为真命题,所以.(2)由已知命题为假命题,为真命题,故假,由(1)知,命题为假命题,可得.由为真命题,得,即.故,得.所以实数的取值范围.18.(1)已知命题p:;命题q:,若“”为真命题,求x的取值范围.(2)设命题p:;命题q:,若的充分不必要条件,求实数a 的取值范围.【答案】(1)(2)【解析】命题p:,即;命题,即;由于“”为真命题,则p真q假,从而由q假得,,所以x的取值范围是.命题p:,即命题q:,即由于的充分不必要条件,则p是q的充分不必要条件.即有19.已知方程表示焦点在轴上的椭圆;方程表示双曲线.若“”为假命题,且“”为真命题,求实数的取值范围.【答案】【解析】若为真,即方程表示焦点在轴上的椭圆,可得;若为真,即方程表示双曲线,可得解得若“”为假命题,且“”为真命题,则一真一假,若假,则,解得;若真,则,解得,综上.∴实数的取值范围为.20.命题:指数函数是减函数;命题,使关于的方程有实数解,其中.(1)当时,若为真命题,求的取值范围;(2)当时,若为假命题,求的取值范围.【答案】(1)(2)【解析】(1)当时,指数函数化为因为指数函数是减函数,所以即所以实数的取值范围为.(2)当时,指数函数化为若命题为真命题,则,即所以为假命题时的取值范围是命题为真命题时,即关于的方程有实数解,所以,解得,所以命题为假命题时的取值范围为因为为假命题,所以为假命题或者为假命题所以实数满足,即所以实数的取值范围为能力提升训练1.己知命题:“关于的方程有实根”,若非为真命题的充分不必要条件为,则实数的取值范围是( )A. B. C. D.【答案】A【解析】由命题有实数根,则则所以非是非为真命题的充分不必要条件,所以,则m的取值范围为所以选A2.已知命题p:椭圆25x2+9y2=225与双曲线x2-3y2=12有相同的焦点;命题q:函数的最小值为52,下列命题为真命题的是( )A.p∧q B.(p⌝)∧q C.⌝(p∨q) D.p∧(⌝q)【答案】B【解析】p 中椭圆为=1,双曲线为=1,焦点坐标分别为(0,±4)和(±4,0),故p 为假命题;q 中f (x )=,设t =≥2(当且仅当x =0时,等号成立),则f (t )=t +在区间[2,+∞)上单调递增,故f (x )m i n =52,故q 为真命题.所以(⌝p )∧q 为真命题,故选B. 3.已知.命题:p 对1a ∀≥, ()y f x =有三个零点, 命题:q a R ∃∈,使得()0f x ≤恒成立. 则下列命题为真命题的是( ) A .p q ∧ B . C .()p q ⌝∧ D .()p q ∧⌝【答案】B 【解析】已知.当1a =时,只有一个根,即函数只有一个极值点,则函数最多有2个零点,故命题p 为假; ()01f =Q ,命题q 显然为假命题 故为真选B 4.已知,并设:至少有3个实根;:当时,方程有9个实根;:当时,方程有5个实根,则下列命题为真命题的是( )A .B .C .仅有D .【答案】A 【解析】的导数为,当时,递增;当时,递减,可得取得极大值,取得极小值,作出的图象(如图):令,对于至少有3个实根,即有,若,则,此时只有一解,故为假命题;对于:当时,方程有9个实根,由内有三个解,在轴上方不妨设,由图象可得共有9个实根,故为真命题;对于:当时,方程有5个实根,由,可得和2,由图象可得有3个实根,有2个实根,共有5个实根.故为真命题,则为真命题;,仅有均为假命题,故选A.5.已知命题,命题,若的一个充分不必要条件是,则实数的取值范围是( )A .B .C .D .【答案】A 【解析】将化为,即,因为的一个充分不必要条件是,所以的一个充分不必要条件是,则,故选A.6.已知命题p :直线与直线之间的距离不大于1,命题q :椭圆与双曲线有相同的焦点,则下列命题为真命题的是( )A .()p q ∧⌝B .()p q ⌝∧C .D .p q ∧【答案】B【解析】试题分析:对于命题p ,将直线l 平移到与椭圆相切,设这条平行线的方程为,联立方程组,消去y 得.由0∆=得,所以2m =±,椭圆上的点到直线l 最近距离为直线与l 的距离,所以命题p 为假命题,于是p ⌝为真命题.对于命题q ,椭圆与双曲线有相同的焦点()5,0±,故q为真命题.从而()p q ⌝∧为真命题,故选B.7.设命题:实数满足,其中;命题:实数满足.(1)若,且为真,求实数的取值范围;(2)若的充分不必要条件,求实数的取值范围.【答案】(1); (2).【解析】(Ⅰ)对于命题:由,又,∴,当时,,即为真时实数x 的取值范围是.由已知为真时实数的取值范围是.若为真,则真且真,∴实数的取值范围是. (Ⅱ)的充分不必要条件,即,且, 设,则,又,则,∴实数的取值范围是.8.已知,命题对任意,不等式恒成立,命题存在,使不等式成立.(1)若为真命题,求的取值范围; (2)若为假,为真,求的取值范围. 【答案】(1);(2)【解析】 (1)令,则上为减函数, 因为,所以当时,不等式恒成立,等价于,解得.(2)不等式即,∵,∴,所以,∵,∴即命题. 若为假,为真,则中有且只有一个是真的 若为真,为假,那么,则无解;若为假,为真,那么,则.综上所述,.9.已知p :方程有两个不等的正根; q :方程表示焦点在y 轴上的双曲线.(1)若q 为真命题,求实数m 的取值范围;(2)若“p 或q ”为真,“p 且q ”为假,求实数m 的取值范围 【答案】(1)3m <-.;(2)21m -<<-或3m <-. 【解析】(1)由已知方程表示焦点在y 轴上的双曲线,所以,解得3m <-,即:3q m <-.(2)若方程有两个不等的正根,则解得21m -<<-,即.因p 或q 为真,所以p q 、至少有一个为真.又p 且q 为假,所以p q 、至少有一个为假.因此, p q 、两命题应一真一假,当p 为真, q 为假时,,解得21m -<<-;当p 为假, q 为真时,,解得3m <-.综上, 21m -<<-或3m <-. 10.已知0≠m ,向量)3,(m m a =,向量,集合.(1)判断“b a //”是“10||=a ”的什么条件;(2)设命题p :若b a ⊥,则19-=m . 命题q :若集合A 的子集个数为2,则1=m . 判断q p ∨,q p ∧,q ⌝的真假,并说明理由.【答案】(1)充分不必要条件;(2)q p ∨真,q p ∧假,q ⌝真. 【解析】解:(1)若b a //,则,∴1=m (0=m 舍去),此时)3,1(=a ,10||=a .若10||=a ,则1±=m . 故“b a //”是“10||=a ”的充分不必要条件. (2)若b a ⊥,则,∴19-=m (0=m 舍去),∴p 为真命题.由得2m x =或m x -=2,若集合A 的子集个数为2,则集合A 中只有1个元素,则m m -=22,∴1=m 或2-=m ,故q 为假命题. ∴q p ∨为真命题,q p ∧为假命题,q ⌝为真命题.。

(精编)2020年高考数学考点03简单的逻辑联结词、全称量词与存在量词必刷题理

(精编)2020年高考数学考点03简单的逻辑联结词、全称量词与存在量词必刷题理

考点3 简单的逻辑联结词、全称量词与存在量词1.命题:“,不等式成立”;命题q:“函数的单调递增区间是”,则下列复合命题是真命题的是A. (p)V(q) B. p∧q C. (p)Vq D. (p)∧(q)2.下列命题错误的是()A.命题“ ,”的否定是“,”;B.若是假命题,则,都是假命题C.双曲线的焦距为D.设,是互不垂直的两条异面直线,则存在平面,使得,且【答案】B【解析】对于选项A,由于特称命题的否定是特称命题,所以命题“ ,”的否定是“,”,是正确的.对于选项B, 若是假命题,则,至少有一个是假命题,所以命题是假命题.对于选项C, 双曲线的焦距为2c=2,所以是真命题.对于选项D, 设,是互不垂直的两条异面直线,则存在平面,使得,且,是真命题.故答案为:B.3.以下有关命题的说法错误的是A.命题“若x2-3x+2=0”,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.“”是“x2-3x+2=0”的充分不必要条件C.若p∧q为假命题,,则p、q均为假命题D.对于命题4.已知.若“”是真命题,则实数a的取值范围是A. (1,+∞) B. (-∞,3) C. (1,3) D.【答案】C【解析】由“”是真命题可知命题p,q均为真命题,若命题p为真命题,则:,解得:,若命题q为真命题,则:,即,综上可得,实数a的取值范围是,表示为区间形式即.本题选择C选项.5.已知命题:,,命题:,,则下列命题中为真命题的是( ) A. B. C. D.【答案】C【解析】命题p:∀x∈N*,()x≥()x,利用指数函数的性质可得:是真命题;命题q:由2x+21﹣x=2,化为:(2x)2﹣2•2x+2=0,解得2x=,∴x=,因此q是假命题.则下列命题中为真命题的是P∧(¬q),故选:C.6.下列说法中,正确的是( )A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“存在x0∈R,x-x0>0”的否定是“对任意的x∈R,x2-x≤0”C.命题“p或q”为真命题,则命题p和命题q均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件7.下列命题正确的是()A.命题的否定是:B.命题中,若,则的否命题是真命题C.如果为真命题,为假命题,则为真命题,为假命题D.是函数的最小正周期为的充分不必要条件【答案】D【解析】在A中,命题的否定是:,故A错误;在B中,命题中,若,则的否命题是假命题,故B错误;在C中,如果为真命题,为假命题,则与中一个是假命题,另一个是真命题,故C错误;在D中,∴ω=1⇒函数f(x)=sinωx-cosωx的最小正周期为2π,函数f(x)=sinωx-cosωx的最小正周期为2π⇒ω=±1.∴是函数的最小正周期为的充分不必要条件,故D正确.故选:D.8.已知命题,使;命题,都有,下列结论中正确的是A.命题“p∧q”是真命题 B.命题“p∧q”是真命题C.命题“p∧q”是真命题 D.命题“p∨q”是假命题【答案】A【解析】由判断,所以为假命题;命题,所以为真命题,所以命题“p∧q”是真命题,故选A.9.已知命题p:若a>|b|,则a2>b2;命题q:若x2=4,则x=2.下列说法正确的是 ( )A.“p∨q”为真命题 B.“p∧q”为真命题C.“p”为真命题 D.“q”为假命题10.有如下关于三角函数的四个命题:,,,若,则其中假命题的是()A., B., C., D.,【答案】A【解析】:,都有,故错误;:时满足式子,故正确;:,,且,所以,故正确;:,,故错误;故选A.11.下列说法错误的是()A.对于命题,则B.“”是“”的充分不必要条件C.若命题为假命题,则都是假命题D.命题“若,则”的逆否命题为:“若,则”12.命题“”的否定是()A. B.C. D.【答案】D【解析】命题的否定为:,,故选D.13.下列命题中的假命题是( )A. B. C. D.【答案】D【解析】对于选项A,,所以该命题是真命题;对于选项B,,所以该命题是真命题;对于选项C,,,所以该命题是真命题;对于选项D,是假命题,因为.故答案为:D.14.命题的否定是()A. B.C. D.【答案】A【解析】命题的否定是:,故选A.15.设命题,使得,则为()A.,使得 B.,使得C.,使得 D..使得【答案】A【解析】命题,使得,则为,使得。

(江苏专用)2020年高考数学一轮复习考点03简单的逻辑联结词、全称量词与存在量词必刷题(含解析)

(江苏专用)2020年高考数学一轮复习考点03简单的逻辑联结词、全称量词与存在量词必刷题(含解析)

考点03 简单的逻辑联结词、全称量词与存在量词1、已知命题“∃x ∈[1,2],x 2+2x +a≥0”为真命题,则实数a 的取值范围是____.【答案】[-8,+∞)【解析】原命题的否定为∀x ∈[1,2],x 2+2x +a<0.因为y =x 2+2x 在区间[1,2]上单调递增,所以x 2+2x≤8<-a ,所以a<-8.根据含有逻辑联结词的命题的真假判断,可知原命题中a 的取值范围是a<-8的补集,即a≥-8,故a 的取值范围是[-8,+∞).2、若命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.【答案】[-22,22]【解析】因为“∃x ∈R,2x 2-3ax +9<0”为假命题,则“∀x ∈R,2x 2-3ax +9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.3、已知命题;命题是增函数.若“”为假命题且“”为真命题,则实数m 的取值范围为_______.【答案】[1,2)【解析】命题p :∀x ∈R ,x 2+1>m ,解得:m <1;命题q :指数函数f (x )=(3-m )x 是增函数,则3-m >1,解得:m <2,若“p∧q”为假命题且“p∨q”为真命题,则p ,q 一真一假,p 真q 假时:无解, p 假q 真时: ,解得:1≤m<2, 故答案为:[1,2).4、现有下列命题:①命题“∃x ∈R ,x 2+x +1=0”的否定是“∃x ∈R ,x 2+x +1≠0”;②若集合A ={x |x >0},B ={x |x ≤-1},则A ∩(∁R B )=A ;③函数f (x )=sin(ωx +φ)(ω>0)是偶函数的充要条件是φ=k π+π2(k ∈Z); ④若非零向量a ,b 满足|a |=|b |=|a -b |,则b 与a -b 的夹角为60°.其中为真命题的是________.【答案】②③【解析】命题①假,因为其中的存在符号没有改;命题②真,因为∁R B =(-1,+∞),所以A ∩(∁R B )=A ;命题③真,若φ=k π+π2(k ∈Z),则f (x )=sin(ωx +k π+π2)=±cos ωx 为偶数;命题④假,因为|a |=|b |=|a -b |,所以由三角形法则可得|a |, |b |的夹角为60°,b 与(a -b )的夹角为120°.所以填写答案为②③.5、已知命题p :∃x ∈[0,π2],cos 2x +cos x -m =0为真命题,则实数m 的取值范围是________. 【答案】[-1,2]【解析】依题意,cos 2x +cos x -m =0在x ∈[0,π2]上恒成立,即cos 2x +cos x =m .令f (x )=cos 2x +cos x =2cos 2x +cos x -1=2(cos x +14)2-98,由于x ∈[0,π2],所以cos x ∈[0,1],于是f (x )∈[-1,2],因此实数m 的取值范围是[-1,2].6、已知命题p 1:存在x 0∈R ,使得x 20+x 0+1<0成立;p 2:对任意x ∈[1,2],x 2-1≥0.以下命题: ①(綈p 1)∧(綈p 2);②p 1∨(綈p 2);③(綈p 1)∧p 2;④p 1∧p 2.其中为真命题的是________(填序号).【答案】③【解析】∵方程x 20+x 0+1=0的判别式Δ=12-4=-3<0,∴x 20+x 0+1<0无解,故命题p 1为假命题,綈p 1为真命题;由x 2-1≥0,得x ≥1或x ≤-1.∴对任意x ∈[1,2],x 2-1≥0,故命题p 2为真命题,綈p 2为假命题.∵綈p 1为真命题,p 2为真命题,∴(綈p 1)∧p 2为真命题. 7、设命题p :函数f(x)=⎝ ⎛⎭⎪⎫a -32x是R 上的减函数;命题q :函数g (x )=x 2-4x +3在区间[0,a ]上的值域为[-1,3].若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围. 【答案】⎝ ⎛⎭⎪⎫32,2∪⎣⎢⎡⎦⎥⎤52,4 【解析】因为“p 且q ”为假命题,“p 或q ”为真命题,所以命题p ,q 中有且仅有一个命题为真命题.若命题p 为真,则0<a -32<1,所以32<a <52; 若命题q 为真,则g (x )=x 2-4x +3=(x -2)2-1在[0,a ]上的值域为[-1,3],故⎩⎪⎨⎪⎧a ≥2,a 2-4a +3≤3,解得2≤a ≤4. ①若p 真q 假,则⎩⎪⎨⎪⎧32<a <52,a <2或a >4,所以32<a <2; ②若p 假q 真,则⎩⎪⎨⎪⎧2≤a ≤4,a ≤32或a ≥52, 所以52≤a ≤4. 综上所述,实数a 的取值范围为⎝ ⎛⎭⎪⎫32,2∪⎣⎢⎡⎦⎥⎤52,4. 8、已知m 、n 是不同的直线,α、β是不重合的平面.命题p :若α∥β,n ⊂α,m ⊂β,则m ∥n ;命题q :若m ⊥α,n ⊥β,m ∥n ,则α∥β;下面的命题中,真命题的序号是________(写出所有真命题的序号).①p ∨q ;②p ∧q ;③p ∨綈q ;④綈p ∧q .【答案】①④【解析】∵命题p 是假命题,命题q 是真命题.∴綈p 是真命题,綈q 是假命题,∴p ∨q 是真命题,p ∧q 是假命题,p ∨綈q 是假命题,綈p ∧q 是真命题.9、写出下列命题的否定,并判断真假.(1)∃x 0∈R ,x 20-4=0;(2)∀T =2k π(k ∈Z),sin(x +T )=sin x ;(3)集合A 是集合A ∪B 或A ∩B 的子集;(4)a ,b 是异面直线,∃A ∈a ,B ∈b ,使AB ⊥a ,AB ⊥b .【解析】它们的否定及其真假分别为:(1)∀x ∈R ,x 2-4≠0(假命题).(2)∃T 0=2k π(k ∈Z),sin(x +T 0)≠sin x (假命题).(3)存在集合A 既不是集合A ∪B 的子集,也不是A ∩B 的子集(假命题).(4)a ,b 是异面直线,∀A ∈a ,B ∈b ,有AB 既不垂直于a ,也不垂直于b (假命题).10、命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,q :函数f (x )=(3-2a )x是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.【答案】1≤a <2,或a ≤-2.【解析】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又因为函数f (x )=(3-2a )x 是增函数,所以3-2a >1,∴a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧ -2<a <2,a ≥1,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧ a ≤-2或a ≥2,a <1,∴a ≤-2.综上可知,所求实数a 的取值范围为1≤a <2,或a ≤-2.11、已知a >0,设命题p :函数y =a x 在R 上单调递减,q :不等式x +|x -2a |>1的解集为R ,若p 和q 中有且只有一个命题为真命题,求a 的取值范围.【答案】0<a ≤12或a ≥1 【解析】由函数y =a x 在R 上单调递减知0<a <1,所以命题p 为真命题时a 的取值范围是0<a <1,令y =x +|x -2a |,则y =⎩⎪⎨⎪⎧ 2x -2a x ≥2a ,2a x <2a 不等式x +|x -2a |>1的解集为R ,只要y min >1即可,而函数y 在R 上的最小值为2a ,所以2a >1,即a >12.即q 真⇔a >12.若p 真q 假,则0<a ≤12;若p 假q 真,则a ≥1,所以命题p 和q 有且只有一个命题为真命题时a 的取值范围是0<a ≤12或a ≥1. 12、已知m ∈R ,设命题p :∀x ∈[-1,1],x 2-2x -4m 2+8m -2≥0恒成立;命题q :∃x ∈[1,2],log 12(x 2-mx +1)<-1成立,如果“p ∨q ”为真命题,“p ∧q ”为假命题,求实数m 的取值范围.【答案】{m |m <12或m =32} 【解析】若p 为真,则∀x ∈[-1, 1],4m 2-8m ≤x 2-2x -2恒成立.设f (x )=x 2-2x -2,配方得f (x )=(x -1)2-3,所以f (x )在区间[-1,1]上的最小值为-3,所以4m 2-8m ≤-3,解得12≤m ≤32, 所以当p 为真时,12≤m ≤32; 若q 为真,则∃x ∈[1,2], x 2-mx +1>2成立,所以∃x ∈[1,2],m <x 2-1x成立. 设g (x )=x 2-1x =x -1x, 易知g (x )在区间[1,2]上是增函数,所以g (x )的最大值为g (2)=32,所以m <32, 所以当q 为真时,m <32. 因为“p ∨q ”为真命题,“p ∧q ”为假命题,所以p 与q 必是一真一假,当p 真q 假时,⎩⎪⎨⎪⎧12≤m ≤32,m ≥32,所以m =32; 当p 假q 真时,⎩⎪⎨⎪⎧m <12或m >32,m <32,所以m <12. 综上所述,m 的取值范围是{m |m <12或m =32}. 13、已知命题函数在内恰有一个零点;命题函数在上是减函数,若为真命题,则实数的取值范围是___________. 【答案】【解析】命题p :函数f (x )=2ax 2﹣x ﹣1(a≠0)在(0,1)内恰有一个零点,则f (0)f (1)=﹣(2a ﹣2)<0,解得a >1;命题q :函数y=x 2﹣a 在(0,+∞)上是减函数,2﹣a <0,解得a >2.∴¬q :a ∈(﹣∞,2].∵p 且¬q 为真命题,∴p 与¬q 都为真命题,∴ 解得1<a≤2.则实数a 的取值范围是(1,2].故答案为:(1,2].14、已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.【答案】(0,1]∪[4,+∞).【解析】因为函数y =a x在R 上单调递增,所以命题p :a >1.因为不等式ax 2-ax +1>0对∀x ∈R 恒成立,所以a >0且a 2-4a <0,解得0<a <4,所以命题q :0<a <4.因为“p 且q ”为假,“p 或q ”为真,所以p ,q 中必是一真一假.若p 真q 假,则⎩⎪⎨⎪⎧a >1,a ≥4,解得a ≥4; 若p 假q 真,则⎩⎪⎨⎪⎧0<a ≤1,0<a <4,解得0<a ≤1. 综上所述,a 的取值范围为(0,1]∪[4,+∞).15、命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,q :函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.【答案】1≤a <2,或a ≤-2【解析】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又因为函数f (x )=(3-2a )x 是增函数,所以3-2a >1,∴a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧ -2<a <2,a ≥1,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧ a ≤-2或a ≥2,a <1,∴a ≤-2.综上可知,所求实数a 的取值范围为1≤a <2,或a ≤-2.16、已知a >0,设命题p :函数y =a x在R 上单调递减,q :不等式x +|x -2a |>1的解集为R ,若p 和q 中有且只有一个命题为真命题,求a 的取值范围.【答案】0<a ≤12或a ≥1 【解析】由函数y =a x 在R 上单调递减知0<a <1,所以命题p 为真命题时a 的取值范围是0<a <1,令y =x +|x -2a |,则y =⎩⎪⎨⎪⎧ 2x -2a x ≥2a ,2a x <2a 不等式x +|x -2a |>1的解集为R ,只要y min >1即可,而函数y 在R 上的最小值为2a ,所以2a >1,即a >12.即q 真⇔a >12.若p 真q 假,则0<a ≤12;若p 假q 真,则a ≥1,所以命题p 和q 有且只有一个命题为真命题时a 的取值范围是0<a ≤12或a ≥1. 17、已知命题p :∃x ∈R ,|sin x |>a 有解;命题q :∀x ∈R ,ax 2+2ax +4>0恒成立.若命题“p 或q ”是真命题,命题“p 且q ”是假命题,求实数a 的取值范围.【答案】(-∞,0)∪[1,4)【解析】命题p :∃x ∈R ,|sin x |>a 有解,则a <1;由命题q 得,a =0或⎩⎪⎨⎪⎧a >0,Δ<0,解得0<a <4, 所以命题q :0≤a <4.因为命题“p 或q ”是真命题,命题“p 且q ”是假命题,所以命题p ,q 中有且仅有一个真命题. 若p 真q 假,则⎩⎪⎨⎪⎧a <1,a ≥4或a <0,解得a <0; 若p 假q 真,则⎩⎪⎨⎪⎧a ≥1,0≤a <4,解得1≤a <4.综上所述,实数a 的取值范围是(-∞,0)∪[1,4).18、设:实数x 满足,:实数x 满足.(1)若,且p ∧q 为真,求实数x 的取值范围;(2)若且是的充分不必要条件,求实数a 的取值范围.【答案】(1);(2)【解析】 (1)由得,当时,,即为真时,.由,得,得,即q 为真时,.若为真,则真且真,所以实数的取值范围是.(2)由得,,.由,得,得.设, ,若p 是q 的充分不必要条件,则是的真子集,故,所以实数的取值范围为.19、已知k 为实常数,命题p :方程x 22k -1+y 2k -1=1表示椭圆;命题q :方程x 24+y 2k -3=1表示双曲线. (1) 若命题p 为真命题,求k 的取值范围;(2) 若命题“p 或q”为真命题,“p 且q”为假命题,求k 的取值范围.【答案】(1) (1,+∞) (2) (-∞,1]∪[3,+∞)【解析】(1) 若命题p 为真命题,则⎩⎪⎨⎪⎧2k -1>0,k -1>0,2k -1≠k-1,解得k>1,即k 的取值范围是(1,+∞).(2) 若命题q 为真命题,则k -3<0,即k<3.因为“p 或q”为真命题,“p 且q”为假命题,所以p ,q 必是一真一假.当p 真q 假时,⎩⎪⎨⎪⎧k>1,k≥3,解得k≥3; 当p 假q 真时,⎩⎪⎨⎪⎧k≤1,k<3,解得k≤1.综上所述,k 的取值范围是(-∞,1]∪[3,+∞).。

2020年高考数学一轮复习《简单的逻辑联结词、全称量词与存在量词》

2020年高考数学一轮复习《简单的逻辑联结词、全称量词与存在量词》

2020年高考数学一轮复习《简单的逻辑联结词、全称量词与存在量词》考纲解读1.了解逻辑联结词“且”、“或”、“非”的含义. 2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定. 命题趋势探究预测2020年高考主要考查:复合命题真假的判断、全称命题与存在性命题的否定以及利用命题的真假求参数范围.题型主要以选择题、填空题为主. 知识点精讲1.简单的逻样联结词(1)一般地,用联结词“且”把命题p 和q 联结起来,得到一个新命颐,记作p q ∧,读作“p 且q ; (2)一般地,用联结词“或”把命题p 和q 联结起来,得到一个新命题.记作p q ∨,读作“p 或q ”; (3)一般地,对一个命题p 否定,得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定”. 逻辑联结词的真值规律如表1-2所示.表1-2口诀:(1)“p 且q ”,一假则假,全真才真;(2)“p 或q ”,一真则真,全假才假;(3)“p ⌝”,真假相对.2.全称量词与存在童词(1)全称量词与全称命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称命题.全称命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与特称命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做特称命题.特称命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(特称命题也叫存在性命题). 3.含有一个量词的命题的否定(1)全称命题的否定是特称命题.全称命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝. (2)特称命题的否定是全称命题.特称命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝. 注:全称、特称命题的否定是高考常见考点之一. 区别否命题与命题的否定:①只有“若p ,则q ”形式的命题才有否命题,而所有的命班都有否定形式(在高中阶段只对全称、特称命题研究否定定形式);命题“若p ,则q ”的否命题是“若p ⌝,则q ⌝,而否定形式为“若p ,则q ⌝”.②一个命题与其否定必有一个为真,一个为假;而一个命题与其否命题的真假无必然联系. 题型归纳及思路提示题型7 判断含逻辑联结词的命题的真假 思路提示判断命题真假的一般步骤为: (1)确定命题的构成形式;(2)判断所用的逻辑联结词联结的每个简单命题的真假; (3)报据真值表判断新命题的真假. 例1.15 判断下列命题的真假. (1)24既是8的倍数,也是6的倍数; (2)矩形的对角线互相垂直或相等; (3)菱形不是平行四边形; (4)30≥.分析:解题步骤为分析命题的构成、联系真值表、下结论.解析:(1)命题:24p 是8的倍数,:24q 是6的倍数,用“且”联结后构成新命题,即p q ∧.因为,p q 都是真命题,所以p q ∧为真命题.(2):p 矩形的对角线垂直,:q 矩形的对角线相等,用“或”联结后构成新命题,即p q ∨.因为q 是真命题,所以p q ∨是真命题.(3):p 菱形是平行四边形,用“非”联结后构成新命题,即p ⌝.因为p 是真命题,所以p ⌝是假命题.(4):30p >,:30q =,用“或”联结后构成新命题,即p q ∨,因为命题p 是真命题,所以命题p q ∨是真命题.变式1(2017·山东)已知命题01)0p x ln x ∀>+>:,(;命题q :22a b a b 若>,则> , 下列命题为真命题的是( ) A .p ∧qB .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝解析:命题:0,(1)0p x ln x ∀>+>,则命题p 为真命题,则p ⌝为假命题; 取12,a b a b ==>﹣,﹣,但22a b < , 则命题q 是假命题,则q ⌝是真命题. p q ∴∧是假命题,p q ∧⌝是真命题,p q ⌝∧是假命题,p q ⌝∧⌝是假命题.故选B .变式2 已知命题,p q ,则“p 或q 为真”是p 且q 为真”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件B .解析:为真命题恒成立,命题从而p x x x 0)1ln(,11,0>+>+∴> C .是假命题。

2020年领军高考数学一轮复习(文理通用)专题03 简单的逻辑联结词、全称量词与存在量词 含解析

2020年领军高考数学一轮复习(文理通用)专题03 简单的逻辑联结词、全称量词与存在量词 含解析

2020年领军高考数学一轮复习(文理通用)专题03简单的逻辑联结词、全称量词与存在量词最新考纲1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词和存在量词的意义.3.能正确地对含有一个量词的命题进行否定.基础知识融会贯通1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断p q p且q p或q 非p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定命题名称语言表示符号表示命题的否定全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)∃x0∈M,綈p(x0)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0)∀x∈M,綈p(x)【知识拓展】1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3) p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则q”,否命题是“若⌝p,则⌝q”.重点难点突破【题型一】含有逻辑联结词的命题的真假判断【典型例题】已知命题p:函数y=sin(2x)和y=cos(2x)的图象关于原点对称;命题q:若平行线6x+8y+a=0与3x+by+22=0之间的距离为a,则a=b=4.则下列四个判断:“p∨q是假命题、p∧q是真命题、(¬p)∨q是真命题、p∨(¬q)是真命题”中,正确的个数为()A.1 B.2 C.3 D.4【解答】解:y=cos(2x)=sin[(2x)]=sin(2x)=﹣sin(2x)则函数y=sin(2x)关于原点对称的函数为﹣y=sin(﹣2x),即y=﹣sin(2x),即命题p是真命题,若两直线平行则得b=4,∴两平行直线为6x+8y+a=0与6x+8y+44=0,平行直线的距离为═a,即|a﹣44|=10a,a>0,则a﹣44=10a或a﹣44=﹣10a,得a=4或(舍),则a=b=4,即命题q是真命题,则“p∨q是真命题、p∧q是真命题、(¬p)∨q是真命题、p∨(¬q)是真命题,正确的命题有3个,故选:C.【再练一题】已知命题p:函数f(x)是定义在实数集上的奇函数;命题q:直线x=0是g(x)=x 的切线,则下列命题是真命题的是()A.p∧q B.¬q C.(¬p)∧q D.¬p【解答】解:f(﹣x)f(x),即f(x)是奇函数,故命题p是真命题,函数的导数g′(x),当x=0时,g′(x)不存在,此时切线为y轴,即x=0,故命题q是真命题,则p∧q是真命题,其余为假命题,故选:A.思维升华“p∨q”“p∧q”“⌝p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∧q”“p∨q”“⌝p”等形式命题的真假.【题型二】含有一个量词的命题命题点1全称命题、特称命题的真假【典型例题】已知命题p:∀x∈(0,π),tan x>sin x;命题q:∃x>0,x2>2x,则下列命题为真命题的是()A.p∧q B.¬(p∨q)C.p∨(¬q)D.(¬p)∧q【解答】解:命题p:∀x∈(0,π),tan x>sin x;当x时,命题不成立.故命题p为假命题.命题q:∃x>0,x2>2x,当x=3时,命题为真命题.故¬p∧q为真命题.故选:D.【再练一题】下列四个命题:p1:任意x∈R,2x>0;p2:存在x∈R,x2+x+1<0,p3:任意x∈R,sin x<2x;p4:存在x∈R,cos x >x2+x+1.其中的真命题是()A.p1,p2B.p2,p3C.p3,p4D.p1,p4【解答】解:p1:任意x∈R,2x>0,由指数函数的性质得命题p1是真命题;p2:存在x∈R,x2+x+1<0,由x2+x+1=(x)2,得命题p2是假命题;p3:任意x∈R,sin x<2x,由x时,sin x>2x,得命题p3是假命题;p4:存在x∈R,cos x>x2+x+1.命题p4是真命题.故选:D.命题点2含一个量词的命题的否定【典型例题】设命题,则¬p为()A.B.C.D.【解答】解:命题是全称命题,则命题的否定是特称命题,即¬p:∃x 0∈[0,),sin x0≥cos x0,故选:A.【再练一题】命题“∃x0∈R,”的否定形式是()A.∀x∈R,B.∃x∈R,C.∃x∈R,D.∀x∈R,【解答】解:命题是特称命题,则否定是:∀x∈R,,故选:D.思维升华(1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断特称命题是真命题,只要在限定集合内找到一个x=x0,使p(x0)成立.(2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;②对原命题的结论进行否定.【题型三】含参命题中参数的取值范围【典型例题】已知函数f(x)=lg[(a2﹣1)x2+(a﹣1)x+1],设命题p:“f(x)的定义城为R”;命题q:“f(x)的值域为R”.(Ⅰ)若命题p为真,求实数a的取值范围;(Ⅱ)若命题p∨q为真命题,且p∧q为假命题,求实数a的取值范围.【解答】解:(Ⅰ)命题p为真,即f(x)的定义城为R,等价于(a2﹣1)x2+(a﹣1)x+1>0恒成立,等价于a=1或解得或a≥1.故实数a的取值范围为.(Ⅱ)命题q为真,即f(x)的值域是R,等价于g(x)=(a2﹣1)x2+(a﹣1)x+1取遍所有的正数,即值域为包含(0,+∞),等价于a=﹣1或解得a≤﹣1.若p∨q为真命题,且p∧q为假命题,则“p真q假”或“p假q真”,即或,解得a≤﹣1或a≥1.故实数a的取值范围是(﹣∞,﹣1]∪[1,+∞)【再练一题】已知两函数f(x)=8x2+16x﹣m,g(x)=2x3+5x2+4x,(m∈R)若对∀x1∈[﹣3,3],∃x2∈[﹣3,3],恒有f(x1)>g(x2)成立,求m的取值范围.【解答】解:若对∀x1∈[﹣3,3],∃x2∈[﹣3,3],恒有f(x1)>g(x2)成立,只需在∈[﹣3,3]上f(x)min>g(x)min即可.f(x)=8x2+16x﹣m=8(x+1)2﹣m﹣8,f(x)min=f(﹣1)=﹣m﹣8g(x)=2x3+5x2+4x,g′(x)=6x2+10x+4=(x+1)(6x+4),在x∈(﹣3,﹣1)∪(,3],g′(x)>0,(﹣3,﹣1)与(,3]是g(x)单调递增区间.在x∈(﹣1,),g′(x)<0,(﹣1,,]是g(x)单调递减区间.g(x)的极小值为g(),又g(﹣3)=﹣21,所以g(x)min=﹣21所以﹣m﹣8>﹣21,解得m的范围为m<13.思维升华(1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.基础知识训练1.已知曲线的方程为,给定下列两个命题:,则曲线为双曲线;若曲线是焦点在轴上的椭圆,则,其中是真命题的是( )A.B.C.D.【答案】B【解析】若,则曲线C是焦点在x轴上的双曲线,即命题p是真命题,由4﹣k=k﹣3时,2k=7,得k=时,方程不表示椭圆,即命题是假命题,则为真命题,其余为假命题,故选:B.2.“为真”是“为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】若“为真”可能p假q真,不一定有“为真”,充分性不成立;若“为真”,则一定有“为真”,必要性成立,综上可得:“为真”是“为真”的必要不充分条件.本题选择B选项.3.已知命题;命题:若,则.下列命题为真命题的是()A.B.C.D.【答案】B【解析】当时,,则命题p为真命题;取,满足,不满足,命题q为假命题;据此可得:是假命题;是真命题;是假命题;是假命题.本题选择B选项.4.在一次数学测试中,成绩在区间[125,150]上成为优秀,有甲、乙两名同学,设命题p是“甲测试成绩优秀”,是“乙测试成绩优秀”,则命题“甲、乙中至少有一位同学成绩不是优秀”可表示为()A.B.C.D.【答案】A【解析】“甲测试成绩不优秀”可表示为,“乙测试成绩不优秀”可表示为,“甲、乙中至少有一位同学成绩不是优秀”即“甲测试成绩不优秀”或“乙测试成绩不优秀”,表示形式为:.本题选择A选项.5.已知命题:“”,命题:“”.若命题“”是真命题,则实数的取值范围是()A.B.C.D.【答案】D【解析】解:当命题为p真时,即:“∀x∈[1,2],x2﹣a≥0“,即当x∈[1,2]时,(x2﹣a)min≥0,又当x=1时,x2﹣a取最小值1﹣a,所以1﹣a≥0,即a≤1,当命题q为真时,即:∃x∈R,x2+2ax+2﹣a=0,所以△=4a2﹣4(2﹣a)≥0,所以a≤﹣2,或a≥1,又命题“¬p且q”是真命题,所以p假q真,即,即实数a的取值范围是:a>1,故选:D.6.已知命题;命题.则以下是真命题的为A.B.C.D.【答案】B判断命题p的正误:,显然是假命题;判断命题q的正误:,显然是真命题;∴是真命题故选:B7.已知命题:若,则,命题,则下列命题为真命题的是( ) A.B.C.D.【答案】A【解析】命题:若,则,是真命题.命题:∵,则,因此不,是假命题.则下列命题为真命题的是.故选:A.8.已知命题:函数的图像恒过定点;命题:若函数为偶函数,则函数的图象关于直线对称,则下列命题为真命题的是()A.B.C.D.【答案】B【解析】函数的图象可看作把y=的图象先向右平移1个单位,再向上平移1个单位得到,而y=的图象恒过(1,0),所以函数y=恒过(2,1)点,所以命题p假,则¬p真;函数f(x﹣1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x﹣1)向左平移了1个单位,所以f(x)的图象关于直线x=﹣1对称,所以命题q假,则命题¬q真.综上可知,四个选项只有命题为真命题.9.命题“,使得”的否定形式是A.,使得B.,使得C.,使得D.,使得【答案】D【解析】由题意可知;全称命题“,使得”的否定形式为特称命题“,使得”故选:D.10.设命题p:,则A.B.C.D.【答案】C【解析】命题是全称命题,则命题的否定是特称命题,即,故选:C.11.命题“存在一个无理数,它的平方是有理数”的否定是( )A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是无理数【答案】B【解析】命题“存在一个无理数,它的平方是有理数”的否定是“任意一个无理数,它的平方不是有理数”,答案为B12.命题“,5-3x0≥0”的否定是( )A.不存在x0∈R,5-3x0<0 B.,5-3x0<0 C.,5-3x≤0D.,5-3x<0【答案】D【解析】题干中的是特称命题,它的否定是全称命题,换量词,否结论,条件不变即可,即:,5-3x<0.故答案为:D.13.已知命题p:,则A.B.C.D.【答案】A【解析】命题“”是全称命题,否定时将量词对任意的变为,再将不等号变为即可.即已知命题p:,则.故选:A.14.已知集合A是奇函数集,B是偶函数集若命题p:,则A.B.C.D.【答案】C【解析】根据全称命题与存在性命题的关系,可知命题是全称命题,则命题的否定为:,故选:C.15.已知p:方程表示椭圆;q:双曲线的离心率.是真命题,求m的取值范围;是真命题,是假命题,求m的取值范围.【答案】(1);(2)【解析】解:方程表示椭圆;则,则,得,得,即p:;双曲线的离心率.则,得,则,即,则q:,是真命题,则都是真命题,则,得.是真命题,是假命题,则一个为真命题,一个为假命题,若假,则,得,若真,则,此时,综上.16.已知p:复数所对应的点在复平面的第四象限内其中,q:其中.如果“p或q”为真,求实数a的取值范围;如果“p且”为真,求实数a的取值范围.【答案】(1);(2).【解析】若复数所对应的点在复平面的第四象限内,为真命题则,即若,则,即(1)如果“”为真,则至少一个为真;求出均为假的的范围,取补集正确结果:(2)如果“”为真,则假即正确结果:17.已知命题:方程表示焦点在轴上的双曲线;命题:函数上单调递增.(1)若命题为真命题,求实数的取值范围;(2)若命题为假命题,且“”为真命题,求实数的取值范围.【答案】(1)(2)【解析】解:(1)由函数上单调递增得恒成立,因为,即,即上恒成立,所以,即,因为命题为真命题,所以.(2)由已知命题为假命题,为真命题,故假,由(1)知,命题为假命题,可得.由为真命题,得,即.故,得.所以实数的取值范围.18.(1)已知命题p:;命题q:,若“”为真命题,求x的取值范围.(2)设命题p:;命题q:,若的充分不必要条件,求实数a的取值范围.【答案】(1)(2)【解析】命题p:,即;命题,即;由于“”为真命题,则p真q假,从而由q假得,,所以x的取值范围是.命题p:,即命题q:,即由于的充分不必要条件,则p是q的充分不必要条件.即有19.已知方程表示焦点在轴上的椭圆;方程表示双曲线.若“”为假命题,且“”为真命题,求实数的取值范围.【答案】【解析】若为真,即方程表示焦点在轴上的椭圆,可得;若为真,即方程表示双曲线,可得解得若“”为假命题,且“”为真命题,则一真一假,若假,则,解得;若真,则,解得,综上.∴实数的取值范围为.20.命题:指数函数是减函数;命题,使关于的方程有实数解,其中.(1)当时,若为真命题,求的取值范围;(2)当时,若为假命题,求的取值范围.【答案】(1)(2)【解析】(1)当时,指数函数化为因为指数函数是减函数,所以即所以实数的取值范围为.(2)当时,指数函数化为若命题为真命题,则,即所以为假命题时的取值范围是命题为真命题时,即关于的方程有实数解,所以,解得,所以命题为假命题时的取值范围为因为为假命题,所以为假命题或者为假命题所以实数满足,即所以实数的取值范围为能力提升训练1.己知命题:“关于的方程有实根”,若非为真命题的充分不必要条件为,则实数的取值范围是( )A.B.C.D.【答案】A【解析】由命题有实数根,则则所以非是非为真命题的充分不必要条件,所以,则m的取值范围为所以选A2.已知命题p:椭圆25x2+9y2=225与双曲线x2-3y2=12有相同的焦点;命题q:函数的最小值为52,下列命题为真命题的是( ) A .p∧q B .(p ⌝)∧q C .⌝ (p∨q) D .p∧(⌝q) 【答案】B【解析】p 中椭圆为=1,双曲线为=1,焦点坐标分别为(0,±4)和(±4,0),故p 为假命题;q 中f (x )=,设t =≥2(当且仅当x =0时,等号成立),则f (t )=t +在区间[2,+∞)上单调递增,故f (x )m i n =52,故q 为真命题.所以(⌝p )∧q 为真命题,故选B. 3.已知.命题:p 对1a ∀≥, ()y f x =有三个零点, 命题:q a R ∃∈,使得()0f x ≤恒成立. 则下列命题为真命题的是( ) A .p q ∧ B . C .()p q ⌝∧ D .()p q ∧⌝【答案】B 【解析】已知.当1a =时,只有一个根,即函数只有一个极值点,则函数最多有2个零点,故命题p 为假; ()01f =Q ,命题q 显然为假命题 故为真选B 4.已知,并设:至少有3个实根;:当时,方程有9个实根;:当时,方程有5个实根,则下列命题为真命题的是( )A .B .C .仅有D .【答案】A 【解析】的导数为,当时,递增;当时,递减,可得取得极大值,取得极小值,作出的图象(如图):令,对于至少有3个实根,即有,若,则,此时只有一解,故为假命题;对于:当时,方程有9个实根,由内有三个解,在轴上方不妨设,由图象可得共有9个实根,故为真命题;对于:当时,方程有5个实根,由,可得和2,由图象可得有3个实根,有2个实根,共有5个实根.故为真命题,则为真命题;,仅有均为假命题,故选A.5.已知命题,命题,若的一个充分不必要条件是,则实数的取值范围是( ) A . B .C .D .【答案】A 【解析】将化为,即,因为的一个充分不必要条件是,所以的一个充分不必要条件是,则,故选A.6.已知命题p :直线与直线之间的距离不大于1,命题q :椭圆与双曲线有相同的焦点,则下列命题为真命题的是( )A .()p q ∧⌝B .()p q ⌝∧C .D .p q ∧【答案】B【解析】试题分析:对于命题p ,将直线l 平移到与椭圆相切,设这条平行线的方程为,联立方程组,消去y 得.由0∆=得,所以2m =±,椭圆上的点到直线l 最近距离为直线与l 的距离,所以命题p 为假命题,于是p ⌝为真命题.对于命题q ,椭圆与双曲线有相同的焦点()5,0±,故q 为真命题.从而()p q⌝∧为真命题,故选B.7.设命题:实数满足,其中;命题:实数满足.(1)若,且为真,求实数的取值范围;(2)若的充分不必要条件,求实数的取值范围.【答案】(1); (2).【解析】(Ⅰ)对于命题:由,又,∴,当时,,即为真时实数x 的取值范围是.由已知为真时实数的取值范围是.若为真,则真且真,∴实数的取值范围是. (Ⅱ)的充分不必要条件,即,且, 设,则,又,则,∴实数的取值范围是.8.已知,命题对任意,不等式恒成立,命题存在,使不等式成立.(1)若为真命题,求的取值范围; (2)若为假,为真,求的取值范围. 【答案】(1);(2)【解析】 (1)令,则上为减函数,因为,所以当时,不等式恒成立,等价于,解得.(2)不等式即,∵,∴,所以,∵,∴即命题. 若为假,为真,则中有且只有一个是真的 若为真,为假,那么,则无解;若为假,为真,那么,则.综上所述,.9.已知p :方程有两个不等的正根; q :方程表示焦点在y 轴上的双曲线.(1)若q 为真命题,求实数m 的取值范围;(2)若“p 或q ”为真,“p 且q ”为假,求实数m 的取值范围 【答案】(1)3m <-.;(2)21m -<<-或3m <-. 【解析】(1)由已知方程表示焦点在y 轴上的双曲线,所以,解得3m <-,即:3q m <-.(2)若方程有两个不等的正根,则解得21m -<<-,即.因p 或q 为真,所以p q 、至少有一个为真. 又p 且q 为假,所以p q 、至少有一个为假.因此, p q 、两命题应一真一假,当p 为真, q 为假时,,解得21m -<<-;当p 为假, q 为真时,,解得3m <-.综上, 21m -<<-或3m <-. 10.已知0≠m ,向量)3,(m m a =,向量,集合.(1)判断“b a //”是“10||=a ”的什么条件;(2)设命题p :若b a ⊥,则19-=m . 命题q :若集合A 的子集个数为2,则1=m . 判断q p ∨,q p ∧,q ⌝的真假,并说明理由.【答案】(1)充分不必要条件;(2)q p ∨真,q p ∧假,q ⌝真. 【解析】解:(1)若b a //,则,∴1=m (0=m 舍去),此时)3,1(=a ,10||=a .若10||=a ,则1±=m . 故“b a //”是“10||=a ”的充分不必要条件. (2)若b a ⊥,则,∴19-=m (0=m 舍去),∴p 为真命题.由得2m x =或m x -=2,若集合A 的子集个数为2,则集合A 中只有1个元素,则m m -=22,∴1=m 或2-=m ,故q 为假命题. ∴q p ∨为真命题,q p ∧为假命题,q ⌝为真命题.。

【高中数学】秒杀秘诀03简单的逻辑联结词

【高中数学】秒杀秘诀03简单的逻辑联结词

简单的逻辑联结词、全称量词与存在量词一、简单的逻辑联结词1.用联结词“且”联结命题p 和命题q ,记作p ∧q ,读作p 且q.2.用联结词“或”联结命题p 和命题q ,记作p ∨q ,读作p 或q.3.对一个命题p 全盘否定记作p ⌝,读作“非p ”或“p 的否定”.4.命题p ∧q ,p ∨q ,綈p 的真假判断p ∧q 中p 、q 有一假为假,p ∨q 有一真为真,p 与非p 必定是一真一假.二、全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M 中任意一个x ,有p(x)成立”可用符号简记为:∀x ∈M ,p(x),读作“对任意x 属于M ,有p(x)成立”2.存在量词与特称命题(1)短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M 中的一个x 0,使p(x 0)成立”可用符号简记为:∃x 0∈M ,P(x 0),读作存在一个x 0属于M ,使p(x 0)成立。

三、含有一个量词的命题的否定例1:若p 是真命题,q 是假命题,则()A .p ∧q 是真命题B .p ∨q 是假命题C .⌝p 是真命题D .⌝q 是真命题解:⌝q 和p ∨q 是真命题.选D例2:已知命题p :3≥3;q :3>4,则下列选项正确的是()A .p ∨q 为假,p ∧q 为假,⌝p 为真B .p ∨q 为真,p ∧q 为假,⌝p 为真C .p ∨q 为假,p ∧q 为假,⌝p 为假D .p ∨q 为真,p ∧q 为假,⌝p 为假答案:D例3:若p :∀x ∈R ,sin x ≤1,则()A .⌝p :∃x ∈R ,sin x >1B .⌝p :∀x ∈R ,sin x >1C .⌝p :∃x ∈R ,sin x ≥1D .⌝p :∀x ∈R ,sin x ≥1解:由于命题p 是全称命题,对于含有一个量词的全称命题p :∀x ∈M ,p (x ),它的否定⌝p :∃x 0∈M ,⌝p (x 0).答案:A例4:命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________.答案:对所有的x ∈R ,都有x2+2x +5≠02解:∃x ∈R,2x 2-3ax +9<0为假命题,则∀x ∈R,2x 2-3ax +9≥0恒成立,有Δ=9a 2-72≤0,解得-22≤a ≤2 2.1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p ,则q”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p 的结论.命题命题的否定∀x ∈M ,p (x )∃x ∈M ,⌝p (x )∃x 0∈M ,p (x 0)∀x ∈M ,⌝p (x )命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.例6:已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0.下列结论中正确的是()A .命题“p ∧q ”是真命题B .命题“p ∧⌝q ”是真命题B .C .命题“⌝p ∧q ”是真命题D .命题“⌝p ∨⌝q ”是假命题解:由sin x =52>1,可得命题p 为假;由x 2+x +1=(x +12)2+34≥34,可得命题q 为真,则命题“p ∧q ”是假命题;命题“p ∧⌝q ”是假命题;命题“⌝p ∧q ”是真命题;命题“⌝p ∨⌝q ”是真命题.答案:CA .p 或q 为假B .q 假C .q 真D .p 假解:⌝p 为假,则p 为真,而p ∧q 为假,得q 为假.答案:B例8:已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧⌝q ”是假命题③命题“⌝p ∨q ”是真命题;④命题“⌝p ∨⌝q ”是假命题.其中正确的是()A .②③B .①②④C .①③④D .①②③④解:命题p :∃x ∈R ,使tan x =1是真命题,命题q :x 2-3x +2<0的解集是{x |1<x <2}也是真命题,∴①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题.答案:D例9:已知命题p :“∀x ∈[0,1],a≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”,若命题“p ∧q”是真命题,则实数a 的取值范围是()A .(4,+∞)B .[1,4]C .[e,4]D .(-∞,1]解:“p ∧q”是真命题,则p 与q 都是真命题;p 真则∀x ∈[0,1],a ≥e x ,需a≥e ;q 真则x 2+4x +a =0有解,需Δ=16-4a ≥0,所以a ≤4;p ∧q 为真,则e≤a ≤4.选C 。

2020年高考数学一轮复习专题03简单逻辑连接词、全称量词与存在量词(含解析)

2020年高考数学一轮复习专题03简单逻辑连接词、全称量词与存在量词(含解析)

专题03 简单逻辑连接词、全称量词与必存在量词一、【知识精讲】1.简单的逻辑联结词(1)命题中的“或”“且”“非”叫做逻辑联结词.(2)命题p∧q,p∨q,﹁p的真假判断2.全称量词和存在量词3.二、【典例精练】例1.(1) (1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p∧q B.(﹁p)∨(﹁q)C.(﹁p)∧q D.p∧(﹁q)(2)(2019·安徽安庆模拟)设命题p:∃x0∈(0,+∞),x0+1x0>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是( )A.p∧(﹁q) B.(﹁p)∧qC.p∧q D.(﹁p)∨q【答案】(1)B (2)A[解析] (1)命题p 中,因为函数u =1-x 在(-∞,1)上为减函数,所以函数y =lg(1-x )在(-∞,1)上为减函数,所以p 是真命题;命题q 中,设f (x )=2cos x,则f (-x )=2cos(-x )=2cos x=f (x ),x ∈R ,所以函数y =2cos x是偶函数,所以q 是真命题,所以p ∧q 是真命题,故选A .(2)对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x 0∈(2,+∞),使得2x 0=x 20成立,故命题q 为假命题,所以p ∧(綈q )为真命题,故选A.【方法小结】判断含有逻辑联结词命题真假的步骤例2.(1) 下列命题中,真命题是( ) A .∀x ∈R,x 2-x -1>0B . ∀α,β∈R,sin(α+β)<sin α+sin βC .∃x ∈R,x 2-x +1=0D .∃α,β∈R,sin(α+β)=cos α+cos β (2)对命题∃x 0>0,x 20>2x0,下列说法正确的是( )A .真命题,其否定是∃x 0≤0,x 20≤2xB .假命题,其否定是∀x >0,x 2≤2xC .真命题,其否定是∀x >0,x 2≤2xD .真命题,其否定是∀x ≤0,x 2≤2x【答案】(1)D ,(2)C【解析】(1)因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D .](2)已知命题是真命题,如32=9>8=23,其否定是∀x >0,x 2≤2x.故选C. 【方法小结】1.全称命题、特称命题的真假判断方法1)要判断一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判断全称命题是假命题,只要能找出集合M 中的一个x =x 0,使得p (x 0)不成立即可.2)要判断一个特称命题是真命题,只要在限定集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可,否则,这一特称命题就是假命题. 2.全称命题与特称命题的否定1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写. 2)否定结论:对原命题的结论进行否定.例3.已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0.若p 或q 为假命题,求实数m 的取值范围.【解析】 依题意知p ,q 均为假命题,当p 是假命题时,则mx 2+1>0恒成立,则有m ≥0; 当q 是真命题时,则Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得{ m ≥0,m ≤-2或m ≥2,即m ≥2.例4.给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.【解析】当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p ∨q 为真命题,p ∧q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.【方法小结】根据命题的真假求参数的取值范围的步骤(1)求出当命题p ,q 为真命题时所含参数的取值范围; (2)根据复合命题的真假判断命题p ,q 的真假性;(3)根据命题p ,q 的真假情况,利用集合的交集和补集的运算,求解参数的取值范围. 所以实数m 的取值范围为[2,+∞). 三、【名校新题】1.(2019·西安摸底)命题“∀x >0,xx -1>0”的否定是( ) A .∃x 0≥0,x 0x 0-1≤0B .∃x 0>0,0≤x 0≤1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点03逻辑联结词、全称量词与存在量词1.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.2.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.一、逻辑联结词1.常见的逻辑联结词:或、且、非∧,读作“p且q”;一般地,用联结词“且”把命题p和q联结起来,得到一个新命题,记作p q∨,读作“p或q”;用联结词“或”把命题p和q联结起来,得到一个新命题,记作p q⌝,读作“非p”.对一个命题p的结论进行否定,得到一个新命题,记作p2.复合命题的真假判断“p且q”“p或q”“非p”形式的命题的真假性可以用下面的表(真值表)来确定:3.必记结论含有逻辑联结词的命题的真假判断:(1)p q ∧中一假则假,全真才真. (2)p q ∨中一真则真,全假才假. (3)p 与p ⌝真假性相反.注意:命题的否定是直接对命题的结论进行否定;而否命题则是对原命题的条件和结论分别否定.不能混淆这两者的概念.二、全称命题与特称命题 1.全称量词和存在量词2.同一个全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法,在实际应用中可以灵活地选择.3.含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所示:考向一判断复合命题的真假1.判断“p q ∧”、“p q ∨”形式复合命题真假的步骤: 第一步,确定复合命题的构成形式; 第二步,判断简单命题p 、q 的真假; 第三步,根据真值表作出判断.注意:一真“或”为真,一假“且”为假.2.不含逻辑联结词的复合命题,通过辨析命题中词语的含义和实际背景,弄清其构成形式. 3.当p q ∨为真,p 与q 一真一假;p q ∧为假时,p 与q 至少有一个为假.典例1 已知命题p :若实数,x y 满足330x y +=,则,x y 互为相反数;命题q :若0a b >>,则11a b<.下列命题p q ∧,p q ∨,p ⌝,q ⌝中,真命题的个数是 A .1 B .2 C .3D .4【答案】B【解析】由题意,知命题p 为真命题;命题q :当0a b >>时,110b a a b ab --=<成立,所以11a b<,所以命题q 为真命题, 所以命题p q ∧为真命题;p q ∨为真命题;p ⌝为假命题;q ⌝为假命题,所以真命题的个数是2个,故选B.【名师点睛】本题主要考查了命题的真假判断,其中解答中先判定命题,p q 的真假,再结合复合命题的真假关系判定真假是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.1.辨别复合命题的构成形式时,应根据组成复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式.2.准确理解语义应注意抓住一些关键词.如“是…也是…”,“兼”,“不但…而且…”,“既…又…”,“要么…,要么…”,“不仅…还…”等.3.要注意数学中和生活中一些特殊表达方式和特殊关系式.如:a ≥3是a >3或a =3;xy =0是x =0或y =0;x 2+y 2=0是x =0且y =0.1.若命题p :0x ∃∈R ,20010x x -+≤,命题q :0x ∀<,x x >,则下列命题中是真命题的是A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝考向二判断全称命题与特称命题的真假要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.典例2 下列命题中是假命题的是A .,,αβ∃∈R 使sin()sin sin αβαβ+=+B .ϕ∀∈R ,函数()sin(2)f x x ϕ=+都不是偶函数C .m ∃∈R,使243()(1)m m f x m x-+=-是幂函数,且在(0,)+∞上单调递减D .0a ∀>,函数2()ln ln f x x x a =+-有零点 【答案】B【解析】对于选项A ,如当==0αβ时,sin()sin sin ,αβαβ+=+所以选项A 的命题为真命题; 对于选项Bcos2x =是偶函数,因此选项B 中的命题为假命题;对于选项C ,如当2m =时,11()=f x x x-=,()f x 在(0,)+∞上单调递减,所以选项C 中的命题为真命题;对于选项D ,当()0f x =时,2ln ln 0x x a +-=,则22111ln ln (ln )244a x x x =+=+-≥-,所以0a ∀>,函数2()ln ln f x x x a =+-有零点,所以选项D 中的命题为真命题.【名师点睛】全称命题与特称命题的真假判断在高考中出现时,常与数学中的其他知识点相结合,题型以选择题为主,难度一般不大.2.若命题“x ∃∈R ,使21()10x a x +-+<”是假命题,则实数a 的取值范围为A .13a ≤≤B .13a -≤≤C .33a -≤≤D .11a -≤≤3.若命题p :x ∀∈R ,210ax ax ++>;命题q :[]01,1x ∃∈-,02x a >,若()q p ⌝∧为真命题,求实数a 的取值范围.考向三含有一个量词的命题的否定一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词或把存在量词改成全称量词,同时否定结论.典例3 已知命题()31,,168p x x x ∀∈+∞+>:,则命题p 的否定为A .()31,,168p x x x ⌝∀∈+∞+≤: B .()31,,168p x x x ⌝∀∈+∞+<:C .()30001,,168p x x x ⌝∃∈+∞+≤:D .()30001,,168p x x x ⌝∃∈+∞+<:【答案】C【解析】全称命题的否定为特称命题,故其否定为()30001,,168p x x x ⌝∃∈+∞+≤:.故选C.4.命题:存在实数0x ,使200ln 1x x <-的否定是A .对任意的实数x ,都有2ln 1x x <-B .对任意的实数x ,都有2ln 1x x ≥-C .不存在实数0x ,使200ln 1x x ≥-D .存在实数0x ,使200ln 1x x ≥-1.命题“1x ∀>,20x x ->”的否定是A .01x ∃≤,2000x x -≤ B .1x ∀>,20x x -≤ C .01x ∃>,2000x x -≤D .1x ∀≤,20x x ->2.设集合2{|02},{|2}M x x N x x x =∈<≤=∈≥R R ,则 A .,x N x M ∀∈∈ B .,x M x N ∀∈∈ C .00,x N x M ∃∉∈ D .00,x M x N ∃∈∉3.下列命题中的假命题是 A .x ∃∈R ,lg 0x = B .x ∀∈R ,20x > C .x ∃∈R ,22121x x-= D .x ∀∈R ,20x >4.已知命题p :“,a b a b ∀>>”,命题q :“000,20xx ∃<>”,则下列为真命题的是A .p q ∧B .p q ⌝∧⌝C .p q ∨D .p q ∨⌝5.已知命题p :x ∀∈R ,e 1x x ≥+;命题q :0x ∃∈R ,00ln 1x x ≥-.则在命题:①p q ∧,②()p q ∧⌝,③()p q ⌝∧,④()()p q ⌝∧⌝中,正确的为 A .① B .② C .③D .④6.下面四个命题:1p :命题“2,2n n n ∀∈>N ”的否定是“0200,2n n n ∃∉≤N ”; 2p :向量()(),1,1,m n ==-a b ,则m n =是⊥a b 的充分且必要条件;3p :“在ABC △中,若A B >,则sin sin A B >”的逆否命题是“在ABC △中,若sin sin A B ≤,则A B ≤”;4p :若“p q ∧”是假命题,则p 是假命题.其中为真命题的是 A .12,p p B .23,p p C .24,p pD .13,p p7.已知命题2:,210p x x ax ∀∈-+>R ;命题2:,20q x ax ∃∈+≤R .若p q ∨为假命题,则实数a 的取值范围是 A .[)1,+∞ B .(],1-∞- C .(],2-∞-D .[]1,1-8.若命题“π0,3x ⎡⎤∀∈⎢⎥⎣⎦,1tan x m +≤”的否定是假命题,则实数m 的取值范围是__________.9.已知命题:P x ∀∈R ,()22log 0x x a ++>恒成立,命题[]0:2,2Q x ∃∈-,使得022x a ≤,若命题P Q ∧为真命题,则实数a 的取值范围为__________.1.(2017山东文科)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝2.(2015湖北文科)命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-1.【答案】C【解析】对于命题p ,22000131=()024x x x -+-+>,所以命题p 是假命题,所以p ⌝是真命题; 对于命题q ,0x ∀<,x x >,是真命题.所以()p q ⌝∧是真命题. 故选C.【名师点睛】本题主要考查复合命题的真假的判断,考查全称命题和特称命题的真假的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.解答本题时,根据条件分别判断两个命题的真假,结合复合命题的真假关系再进行判断即可. 2.【答案】B【解析】由题得,原命题的否定是“x ∀∈R ,21()10x a x ≥+-+”, 所以2(1)40a ∆=--≤,解得13a -≤≤. 故选B.【名师点睛】本题考查原命题及其否定的真假关系,属于基础题.解答本题时,若原命题为假,则否命题为真,根据否命题求a 的范围. 3.【答案】24a ≤<.【解析】由题意,命题2:,10p x ax ax ∀∈++>R , 当0a =时,不等式成立,当0a ≠时,由题意知0040a a >⎧⇒<<⎨<⎩∆, 综上可知,04a ≤<.由命题q 可知,当[]01,1x ∈-时,012,22x⎡⎤∈⎢⎥⎣⎦,则2a <,∴q ⌝:2a ≥,由题意知:q ⌝与p 同时为真,则042a a ≤<⎧⎨≥⎩,∴24a ≤<.【名师点睛】本题主要考查了根据命题的真假求解参数的取值范围问题,其中解答中根据二次函数的性质和指数函数的性质,分别求得当命题,p q 为真命题时,实数a 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题. 4.【答案】B【解析】特称命题的否定是全称命题,将特称量词改变后还要对结论否定,故选B.【名师点睛】本题考查命题的否定,特称命题的否定是全称命题,属于基础题.利用特称命题的否定是全称命题的关系确定选项.1.【答案】C【解析】因为全称命题的否定是特称命题,所以命题“1x ∀>,20x x ->”的否定是:“01x ∃>,2000x x -≤”,故选C.【名师点睛】(1)该题考查的是有关含有一个量词的命题的否定形式,在解题的过程中,需要明确全称命题的否定是特称命题,即可得结果.(2)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定. 2.【答案】B【解析】由22x x ≥得02x ≤≤,即}{|02N x x =∈≤≤R ,所以M N ⊆,根据全称命题的特点和子集的定义,得出正确选项为B .【名师点睛】本题主要考查了集合之间的包含关系以及全称命题和特称命题的特征等,属于易错题.错误的主要原因是没有弄懂全称命题和特称命题的定义.解本题时,先由不等式22x x ≥求出x 的范围,写成集合即为N ,再得出集合M ,N 之间的关系,最后得到正确的选项. 3.【答案】B【解析】当1x =时,lg 0x =,所以A 正确; 当0x =时,20x =,所以x ∀∈R ,20x >不正确; 当1x =时,22121x x -=,所以C 正确; 由指数函数的性质可知x ∀∈R ,20x >,所以D 正确, 故选B .【名师点睛】本题考查命题的真假的判断与应用,是基本知识的考查.解答本题时,利用特殊值判断选项的正确性,即可得到结果.4.【答案】C【解析】对于命题p ,当a =0,b =−1时,0>−1,但是|a |=0,|b |=1,|a |<|b |,所以命题p 是假命题. 对于命题q ,000,20x x ∃<>,如1011,2=0.2x -=->所以命题q 是真命题. 所以p q ∨为真命题. 故答案为C.【名师点睛】(1)本题主要考查全称命题和特称命题的真假,考查复合命题的真假判断,意在考查学生对这些基础知识的能力.(2)复合命题的真假口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真. (3)求解此类问题时,先判断命题p 和q 的真假,再判断选项的真假. 5.【答案】A【解析】命题p :设()e 1xf x x =--,()e 1xf x '=-,当(),0x ∈-∞时,()0f x '<,所以()f x 为单调递减函数; 当()0,x ∈+∞时,()0f x '>,所以()f x 为单调递增函数; 所以()()00f x f ≥=,即x ∀∈R ,e 1x x ≥+,故命题p 正确. 命题q :设()ln 1(0)g x x x x =-+>,()111x g x x x-=-=', 当()0,1x ∈时,()0g x '>,所以()g x 为单调递增函数; 当()1,+∞时,()0g x '<,所以()g x 为单调递减函数, 所以()()10g x g ≤=,即当x =1时,ln 1x x =-. 故命题q :0x ∃∈R ,00ln 1x x ≥-,正确,所以①p q ∧正确,②()p q ∧⌝,③()p q ⌝∧,④()()p q ⌝∧⌝均错误. 故选A.【名师点睛】本题考查命题真假的判断,难点在于构造新函数,结合导数进行判断,考查分析推理,计算化简的能力,属中档题.解答本题时,先判定命题p 、q 的真假,再结合复合命题的判断方法进行判断. 6.【答案】B【解析】对于1p :命题“2,2nn n ∀∈>N ”的否定是“0200,2n n n ∃∈≤N ”,所以1p 是假命题;对于2p :向量()(),1,1,m n ==-a b ,所以⊥a b 等价于m −n =0即m =n ,则m n =是⊥a b 的充分且必要条件,所以2p 是真命题;对于3p :“在ABC △中,若A B >,则sin sin A B >”的逆否命题是“在ABC △中,若sin sin A B ≤,则A B ≤”,所以3p 是真命题;对于4p :若“p q ∧”是假命题,则p 或q 是假命题,所以4p 是假命题.故答案为B.【名师点睛】本题主要考查全称命题的否定、充要条件、逆否命题和“且”命题,利用每一个命题涉及的知识点判断每一个命题的真假得解,意在考查学生对这些基础知识的掌握能力.7.【答案】A【解析】∵p q ∨为假命题,∴,p q 均为假命题,若命题p 为假命题,则0≥∆,即2440a -≥,解得1,1a a ≤-≥或;若命题q 为假命题,则0a ≥,∴实数a 的取值范围是1a ≥.故选A.【名师点睛】本题考查复合命题的真假判断与应用,考查恒成立(存在性)问题的求解方法,是中档题.解答本题时,由已知可得p 与q 均为假命题,求出p 与q 均为假命题的a 的范围,取交集得答案.8.【答案】)1⎡+∞⎣【解析】因为命题的否定是假命题,故原命题为真,即不等式1tan x m +≤对π0,3x ⎡⎤∀∈⎢⎥⎣⎦恒成立,又1tan y x =+在π0,3x ⎡⎤∈⎢⎥⎣⎦为增函数,()max π1tan 1tan 13x ∴+=+=,即1m …即实数m 的取值范围是:)1⎡+∞⎣.【名师点睛】本题考查命题否定的真假以及不等式恒成立问题,考查基本分析转化求解能力,属中档题.解答本题时,先转化为原命题为真,再根据函数最值求实数m 的取值范围.应用全称命题与特称命题求参数范围的常见题型:(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以可以代入,也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”、“不存在”、“是否存在”等语句表达.解答这类问题时,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.9.【答案】5,24⎛⎤ ⎥⎝⎦【解析】当P 为真命题时,21x x a ++>恒成立,所以()1410a --<,54a >,当Q 为假命题时,Q ⌝为真命题,即[]2,2,22a xx ∀∈->,所以2a >,又命题P Q ∧为真命题,所以命题,P Q 都为真命题,524a <≤.故实数a 的取值范围是5,24⎛⎤ ⎥⎝⎦.1.【答案】B 【解析】由0x =时,210x x -+≥成立知p 是真命题;由221(2),12<->-可知q 是假命题,所以p q ∧⌝是真命题,故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.2.【答案】C【解析】由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C.【名师点睛】本题考查特称命题和全称命题的否定形式,属识记基础题.。

相关文档
最新文档