陕西省渭南韩城市2019届高三下学期第三次模拟数学(理)试题 含答案
陕西省2019届高三第三次教学质量检测数学(理)试题(扫描版)pdf
∴EF∥AD.
综上,EF⊥BC. (4分)
注:亦可取 AD中点 G、连接 GB,GC,可证 AD⊥
平面 GBC,则可证 EF⊥平面 GBC,即证得 EF⊥
BC.
(Ⅱ)∵平面 ABC⊥平面 DBC,AO平面 ABC, 平面 ABC∩平面 DBC=BC,AO⊥BC.
即 a>0,
(6分)
{ 由韦达定理有
t1+t=2槡2, 根据参数的几 t1·t2 =-8a+2,
点对称,∴g(x)=-f(-x)=-x2+2x.
(2分) ∴原不等式可化为 |x-1|≥2x2,即 x-1≥2x2 或 x-1≤ -2x2,解 得 不 等 式 的 解 集 为
则 g(x)单调递增. 综上,g(x)极小值 =g(1)=e-2, 无极大值. (4分)
20.【解析】(Ⅰ)由题意得
c=3,
c a
=槡23,
(Ⅱ)∵x∈R,f(x)+ 1 2(3x2 +x-3k)≥0.
∴a=2槡3. (2分)
又因为 a2=b2+c2,∴b2=3.
∴cos<→m→,n>=→→|mm·|→→|nn|=槡55,
21.[解析](Ⅰ)∵g(x)=f(xx)=ex
-x2 x
-1.
∴g′(x)=xf′(x)x2-f(x)=(x-1)(xe2x-x-1)(x
>0). (2分) 设 t(x)=ex-x-1,则 t′(x)=ex-1>0,即 t(x)
— 2—
x0 - 12)+ 1 2x2 0 + 1 2x0 -1= 12(x20 -x0 -3)
(10分)
∵x0∈(-1,0),∴h(x0)∈(-32,-12),
2019届高三第三次模拟考试卷理科数学(三)Word版含答案
仅有四个不同的点 C ,使得 △ ABC 的面积为 5,则实数 a 的取值范围是 ____ .
三、解答题:本大题共
6 个大题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.( 12 分) [2019 ·江南十校 ] 已知数列 an 与 bn 满足: a1 a2 a3
an 2bn n N * ,且 an
3 ,则 cos2
(
)
2
3
1 A.
2
1 B.
3
1 C.
3
6. [2019 ·临川一中 ]函数 f x
1 2x 1 2x
sin x 的图象大致为(
1 D.
2 )
A.
B.
C.
D.
7. [2019 ·南昌一模 ]如图所示算法框图,当输入的 x 为 1 时,输出的结果为(
)
A.3
B. 4
C.5
D. 6
8.[2019 ·宜宾二诊 ] 已知 △ ABC 中, A , B ,C 的对边分别是 a ,b ,c ,且 b 3 , c 3 3 , B 30 ,
D. 16 8 2 4 5
10. [2019 ·汕尾质检 ] 已知 A , B , C , D 是球 O 的球面上四个不同的点,若
AB AC DB DC BC 2 ,且平面 DBC 平面 ABC ,则球 O 的表面积为(
)
A . 20π 3
B. 15π 2
C. 6π
x2 y2 11. [2019 ·临川一中 ]如图所示, A1 , A2 是椭圆 C :
2
4
15.[2019 ·赣州期末 ]若曲线 y x ln x 在 x 1 处的切线 l 与直线 l : ax y 1 0 垂直,则切线 l 、直线 l 与 y 轴围成的三角形的面积为 _______. 16. [2019 南·通期末 ] 在平面直角坐标系 xOy 中,已知 A 0, a , B 3, a 4 ,若圆 x 2 y2 9 上有且
2019届高三数学下学期三模试题理(含解析)
2019届高三数学下学期三模试题理(含解析)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,那么( )A. B.C. D.【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】解:∵集合A={x|x=2k,k∈Z},B={x|x2≤5}={x|},∴A∩B={﹣2,0,2}.故选B.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.若复数满足,则等于()A. B. C. D.【答案】C【解析】试题分析:.故应选C.考点:1、复数的概念;2、复数的运算.3.执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为()A. 5B. 6C. 7D. 8【答案】B【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得:m=1满足条件m∈(0,100),执行循环体,n=3,输出n的值为3,m=3满足条件m∈(0,100),执行循环体,n=7,输出n的值为7,m=7满足条件m∈(0,100),执行循环体,n=15,输出n的值为15,m=15满足条件m∈(0,100),执行循环体,n=31,输出n的值为31,m=31满足条件m∈(0,100),执行循环体,n=63,输出n的值为63,m=63满足条件m∈(0,100),执行循环体,n=127,输出n的值为127,m=127此时,不满足条件m∈(0,100),退出循环,结束.可得输出数据的总个数为6.故选B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.设满足约束条件则下列不等式恒成立的是A. B.C. D.【答案】C【解析】作出约束条件所表示的平面区域,如图所示,由,解得,同理可得,设目标函数,则,当直线过点时取得最小值,最小值,所以恒成立,故选C.5.为非零向量,“”为“共线”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 即不充分也不必要条件【答案】B【解析】【分析】共线,方向相同或相反,共线的单位向量不一定相等,结合充分必要条件的判断,即可得出结论.【详解】分别表示与同方向的单位向量,,则有共线,而共线,则是相等向量或相反向量,“”为“共线”的充分不必要条件.故选:B.【点睛】本题考查命题充分不必要条件的判定,考查共线向量和单位向量的间的关系,属于基础题.6. 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A. 12种B. 15种C. 17种D. 19种【答案】D【解析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.7.已知函数,若函数在区间内没有零点,则最大值是( )A. B. C. D.【答案】C【解析】【分析】利用三角恒等变换化简,结合正弦函数图象,即可求解.【详解】,令,函数在区间内没有零点,解得,,的最大值是.故选:C.【点睛】本题考查三角函数恒等变换化简,以及三角函数的性质,意在考查直观想象、逻辑推理能力,属于中档题.8.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线的渐近线为,则该双曲线的离心率为________.【答案】【解析】【分析】由双曲线方程和渐近线方程,求出值,进而求出,即可求解.【详解】设双曲线的焦距为,双曲线得,渐近线方程的斜率为,.故答案为:.【点睛】本题考查双曲线标准方程、双曲线的简单几何性质,注意焦点的位置,属于基础题.10.在平面直角坐标系xOy中,直线l的参数方程是,(t为参数),以O为极点,x轴正方向为极轴的极坐标系中,圆C的极坐标方程是.则圆心到直线的距离是________.【答案】【解析】【分析】将直线参数方程化为普通方程,圆极坐标方程化为直角坐标方程,应用点到直线距离公式即可求解.【详解】消去参数化为,化为,即,圆心,圆心到直线的距离为.故答案为:.【点睛】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化、点到直线的距离等知识,属于基础题11.已知某四棱锥的三视图如图所示,则该几何体的体积为________.【答案】【解析】【分析】根据三视图还原为底面为菱形高为四棱锥,即可求出结论.【详解】由三视图可知四棱锥的底面为边长为,有一对角为的菱形,高为,所以体积为.故答案为:.【点睛】本题考查三视图求直观图的体积,解题的关键要还原出几何体直观图,属于基础题.12.在各项均为正数的等比数列中,,且.(1)数列通项公式是________.(2)设数列的前n项和为,则的最小值是________.【答案】 (1). (2). .【解析】【分析】由求出,即可求出通项公式,根据等比数列与等差数列的关系,可得为等差数列,求出所有的负数或0项,即可求出结论.【详解】设等比数列的公比为,,,或(舍去),,,当,数列的前n项和的最小值是.故答案为:;-6.【点睛】本题考查等比数列的基本量计算、等比数列与等差数列的关系、等差数列前项和最小值等知识,属于中档题.13.写出一组使“”为假命题的一组x,y________.【答案】1,1(答案不唯一)【解析】【分析】即求命题的否定“”为真命题的一组值,可以应用基本不等式求出满足不等式的充分条件,从中取出一组即可.【详解】“”为假命题,其命题否定“”为真命题,,命题的否定为真的充分条件为,取.故答案为:1,1(答案不唯一)【点睛】本题考查全称命题的真假求参数,属于基础题.14.血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.()①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是_______;②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是_______【答案】 (1). (2).【解析】【分析】①根据平均的含义进行判断,②根据两次横坐标距离大小确定选择.【详解】①设,则,由于,,所以,,即最大;②根据峰值的一半对应关系得三个点从左到右依次对应A1,A2,A3在第二次达到峰值一半时对应点,由图可知A3经历的时间最长,所以中最大的是【点睛】本题考查数学实际应用以及图像识别,考查基本分析判断能力,属基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.2019年北京市百项疏堵工程基本完成.有关部门为了解疏堵工程完成前后早高峰时段公交车运行情况,调取某路公交车早高峰时段全程所用时间(单位:分钟)数据,从疏堵工程完成前的数据中随机抽取5个数据,记为A组,从疏堵工程完成后的数据中随机抽取5个数据,记为B组.A组:128,100,151,125,120B组:100,102,96,101,己知B组数据的中位数为100,且从中随机抽取一个数不小于100的概率是.(1)求a的值;(2)该路公交车全程所用时间不超过100分钟,称为“正点运行”从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,求X的分布列及期望;(3)试比较A,B两组数据方差的大小(不要求计算),并说明其实际意义.【答案】(1);(2)分布列详见解答,期望为;(3)详见解答.【解析】【分析】(1)由已知中位数100,确定的范围,再求出不小于100的数的个数,即可求出;(2)随机变量X可能值为,根据每组车“正点运行”概率求出X可能值为的概率,即可求出随机变量的分布列,进而求出期望;(3)利用方差表示数据集中的程度,说明疏堵工程完成后公交车的稳定程度.【详解】(1)B组数据的中位数为100,根据B组的数据,从B组中随机抽取一个数不小于100的概率是,B组中不小于100的有4个数,所以;(2)从A,B两组数据中各随机抽取一个数据,“正点运行”概率分别为,从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,X可能值为,,,,X的分布列为:,X期望为;(3)对比两组数据,组数据方差更小,说明疏堵工程完成后公交车运行时间更为稳定.【点睛】本题考查中位数和概率求参数,考查随机变量的分布列和期望,属于基础题.17.如图,在四棱锥P-ABCD中,是等腰三角形,且.四边形ABCD是直角梯形,,,,,.(1)求证:平面PDC.(2)请在图中所给五个点P,A,B,C,D中找出两个点,使得这两点所在直线与直线BC垂直,并给出证明.(3)当平面平面ABCD时,求直线PC与平面PAB所成角的正弦值.【答案】(1)详见解答;(2),证明见解答;(3).【解析】【分析】(1)由已知,即可证明结论;(2)根据已知条件排除,只有可能与垂直,根据已知可证;(3)利用垂直关系,建立空间直角坐标系,求出坐标和平面PAB的法向量,即可求解.【详解】(1)平面平面,平面;(2),证明如下:取中点,连,,,,平面平面,平面,;(3)平面平面ABCD,平面平面ABCD,平面平面,.四边形ABCD是直角梯形,,,,,,以为坐标原点,以,过点与平行的直线分别为轴,建立空间直角坐标系,则,,设平面的法向量为,则,即,,令,则,平面一个法向量为,设直线PC与平面PAB所成角为,,直线直线PC与平面PAB所成角的正弦值为.【点睛】本题考查线面平行、线线垂直的证明,要注意空间垂直间的转化,考查用空间向量法求线面角,考查计算求解能力,属于中档题.18.已知椭圆C:的离心率为,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y 轴交于点P.(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且∠PFQ=90°,求证:AQ∥BM.【答案】(Ⅰ)(-,0)(0,)(Ⅱ)详见解析【解析】【分析】(Ⅰ)根据题意可得得c2=a2﹣2,由e,解得即可出椭圆的方程,再根据点在其内部,即可线AM的斜率的取值范围,(Ⅱ)题意F(,0),设Q(0,y1),M(x0,y0),其中x0≠±2,则1,可得直线AM的方程y(x+2),求出点Q的坐标,根据向量的数量积和斜率公式,即可求出kBM﹣kAQ=0,问题得以证明【详解】解:(Ⅰ)由题意可得c2=a2-2,∵e==,∴a=2,c=,∴椭圆的方程为+=1,设P(0,m),由点P在椭圆C的内部,得-<m<,又∵A(-2,0),∴直线AM的斜率kAM==∈(-,),又M为椭圆C上异于A,B的一点,∴kAM∈(-,0),(0,),(Ⅱ)由题意F(,0),设Q(0,y1),M(x0,y0),其中x0≠±2,则+=1,直线AM的方程为y=(x+2),令x=0,得点P的坐标为(0,),由∠PFQ=90°,可得•=0,∴(-,)•(-,y1)=0,即2+•y1=0,解得y1=-,∴Q(0,-),∵kBM=,kAQ=-,∴kBM-kAQ=+=0,故kBM=kAQ,即AQ∥BM【点睛】本题考查直线与椭圆的位置关系的应用,考查转化思想以及计算能力,属于中档题19.已知函数.(1)已知函数在点处的切线与x轴平行,求切点的纵坐标.(2)求函数在区间上的最小值;(3)证明:,,使得.【答案】(1);(2);(3)详见解析.【解析】【分析】(1)求的导函数,令,即可求解;(2)求出在单调区间,极值点,即可求解;(3)转化为函数,与直线恒有交点,即可证明结论.【详解】(1),在点处的切线与x轴平行,,;(2)由(1)得,当时,,,递减区间是,的增区间是,当时,取得极小值,也是最小值为,函数在区间上的最小值;(3)由(2)得递减区间是,,令,当时,函数图像与直线有唯一的交点,且交点的横坐标,,,使得.【点睛】本题考查导数的几何意义以及导数的综合应用,涉及到函数的单调性、极值最值、零点等知识,意在考查直观想象、逻辑推理能力,属于中档题.20.数列:满足:,或1().对任意,都存在,使得.,其中且两两不相等.(I)若.写出下列三个数列中所有符合题目条件的数列的序号;①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2(Ⅱ)记.若,证明:;(Ⅲ)若,求的最小值.【答案】(Ⅰ)②③(Ⅱ)见解析(Ⅲ)的最小值为【解析】试题分析:(Ⅰ)依据定义检验给出的数列是否满足要求条件.(Ⅱ)当时,都在数列中出现,可以证明至少出现4次,2至少出现2次,这样.(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得:,,,┄,,,,则,我们再构造数列:,证明该数列满足题设条件,从而的最小值为.解析:(Ⅰ)对于①,,对于,或,不满足要求;对于②,若,则,且彼此相异,若,则,且彼此相异,若,则,且彼此相异,故②符合题目条件;同理③也符合题目条件,故符合题目条件的数列的序号为②③.注:只得到②或只得到③给[ 1分],有错解不给分.(Ⅱ)当时,设数列中出现频数依次为,由题意.①假设,则有(对任意),与已知矛盾,所以.同理可证:.②假设,则存在唯一的,使得.那么,对,有(两两不相等),与已知矛盾,所以.综上:,,,所以.(Ⅲ)设出现频数依次为.同(Ⅱ)的证明,可得:,,,┄,,,,则.取得到的数列为:下面证明满足题目要求.对,不妨令,①如果或,由于,所以符合条件;②如果或,由于,所以也成立;③如果,则可选取;同样的,如果,则可选取,使得,且两两不相等;④如果,则可选取,注意到这种情况每个数最多被选取了一次,因此也成立.综上,对任意,总存在,使得,其中且两两不相等.因此满足题目要求,所以的最小值为.点睛:此类问题为组合最值问题,通常的做法是先找出变量的一个范围,再构造一个数列,使得前述范围的等号成立,这样就求出了最值.2019届高三数学下学期三模试题理(含解析)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,那么( )A. B.C. D.【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】解:∵集合A={x|x=2k,k∈Z},B={x|x2≤5}={x|},∴A∩B={﹣2,0,2}.故选B.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.若复数满足,则等于()A. B. C. D.【答案】C【解析】试题分析:.故应选C.考点:1、复数的概念;2、复数的运算.3.执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为()A. 5B. 6C. 7D. 8【答案】B【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得:m=1满足条件m∈(0,100),执行循环体,n=3,输出n的值为3,m=3满足条件m∈(0,100),执行循环体,n=7,输出n的值为7,m=7满足条件m∈(0,100),执行循环体,n=15,输出n的值为15,m=15满足条件m∈(0,100),执行循环体,n=31,输出n的值为31,m=31满足条件m∈(0,100),执行循环体,n=63,输出n的值为63,m=63满足条件m∈(0,100),执行循环体,n=127,输出n的值为127,m=127此时,不满足条件m∈(0,100),退出循环,结束.可得输出数据的总个数为6.故选B.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.设满足约束条件则下列不等式恒成立的是A. B.C. D.【答案】C【解析】作出约束条件所表示的平面区域,如图所示,由,解得,同理可得,设目标函数,则,当直线过点时取得最小值,最小值,所以恒成立,故选C.5.为非零向量,“”为“共线”的()A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 即不充分也不必要条件【答案】B【解析】【分析】共线,方向相同或相反,共线的单位向量不一定相等,结合充分必要条件的判断,即可得出结论.【详解】分别表示与同方向的单位向量,,则有共线,而共线,则是相等向量或相反向量,“”为“共线”的充分不必要条件.故选:B.【点睛】本题考查命题充分不必要条件的判定,考查共线向量和单位向量的间的关系,属于基础题.6. 一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A. 12种B. 15种C. 17种D. 19种【答案】D【解析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.7.已知函数,若函数在区间内没有零点,则最大值是( )A. B. C. D.【答案】C【解析】【分析】利用三角恒等变换化简,结合正弦函数图象,即可求解.【详解】,令,函数在区间内没有零点,解得,,的最大值是.故选:C.【点睛】本题考查三角函数恒等变换化简,以及三角函数的性质,意在考查直观想象、逻辑推理能力,属于中档题.8.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】【分析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.双曲线的渐近线为,则该双曲线的离心率为________.【答案】【解析】【分析】由双曲线方程和渐近线方程,求出值,进而求出,即可求解.【详解】设双曲线的焦距为,双曲线得,渐近线方程的斜率为,.故答案为:.【点睛】本题考查双曲线标准方程、双曲线的简单几何性质,注意焦点的位置,属于基础题.10.在平面直角坐标系xOy中,直线l的参数方程是,(t为参数),以O为极点,x轴正方向为极轴的极坐标系中,圆C的极坐标方程是.则圆心到直线的距离是________.【答案】【解析】【分析】将直线参数方程化为普通方程,圆极坐标方程化为直角坐标方程,应用点到直线距离公式即可求解.【详解】消去参数化为,化为,即,圆心,圆心到直线的距离为.故答案为:.【点睛】本题考查参数方程与普通方程互化、极坐标方程和直角坐标方程互化、点到直线的距离等知识,属于基础题11.已知某四棱锥的三视图如图所示,则该几何体的体积为________.【答案】【解析】【分析】根据三视图还原为底面为菱形高为四棱锥,即可求出结论.【详解】由三视图可知四棱锥的底面为边长为,有一对角为的菱形,高为,所以体积为.故答案为:.【点睛】本题考查三视图求直观图的体积,解题的关键要还原出几何体直观图,属于基础题.12.在各项均为正数的等比数列中,,且.(1)数列通项公式是________.(2)设数列的前n项和为,则的最小值是________.【答案】 (1). (2). .【解析】【分析】由求出,即可求出通项公式,根据等比数列与等差数列的关系,可得为等差数列,求出所有的负数或0项,即可求出结论.【详解】设等比数列的公比为,,,或(舍去),,,当,数列的前n项和的最小值是.故答案为:;-6.【点睛】本题考查等比数列的基本量计算、等比数列与等差数列的关系、等差数列前项和最小值等知识,属于中档题.13.写出一组使“”为假命题的一组x,y________.【答案】1,1(答案不唯一)【解析】【分析】即求命题的否定“”为真命题的一组值,可以应用基本不等式求出满足不等式的充分条件,从中取出一组即可.【详解】“”为假命题,其命题否定“”为真命题,,命题的否定为真的充分条件为,取.故答案为:1,1(答案不唯一)【点睛】本题考查全称命题的真假求参数,属于基础题.14.血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.()①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是_______;②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是_______【答案】 (1). (2).【解析】【分析】①根据平均的含义进行判断,②根据两次横坐标距离大小确定选择.【详解】①设,则,由于,,所以,,即最大;②根据峰值的一半对应关系得三个点从左到右依次对应A1,A2,A3在第二次达到峰值一半时对应点,由图可知A3经历的时间最长,所以中最大的是【点睛】本题考查数学实际应用以及图像识别,考查基本分析判断能力,属基础题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.16.2019年北京市百项疏堵工程基本完成.有关部门为了解疏堵工程完成前后早高峰时段公交车运行情况,调取某路公交车早高峰时段全程所用时间(单位:分钟)数据,从疏堵工程完成前的数据中随机抽取5个数据,记为A组,从疏堵工程完成后的数据中随机抽取5个数据,记为B组.A组:128,100,151,125,120B组:100,102,96,101,己知B组数据的中位数为100,且从中随机抽取一个数不小于100的概率是.(1)求a的值;(2)该路公交车全程所用时间不超过100分钟,称为“正点运行”从A,B两组数据中各随机抽取一个数据,记两次运行中正点运行的次数为X,求X的分布列及期望;(3)试比较A,B两组数据方差的大小(不要求计算),并说明其实际意义.【答案】(1);(2)分布列详见解答,期望为;(3)详见解答.。
2019-2020年高三下学期第三次模拟考试数学(理)试题 含答案
2019-2020年高三下学期第三次模拟考试数学(理)试题含答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,且有4个子集,则实数的取值范围是()A. B. C. D.2.复数等于()A. B. C. D.03. 函数的单调递减区间是()A. B.C. D.4.等比数列中,,前3项和为,则公比的值是()A. 1B.-C. 1或-D. -1或-5. 已知关于的二项式展开式的二项式系数之和为32,常数项为80,则的值为()A.1 B.C.2 D.6. 若两个正实数满足,且不等式有解,则实数的取值范围是()A. B.C. D.7. 执行如图所示的程序框图,若输入的值为8,则输出的值为()A. 4B. 8C. 10D. 128.若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线扫过中的那部分区域的面积为 ( )A.1 B. C.D.9. 如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为的菱形,俯视图为正方形,那么这个几何体的表面积为()A. B. C. D.10. 已知为正三角形内一点,且满足,若的面积与的面积比值为3,则的值为()A. B. C. 2 D. 311. 过双曲线的左焦点作圆的切线,切点为,延长交抛物线于点,为原点,若,则双曲线的离心率为()A. B. C. D.12.定义在上的单调函数,则方程的解所在区间是()A. B. C. D.第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13. 已知等差数列中,,那么 .14. 5位同学排队,其中3位女生,2位男生.如果2位男生不能相邻,且女生甲不能排在排头,则排法种数为 .15. 已知球的直径,是球球面上的三点,, 是正三角形,则三棱锥的体积为 . 16. 给出下列四个结论:(1)如图中,是斜边上的点,. 以为起点任作一条射线交于点,则点落在线段上的概率是;(2)设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加,则其体重约增加;(3)若是定义在上的奇函数,且满足,则函数的图像关于对称;(4)已知随机变量服从正态分布则.其中正确结论的序号为三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤. 17.(本小题满分12分)“德是”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为,救援中心测得飞船位于其南偏西方向,仰角为.救援中心测得着陆点位于其正东方向. (1)求两救援中心间的距离;(2)救援中心与着陆点间的距离.18.(本小题满分12分)我国新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.市环保局对我市xx 年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,空气质量指数0.032 0.020 0.018O 5 15 25 35 45 A BCD E北 A P东B C D由此得到样本的空气质量指数频率分布直方图,如图.(1) 求的值;(2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(3) 如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.19. (本小题满分12分)如图,在四棱锥中,平面平面,,在锐角中,并且,.(1)点是上的一点,证明:平面平面;(2)若与平面成角,当面平面时,求点到平面的距离.20.(本小题满分12分)已知椭圆的左,右顶点分别为,圆上有一动点,点在轴的上方,,直线交椭圆于点,连接.(1)若,求△的面积;(2)设直线的斜率存在且分别为,若,求的取值范围.21. (本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式考生在题(22)(23)(24)中任选一题作答,如果多做,则按所做的的第一题计分.做题时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,已知点在⊙直径的延长线上,切⊙于点,是的平分线,交于点,交于点.(Ⅰ)求的度数;(Ⅱ)若,求.23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立极坐标系,设点的极坐标为,求点到线段中点的距离.24.(本小题满分10分)选修4—5:不等式选讲已知实数满足,且.(Ⅰ)证明:;(Ⅱ)证明:.哈尔滨市第六中学xx届高三第三次模拟考试数学试卷(理工类)答案一.选择题1.B2.D3.B4.C5.C6.B7.B8.D9.D 10.A 11.A 12.C二.填空题13. 14. 15.40 16.②③④三.解答题17. 解:(1)由题意知,则均为直角三角形………………1分在中,,解得…………………………2分在中,,解得…………………………3分又,万米. …………………………5分(2),,…………………………7分又,所以.…………………………9分在中,由正弦定理,…………………………10分万米…………………………12分18.(1) 解:由题意,得,……………1分解得. ……………2分(2)解:个样本中空气质量指数的平均值为0.2100.32200.3300.184024.6X=⨯+⨯+⨯+⨯=……………3分由样本估计总体,可估计这一年度空气质量指数的平均值约为. …………4分(3)解:利用样本估计总体,该年度空气质量指数在内为“特优等级”,且指数达到“特优等级”的概率为,则. ………5分的取值为,………6分,,,. ……………10分∴的分布列为:……11分∴6448121301231251251251255Eξ=⨯+⨯+⨯+⨯=. ………12分(或者)19.解法一(1)因为,,由勾股定理得,因为平面平面,平面平面=,面,所以平面面,所以平面平面………6分M(2)如图,因为平面,所以平面平面,所以,做于,所以面,,设面面=,面平面所以面面,所以,取中点,得为平行四边形,由平面边长得为中点,所以………12分解法二(1)同一(2)在平面过做垂线为轴,由(1),以为原点,为轴建立空间直角坐标系,设平面法向量为,设,锐角所以,由,解得,,,解得或(舍)设,解得因为面平面,,所以面法向量为,所以,解得,所以到平面的距离为竖坐标.………12分20.(1)依题意,.设,则.由得, ,, 解得, . …………5分(2)设, 动点在圆上, .又, , 即====.又由题意可知,且,则问题可转化为求函数的值域.由导数可知函数在其定义域内为减函数,函数的值域为从而的取值范围为……12分21.(1)由已知得:,且函数在处有极值∴,即∴∴当时,,单调递增;当时,,单调递减;∴函数的最大值为(2)①由已知得:(i)若,则时,∴在上为减函数,∴在上恒成立;(ii)若,则时,∴在上为增函数,∴,不能使在上恒成立;(iii)若,则时,,xyz当时,,∴在上为增函数, 此时, ∴不能使在上恒成立; 综上所述,的取值范围是 …………8分 ②由以上得:取得: 令, 则,()1222111ln 101111n n n n x x n n n n n n-⎛⎫-=-+<-=-< ⎪+-++⎝⎭. 因此. 又()1211ln ln ln 1ln1ln 1nn k k n k k k -==⎛⎫=--+=+⎡⎤ ⎪⎣⎦⎝⎭∑∑ 故1122211111ln 1ln 1111nn n n k k k k k n x k k k k n --===⎡⎤⎛⎫⎛⎫=-+=-++ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎣⎦∑∑∑ ()()11122111111111111n n n k k k kk k k kn k k ---===⎛⎫>-=-≥=-+>- ⎪+++⎝⎭∑∑∑ ……12分22.(1)因为为⊙的切线,所以…………1分因为是的平分线,所以…………2分 所以,即,…………3分又因为为⊙的直径,所以…………4分. 所以.…………5分(2)因为,所以,所以∽,所以,………7分在中,又因为,所以,………8分 中,………10分23.解:(1)直线的参数方程化为标准型(为参数) …… 2分代入曲线方程得设对应的参数分别为,则,,所以 …… 5分 (2)由极坐标与直角坐标互化公式得直角坐标, …… 6分 所以点在直线, 中点对应参数为, 由参数几何意义,所以点到线段中点的距离 ……10分 24.(1) ,相乘得证——————5分 (2),, 相加得证——————10分。
陕西省2019届高三年级第三次联考理科数学试题(解析版)
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
12.已知函数 是定义域为 的奇函数,且满足 ,当 时, ,则方程 在区间 上的解的个数是()
A.3B.5C.7D.9
【答案】D
【解析】
【分析】
由条件通过解方程可得 时的根为 ,进而通过分析函数的奇偶性及周期性可得 的解得个数.
【详解】∵当 时, ,
令 ,则 ,解得 .
∵ ,∴函数 是周期为4的周期函数.
【详解】∵ 是抛物线 的焦点,∴ ,准线方程 ,
设 , ,根据抛物线的定义可得 , ,
∴ .
解得 ,∴线段 的中点横坐标为 ,
∴线段 的中点到准线的距离为 .故应选B.
【点睛】本题主要考查了抛物线的定义,属于基础题.
6.已知 的面积为 ,三个内角 的对边分别为 ,若 , ,则三角形是()
A.直角三角形B.钝角三角形C.锐角三角形D.不能确定
【点睛】本题主要考查对数不等式和绝对值不等式的求解及集合的并集运算,属于基础题.
2.已知复数 ( 是虚数单位),则 的实部为()
A. B. C. D.
【答案】B
【解析】
【分析】
利用复数的除法运算化简复数z,从而得到其实部.
【详解】∵ ,∴z的实部为 .
故应选B.
【点睛】数的运算,难点是乘除法法则,设 ,
=(–2.5)2+(–1.5)2+(–0.5)2+0.52+1.52+2.52=17.5.
陕西省2019届高三年级第三次联考理科数学
理科数学参考答案
" % " 分# !! 一 ! ! " . 可得 4 , 1 " ) ## 槡 & %# $ % & !! &" "#$ $% ' $ "" $%$ " # & ( 5 ! %# $ % & $% $% #$ %$ '#%# ! '# # $ # ) & 可得 * +" # " # & #") # 则" $& # $ % $%$ "'# ! 5 5 5 故应选 &! # ) & 解得 * ." ) " # ! # " # 5 5 ! ) ) # ! , ) ) "! *" + (# # # # " # 故应选 68 # , " #'! , #)! , #'! 模拟程序的运行 & 可得 , # "& %& '! &" 1 # #& ) , 执行循环体 & & + 1# ! , # 5 ) 不满足条件1 " 5& 执行循环体 & 1 # )& ,# 的实部为 . ( ! 5)$ # # )+ 故应选 *! # 不满足条件1 " 5& 执行循环体 & 1 # 5& ,# ! " 由已 知 得/ #! * 0 1 2 3 4 ! 3 4 # !& #2 ' # ))# %#! $+ ! ! ! 2 3 4 , 1 0 1 '4 #'/ #'5 ! 不满足条件1 " 5& 执行循环体 & 1 # -& ,# 4 , 1 # # # # ! ! ! 4 , 1)2 3 4 / 0 1)# 5)# + ! $)! -#5 ) 此时 & 满足条件1 " 5& 退出循环 & 输出 , 的 ' ! 值为 5! 故应选 *! # 故应选 &! # 设向量 与向量 的夹角为 $! 6" "& " % ' (! 6" + 一次同 时 抛 掷 ! 枚 质 地 均 匀 的 硬 ) )& 槡 ( # & 则2 所以 # ! 3 4 币& 恰好出现 ! 枚正面 向 上 的 概 率 为 # 0 # # # # % % ! % % % ! ! 故应选 6! # #& # & .2 &" 5& # %! *" +* 是抛物线+! # $ 的焦点 & 5 5 # # # # & 准线方程 $ #' & .*" & " .3 2 # 50 # #! 5 5 5 设 "" & & 故应选 68 # $ &" $ + + #& ## !& !# 设& #& )! *" 4 的 中 点 为 5 &连 接 "#5! " 5! 根据抛物线的定义可得 %" * %# $ #) 5 易 知 # &"#" "#&& & 即为异面直线" & 与 #& 并设三棱柱 " 4 4# 所成的角 + & 4 '"# # 的侧 * %# $ %& !) 5 棱与底面边长为 #& # # . %" *% & *%#$ ) % )$ #)! #) !) 5 5 -& 解得 $ # )$ ! # ! . 线段 " & 的中点横坐标为 & 5 ) ) # ! 槡 槡 . 线段 " & 的中点到准线的距离为 ! 则%" 5% 5% &% # & %" # & %" # & # # ! ! ! ! ! ! 故应选 *! # " " &! '" & )" # # 由余弦定理& 得2 3 4 ! ! # " # & & &! 6" +5 , #. / . / 5 ' ' # ! " ")" & # # ! ! ! # & 可得 .50 . / 4 , 1 " #! . /' " .) /' -# #)#' ! ! ) # # ! 可得 4 7 4 , 1 " # 7'7 2 3 4 "& , 1 " )2 3 4 " # #& !0#0# 5 故应选 *8 # , # ,
2019届高三数学下学期三诊模拟考试试题理(含解析)
2019届高三数学下学期三诊模拟考试试题理(含解析)一、选择题(共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.请将你认为正确的选项答在指定的位置)1.已知集合,则=()A. B.C. D.【答案】A【解析】试题分析:,故选A.考点:集合的运算.2.设(是虚数单位),则()A. B. C. D.【答案】B【解析】【分析】利用复数的除法运算、共轭复数的定义可计算出的值.【详解】,,则,故选:B.【点睛】本题考查复数的计算,考查复数的除法、共轭复数的相关计算,考查计算能力,属于基础题.3.若多项式,则()A. 9B. 10C. -9D. -10【答案】D【解析】,,根据已知条件得的系数为0,的系数为1故选D.4. 一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A. B.C. D.【答案】B【解析】试题分析:该几何体是圆锥的一半与一四棱锥的组合体.圆锥底半径为1,四棱锥的底面是边长为2的正方形,高均为2×,所以几何体体积为,选B.考点:本题主要考查三视图,几何体的体积计算.点评:基础题,三视图是高考必考题目,因此,要明确三视图视图规则,准确地还原几何体,明确几何体的特征,以便进一步解题.5.设,,且,,则的最小值是()A. B. C. D.【答案】B【解析】【分析】利用基本不等式可求出的最小值,利用换底公式以及对数的运算律可得出的最小值.【详解】,,且,,,,当且仅当时取等号.,则的最小值是.故选:B.【点睛】本题考查利用基本不等式求最值,同时也考查了换底公式以及对数运算性质的应用,考查计算能力,属于基础题.6.若A为不等式组所示的平面区域,则当a从-2连续变化到1时,动直线x+ y =a扫过A中的那部分区域面积为()A. 2 B. 1C. D.【答案】D【解析】试题分析:如图,不等式组表示的平面区域是,动直线在轴上的截距从变化到1,知是斜边为3等腰直角三角形,是直角边为1的等腰直角三角形,所以区域的面积,故选D.考点:二元一次不等式(组)与平面区域点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.7.函数的部分图象如图所示,设P是图象的最高点,A,B是图象与x轴的交点,记∠APB=θ,则sin2θ的值是( )A. B. C. D.【答案】A【解析】【分析】由周期公式可知函数周期为2,∴AB=2,过P作PC⊥AB与C,根据周期的大小看出直角三角形中直角边的长度,解出∠APC与∠BPC的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ.【详解】.PC⊥AB与C,故选:A.【点睛】本题主要考查三角函数的图象与性质,考查了两角和的正弦公式以及二倍角的正弦公式,属于综合题.8.下列命题中:①若“”是“”的充要条件;②若“,”,则实数的取值范围是;③已知平面、、,直线、,若,,,,则;④函数的所有零点存在区间是.其中正确的个数是()A. B. C. D.【答案】C【解析】【分析】利用充分条件与必要条件的关系判断①的正误;根据特称命题成立的等价条件求实数的取值范围,可判断②的正误;由面面垂直的性质定理可判断③的正误;利用零点存在定理可判断④的正误.【详解】①由,可知,所以有,当时,满足,但不成立,所以①错误;②要使“,”成立,则有对应方程的判别式,即,解得或,所以②正确;③因为,,,所以,又,所以根据面面垂直的性质定理知,所以③正确;④因为,,且函数连续,所以根据零点存在定理可知在区间上,函数存在零点,所以④正确.所以正确的是②③④,共有三个.故选:C.【点睛】本题考查命题真假判断.正确推理是解题的关键.要求各相关知识必须熟练,考查推理能力,属于中等题.9.某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有()A. 474种B. 77种C. 462种D. 79种【答案】A【解析】【详解】试题分析:根据题意,由于某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),所有的上课方法有,那么连着上3节课的情况有5种,则利用间接法可知所求的方法有-5=474,故答案为A.考点:排列组合点评:主要是考查了排列组合的运用,属于基础题.10.已知函数,方程有四个实数根,则取值范围为()A. B. C. D.【答案】B【解析】【分析】利用导数,判断函数的单调性及最值,从而画出该函数的图像;再用换元,将问题转化为一元二次方程根的分布问题,即可求解参数范围.【详解】令,故,令,解得,故函数在区间单调递减,在单调递增,且在处,取得最小值.根据与图像之间的关系,即可绘制函数的图像如下:令,结合图像,根据题意若要满足有四个根,只需方程的两根与满足:其中一个根,另一个根或.①当方程的一个根,另一个根,将代入,可得矛盾,故此种情况不可能发生;②当方程的一个根,另一个根,要满足题意,只需即可即,解得.故选:B.【点睛】本题考查利用导数研究函数的单调性,以及二次方程根的分布问题,属重点题型.二、填空题(本题共5道小题,每题5分,共25分;将答案直接答在答题卷上指定的位置)11. 从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.【答案】【解析】试题分析:利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB 的概率,然后直接利用条件概率公式求解.解:P(A)=,P(AB)=.由条件概率公式得P(B|A)=.故答案为.点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.12.下图给出了一个程序框图,其作用是输入的值,输出相应的值.若要使输入的值与输出的值相等,则这样的值有________个.【答案】3【解析】试题分析:该程序框图是计算分段函数的函数值,从自变量的取值情况看,由三种情况,故应考虑,所得x 值,有3个.考点:本题主要考查程序框图的功能识别,简单方程的求解.点评:简单题,注意到应考虑,所得x值,一一探讨.13.已知在平面直角坐标系中,,,为原点,且,(其中,,均为实数),若,则的最小值是_____.【答案】【解析】【分析】根据可化简为,可得出、、三点共线,求出直线的方程,然后利用点到直线的距离公式可计算出的最小值.【详解】(其中,、均为实数),,即,即,,、、三点共线,的最小值即为点到直线的距离,直线的方程为,即,因此,的最小值为.故答案为:【点睛】本题考查利用向量判断三点共线,同时也考查了点到直线距离公式计算线段长度的最小值,考查化归与转化思想的应用,属于中等题.14.已知双曲线的右焦点为,过且斜率为的直线交于、两点,若,则的离心率为______.【答案】【解析】【分析】设,将直线的方程和双曲线的方程联立消元得出,由可得,这几个式子再结合化简可得【详解】因为直线过点,且斜率为所以直线的方程为:与双曲线联立消去,得设所以因为,可得代入上式得消去并化简整理得:将代入化简得:解之得因此,该双曲线的离心率故答案:【点睛】1.直线与双曲线相交的问题,常将两个的方程联立消元,用韦达定理表示出横(纵)坐标之和、积,然后再结合条件求解2.求离心率即是求与的关系.15.设函数的定义域为,若存在非零实数使得对于任意,有,且,则为上的高调函数,如果定义域为的函数是奇函数,当时,,且为上的高调函数,那么实数的取值范围是__________.【答案】【解析】定义在上的函数是奇函数,当时,,作出的图像如图所示,∵为上的高调函数,当时,函数的最大值为,要满足,大于等于区间长度,∴,即,解得.故实数的取值范围是.三、解答题(本大题共75分,解答应写出文字说明,证明过程或演算步骤);16.已知向量,,函数.(1)求函数的最小正周期及单调减区间;(2)已知、、分别为内角、、的对边,其中为锐角,,,且.求、的长和的面积.【答案】(1),递减区间是;(2),,.【解析】【分析】(1)利用平面向量数量积的坐标运算得出,并利用三角恒等变换思想化简函数的解析式为,利用正弦函数周期公式及其单调性即可得到函数的最小正周期及单调减区间;(2)利用(1)即可得到,再利用正弦定理即可得到,利用三角形内角和定理即可得到,利用直角三角形含角的性质即可得出边,进而得到三角形的面积.详解】(1),,,,所以,,由,解得,所以,函数的单调递减区间是;(2),,为锐角,即,,,解得.由正弦定理得,,,,,,因此,的面积为.【点睛】本题综合考查了向量数量积的坐标运算、正弦函数的单调性及其性质、正弦定理、直角三角形的边角关系及其面积等基础知识与基本技能,考查了推理能力和计算能力.17.如图,为圆的直径,点、在圆上,矩形所在的平面和圆所在的平面互相垂直,且,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.【答案】(Ⅰ)见解析;(Ⅱ)【解析】【详解】试题分析:(Ⅰ)平面平面,,平面平面,平面,∵AF在平面内,∴,又为圆的直径,∴,∴平面.(Ⅱ)由(1)知即,∴三棱锥的高是,∴,连结、,可知∴为正三角形,∴正的高是,∴,18.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功,每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,,,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用表示小王所获得获品的价值,写出的概率分布列,并求的数学期望.【答案】(1);(2)分布列见详解,【解析】【分析】(1)小王过第一关但未过第二关,包括小王第一关两道题都答对,第二关第一道题答错,或者小王第一关两道题都答对,第二关第一道题答对,第二道题答错,据此计算概率;(2)根据题意,分别写出可取的值,再计算每个可取值对应的概率,求得分布列即可.【详解】(1)设小王过第一关但未过第二关的概率为,则容易知.(2)的取值为0,1000,3000,6000,则,,,,∴的概率分布列为∴的数学期望.【点睛】本题考查概率的计算,离散型随机变量的分布列和数学期望,以及计算能力,属中档题.19.各项均为正数数列前项和为,且,.(1)求数列的通项公式;(2)已知公比为的等比数列满足,且存在满足,,求数列的通项公式.【答案】(1);(2)或.【解析】【分析】(1)令,利用数列递推式求出的值,由得出,两式相减,结合数列各项均为正数,可得数列是首项为,公差为的等差数列,从而可求数列的通项公式;(2)利用,,求出公比,即可求得数列的通项公式.【详解】(1)当时,,整理得,.,,两式相减得,即,即,数列各项均为正数,,,数列是首项为,公差为的等差数列,故;(2),,依题意得,相除得或,所以或,当时,;当时,.综上所述,或.【点睛】本题考查数列递推式,考查数列的通项,考查学生分析解决问题的能力,属于中档题.20.已知椭圆的长轴长是短轴长的两倍,离心率为.(1)求椭圆的标准方程;(2)设不过原点的直线与椭圆交于两点、,且直线、、的斜率依次成等比数列,求△面积的取值范围.【答案】(1);(2) .【解析】【详解】(1)由已知得∴方程:(2)由题意可设直线的方程为:联立消去并整理,得:则△,此时设、∴于是又直线、、的斜率依次成等比数列,∴由得:.又由△得:显然(否则:,则中至少有一个为0,直线、中至少有一个斜率不存在,矛盾!)设原点到直线的距离为,则故由得取值范围可得△面积的取值范围为21.已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;(3)求证:.【答案】(1);(2)的最大值为.(3)见解析.【解析】【详解】试题分析:(1)设点为直线与曲线的切点,则有.(*),.(**)由(*)、(**)两式,解得,.由整理,得,,要使不等式恒成立,必须恒成立.设,,,当时,,则是增函数,,是增函数,,因此,实数的取值范围是.(2)当时,,,在上是增函数,在上的最大值为.要对内的任意个实数都有成立,必须使得不等式左边的最大值小于或等于右边的最小值,当时不等式左边取得最大值,时不等式右边取得最小值.,解得.因此,的最大值为.(3)证明(法一):当时,根据(1)的推导有,时,,即.令,得,化简得,.(法二)数学归纳法:当时,左边=,右边=,根据(1)的推导有,时,,即.令,得,即.因此,时不等式成立.(另解:,,,即.)假设当时不等式成立,即,则当时,,要证时命题成立,即证,即证.在不等式中,令,得.时命题也成立.根据数学归纳法,可得不等式对一切成立.考点:函数的性质;导数的几何意义;利用导数研究函数的单调性;数学归纳法.点评:(1)本题主要考查导数的几何意义及其应用和数学归纳法等综合知识,考查学生的计算推理能力及分析问题、解决问题的能力及创新意识.对学生的能力要求较高,尤其是分析问题解决问题的能力.(2)解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题,思路1:在上恒成立;思路2:在上恒成立.2019届高三数学下学期三诊模拟考试试题理(含解析)一、选择题(共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.请将你认为正确的选项答在指定的位置)1.已知集合,则=()A. B.C. D.【答案】A【解析】试题分析:,故选A.考点:集合的运算.2.设(是虚数单位),则()A. B. C. D.【答案】B【解析】【分析】利用复数的除法运算、共轭复数的定义可计算出的值.【详解】,,则,故选:B.【点睛】本题考查复数的计算,考查复数的除法、共轭复数的相关计算,考查计算能力,属于基础题.3.若多项式,则()A. 9B. 10C. -9D. -10【答案】D【解析】,,根据已知条件得的系数为0,的系数为1故选D.4. 一个几何体的三视图如右图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A. B.C. D.【答案】B【解析】试题分析:该几何体是圆锥的一半与一四棱锥的组合体.圆锥底半径为1,四棱锥的底面是边长为2的正方形,高均为2×,所以几何体体积为,选B.考点:本题主要考查三视图,几何体的体积计算.点评:基础题,三视图是高考必考题目,因此,要明确三视图视图规则,准确地还原几何体,明确几何体的特征,以便进一步解题.5.设,,且,,则的最小值是()A. B. C. D.【答案】B【解析】【分析】利用基本不等式可求出的最小值,利用换底公式以及对数的运算律可得出的最小值.【详解】,,且,,,,当且仅当时取等号.,则的最小值是.故选:B.【点睛】本题考查利用基本不等式求最值,同时也考查了换底公式以及对数运算性质的应用,考查计算能力,属于基础题.6.若A为不等式组所示的平面区域,则当a从-2连续变化到1时,动直线x+ y =a 扫过A中的那部分区域面积为()A. 2B. 1C. D.【答案】D【解析】试题分析:如图,不等式组表示的平面区域是,动直线在轴上的截距从变化到1,知是斜边为3等腰直角三角形,是直角边为1的等腰直角三角形,所以区域的面积,故选D.考点:二元一次不等式(组)与平面区域点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.7.函数的部分图象如图所示,设P是图象的最高点,A,B是图象与x 轴的交点,记∠APB=θ,则sin2θ的值是( )A. B. C. D.【答案】A【解析】【分析】由周期公式可知函数周期为2,∴AB=2,过P作PC⊥AB与C,根据周期的大小看出直角三角形中直角边的长度,解出∠APC与∠BPC的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ.【详解】.PC⊥AB与C,故选:A.【点睛】本题主要考查三角函数的图象与性质,考查了两角和的正弦公式以及二倍角的正弦公式,属于综合题.8.下列命题中:①若“”是“”的充要条件;②若“,”,则实数的取值范围是;③已知平面、、,直线、,若,,,,则;④函数的所有零点存在区间是.其中正确的个数是()A. B. C. D.【答案】C【解析】【分析】利用充分条件与必要条件的关系判断①的正误;根据特称命题成立的等价条件求实数的取值范围,可判断②的正误;由面面垂直的性质定理可判断③的正误;利用零点存在定理可判断④的正误.【详解】①由,可知,所以有,当时,满足,但不成立,所以①错误;②要使“,”成立,则有对应方程的判别式,即,解得或,所以②正确;③因为,,,所以,又,所以根据面面垂直的性质定理知,所以③正确;④因为,,且函数连续,所以根据零点存在定理可知在区间上,函数存在零点,所以④正确.所以正确的是②③④,共有三个.故选:C.【点睛】本题考查命题真假判断.正确推理是解题的关键.要求各相关知识必须熟练,考查推理能力,属于中等题.9.某教师一天上3个班级的课,每班上1节,如果一天共9节课,上午5节,下午4节,并且教师不能连上3节课(第5节和第6节不算连上),那么这位教师一天的课表的所有不同排法有()A. 474种B. 77种C. 462种D. 79种【答案】A【解析】【详解】试题分析:根据题意,由于某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),所有的上课方法有,那么连着上3节课的情况有5种,则利用间接法可知所求的方法有-5=474,故答案为A.考点:排列组合点评:主要是考查了排列组合的运用,属于基础题.10.已知函数,方程有四个实数根,则取值范围为()A. B. C. D.【答案】B【解析】【分析】利用导数,判断函数的单调性及最值,从而画出该函数的图像;再用换元,将问题转化为一元二次方程根的分布问题,即可求解参数范围.【详解】令,故,令,解得,故函数在区间单调递减,在单调递增,且在处,取得最小值.根据与图像之间的关系,即可绘制函数的图像如下:令,结合图像,根据题意若要满足有四个根,只需方程的两根与满足:其中一个根,另一个根或.①当方程的一个根,另一个根,将代入,可得矛盾,故此种情况不可能发生;②当方程的一个根,另一个根,要满足题意,只需即可即,解得.故选:B.【点睛】本题考查利用导数研究函数的单调性,以及二次方程根的分布问题,属重点题型.二、填空题(本题共5道小题,每题5分,共25分;将答案直接答在答题卷上指定的位置)11. 从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.【答案】【解析】试题分析:利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.解:P(A)=,P(AB)=.由条件概率公式得P(B|A)=.故答案为.点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.12.下图给出了一个程序框图,其作用是输入的值,输出相应的值.若要使输入的值与输出的值相等,则这样的值有________个.【答案】3【解析】试题分析:该程序框图是计算分段函数的函数值,从自变量的取值情况看,由三种情况,故应考虑,所得x值,有3个.考点:本题主要考查程序框图的功能识别,简单方程的求解.点评:简单题,注意到应考虑,所得x值,一一探讨.13.已知在平面直角坐标系中,,,为原点,且,(其中,,均为实数),若,则的最小值是_____.【答案】【解析】【分析】根据可化简为,可得出、、三点共线,求出直线的方程,然后利用点到直线的距离公式可计算出的最小值.【详解】(其中,、均为实数),,即,即,,、、三点共线,的最小值即为点到直线的距离,直线的方程为,即,因此,的最小值为.故答案为:【点睛】本题考查利用向量判断三点共线,同时也考查了点到直线距离公式计算线段长度的最小值,考查化归与转化思想的应用,属于中等题.14.已知双曲线的右焦点为,过且斜率为的直线交于、两点,若,则的离心率为______.【答案】【解析】【分析】设,将直线的方程和双曲线的方程联立消元得出,由可得,这几个式子再结合化简可得【详解】因为直线过点,且斜率为所以直线的方程为:与双曲线联立消去,得设所以因为,可得代入上式得消去并化简整理得:将代入化简得:解之得因此,该双曲线的离心率故答案:【点睛】1.直线与双曲线相交的问题,常将两个的方程联立消元,用韦达定理表示出横(纵)坐标之和、积,然后再结合条件求解2.求离心率即是求与的关系.15.设函数的定义域为,若存在非零实数使得对于任意,有,且,则为上的高调函数,如果定义域为的函数是奇函数,当时,,且为上的高调函数,那么实数的取值范围是__________.【答案】【解析】定义在上的函数是奇函数,当时,,作出的图像如图所示,∵为上的高调函数,当时,函数的最大值为,要满足,大于等于区间长度,∴,即,解得.故实数的取值范围是.三、解答题(本大题共75分,解答应写出文字说明,证明过程或演算步骤);16.已知向量,,函数.(1)求函数的最小正周期及单调减区间;(2)已知、、分别为内角、、的对边,其中为锐角,,,且.求、的长和的面积.【答案】(1),递减区间是;(2),,.【解析】【分析】(1)利用平面向量数量积的坐标运算得出,并利用三角恒等变换思想化简函数的解析式为,利用正弦函数周期公式及其单调性即可得到函数的最小正周期及单调减区间;(2)利用(1)即可得到,再利用正弦定理即可得到,利用三角形内角和定理即可得到,利用直角三角形含角的性质即可得出边,进而得到三角形的面积.详解】(1),,,,所以,,由,解得,所以,函数的单调递减区间是;(2),,为锐角,即,,,解得.由正弦定理得,,,,,,因此,的面积为.【点睛】本题综合考查了向量数量积的坐标运算、正弦函数的单调性及其性质、正弦定理、直角三角形的边角关系及其面积等基础知识与基本技能,考查了推理能力和计算能力.17.如图,为圆的直径,点、在圆上,矩形所在的平面和圆所在的平面互相垂直,且,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.【答案】(Ⅰ)见解析;(Ⅱ)【解析】【详解】试题分析:(Ⅰ)平面平面,,平面平面,平面,∵AF在平面内,∴,又为圆的直径,∴,∴平面.(Ⅱ)由(1)知即,∴三棱锥的高是,∴,连结、,可知∴为正三角形,∴正的高是,∴,18.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功,每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,,,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用表示小王所获得获品的价值,写出的概率分布列,并求的数学期望.【答案】(1);(2)分布列见详解,【解析】【分析】(1)小王过第一关但未过第二关,包括小王第一关两道题都答对,第二关第一道题答错,或者小王第一关两道题都答对,第二关第一道题答对,第二道题答错,据此计算概率;(2)根据题意,分别写出可取的值,再计算每个可取值对应的概率,求得分布列即可.【详解】(1)设小王过第一关但未过第二关的概率为,则容易知.(2)的取值为0,1000,3000,6000,则,,,,∴的概率分布列为∴的数学期望.【点睛】本题考查概率的计算,离散型随机变量的分布列和数学期望,以及计算能力,属中档。
[精品]2019届高三数学下学期测试(三模)试题 理(含解析)
2019高三年级测试(三模)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】A【解析】分析:先化简集合M和N,再求.详解:由题得所以.由题得所以.故答案为:A点睛:(1)本题主要考查集合的化简即交集运算,意在考查学生对这些基础知识的掌握能力.(2)解答本题的关键是求,由于集合中含有k,所以要给k赋值,再求.2. 已知复数满足,则()A. B. C. D.【答案】B【解析】分析:先求出复数z,再求.详解:由题得所以故答案为:B点睛:(1)本题主要考查复数的运算和复数的共轭复数,意在考查学生对这些基础知识的掌握能力和运算能力. (2)复数的共轭复数3. 设两条不同的直线,是两个不重合的平面,则下列命题中正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】分析:利用空间线面位置关系逐一判断每一个选项的真假得解.详解:对于选项A, 若,则或,所以选项A是假命题.对于选项B, 若,则或a与相交.所以选项B是假命题.对于选项C, 若,则或与相交.所以选项C是假命题.对于选项D, 若,则,是真命题.故答案为:D点睛:(1)本题主要考查空间直线平面的位置关系的判断,意在考查学生对线面位置关系定理的掌握能力和空间想象能力.(2)对于空间线面位置关系的判断,一般利用举反例和直接证明法.4. 执行如图的程序框图,如果输入的分别为,输出的,那么判断框中应填入的条件为()A. B. C. D.【答案】C【解析】分析:直接按照程序运行即可找到答案.详解:依次执行程序框图中的程序,可得:①,满足条件,继续运行;②,满足条件,继续运行;③,不满足条件,停止运行,输出.故判断框内应填n<4,即n<k+1.故选C.点睛:本题主要考查程序框图和判断框条件,属于基础题,直接按照程序运行,一般都可以找到答案.5. 已知函数,若,则()A. B. C. D.【答案】D【解析】分析:先化简得到,再求的值.所以故答案为:D点睛:(1)本题主要考查函数求值和指数对数运算,意在考查学生对这些基础知识的掌握能力和运算能力.(2)解答本题的关键是整体代入求值.6. 给出下列命题:①已知,“且”是“”的充分不必要条件;②已知平面向量,“”是“”的必要不充分条件;③已知,“”是“”的充分不必要条件;④命题“,使且”的否定为“,都有使且”,其中正确命题的个数是()A. B. C. D.【答案】C【解析】分析:逐一分析判断每一个命题的真假得解.详解:对于选项①,由a>1且b>1⇒ab>1,反之不成立,例如取a=﹣2,b=﹣3,因此“a>1且b>1”是“ab>1”的充分条件,正确;②平面向量,>1,||>1,取=(2,1),=(﹣2,0),则||=1,因此||>1不成立.反之取,=,则||>1,||>1不成立,∴平面向量,||>1,||>1“是“||>1”的既不必要也不充分条件;③如图在单位圆x2+y2=1上或圆外任取一点P(a,b),满足“a2+b2≥1”,根据三角形两边之和大于第三边,一定有“|a|+|b|≥1”,在单位圆内任取一点M(a,b),满足“|a|+|b|≥1”,但不满足,“a2+b2≥1”,故a2+b2≥1是“|a|+|b|≥1”的充分不必要条件,因此正确;④命题P:“∃x0∈R,使且lnx0≤x0﹣1”的否定为¬p:“∀x∈R,都有e x<x+1或lnx>x﹣1”,因此不正确.其中正确命题的个数是2.故答案为:C点睛:(1)本题主要考查充要条件的判断和平面向量的性质运算,考查特称命题的否定,意在考查学生对这些基础知识的掌握能力. (2)解答真假命题的判断,方法比较灵活,可以利用举例法和直接法,要灵活选择.7. 已知,,则()A. B. C. D. 或【答案】B【解析】分析:先根据得到,再求最后求的值.详解:由题得所以,所以故答案为:B点睛:(1)本题主要考查三角函数求值,意在考查学生对这些基础知识的掌握能力和分析转化能力. (2)解答本题的关键有两点,其一是根据已知求的隐含范围,其二是通过变角求的值,.8. 已知满足约束条件,若的最大值为,则的值为()A. B. C. D.【答案】B【解析】不等式组对应的可行域如图所示:联立得B(1,m-1).=表示动点(x,y)和点D(-1,0)的斜率,可行域中点B和D的斜率最大,所以故选B.9. 经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间与数学成绩进行数据收集如下:由样本中样本数据求得回归直线方程为,则点与直线的位置关系是()A. B.C. D. 与的大小无法确定【答案】B【解析】分析:由样本数据可得,利用公式,求出b,a,点(a,b)代入x+18y,求出值与100比较即可得到选项.详解:由题意,(15+16+18+19+22)=18,(102+98+115+115+120)=110,,5=9900,=1650,n=5•324=1620,∴b==3.1,∴a=110﹣3.1×18=54.2,∵点(a,b)代入x+18y,∴54.2+18×3.1=110>100.即a+18b>100.故答案为:B点睛:本题主要考查回归直线方程的求法,意在考查学生对该基础知识的掌握能力和运算能力.10. 在区间上任取一个数,则函数在上的最大值是的概率为()A. B. C. D.【答案】A【解析】分析:设函数y=x2﹣4x+3,求出x∈[0,4]时y的取值范围,再根据a∈[﹣2,2]讨论a的取值范围,判断f(x)是否能取得最大值3,从而求出对应的概率值.详解:在区间[﹣2,2]上任取一个数a,基本事件空间对应区间的长度是4,由y=x2﹣4x+3=(x﹣2)2﹣1,x∈[0,4],得y∈[﹣1,3],∴﹣1﹣a≤x2﹣4x+3﹣a≤3﹣a,∴|x2﹣4x+3﹣a|的最大值是|3﹣a|或|﹣1﹣a|,即最大值是|3﹣a|或|1+a|;令|3﹣a|≥|1+a|,得(3﹣a)2≥(1+a)2,解得a≤1;又a∈[﹣2,2],∴﹣2≤a≤1;∴当a∈[﹣2,1]时,|3﹣a|=3﹣a,∴f(x)=|x2﹣4x+3﹣a|+a在x∈[0,4]上的最大值是3﹣a+a=3,满足题意;当a∈(1,2]时,|1+a|=a+1,函数f(x)=|x2﹣4x+3﹣a|+a在x∈[0,4]上的最大值是2a+1,由1<a≤2,得3<2a+1≤5,f(x)的最大值不是3.则所求的概率为P=.故答案为:A点睛:(1)本题主要考查几何概型和函数的最值的计算,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是通过函数在上的最大值是分析得到a∈[﹣2,1].11. 设双曲线的右焦点为,过点作轴的垂线交两渐近线于两点,且与双曲线在第一象限的交点为,设为坐标原点,若,,则双曲线的离心率为()A. B. C. D.【答案】A【解析】分析:先根据已知求出,再代入求出双曲线的离心率.详解:由题得双曲线的渐近线方程为,设F(c,0),则因为,所以.所以解之得因为,所以故答案为:A点睛:(1)本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力. (2)解答本题的关键是根据求出.12. 已知函数有两个零点,且,则下列结论错误的是()A. B. C. D.【答案】B【解析】分析:先通过函数有两个零点求出,再利用导数证明,即证明.详解:因为函数,所以,当a≤0时,所以f(x)在(0,+∞)上单调递增,所以不可能有两个零点.当a>0时,时,,函数f(x)单调递增,时,,函数f(x)单调递减.所以因为函数f(x)有两个零点,所以又又令则所以函数g(x)在上为减函数,=0,又,又,∴,即.故答案为:B点睛:(1)本题主要考查利用导数求函数的单调区间、最值和零点问题,意在考查学生对这些知识的掌握能力和分析推理能力.(2)本题的解题关键是构造函数求函数的图像和性质.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数的图像与直线以及轴所围成的图形的面积为,则的展开式中的常数项为______________.(用数字作答)【答案】【解析】分析:求定积分可得a值,然后求出二项式的通项,得到的展开式中含x及的项,分别与中的项相乘求得答案.详解:由题意,a=∴=(x﹣)(2x﹣)5.展开式的常数项由(2x﹣)5 中含x的项乘以﹣再加上含的项乘以x得到的.∵(2x﹣)5 展开式的通项Tr+1=(﹣1)r25﹣r•x5﹣2r.令5﹣2r=1,得r=2,因此(2x﹣)5 的展开式中x的系数为(﹣1)2•23•=80.令5﹣2r=﹣1,得r=3,因此(2x﹣)5 的展开式中的系数为(﹣1)3则的展开式中的常数项为80×(﹣2)﹣40=﹣200.故答案为:﹣200...............................14. 某三棱锥的三视图如图所示,则它的外接球表面积为_______________.【答案】【解析】由三视图可得三棱锥为如图所示的三棱锥,其中底面为直角三角形.将三棱锥还原为长方体,则长方体的长宽高分别为,则三棱锥外接球的球心在上下底面中心的连线上,设球半径为,球心为,且球心到上底面的距离为,则球心到下底面的距离为.在如图所示的和中,由勾股定理可得及,解得.所以三棱锥的外接球的表面积为.答案:点睛:已知球与柱体(或锥体)外接求球的半径时,关键是确定球心的位置,解题时要根据组合体的特点,并根据球心在过小圆的圆心且与小圆垂直的直线上这一结论来判断出球心的位置,并构造出以球半径为斜边,小圆半径为一条直角边的直角三角形,然后根据勾股定理求出球的半径,进而可解决球的体积或表面积的问题.15. 已知为抛物线的焦点,为其准线与轴的交点,过的直线交抛物线于两点,为线段的中点,且,则________________.【答案】6【解析】分析:求得抛物线的焦点和准线方程,可得E的坐标,设过F的直线为y=k(x﹣1),代入抛物线方程y2=4x,运用韦达定理和中点坐标公式,可得M的坐标,运用两点的距离公式可得k,再由抛物线的焦点弦公式,计算可得所求值.详解:F(1,0)为抛物线C:y2=4x的焦点,E(﹣1,0)为其准线与x轴的交点,设过F的直线为y=k(x﹣1),代入抛物线方程y2=4x,可得k2x2﹣(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则x1+x2=2+,中点M(1+,),可得,解得k2=2,则x1+x2=2+=4,由抛物线的定义可得=x1+x2+2=6,故答案为:6点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些知识的掌握能力和分析推理能力. (2)解答本题的关键是利用求出k的值.16. 为等腰直角三角形,是内的一点,且满足,则的最小值为__________.【答案】【解析】分析:先建立直角坐标系,再求点M的轨迹,再求|MB|的最小值.详解:以A为坐标原点建立直角坐标系,由题得C,设M(x,y),因为,所以,所以点M在以为圆心,1为半径的圆上,且在△ABC内部,所以|MB|的最小值为.故答案为:点睛:(1)本题主要考查轨迹方程和最值的求法,意在考查学生对这些基础知识的掌握能力和分析推理转化的能力.(2)本题的解题关键有两点,其一是建立直角坐标系,其二是求出点M的轨迹方程.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和为,,且满足.(1)求数列的通项;(2)求数列的前项和为.【答案】(1);(2)【解析】分析:(1)先化简已知,再用项和公式求出数列的通项.(2)利用错位相减法求数列的前项和为.详解:(1),,,即;当时,,当时,,不满足上式,所以数列是从第二项起的等比数列,其公比为2;所以.(2)当时,,当时,,,点睛:(1)本题主要考查数列通项的求法和错位相减法求和,意在考查学生对这些基础知识的掌握能力和计算能力.(2)已知的关系,可以利用项和公式,求数列的通项.注意结果是能并则并,不并则分.所以本题中,不能合在一起.18. 某地十万余考生的成绩近似地服从正态分布,从中随机地抽取了一批考生的成绩,将其分成6组:第一组,第二组,第六组,作出频率分布直方图,如图所示:(1)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩和标准差(精确到个位);(2)以这批考生成绩的平均值和标准差作为正态分布的均值和标准差,设成绩超过93分的为“优”,现在从总体中随机抽取50名考生,记其中“优”的人数为,是估算的数学期望.【答案】(1),;(2)【解析】分析: (1)直接利用平均数和标准差公式求解.(2)先,再求,最后求的数学期望.详解:(1)根据题意,计算平均数为;(2)依题意,;因为所以.点睛:(1)本题主要考查频率分布直方图中平均数和标准差的计算,考查正态分布和随机变量的数学期望的计算,意在考查学生对这些基础知识的掌握能力和计算能力.(2)解答本题的关键有两点,其一是能利用正态分布的性质计算出,其二是灵活利用二项分布性质简洁地计算出.19. 如图,是边长为6的正方形,已知,且并与对角线交于,现以为折痕将正方形折起,且重合,记重合后记为,重合后记为.(1)求证:面面;(2)求面与面所成二面角的余弦值.【答案】(1)见解析;(2)【解析】分析:(1)先取中点,连,取中点,连,再证明面,再证明面面.(2)以与垂直的直线为轴,为轴,为轴建立坐标系,利用向量法求得面与面所成二面角的余弦值为.详解:取中点,连,则.再取中点,连,则,易得,于是,四边形为平行四边形,得,从而,那么面,又面,故面面.(2)以与垂直的直线为轴,为轴,为轴建立坐标系,则,, 设面的法向量,由,得:,取,得,所以面的法向量.同理可得:面的法向量,则,所以面与面所成二面角的余弦值为.点睛:(1)本题主要考查空间直线平面位置关系的证明,考查二面角的计算,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.(2) 二面角的求法一般有两种,方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形),方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)20. 已知为椭圆上三个不同的点,为坐标原点.(1)若,问:是否存在恒与直线相切的圆?若存在,求出该圆的方程;若不存在,请说明理由;(2)若,求的面积.【答案】(1);(2)【解析】分析:(1)先求出原点到的距离,再证明存在圆与直线恒相切.(2)先求出点C的坐标,再代入得,最后计算的面积.详解:(1)设直线,代入得:设,则;由得:因为,所以化简得:,于是原点到的距离特别地,当轴时,也符合,故存在圆与直线恒相切.(2)设,则代入得,,于是所以.点睛:(1)本题主要考查直线与圆和椭圆的位置关系,考查圆锥曲线的最值问题,意在考查学生对这些基础知识的掌握能力和分析推理的能力.(2)解答本题的关键有两点,其一是根据得到,其二是化简.21. 已知函数.(1)若,求函数的最大值;(2)对任意的,不等式恒成立,求实数的取值范围.【答案】(1)0;(2)【解析】分析:(1)利用导数先求函数的单调性,再求函数的最大值.(2)先转化为在恒成立,再构造函数求,再化简=1,即得解.详解:(1)在上单调递增,在上单调递减,的最大值为(2)不等式恒成立,等价于在恒成立,令令所以在单调递增,,,所以存在唯一零点,且,所以在单调递减,在单调递增..,即构造函数,易证在单调递增,所以,则,将这两个式子代入,所以.点睛:(1)本题主要考查利用导数求函数的单调性和最值,利用导数解答恒成立问题,意在考查学生对这些知识的掌握能力和分析推理能力.(2)解答本题的关键有两点,其一是求出,其二是化简.22. 在直角坐标系中,曲线(为参数),在以为极点,轴正半轴为极轴的极坐标系中,直线.其中为直线的倾斜角()(1)求曲线的普通方程和直线的直角坐标方程;(2)直线与轴的交点为,与曲线的交点分别为,求的值.【答案】(1);(2)3【解析】分析:(1)利用消参求曲线的普通方程,利用极坐标公式求直线的直角坐标方程.(2)利用参数方程参数的几何意义和韦达定理求的值.详解:(1)曲线的普通方程为,直线的直角坐标方程为.(2)直线与轴的交点为,直线的参数方程可设为(为参数),将直线的参数方程代入圆的方程,得,.点睛:(1)本题主要考查极坐标、参数方程和普通方程的互化,考查直线参数方程参数的几何意义,意在考查学生对这些基础知识的掌握能力.(2) 直线参数方程中参数的几何意义是这样的:如果点在定点的上方,则点对应的参数就表示点到点的距离,即.如果点在定点的下方,则点对应的参数就表示点到点的距离的相反数,即.23. 已知函数,其中为正实数.(1)若,求不等式的解集;(2)若的最小值为,问是否存在正实数,使得不等式能成立?若存在,求出的值,若不存在,请说明理由.【答案】(1);(2)见解析【解析】分析:(1)利用零点分类讨论法求不等式的解集.(2)利用绝对值三角不等式求解.详解:(1)不等式等价于或或解得:,所以不等式的解集是.(2)存在正实数.上式等号成立的等价条件为当且仅当,即,所以存在,使得不等式成立.点睛:(1)本题主要考查绝对值不等式的解法和绝对值三角不等式,意在考查学生对这些基础知识的掌握能力.(2) 求绝对值的最值直接使用重要绝对值不等式求解,也可以利用数形结合求解.。
2019届陕西省渭南市韩城市高三下学期3月调研考试数学(理)试题(解析版)
2019届陕西省渭南市韩城市高三下学期3月调研考试数学(理)试题一、单选题1.已知全集,U R =2{|2}M x x x =-≥则U C M =( ). A .{|20}x x -<< B .{|20}x x -≤≤ C .{|20}x x x <->或 D .{|20}x x x ≤-≥或【答案】C【解析】解二次不等式求出集合M ,进而根据集合补集运算的定义,可得答案. 【详解】∵全集U=R ,2{|2}={|20}M x x x x x =-≥-≤≤∴∁U M={x|x<-2或x>0}, 故选C . 【点睛】本题考查的知识点是集合的交集,并集,补集运算,熟练掌握并正确理解集合运算的定义是解答的关键.2.已知是i 虚数单位,z 是z 的共轭复数,若1i(1i)1iz -+=+,则z 的虚部为( ) A .12B .12-C .1i 2D .1i 2-【答案】A【解析】由题意可得:()2111111222221ii z i i i i --===-=--+, 则1122z i =-+,据此可得,z 的虚部为12.本题选择A 选项.3.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:则下列结论正确的是( )A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018二本达线人数增加了0.5倍C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加 【答案】D【解析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S . 观察柱状统计图,找出各数据,再利用各数量间的关系列式计算得到答案. 【详解】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S . 对于选项A.2015年一本达线人数为0.28S .2018年一本达线人数为0.24 1.50.36S S ⨯=,可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=,显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2015年不上线人数为0.32S .2018年不上线人数为0.28 1.50.42S S ⨯=.不达线人数有所增加.故选D. 【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.4.已知双曲线2221(0)2x y b b-=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0(3,)P y 在该双曲线上,则12PF PF ⋅u u u r u u u u r=( )A .12-B .2-C .0D .4【答案】C 【解析】由题知,故,∴12(23,1)(23,1)3410PF PF ⋅=--±⋅-±=-+=u u u r u u u u r ,故选择C .5.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B .1313C .926D .31326【答案】A【解析】根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可. 【详解】在ABD ∆中,3AD =,1BD =,120ADB ∠=︒,由余弦定理,得222cos12013AB AD BD AD BD +-⋅︒=所以13DF AB =. 所以所求概率为24=1313DEF ABC S S ∆∆=. 故选A. 【点睛】本题考查了几何概型的概率计算问题,是基础题. 6.已知函数()sin()f x x ωϕ=+(0>ω,2πω<)的最小正周期为π,且其图象向左平移3π个单位后,得到函数()cos g x x ω=的图象,则函数()f x 的图象( ) A .关于直线12x π=对称B .关于直线512x π=对称 C .关于点(,0)12π对称D .关于点5(,0)12π对称 【答案】C【解析】试题分析:依题意()()2,sin 2f x x ωϕ==+,平移后为2sin 2cos 2,36x x ππϕϕ⎛⎫++==- ⎪⎝⎭,()sin 26f x x π⎛⎫=- ⎪⎝⎭,关于,012π⎛⎫⎪⎝⎭对称.【考点】三角函数图象与性质.7.设函数()f x '为函数()sin f x x x =的导函数,则函数()f x '的图像大致为( )A .B .C .D .【答案】B【解析】试题分析:()sin cos f x x x x '=+,可得'()f x 是奇函数,排除C ,当时,'()0f x <,排除A 、D ,故选B.【考点】函数求导.【方法点晴】作为选择题,不一定要像解答题那样正面解答,排除法不失为一种简单的方法.首先从函数的奇偶性可以C ,其次采用特殊值的方式对进行赋值,最好是特殊角,可求三角函数值,是比较好值,由此得出函数值小于0,故排除A ,C ,这样答案就确定了,本题难度中等.8.一个由半球和四棱锥组成的几何体,其三视图如图所示. 则该几何体的体积为( )A .B .C .D .【答案】C【解析】试题分析:由三视图可知,上面是半径为的半球,体积为,下面是底面积为1,高为1的四棱锥,体积,故选C.【考点】根据三视图求几何体的体积【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面地考查了考生的识图用图能力、空间想象能力、运算求解能力等.9.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B【解析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x2+a2x)6展开式中,由通项公式可得122r162rr r raT C x x--+⎛⎫= ⎪⎝⎭,令12﹣3r=0,可得r=4,即常数项为4462aC⎛⎫⎪⎝⎭,可得4462aC⎛⎫⎪⎝⎭=15,解得a=2.曲线y=x2和圆x2+y2=2的在第一象限的交点为(1,1)所以阴影部分的面积为()12231111-x-x|442346dx x xπππ⎛⎫=--=-⎪⎝⎭⎰.故选:B【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.10.如下图,在正方体1111ABCD A B C D-中,点E F、分别为棱1BB,1CC的中点,点O为上底面的中心,过E F O、、三点的平面把正方体分为两部分,其中含1A的部分为1V,不含1A的部分为2V,连接1A和2V的任一点M,设1A M与平面1111DCBA所成角为α,则sinα的最大值为().A.22B25C26D26【答案】B【解析】连接EF,可证平行四边形EFGH为截面,由题意可找到1A M与平面1111DCBA所成的角,进而得到sinα的最大值.【详解】连接EF,因为EF//面ABCD,所以过EFO的平面与平面ABCD的交线一定是过点O且与EF平行的直线,过点O作GH//BC交CD于点G,交AB于H点,则GH//EF,连接EH,FG,则平行四边形EFGH为截面,则五棱柱1111A B EHA D C FGD-为1V,三棱柱EBH-FCG为2V,设M点为2V的任一点,过M点作底面1111DCBA的垂线,垂足为N,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N ∠=α,因为sinα=1MNA M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H =25, 故选B【点睛】本题考查空间中的平行关系与平面公理的应用,考查线面角的求法,属于中档题. 11.设是定义在R 上的偶函数,且(2)(2)f x f x +=-时,当[2,0]x ∈-时,()21xf x =-,若()2,6-在区间内关于x 的方程()log (2)0(0a f x x a -+=>且1)a ≠有且只有4个不同的根,则实数a 的范围是( )A .(1,14) B .(1,4) C .(1,8) D .(8,)+∞【答案】D【解析】由偶函数得(2)(2)(2)f x f x f x +=-=-,从而可得()f x 是周期函数,且周期为4,这样可作出函数()y f x =的图象,再作log (2)a y x =+的图象,只能有1a >,它们在()2,6-内有四个交点。
2019届陕西省渭南市韩城市高三下学期三模考试数学(理)试卷及解析
2019届陕西省渭南市韩城市高三下学期三模考试数学(理)试卷★祝考试顺利★(解析版)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{|A x y ==,(){}|lg 1B x y x ==+,则A B =( ) A. []22-,B. ()1,+∞C. (]1,2-D. (](),12,-∞-+∞【答案】C【解析】 求出集合A 、B ,再进行交集运算即可.【详解】因为{{}{}2|||4022A x y x x x x -=≤==-≤≤=, (){}{}{}|lg 1|10|1B x y x x x x x ==+=+>=>-,所以{}{}{}|2|212|1x x x x x x A B -≤⋂>-⋂=-<=≤≤,故选:C2. 已知复数z 满足(1)i z i +=(i 为虚数单位),则复数Z 在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】先解出复数并化简z ,找出复数z 在复平面内对应的点,然后判断所在象限即可.【详解】解:由()1i z i +=,得()()()1111111222i i i i z i i i i -+====+++- 所以复数z 在复平面内对应的点为11,22⎛⎫ ⎪⎝⎭,在第一象限 故选A3. 已知平面向量(1,)a x =,(4,2)b =,若向量2a b +与向量b 共线,则x =( )A. 13B. 12C. 25D. 27【答案】B【解析】 先写出向量2a b +的坐标,然后由向量平行的坐标公式列方程解出x 即可.【详解】解:由()1,a x =,()4,2b =,得()26,22a b x +=+因为()2a b +∥b所以()622240x ⨯-+⨯=,解得12x =故选B4. 已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如表对应数据根据表中数据可得回归方程y bx a =+ ,其中11b =,据此估计,当投入6万元广告费时,销售额约为( )万元A. 60B. 63C. 65D. 69【答案】B 【解析】 根据表中数据求出,x y ,然后根据线性回归方程中系数的求法得到a ,进而得到回归方程,然后求出当6x =时的函数值即为所求.【详解】由表中数据可得1(12345)35x =⨯++++=,1(1015304550)305y =⨯++++=, 又回归方程y bx a =+中11b =,∴ˆ301133a y bx=-=-⨯=-, ∴回归方程为113y x =-.当6x =时116363y =⨯-=,所以可估计当投入6万元广告费时,销售额约为63万元.。
2019届陕西省高三第三次教学质量检测数学(理)试题Word版含解析
2019届陕西省高三第三次教学质量检测数学(理)试题一、单选题1.已知复数i i z +=-1)1(,则复数z =( ) A .2i + B .2i -C .iD .i -【答案】C【解析】根据复数的除法运算法则,即可求解,得到答案. 【详解】由题意,复数i i z +=-1)1(,则()()()()11121112i i i iz i i i i +++====--+,故选C. 【点睛】本题主要考查了复数的运算,其中解答中熟记复数的除法运算的法则是解答的关键,着重考查了运算与求解能力,属于基础题.2.设集合{|12,}A x x x N =-≤≤∈,集合{2,3}B =,则B A 等于( ) A .{1,0,1,2,3}- B .{0,1,2,3}C .}3,2,1{D .{2}【答案】B【解析】求得集合{|12,}{0,1,2}A x x x N =-≤≤∈=,根据集合的并集的运算,即可求解. 【详解】由题意,集合{|12,}{0,1,2}A x x x N =-≤≤∈=, 又由集合{2,3}B =,所以0,1,3}2,{A B =,故选B.【点睛】本题主要考查了集合的表示方法,以及集合的并集运算,其中解答中正确求解集合A ,熟练应用集合并集的运算是解答的关键,着重考查了运算与求解能力,属于基础题. 3.若向量(1,1)a =,(1,3)b =-,(2,)c x =满足(3)10a b c +⋅=,则=x ( ) A .1 B .2C .3D .4【答案】A【解析】根据向量的坐标运算,求得(3)(2,6)a b +=,再根据向量的数量积的坐标运算,即可求解,得到答案.由题意,向量(1,1)a =,(1,3)b =-,(2,)c x =,则向量(3)3(1,1)(1,3)(2,6)a b +=+-=,所以(3)(2,6)(2,)22610a b c x x +⋅=⋅=⨯+=,解得1x =,故选A. 【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题. 4.已知,则( )A .B .C .-3D .3【答案】A 【解析】由题意可知,由题意结合两角和的正切公式可得的值.【详解】,故选A .【点睛】本题主要考查两角和的正切公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.5.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )A .110B .114C .124D .125【解析】利用二项式系数对应的杨辉上三角形的第1n +行,令1x =,得到二项展开式的二项式系数的和,再结合等差、等比数列的求和公式,即可求解. 【详解】由题意,n 次二项式系数对应的杨辉三角形的第1n +行, 令1x =,可得二项展开式的二项式系数的和n 2, 其中第1行为02,第2行为12,第3行为22,以此类推,即每一行的数字之和构成首项为1,公比为2的对边数列,则杨辉三角形中前n 行的数字之和为122112nn n S -==--,若除去所有为1的项,则剩下的每一行的数字的个数为1,2,3,4,可以看成构成一个首项为1,公差为2的等差数列,则(1)2n n n T +=, 令(1)152n n +=,解得5n =, 所以前15项的和表示前7行的数列之和,减去所有的1,即()72113114--=, 即前15项的数字之和为114,故选B. 【点睛】本题主要考查了借助杨辉三角形的系数与二项式系数的关系考查等差、等比数列的前n 项和公式的应用,其中解答中认真审题,结合二项式系数,利用等差等比数列的求和公式,准确运算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 6.若正数,m n 满足12=+n m ,则11m n+的最小值为( )A .223+B .3C .2+D .3【答案】A 【解析】由11112()(2)3n m m n m n m n m n+=+⋅+=++,利用基本不等式,即可求解,得到答案. 【详解】由题意,因为12=+n m ,则11112()(2)333n m m n m n m n m n +=+⋅+=++≥+=+,当且仅当2n mm n=,即n =时等号成立,所以11m n+的最小值为223+,故选A.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理构造,利用基本不是准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.执行如图所示的程序框图,输出的值为,则在判断框内应填()A.B.C.D.【答案】B【解析】由题意结合程序的输出值模拟程序的运行过程可知时,程序需要继续执行,时,程序结束,据此确定判断框内的内容即可.【详解】程序运行过程如下:首先初始化数据,,第一次循环,执行,,此时不应跳出循环;第二次循环,执行,,此时不应跳出循环;第三次循环,执行,,此时不应跳出循环;第四次循环,执行,,此时应跳出循环;时,程序需要继续执行,时,程序结束,故在判断框内应填.故选B.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.8.已知在三棱锥中,,,,平面平面,若三棱锥的顶点在同一个球面上,则该球的表面积为()A.B.C.D.【答案】D【解析】求出到平面的距离为,为截面圆的直径, ,由勾股定理可得:求出,即可求出球的表面积。
陕西省渭南市韩城市2019届高三下学期期中考试数学(理)试题
…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………陕西省渭南市韩城市2019届高三下学期期中考试数学(理)试题题号 一 二 三 总分 得分评卷人 得分一、选择题 本大题共12道小题。
1.若实数x ,y 满足421x y x y x +≤⎧⎪≤⎨⎪≥⎩,则1x yx ++的最小值是( )A.411B.12C.34D.32答案及解析:1.C作出可行域,如图所示:1111x y y x x +-=+++,即求1u 1y x -=+的最小值,可行域上的动点Q x y (,)与定点P 11-(,)连线的斜率的答案第2页,总18页最小值,由图可知最小值为PA 14k =-,1x y x ++的最小值是34. 故选C.点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 2.已知集合{}{}1,0,1,2,|2xA B y y =-==,则A ∩B =( )A. {-1,0,1}B. {1,2}C. {0,1,2}D. {-1,1,2}答案及解析:2.B 【分析】利用指数函数的值域化简集合B ,由交集的定义可得结果. 【详解】∵集合{}1,0,1,2,A =-{}{}|20x B y y y y ===,所以{}1,2A B ⋂=. 故选B .【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合. 3.复数1ii -的共轭复数为( ) A. 1122i -+ B. 1122i +C. 1122i -- D.1122i - 答案及解析:3.C试题分析:()()()111,11122i i i i i z z i i i +-+--====--+. 考点:复数概念及运算.…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.共轭复数的概念. 4.如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为( ).A. 2πB.5π2C. 4πD. 5π答案及解析:4.B 【分析】由三视图可知,该几何体是一个圆柱,其高为2,半径为12,由公式易求得它的表面积,得到结果 【详解】由三视图可知,该几何体是一个圆柱,其高为2,半径为12,则它的表面积为:21152π22222ππ⎛⎫⨯⨯+⨯⨯= ⎪⎝⎭故选B【点睛】本题主要考查的是根据三视图求表面积,体积,解答本题的关键是判断几何体的形状,属于基础题. 5.已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( )答案第4页,总18页A. 2B. 1C.12D.14答案及解析:5.B 【分析】利用降幂公式化简成正弦型或余弦型函数,即()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+形式,即可求解.【详解】由题:442222()sin cos (sin cos )(sin cos )f x x x x x x x ωωωωωω=-=+-22(cos sin )cos 2x x x ωωω=--=-,其最小正周期2,2T ππω==所以正数1ω=. 故选:B【点睛】此题考查三角恒等变换和函数周期求法,考查对恒等变形的常见处理方式,熟练掌握公式对解题能够起到事半功倍的作用. 6. 已知ln 2ln 3ln 6,,,236a b c ===则a ,b ,c 的大小关系是 ( ) A. c b a >>B. b a c >>C. a b c >>D. c a b >>答案及解析:6.B由题意可得ln ln ln a b c =====>>,故b ac >>,应选答案B .7.若命题0:x R ρ∃∈,002lg x x ->,则ρ⌝是( ) A. 0x R ∃∈,002lg x x -≤ B. 0x R ∃∈,002lg x x -< C. x R ∀∈,2lg x x -<D. x R ∀∈,2lg x x -≤答案及解析:7.D【详解】因存在性命题的否定是全称命题,改写量词后否定结论, 所以ρ⌝是x R ∀∈,2lg x x -≤故应选D . 8. 若1tan 43πα⎛⎫-=- ⎪⎝⎭,则cos2α等于( ) A.35 B.12C.13D. -3答案及解析:8.A已知1tan 43πα⎛⎫-=- ⎪⎝⎭tan 11tan αα-=+,解得1tan ,2α=22222222cos sin 1tan cos 2cos sin cos sin 1tan ααααααααα--=-==++ 将正切值代入得到35. 故答案为A. 9.若对于任意x ∈R 都有()2()3cos sin f x f x x x +-=-,则函数(2)cos 2y f x x =-的图象的对称中心为( ) A. ,0,4k k ππ⎛⎫-∈ ⎪⎝⎭Z B. (),0,k k π∈ZC. ,0,24k k ππ⎛⎫-∈⎪⎝⎭Z D. ,0,2k k π⎛⎫∈⎪⎝⎭Z 答案及解析:9.D∵对任意x ∈R ,都有f (x )+2f (–x )=3cos x –sin x ①,用–x 代替x ,得f (–x )+2f (x )=答案第6页,总18页…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………3cos (–x )–sin (–x ),即f (–x )+2f (x )=3cos x +sin x ②;①②联立,解得f (x )=sin x +cos x ,所以函数y =f (2x )–cos2x =sin2x +cos2x –cos2x =sin2x ,图象的对称中心为(π2k ,0),k ∈Z ,故选D . 10.函数423,(0)y x x x=-->的最大值是( ) A. 223-B. 243-C. 223+D. 243+答案及解析:10.B 【分析】由基本不等式求出当0x >时,43x x+的最小值即可求出函数的最大值. 【详解】由题:0x >,根据基本不等式4432343x x x x+≥⋅=,当且仅当43x x =时取得等号, 即当23x =时,取得等号;所以4(3)43x x -+≤-,所以当233x =时,函数423,(0)y x x x =-->取得最大值243-.故选:B【点睛】此题考查求函数最值,可用导函数讨论函数单调性得最值;可用基本不等式性质求得最值,需要在平常学习中多做积累. 11..函数1sin 1x x e y x e +=⋅-的部分图像大致为( )A. B.…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………C. D.答案及解析:11.B 【分析】先判断函数的奇偶性,再根据11x x e e +-与sin x 的性质,确定函数图象【详解】1()sin 1x x e f x x e +=⋅-,定义域为()(),00,-∞+∞U ,11()sin()sin 11x x x xe ef x x x e e --++-=-⋅=⋅--,所以函数1()sin 1x x e f x x e +=⋅-是偶函数,排除A 、C ,又因为0x >且x 接近0时,101x x e e +>-,且sin 0x >,所以1()sin 01x x e f x x e +=⋅>-,选择B【点睛】函数图象的辨识可以从以下方面入手: 1.从函数定义域,值域判断; 2.从函数的单调性,判断变化趋势; 3.从函数的奇偶性判断函数的对称性; 4.从函数的周期性判断;5.从函数的特征点,排除不合要求的图象 12.若函数()33ln f x x x -+-,则曲线()y f x =在点()()-1,-1f 处的切线的倾斜角是( ) A.6π B.3π C.23π D.56π 答案及解析:12.B 【分析】答案第8页,总18页先求()f x ,再求导数得切线斜率,最后求倾斜角.【详解】因为3()ln()3f x x x x =+-+,所以21()1f x x +'=+因此(1)k f =-=',倾斜角为3π,选B. 【点睛】本题考查导数几何意义以及倾斜角,考查基本分析求解能力. 一、填空题 本大题共3道小题。
2019届高三第三次模拟考试卷理科数学(三)(附答案)
2019届高三第三次模拟考试卷理 科 数 学(三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.[2019·新乡二模]已知集合{}2,3,4A =,集合{},2B m m =+,若{}2A B =,则m =( ) A .0B .1C .2D .42.[2019·湘赣联考]设复数()iia z a a -=∈+R 在复平面内对应的点位于第一象限,则a 的取值范围 是( ) A .1a <-B .0a <C .0a >D .1a >3.[2019·南通期末]已知向量(),2a =m ,()1,1a =+n ,若∥m n ,则实数a 的值为( ) A .23-B .2或1-C .2-或1D .2-4.[2019·毛坦厂中学]某位教师2017年的家庭总收入为80000元,各种用途占比统计如下面的折线图.2018年收入的各种用途占比统计如下面的条形图,已知2018年的就医费用比2017年增加了4750元,则该教师2018年的家庭总收入为( )A .100000元B .95000元C .90000元D .85000元5.[2019·广东模拟]若3πsin 2α⎛⎫+= ⎪⎝⎭,则cos2α=( )A .12-B .13-C .13D .126.[2019·临川一中]函数()12sin 12xxf x x ⎛⎫-=⋅ ⎪+⎝⎭的图象大致为( ) A . B .C .D .7.[2019·南昌一模]如图所示算法框图,当输入的x 为1时,输出的结果为( )A .3B .4C .5D .68.[2019·宜宾二诊]已知ABC △中,A ,B ,C 的对边分别是a ,b ,c ,且3b =,c =30B =︒,则AB 边上的中线的长为( ) AB .34C .32D .349.[2019·江西九校联考]如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )级 姓名 准考证号 考场号 座位号A.28+ B.28+ C.16+D.16+10.[2019·汕尾质检]已知A ,B ,C ,D 是球O 的球面上四个不同的点,若2AB AC DB DC BC =====,且平面DBC ⊥平面ABC ,则球O 的表面积为( ) A .20π3B .15π2C .6πD .5π11.[2019·临川一中]如图所示,1A ,2A 是椭圆22:194x y C +=的短轴端点,点M 在椭圆上运动,且点M 不与1A ,2A 重合,点N 满足11NA MA ⊥,22NA MA ⊥,则1212MA A NA A S S =△△( )A .32B .23C .94D .4912.[2019·江西九校联考]设[]x 为不超过x 的最大整数,n a 为[][)()0,x x x n ⎡⎤∈⎣⎦可能取到所有值的 个数,n S 是数列12n a n ⎧⎫⎨⎬+⎩⎭前n 项的和,则下列结论正确个数的有( )(1)34a = (2)190是数列{}n a 中的项 (3)1056S = (4)当7n =时,21n a n+取最小值 A .1个 B .2个C .3个D .4个第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.[2019·深圳期末]已知不等式组20202x y x y x -≥-≤≤⎧⎪⎨⎪⎩所表示的平面区域为Ω,则区域Ω的外接圆的面积为______.14.[2019·南京二模]若函数()()()2sin 0,0πf x x ωϕωϕ=+><<的图象经过点π,26⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为π2,则4πf ⎛⎫⎪⎝⎭的值为______. 15.[2019·赣州期末]若曲线ln y x x =在1x =处的切线l 与直线:10l ax y '-+=垂直,则切线l 、直线l '与y 轴围成的三角形的面积为_______.16.[2019·南通期末]在平面直角坐标系xOy 中,已知()0,A a ,()3,4B a +,若圆229x y +=上有且仅有四个不同的点C ,使得ABC △的面积为5,则实数a 的取值范围是____.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)[2019·江南十校]已知数列{}n a 与{}n b 满足:()1232n n a a a a b n ++++=∈*N ,且{}n a 为正项等比数列,12a =,324b b =+.(1)求数列{}n a 与{}n b 的通项公式;(2)若数列{}n c 满足()1nn n n a c n b b +=∈*N ,n T 为数列{}n c 的前n 项和,证明1n T <.18.(12分)[2019·沧州模拟]近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”、“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x 为收费标准(单位:元/日),t 为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x 与“入住率”y 的散点图如图:(1)若从以上六家“农家乐”中随机抽取两家深入调查,记ξ为“入住率”超过0.6的农家乐的个数,求ξ的概率分布列;(2)令ln z x =,由散点图判断ˆˆˆybx a =+与ˆˆy bz a =+哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(ˆb结果保留一位小数) (3)若一年按365天计算,试估计收费标准为多少时,年销售额L 最大?(年销售额365L =⋅入住率⋅收费标准x )参考数据:1221ˆni ii nii x ynx y bxnx==-⋅=-∑∑,ˆˆa y bx =-,200x =,621325000ii x ==∑, 5.1z ≈,6112.7i i i y z =≈∑,621158.1i i z =≈∑,3148.4e ≈,19.(12分)[2019·凉山二诊]设矩形ABCD 中,4AD =,AB =F 、E 分别是BC 、CD 的中点,如图1.现沿AE 将AED △折起,使点D 至点M 的位置,且ME MF ⊥,如图2.图1 图2(1)证明:AF ⊥平面MEF ; (2)求二面角M AE F --的大小.20.(12分)[2019·临沂质检]已知抛物线()2:20C y px p =>的焦点为F ,P 为抛物线上一点,O 为坐标原点,OFP △的外接圆与抛物线的准线相切,且外接圆的周长为3π. (1)求抛物线C 的方程;(2)设直线l 交C 于A ,B 两点,M 是AB 的中点,若12AB =,求点M 到y 轴的距离的最小值,并求此时l 的方程.21.(12分)[2019·石家庄质检]已知函数()e sin x f x a x =-,其中a ∈R ,e 为自然对数的底数. (1)当1a =时,证明:对[)0,x ∀∈+∞,()1f x ≥;(2)若函数()f x 在0,π2⎛⎫⎪⎝⎭上存在极值,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[2019·新疆一模]在直角坐标系xOy 中,圆C 的参数方程为()22cos 2sin x y θθθ⎧+⎨⎩==为参数,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,射线l 的极坐标方程为θα=,()0ρ>. (1)将圆C 的参数方程化为极坐标方程;(2)设点A的直角坐标为(,射线l 与圆C 交于点()B O 不同于点,求OAB △面积的最大值.23.(10分)【选修4-5:不等式选讲】[2019·咸阳模拟]已知函数()()2f x x m x =--∈R ,且()20f x +≤的解集为[]1,1-. (1)求实数m 的值;(2)设a ,b ,c +∈R ,且222a b c m ++=,求23a b c ++的最大值.2019届高三第三次模拟考试卷理 科 数 学(三)答 案一、选择题. 1.【答案】A 【解析】因为{}2AB =,所以2m =或22m +=.当2m =时,{}2,4AB =,不符合题意,当22m +=时,0m =.故选A . 2.【答案】A【解析】()()()()22222212i i i 12i i i i 111a a a a a az a a a a a a -----====-++-+++, z 对应的点在第一象限,222210101122001a a a a a a a ⎧->⎪⎧->⎪+∴⇒⇒<-⎨⎨->⎩⎪->⎪+⎩,故本题选A .3.【答案】C【解析】根据题意,向量(),2a =m ,()1,1a =+n , 若∥m n ,则有()12a a +=,解可得2a =-或1,故选C . 4.【答案】D【解析】由已知得,2017年的就医费用为8000010%8000⨯=元,故2018年的就医费用为12750元,所以该教师2018年的家庭总收入为127508500015%=元,故选D . 5.【答案】B【解析】因为3πsin 2α⎛⎫+= ⎪⎝⎭cos α=所以21cos22cos 13αα=-=-,故选B .6.【答案】A【解析】因为()()()122112sin sin sin 122112x x x x x x f x x x x f x --⎛⎫⎛⎫⎛⎫----=⋅-=-⋅=⋅= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 所以函数()f x 是偶函数,其图象关于y 轴对称,排除选项B ,C ;因为2π0,x ⎛⎫∈ ⎪⎝⎭时,()0f x <,所以可排除选项D ,故选A .【解析】当1x =时,1x >不成立,则1112y x =+=+=, 011i =+=,20y <成立,2x =,1x >成立,24y x ==,112i =+=,20y <成立, 4x =,1x >成立,28y x ==,213i =+=,20y <成立,8x =,1x >成立,216y x ==,314i =+=,20y <成立16x =,1x >成立,232y x ==,415i =+=,20y <不成立,输出5i =, 故选C . 8.【答案】C【解析】∵3b =,c =30B =︒,∴由余弦定理2222cos b a c ac B =+-,可得29272a a =+-⨯⨯, 整理可得29180a a -+=,∴解得6a =或3. 如图:CD 为AB边上的中线,则12BD c = ∴在BCD △中,由余弦定理2222cos CD a BD a BD B =+-⋅⋅,可得222626CD =+-⨯⎝⎭,或222323CD =+-⨯⎝⎭, ∴解得AB 边上的中线32CD =C .9.【答案】A【解析】由三视图知该几何体是如图所示的三棱锥A BCD -,将该三棱锥是放在棱长为4的正方体中,A 是棱的中点,在ADC △中,AC =CD AC ⊥,∴6AD =,114S AC DC =⋅=⨯⨯=在ABD △中,AB =BD =,由余弦定理得,222cos 2AD AB BD DAB AD AB +-∠===⋅,∴sin DAB ∠=,∴11sin 61222ABD S AD AB DAB =⋅∠=⨯⨯=△, 又ABC S △与BDC S △均为边长为4的正方形面积的一半,即为8, ∴三棱锥A BCD -的表面积为122828+⨯++,故选A . 10.【答案】A 【解析】如图,取BC 中点G ,连接AG ,DG ,则AG BC ⊥,DG BC ⊥,分别取ABC △与DBC △的外心E ,F ,分别过E ,F 作平面ABC 与平面DBC 的垂线,相交于O ,则O 为四面体A BCD -的球心,由2AB AC DB DC BC =====,得正方形OEGF,则OG = ∴四面体A BCD -的外接球的半径R === ∴球O的表面积为220π4π3⨯=.故选A . 11.【答案】C【解析】由题意以及选项的值可知:1212MA A NA A S S △△是常数,所以可取M 为椭圆的左顶点,由椭圆的对称性可知,N 在x 的正半轴上,如图:则()10,2A ,2A 是()0,2-,()3,0M -,由射影定理可得21OM ON OA ⋅=,可得43ON =, 则12121212139214423MA A NA A A A OM S OM S ON A A ON ⨯⋅====⨯⋅△△,故选C . 12.【答案】C【解析】当1n =时,[)0,1x ∈,[]0x =,[]0x x =,[]{}0x x ⎡⎤∈⎣⎦,故11a =. 当2n =时,[)0,2x ∈,[]{}0,1x ∈,[][)0,2x x ∈,[]{}0,1x x ⎡⎤∈⎣⎦,故22a =. 当3n =时,[)0,3x ∈,[]{}0,1,2x ∈,[][)[)[)0,11,24,6x x ∈,故[]{}0,1,4,5x x ⎡⎤∈⎣⎦,共有4个数,即34a =,故(1)结论正确.以此类推,当2n ≥,[)0,x n ∈时,[]{}0,1,,1x n ∈-,[][)[)[)()())20,11,24,1,61x x n n n ⎡∈--⎣,故[]x x ⎡⎤⎣⎦可以取的个数为()22112312n n n -++++++-=,即()2222n n n a n -+=≥, 当1n =时上式也符合,所以222n n n a -+=;令190n a =,得()1378n n -=,没有整数解,故(2)错误. ()()1211221212n a n n n n n ⎛⎫==- ⎪+++++⎝⎭,所以111111112223341222n S n n n ⎛⎫⎛⎫=-+-++-=- ⎪ ⎪+++⎝⎭⎝⎭, 故1011522126S ⎛⎫=-= ⎪⎝⎭,所以(3)判断正确.21221112222n a n n n +=+->=,222n n =,244n =, 当6n =时,21166n a n +=+;当7n =时,21167n a n +=+, 故当7n =时取得最小值,故(4)正确. 综上所述,正确的有三个,故选C .二、填空题.13.【答案】25π4【解析】由题意作出区域Ω,如图中阴影部分所示,易知1232tan 14122MON -∠==+⨯,故3sin 5MON ∠=, 又3MN =,设OMN △的外接圆的半径为R ,则由正弦定理得2sin MN R MON =∠,即52R =,故所求外接圆的面积为2525ππ24⎛⎫⨯= ⎪⎝⎭.14.【答案【解析】因为相邻两条对称轴间的距离为π2,所以2ππω=,2ω∴=,所以()()2sin 2f x x ϕ=+. 因为函数的图象经过点π,26⎛⎫ ⎪⎝⎭,所以sin π13ϕ⎛⎫+= ⎪⎝⎭,0πϕ<<,π6ϕ∴=.所以()2sin 2π6f x x ⎛⎫=+ ⎪⎝⎭,所以2sin 42πππ6f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭15.【答案】1【解析】由题可得ln 1y x '=+,故切线l 的斜率为1, 又切点坐标为()1,0,所以切线l 的方程为1y x =-,因为切线l 与直线l '垂直,所以11a ⋅=-,所以直线l '的方程为1y x =-+,易得切线l 与直线l '的 交点坐标为()1,0,因为切线l 与y 轴的交点坐标为()0,1-,直线l '与y 轴的交点坐标为()0,1,所以切线l 、直线l '与y 轴围成的三角形的面积为12112⨯⨯=.16.【答案】55,33⎛⎫- ⎪⎝⎭44a a +-设ABC △的高为h ,则∵ABC △的面积为5,∴115522S AB h h ==⨯=,即2h =, 直线AB 的方程为43y a x -=,即4330x y a -+=, 若圆229x y +=上有且仅有四个不同的点C , 则圆心O 到直线4330x y a -+=的距离35a d ==,则应该满足321d R h <-=-=,即315a <,得35a <,得5533a -<<,故答案为55,33⎛⎫- ⎪⎝⎭.三、解答题.17.【答案】(1)2n n a =,21n n b =-;(2)见解析.【解析】(1)由1232n n a a a a b +++⋅⋅⋅+=……①2n ≥时,123112n n a a a a b --+++⋅⋅⋅+=……②①-②可得:()()133222248n n n a b b a b b -=-⇒=-=⨯=,12a =,0n a >,设{}n a 公比为q ,2182a q q ∴=⇒=,()1222n n n a n -∴=⨯=∈*N , ()()123121222222222112n n n n n n b b n +-∴=+++⋅⋅⋅+==-⇒=-∈-*N .(2)证明:由已知:()()11121121212121n n n n n n n n n a c b b +++===-⋅----,121223111111111121212*********n n n n n T c c c ++∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-=--------, 当n ∈*N 时,121n +>,11021n +∴>-,111121n +∴-<-,即1n T <.18.【答案】(1)见解析;(2)0.5ln 3ˆy x =-+;(3)最大值约为27083元.【解析】(1)ξ的所有可能取值为0,1,2.则()2426C 620C 155P ξ====,()112426C 81C 15C P ξ⋅===,()2226C C 1215P ξ===, ξ∴的分布列(2)由散点图可知ˆˆˆybz a =+更适合于此模型. 其中6162216 1.070.52.046ˆi ii ii z yzybzz ==--==≈--∑∑,ˆ3ˆˆay bz =-=, 所求的回归方程为0.5ln 3ˆyx =-+. (3)()3653650.5ln 3ln 10952L x x x x x -=-+=+, 365365ln 365322L x =--+⨯',令50ln 5e 148.4L x x =⇒=⇒=≈', ∴若一年按365天计算,当收费标准约为148.4元/日时,年销售额最大,最大值约为27083元.19.【答案】(1)见解析;(2)π3. 【解析】(1)证明:由题设知:AM ME ⊥, 又ME MF ⊥,AMMF M =,AM ,MF ⊂面AMF ,ME ∴⊥面AMF ,AF ⊂面AMF ,AF ME ∴⊥,在矩形ABCD 中,4AD =,AB =E 、F为中点, 224218AE ∴=+=,22226EF =+=,228212AF =+=,222AEEF AF ∴=+,AF EF ∴⊥,又ME ,EF ⊂面MEF,AF ∴⊥面MEF ,(2)AF ⊂面ABCE ,由(1)知面MFE⊥面AFE ,且90AFE∠=︒, ∴以F 为原点,FE 为x 轴,FA 为y 轴建立如图的空间直角坐标系,在MFE Rt △中,过M 作MN EF ⊥于N ,ME =EF =,2MF =,MN ∴==cos 2FN MF MFE =∠==(也可用2MF FN FE =⋅) ()A ∴、)E、()0,0,0F 、M⎝⎭, 面AFE 的一个法向量为()0,0,1=n ,设面AME 的一个法向量为(),,x y z =m ,EM ⎛=⎝⎭、()6,AE =-,由00EM AE ⎧⎪⎨=⎪⋅⋅=⎩m m,即00+=-=⎧⎪,令1x =,则y =,z = ⎛∴= ⎝⎭m,1cos ,2∴==m n ,π,3=m n , ∴二面角M AE F --为π3. 20.【答案】(1)24y x =;(2)最小值为5,直线方程为10x -=. 【解析】(1)因为OFP △的外接圆与抛物线C 的准线相切, 所以OFP △的外接圆圆心到准线的距离等于圆的半径, 圆周长为3π,所以圆的半径为32r =, 又因为圆心在OF 的垂直平分线上2p OF =, 所以3422p p +=,解得2p =,所以抛物线方程为24y x =. (2)①当l 的斜率不存在时,所以点M 到y 轴的距离为9,此时,直线l 的方程为9x =,②当l 的斜率存在且0k ≠时,设l 的方程为y kx b =+,设()11,A x y 、()22,B x y ,()00,M x y , 由24y x y kx b==+⎧⎨⎩,化简得()222220k x kb x b +-+=, 所以16160Δkb =-+>,由韦达定理可得12242kbx x k -+=,2122b x x k =, 所以12AB ==, 即42911k kb k -=+,又因为2120222222191911151211x x kb k x k k k k k +-===+=++-≥=++, 当且仅当2113k+=时取等号,此时解得k =, 代入12kb =-中,得k b ⎧⎪⎪⎨==⎪⎪⎩,k b ⎧⎪⎪⎨==⎪⎪⎩,所以直线l的方程为y-y =,即直线方程为10x ±-=. 21.【答案】(1)见证明;(2)()0,1a ∈.【解析】(1)当1a =时,()e sin x f x x =-,于是()e cos x f x x '=-. 又因为当()0,x ∈+∞时,e 1x >且cos 1x ≤. 故当()0,x ∈+∞时,e cos 0x x ->,即()0f x '>.所以函数()e sin x f x x =-为()0,+∞上的增函数,于是()()01f x f ≥=. 因此对[)0,x ∀∈+∞,()1f x ≥.(2)方法一:由题意()f x 在0,π2⎛⎫ ⎪⎝⎭上存在极值,则()e cos x f x a x '=-在0,π2⎛⎫⎪⎝⎭上存在零点,①当()0,1a ∈时,()e cos x f x a x '=-为0,π2⎛⎫⎪⎝⎭上的增函数,注意到()010f a -'=<,π2e π0f a ⎛⎫=⋅> ⎪',所以,存在唯一实数00,2πx ⎛⎫∈ ⎪⎝⎭,使得()00f x '=成立.于是,当()00,x x ∈时,()0f x '<,()f x 为()00,x 上的减函数;当02π,x x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 为02π,x ⎛⎫⎪⎝⎭上的增函数,所以00,2πx ⎛⎫∈ ⎪⎝⎭为函数()f x 的极小值点;②1a ≥当时,()e cos e cos 0x x f x a x x ≥-'=->在2π0,x ⎛⎫∈ ⎪⎝⎭上成立,所以()f x 在0,π2⎛⎫ ⎪⎝⎭上单调递增,所以()f x 在0,π2⎛⎫⎪⎝⎭上没有极值;③当0a ≤时,()e cos 0x f x a x =-<'在2π0,x ⎛⎫∈ ⎪⎝⎭上成立,所以()f x 在0,π2⎛⎫ ⎪⎝⎭上单调递减,所以()f x 在0,π2⎛⎫⎪⎝⎭上没有极值,综上所述,使()f x 在0,π2⎛⎫⎪⎝⎭上存在极值的a 的取值范围是()0,1.方法二:由题意,函数()f x 在0,π2⎛⎫ ⎪⎝⎭上存在极值,则()e cos x f x a x '=-在0,π2⎛⎫⎪⎝⎭上存在零点.即e cos x x a =在0,π2⎛⎫⎪⎝⎭上存在零点. 设()cos e xx g x =,2π0,x ⎛⎫∈ ⎪⎝⎭,则由单调性的性质可得()g x 为0,π2⎛⎫⎪⎝⎭上的减函数. 即()g x 的值域为()0,1,所以,当实数()0,1a ∈时,()e cos x f x a x '=-在0,π2⎛⎫⎪⎝⎭上存在零点.下面证明,当()0,1a ∈时,函数()f x 在0,π2⎛⎫⎪⎝⎭上存在极值.事实上,当()0,1a ∈时,()e cos x f x a x '=-为0,π2⎛⎫⎪⎝⎭上的增函数,注意到()010f a -'=<,π2e π0f a ⎛⎫=⋅> ⎪',所以,存在唯一实数0,πx ⎛⎫∈ ⎪,使得()00f x '=成立.于是,当()00,x x ∈时,()0f x '<,()f x 为()00,x 上的减函数;当02π,x x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 为02π,x ⎛⎫⎪⎝⎭上的增函数,即00,2πx ⎛⎫∈ ⎪⎝⎭为函数()f x 的极小值点.综上所述,当()0,1a ∈时,函数()f x 在0,π2⎛⎫⎪⎝⎭上存在极值.22.【答案】(1)4cos ρθ=;(2)2.【解析】(1)圆C 的参数方程为()22cos 2sin x y θθθ⎧+⎨⎩==为参数, ∴圆C 的普通方程为()2224x y -+=,即2240x y x +-=, ∴圆C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=.(2)射线l 的极坐标方程为θα=,()0ρ>,射线l 与圆C 交于点()B O 不同于点, 4cos OB α∴=,π2α≠, 点A的直角坐标为(,2OA ∴==,()1sin 602OAB S OA OB α=⨯⨯⨯︒-△()124cos sin 602αα=⨯⨯⨯︒-14cos sin 2ααα⎫=-⎪⎪⎝⎭22sin cos ααα=-)1cos2sin2αα=+-()2sin 602α=︒-+()2sin 260α=--︒+∴当26090α-︒=-︒,即15α=-︒时,OAB △面积取最大值2S =.23.【答案】(1)1m =;(2【解析】(1)依题意得()2f x x m +=-,()20f x +≤,即x m ≤, 可得1m =.(2)依题意得2221a b c ++=(0a b c >,,)由柯西不等式得,23a b c ++当且仅当23b ca ==,即a =,b =c = ∴23a b c ++。
韩城市高中2018-2019学年高三下学期第三次月考试卷数学
韩城市高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数2. (理)已知tan α=2,则=( )A.B.C.D.3. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA .1B .2C .3D .44. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,265.复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 6.下列命题中正确的个数是( )①如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行. ③若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点. ④若直线l 上有无数个点不在平面α内,则l ∥α. A .0 B .1C .2D .37. 已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .78. 若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是( )A .B .C .D .9. 如图框内的输出结果是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2401B .2500C .2601D .270410.设a ,b 为正实数,1122a b+≤,23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 11.已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a12.设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D .二、填空题13.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.14.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .15.已知一个空间几何体的三视图如图所示,其三视图均为边长为1的正方形,则这个几何体的表面积为 .16.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 . 17.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .18.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .三、解答题19.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.20.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.21.设A=2{x|2x +ax+2=0},2A ∈,集合2{x |x 1}B ==(1)求a 的值,并写出集合A 的所有子集;(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。
陕西省2019届高三年级第三次联考理科数学答案
'
) -
!
故应选 *!#
$!6"设向量与向量 的夹角为"% '"&
此时&满足条件1"5&退出循环&输出 , 的 值 为 -5!
故应选 &!# (!6"+ 一次同 时 抛 掷 ! 枚 质 地 均 匀 的 硬
(#&则 234 #
) %%%%
#
槡)&所
!
以
#
%!
币&恰好出现!枚正面 向 上 的 概
"!#设*"$##6"$#' "$)##F"$##7$ '
零点!即 G #"! #!分
""!"##+#!234&.! #!234& . 曲线 4 的直角坐标方程为$! )+! '!$
#"! !分
+
*$
直线E的参数方程为) +
+
#5)
# 槡!)A
故应选 *!# !!!&"+ 抛物线$! #5/+ 的准线*+# '/&
!%!) "将 函
数+
#4,1"$)
#的 %
图象
向左
它 正好经过双曲线4*-+!! '$.!! ##"-""&.""#
平
移"%%'
#个 单 !
位得
到+
#4,1"$)