反比例函数复习学案

合集下载

反比例函数复习教案

反比例函数复习教案

反比例函数复习优秀教案一、教学目标:1. 知识与技能:(1)理解反比例函数的定义及其性质;(2)掌握反比例函数图象的特点及应用;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过复习,加深对反比例函数知识的理解;(2)培养学生的数学思维能力,提高解决问题的能力。

3. 情感态度与价值观:二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其性质;(2)反比例函数图象的特点及应用。

2. 教学难点:(1)反比例函数图象的绘制;(2)反比例函数在实际问题中的应用。

三、教学过程:1. 导入:通过复习反比例函数的定义及性质,引导学生回顾已学知识,为新课的学习做好铺垫。

2. 课堂讲解:(1)讲解反比例函数的定义:y = k/x(k为常数,k≠0);(2)分析反比例函数的性质:as x changes, y changes in the opposite direction;(3)展示反比例函数图象的特点:经过原点,双曲线形状,两分支分别趋向于x轴和y轴;(4)讲解反比例函数在实际问题中的应用:通过实例分析,让学生掌握反比例函数在实际问题中的解题方法。

3. 课堂练习:布置一些有关反比例函数的练习题,让学生在课堂上完成,检测学生对反比例函数知识的掌握程度。

四、课后作业:2. 绘制一个反比例函数的图象,并描述其特点;3. 选择一道实际问题,运用反比例函数解决。

五、教学反思:本节课通过复习反比例函数的知识,使学生巩固了反比例函数的定义、性质及应用。

在课堂讲解过程中,注重培养学生的数学思维能力,提高解决问题的能力。

通过课堂练习和课后作业,检测学生对反比例函数知识的掌握程度。

在今后的教学中,要继续关注学生的学习情况,针对性地进行辅导,提高教学质量。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质;2. 通过多媒体演示反比例函数图象的特点,增强学生的直观感受;3. 利用实际例子,让学生学会将反比例函数应用于解决实际问题;4. 注重个体差异,给予学生充分的思考时间和空间,鼓励学生提出问题;5. 采用小组合作学习的方式,培养学生的团队合作意识。

第五章反比例函数复习课学案

第五章反比例函数复习课学案

九上第五章复习课学案一、学习目标(一)知识点: 1.经历抽象反比例函数概念的过程、领会反比例函数的意义,理解反比例函数的概念. 2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.3.会从函数图象中获取信息,解决实际问题.(二)能力目标: 1.熟练掌握本章的知识网络结构.2.经历抽象反比例函数概念的过程,理解反比例函数的概念,进一步培养学生的抽象思维能力.3.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和能力.4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能利用图象解决实际问题.(三)重点:1、本章知识的网络结构. 2、反比例函数的概念. 3、会画反比例函数的图象,并掌握其性质. 4、反比例函数的应用.(四)难点:1、探索反比例函数的主要性质. 2、反比例函数的应用.下面请大家系统全面地进行复习.二、重点知识回顾(一)、反比例函数概念. 一般地,如果两个变量x 、y 之间的关系可表示成 的形式,那么称y 是x 的反比例函数。

反比例函数有三种表达方式: 、 、 。

注意:反比例函数的自变量x 不能为 。

(二)反比例函数图象的性质有:1.反比例函数的图象是两支双曲线,当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.2.当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x的增大而增大.3.因为在y=xk (k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交.4. 在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2则S 1=S 25. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.三、主要考点及典例(一)反比例函数的性质1.写出一个具有性质“图象的两个分支在一、三象限内”的一个反比例函数 ;此时,y 随x 的增大而2.要使函数y = k x (k 是常数,且k ≠0)的图象的两个分支分别在第二、四象限内,则k 的值可取为 (请写出符合上述要求的两个数值);3.已知m <-1,则下列函数:① y = m x (x >0),② y = -mx +1;③y = (m +1)x ;④ y = - m +1x(x <0)中,y 随x 的减小而增大的是 (填入函数代号).4.若反比例函数y = (2m -1)22 m x 的图象在第二、四象限,则m = ,该反比例函数的解析式为5.上课时,老师给出一个函数表达式,甲、乙、丙、丁四位同学各说出这个函数的一个性质: 甲:函数图象不经过第三象限;乙:函数图象经过第一象限; 丙:当x < 2时,y 随x的增大而减小; 丁:当x < 2时,y > 0. 已知这四位同学叙述都正确,请你写出具有上述所有性质的一个..反比例函数表达式 . 6.如果点A (7,y 1),B (5,y 2)在反比例函数y = a 2x(a ≠0)的图象上,那么,y 1与y 2的大小关系是 ;7.若点 (x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y = 3x的图象上的点,并且x 1 < 0 < x 2 < x 3,则下列各式正确的是( ).A. y 1 < y 2 < y 3B. y 2 < y 3 < y 1C. y 1 < y 3 < y 2D. y 3 < y 2 < y 18.已知点A (-2,y 1),B (4,y 2),C (6,y 3)在双曲线y = -a 2x(a ≠0)上,则y 1、y 2、y 3的大小是 .9.已知反比例函数y = k x(k < 0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1 < x 2,则y 1 - y 2的值是( ); A. 正数 B. 负数 C. 非负数 D. 不能确定10.已知反比例函数y = -1x的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,那么,下列结论正确的是( );A. y 1 < y 2 B. y 1 > y 2 C. y 1 = y 2 D. y 1与y 2的大小关系不能确定11.反比例函数y = k -1x与一次函数y = k (x +1)在同一坐标系中的象只可能是( ).12、如图,在函数)0(≠=k xk y 的图象上有三点A ,B ,C 过这三个点分别向x 轴、y 轴引垂线,过每个点所引的两条垂线与x 轴,y 轴围成的矩形的面积分别是S 1、S 2、S 3,则( )A S 1>S 2>S 3B S 1<S 2<S 3C S 1<S 3<S 2D S 1=S 2=S 313如图5-10,A 、B 是反比例函数y = 1x的图象上关于原点对称任意两点,过A 、B 作y 轴的平行线,分别交x 轴于点C 、D ,设四边形ACBD 的面积为S ,则( );A. S = 1B. 1 < S < 2C. S = 2D. S > 214.如图5-2,正比例函数y = kx (k >0)与反比例函数y = 1x的图象相交于A 、B 两点,过A 作x 轴的垂线,垂足为C ,连接BC ,则△ABC 的面积为( ).A. 12B. 1C. 2D. 无法确定 15、如图,点P 是双曲线上的一点,过P 点分别向x 轴, y 轴引垂线,得到图中的阴影部分的矩形面积为3,则这个反比例函数的解析式为 。

反比例函数 复习学案

反比例函数  复习学案

反比例函数 复习学案【一、学习目标】:1.系统复习《反比例函数》并应用;2.在复习过程中,渗透待定系数法、分类、数形结合等数学思想方法. 【二、学习重点与难点】:重点:反比例函数知识的应用; 难点:反比例函数知识的综合运用【三、教学过程设计与内容】:一、 反比例函数的解析式 基础知识回顾一般地,形如 ______________( )的函数称为反比例函数.(其中,自变量x 的取值范围为___________________________ )反比例函数解析式还可以表示为_____________和_________________考点突破:1.下列函数中哪些是反比例函数?① y=3x; ② y=2x 2; ③ xy=-2; ④ y=2x -1; ⑤ 2y 3x =; ⑥3y 2x= .2.若函数是反比例函数,则n=______. 变式:若函数 是反比例函数,则n=______.3.已知y 与x 成反比例,当x=2时,y=3,则 y 与x 的关系式为________. 变式:已知y 与x+2成反比例,当x=1时,y=-3,则 y 与x 的关系式为_______.4.k 为何值时,函数y=322)(--+k k xk k 是反比例函数?5.若双曲线y =-6/x 经过点A (m ,-2m ),则m 的值为______.6.一个反比例函数图像过点P ( 5 ,1)和Q (-1 ,2m )那么m=______ 二、 反比例函数的图象以及性质基础知识回顾反比例函数的图象是 .7.若双曲线经过点(-3 ,2),则其解析式是______.8.函数 的图象在第______象限,当x<0时,y 随x 的增大而______ .12n y x -=221n y n x -=-()x y 5=9.函数 的图象在二、四象限内,则m 的取值范围是______ .10.已知点A(x 1,y 1),B(x 2,y 2)(x 1<0<x 2 )都在反比例函数的图象上,则y 1与y 2的大小关系(从大到小)为 .变式:已知点A(-2,y 1),B(-1,y 2),C(4,y 3)都在反比例函数的图象上,则y 1 、y 2 、y 3 的大小关系(从大到小)为 .三、反比例函数中的面积问题11.如图1,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于B.则矩形PAOB 的面积为___________.变式:如图2,点P 是反比例函数 图象上任意一点,PA ⊥x 轴于A ,连接PO,则S △PAO 为_____.归纳:点P 是反比例函数 (k ≠0)图象上任意一点,PA ⊥x 轴于A ,PB ⊥y 轴于B.则矩形PAOB(如图1)的面积为_______,S △PAO (如图2)为_____. 12.如图1,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,PB ⊥y 轴于B, 四边形PAOB 的面积为12,则这个反比例函数的关系式是________ . 变式:如图2,点P 是反比例函数图象上的一点, PA ⊥x 轴于A ,连接PO,若S △PAO =8,则这个反比例函数的关系式是________ .四、反比例函数与一次函数的综合运用13.(2010东莞.中考)如图,一次函数 的图象和反比例函数 的图象交于A 、B 两点,其中A 点坐标为(2,1)(1)试确定k 、m 的值; (2)连接AO,求△AOP 的面积;(3)连接BO,若B 的横坐标为-1,求△AOB 的面积x m y 2-=)0(<=k xky )0(>=k xky xy 2-=图1 图2xy k =xy 2-=1y kx =-my x =变式:如图,一次函数 的图象与反比例函数 的图象交于M(2,m)、N(-1,-4)两点.(1)求反比例函数和一次函数的解析式;(2)当x 为何值时,反比例函数的函数值大于一次函数的函数值?五、反比例函数在实际问题中的应用:14.为了预防“非典”,燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物5分钟燃毕, 此时室内空气中每立方米的含药量为10毫克.请根据题中所提供的信息,解答下列问题:(1)药物燃烧时y 关于x 的函数关系式为: ________ 。

(八年级数学教案)反比例函数复习学案

(八年级数学教案)反比例函数复习学案

反比例函数复习学案
八年级数学教案
●一、反比例函数的概念:
1、一般地,形如的函数叫做反比例函数。

注意:(1)常数k 称为比例系数,k 是非零常数;
(2)解析式有三种常见的表达形式:
(A) (B) (C)
1.下列函数,① ②.③ ④. ⑤ ⑥ ;其中是y关于x的反比例函数的有:_________________.
2.函数是反比例函数,则的值是
3.已知函数,其中与成正比例, 与成反比例,且当=1时, =1; =3时, =5.求:(1)求关于的函数解析式; (2)当=2时, 的值.
●二、反比例函数的图象和性质:
1.形状:图象是双曲线。

2.位置:(1)当k&gt;0时,双曲线分别位于第________象限内.
(2)当k&lt;0时, 双曲线分别位于第________象限内。

3.增减性:(1)当k&gt;0时,_________________, y随x的增大而________.
(2)当k&lt;0时,_________________,y随x的增大而______。

4.变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交
5.对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点
____________.
1.若反比例函数的图象在第二、四象限,则的值是( )
A、-1或1;
B、小于的任意实数;
C、-1;
D、不能确定
2. 函数y=-ax+a与(a≠0)在同一坐标系中的图象可能是( )
3.正比例函数和反比例函数的图象有个交点.
4.。

《反比例函数》复习学案

《反比例函数》复习学案

反比例函数复习学案(一)
一. 反比例函数的概念:
例1.下列函数中,哪些是y 关于x 的反比例函
数?
(填方号)
1
x ① y= 2y x =-②
③ xy=5 21y x =+④
13y x -=⑤ ⑥ y=6x-4
定义:形如 叫做反比例函数。

表现形式:①
② ③
练习1.
2
3
m
m +-已知y=x (m 为常数)是反比例函数,
求m 的值。

二.反比例函数的图象
总结: 练习2
44
x x
例3.作函数y=和y=-的大致图象
例4、焦老师家离学校的距离为5400米,每天上班时的速度为v (米/分),所需时间为t (分)
(1)则速度v 与时间t 之间有怎样的函数关系?
(2)若到达单位用了30分钟,那么焦老师的平均速度是多少? (3)如果焦老师的速度为270米/分,则需要几分钟到达学校?
应用变式:。

反比例函数复习导学案

反比例函数复习导学案

反比例函数复习(第一课时)备课时间:2013。

9。

8 主备人:曹万强 使用班级:九年级(11)班 明确学习目标:自学目标:理解反比例函数的三种表达形式,会求比例系数.互学目标:巩固反比例函数的性质,会用待定系数法求反比例函数表达式并能画出图象. 讲学目标:能够列出实际问题中的反比例函数关系并求图象交点与坐标轴构成三角形的面积。

知识点回顾:反比例函数xky =(k ≠0)的图象是由两个分支组成的曲线。

故叫双曲线。

当0>k 时,图象位于第一、三象限,在每个象限内Y 随X 的增大而减小;当0<k 时,图象位于第二、四象限。

在每个象限内Y 随X 的增大而增大;反比例函数xky =(k ≠0)的图象既是中心对称图形又是轴对称图形。

引导探究活动一:1.下列函数关系式中,是反比例函数的是( )。

A 、4xy =B 、12+-=x yC 、x m y =D 、xy 32-= 导学:含X 的只一项,X 在分母上,且系数不为零。

2.下列坐标是反比例函数xy 3=图象上的一个点的坐标是( )。

A 、(3,-1) B 、(1,3) C 、 (-3,1) D 、(-3,33)导学:代入检验,能使函数左右两边相等即可。

3.已知k > 0,则函数kx y =1与函数xky =2的大致图象是图1中的( )。

导学:可假设K 的正、负逐个对比选择。

4.下列函数中,图象位于第二、四象限且在其图象所在象限内,y 的值随着x 的值增大而增大的是( )。

A 、x y 2-= B 、1+-=x y C 、x y 21-= D 、xy 21= 导学:寻找K 小于零的反比例函数。

典型例题引导探究活动二:、一次函数ax y =与反比例函数xb y 1+=的图象交于A 、B 两点,已知A 点坐标为 (1,2) ,求:(1)确定这两个函数的表达式;(2)求出点B 的坐标。

总结1:分别代入确定表达式。

总结2:将两个表达式组成方程组确定交点。

九年级数学下册26反比例函数复习学案新版新人教版.doc

九年级数学下册26反比例函数复习学案新版新人教版.doc

第26章反比例函数【学习目标】1. 理解反比例函数的概念,并根据己知条件确定反比例函数的解析式.2. 会利用数形结合的思想分析并掌握反比例函数的性质.3. 会利用反比例函数建模并解决实际问题.【重点难点】重点:掌握反比例函数的图象和性质,会运用反比例函数的图象和性质解题. 难点:运用反比例函数的图象和性质解决实际问题.【知识回顾】(一) 反比例函数的定义:5 3k 1 •下列函数:①y=2x —1; ®y=—;③y=2/④y=—;⑤刃=3; ®y=一中,y 是 %x xX 的反比例函数的有 _______________ (填序号).2. y = Ca-\)x a ~2是反比例函数,则沪 ______________ • (二) 反比例函数图象与性质:23•已知反比例函数y = -一,下列结论不正确的是()xA.图彖必经过点(-1,2)B. y 随;r 的增大而增大C.图象在第二、四象限内D.若^>1,则y >—2 _ 一 2 -4•己知点J (—L yj 、〃⑵乃)、C (3,乃)在反比例函数y = ----------- 的图象上.下列结论中X正确的是()A. 口>乃>乃B. 口〉必〉乃 C •必〉y 】> y2 D •乃〉列>口(三) k 值与面积问题:13 5•如图,点外在双曲线尸一上 点〃在双曲线y=-上,且AB//X 轴,Q 〃在x 轴上,若X X比于〃,交y 轴于C,若S\AOB=\,则刃的解析式是 ______________________________第一题图6•双曲线口、乃在第一象限的图象如图,过)〉四边形/〃仞为矩形,则它的面积为【课堂探究】-、综合运用1. 如图,函数y }=—与儿二层兀的图象相交于点A (1, 2)和点〃,当y\<y 2时,自变2. 如图,一次函数y=kx + b 的图彖与坐标轴分别交于力,〃两点,与反比例函数y =—x的图象在第二象限的交点为a CD Lx 轴,垂足为A 若0B=2, 0D= 4,三角形AOB 的面积为1. ①.求一次函数与反比例函数的解析式; ②.直接写出当*0时,滋+1f>0的解集.二、矫正补偿病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最 大值为4毫克.已知服药后,2小时前每亳升血液中的含药量y (单位:亳克)与时间 巩单位:小时)成正比例;2小时后y 与/成反比例.根据以上信息解答下列问题:(1) 求当0W/W2时,y 与%的函数关系式;(2) 求当x>2时,y 与;r 的函数关系式;(3) 若每毫升血液中的含药量不低于2毫克吋治疗有效,则服药-次,治疗疾病的有效第26章-反比例两数复习答案量/的取值范闱是( )第一题图【知识回顾】1. ②③⑤;2.-1;3.B ;4.B ;5. 2;6. y. = --X【课堂探究】一、综合运用1. C2. 解:(1) V0B=2, AAOB 的面积为 1,AB(-2,0), OA = 1, AA(0, -1).1y=—~x —\.又 V0D=4, CD 丄x 轴,AC(-4, y).将 X= —4 代入 y= —I%—1 得 y= 1, ■ ■ 1 r • • ni~~ 4. —44:.y=一一・x⑵由图可得,当皿时,滋+力-f>0的解集是"4.二、矫正补偿解:(1)当0WxW2时,y 与x 成正比例函数关系. 设y = kx,由于点(2, 4)在直线上,所以 4=2k, k = 2,即 y = 2x.£(2) 当x>2时,y 与x 成反比例函数关系,设尸-.X由于点(2, 4)在图象上,所以4=歹《= &即尸=一・Ci X(3) 当0W/W2时,含药量不低于2亳克,即2xM2, xMl.即服药1小时后;当x>2吋,含药量不低于2毫克,b=T, —2斤+力=0・ I 方=一1・8即一32, xW4.即2〈xW4.x所以服药一次,治疗疾病的有效时间是1+2 = 3(小时).。

《反比例函数》复习学案

《反比例函数》复习学案

1. 反比例关系的函数解析式特点;学习中与正比例函数性质相类比。 2. 熟练反比例函数图像的性质及其运用; 熟练反比例函数有关的面积问题。 3. 体会函数思想的运用;提高发散思维能力。 重点:反比例函数的定义、图像性质。 难点:反比例函数增减性的理解。
三、
教材分析
本课内容是青岛出版社数学九年级下册 5.3 《反比例函数》 的小结与复习课。 函数本身是数学学习中的重要内容,而反比例函数又是基础函数。反比例函数是 继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别 于一次函数, 但又建立在一次函数之上, 而又为以后更高层次函数的学习, 函数、 方程、不等式间的关系的处理奠定了基础。 通过本节课对本章知识的复习,让 学生进一步体会反比例函数的意义,了解反比例函数的图象,能根据图象和解析 式进一步探索并理解反比例函数的性质, 能用反比例函数解决某些简单的实际问 题。因此,本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过 程。
y o (1) x
y o (2) x (3)
y o x (4)
y o x
)的图象上的一点分别作坐 2 在平面直角坐标系内,从反比例函数 y=k/x(k>0) 标轴的垂线段,与坐标轴围成的矩形的面积是 12,请你求出该函数的解析式。 变式训练
y 1、函数 y=ax-a 与 =
a (a ≠ 0) x
在同一条直角坐标系中的图象可能是
经过 A(-2,_)在第三象限, y
4、 k 当
函数 y =
k +1 是反比例函数,当 k x
函数图像在二、 四象限。
函数 y 随 x 增大而
y=
5、反比例函数 数关系式分别是
k x
和正比例 y=kx 函数图像都经过 A(-1,-2)则这两函 - -

反比例函数的复习导学案

反比例函数的复习导学案

反比例函数专题复习学案1知识点回顾1、反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 , (k 为常数,k )的形式,那么称y 是x 的反比例函数;自变量x 的取值范围是 。

2、求反比例函数的解析式:由于反比例函数只有一个待定系数 。

所以只需 对x 、y 的值(或 个点的坐标)即可确定k 的值或解析式。

即 =k 。

3、反比例函数的图象和性质:反比例函数的图象是 线。

由于x 0,所以它的两条分支无限的接近 轴与 轴,但永远不回到达x 轴和y 轴。

当0>k 时,图象两分支分别在第 象限,在 内,y 随x 的增大而 ; 当0<k 时,图象两分支分别在第 象限,在 内, y 随x 的增大而 .4.对称性:(1) 反比例函数图象是轴对称图形,对称轴是 ( ) 或( )(2) 反比例函数图象是中心对称图形,对称中心是 ( )5、k 的几何意义:(如右图)过双曲线y =k x(k ≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则S矩形OAPB = . =∆oAP s =∆OBP S .由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,(如右图)作QC ⊥PA 的延长线于C ,则三角形PQC 的面积为 .小试牛刀1.若32)2(-++=m m x m y 是反比例函数则这个反比例函数的解析式是 。

2.已知反比例函数当x=-2时,y 的值是-3,那么下列四个点中,也在这个函数图象上的是( )A 、(-6,1)B 、(1,6)C 、(2,-3)D 、(3,-2)3.若A(x 1 ,y 1),B(x 2 ,y 2),C(x 3 ,y 3)是双曲线xa y 12--=的图像上三点,且x 3>x 2>0>x 1,则y 1,y 2,y 3 的大小关系是: 。

4. 如图,过反比例函数 y = k x(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB=2,则k 的值为( ) A.2 B.3 C.4 D .5典型题例(x <0)上,点A 和点C 分别 如图,点B (3,3)在双曲线y= k x (x >0)上,点D 在双曲线y=-在x 轴,y 轴的正半轴上,且点A ,B ,C ,D 构成的四边为正方形.(1)求k 的值;(2)求点A 的坐标.直击中考 如图,双曲线()0>=k xk y 经过Rt △OAB 斜边OB 的中点D ,若三角形OBC 的面积是6,求k 的值。

反比例函数全章学案及测试题

反比例函数全章学案及测试题

反比例函数学案(一)——1.1反比例函数一、温故知新:1、在一个变化的过程中,如果有两个变量x 和y ,当x 在其取值范围内任意取一个值时, y 都有 ,则称x 为 ,y 叫x 的 。

2、一次函数的解析式是: ;当 时,称为正比例函数。

3、一条直线经过点(2,3)、(4,7),则该直线的解析式是 。

以上这种求函数解析式的方法叫: 。

二、学习新知:1、反比例函数: 。

反比例函数的表达式还可以表示为: 。

2、列举几个反比例函数的例子: 。

3、例题分析:例1、已知y 是x 的反比例函数,当x=2时,y =6。

(1)写出y 与x 之间的函数解析式;(2)求当x=4时y 的值。

三、释疑提高:1、下列等式中哪些变量之间的关系是反比例函数?(1)3x y =;(2)y = (3)xy =21; (4)y =52x +;(5)y = -32x;(6)y =13x +;(7)y =x -42、已知函数1m m y x-=是关于x 的反比例函数,则m 的值是 。

3、当n 取 时,y =(n 2+2n )21n n x +-是反比例函数。

4、已知y 是x 的反比例函数,当x =3时,y =7,(1)写出y 与x 的函数关系式;(2)求x =7时y 的值。

5、反比例函数k y x =的图象经过点(32-,5)、(a ,-3)及(10,b ),则k = ,a = ,b = 。

6、已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1是,y =4,x =2时,y =5,(1)求y 与x 的函数关系式;(2)当x = -2时,求函数y 的值。

四、归纳小结:反比例函数学案(二)——1.2反比例函数的图象和性质(一)一、温故知新1、反比例函数: ,反比例函数又可表示为: 、 。

2、过点(2,5)的反比例函数的解析式是: 。

3、一次函数y =kx +b 的图象是: ,它经过点: 、直线y =kx 经过点: 。

《反比例函数》复习教案

《反比例函数》复习教案

第五章 反比例函数学习目标1、梳理知识点,把它归纳总结在一起。

2、利用总结的知识点,解决一些实际问题。

学习重点:1、梳理知识点,把它归纳总结在一起。

2、利用总结的知识点,解决一些实际问题 学习难点:灵活利用知识点解决实际问题 教学过程: 一、自主学习 目标:1、梳理知识点,把它归纳总结在一起2、熟记知识点,同桌互相背诵。

内容:复习162---164页方法:1、结合162页,总结出反比例函数的定义和三种表达式和六条性质。

2、小组交流出总结的结果,然后背诵 检测:提问每组6、7、8号同学 .本章内容框架[师]同学们可以根据以上内容框架, 用自己的语言归纳总结本章内容.二、举出现实生活中有关反比例函数的实例,并归纳反比例函数概念. [生]例:当三角形的面积是12 cm 2时,它的底边a(cm)是这个底边上的高h(cm) 的函数. 解:a =h24. 在上式中,每给h 一个值,相应地就确定了一个a 的值.因此a 是h 的函数,又它们之间的关系符合y=xk(k ≠0),因此,a 是h 的反比例函数. 三、说说函数y =x 2和y =-x2的图象的联系和区别. [生]联系:(1)图象都是由两支曲线组成; (2)它们都不与坐标轴相交;(3)它们都不过原点,既是中心对称图形,又是轴对称图形. 区别:(1)它们所在的象限不同,y=x 2的两支曲线在第一和第三象限;y=-x2的两支曲线在第二和第四象限. (2)y =x 2的图象在每个象限内,y 随x 的增大而减小:y=-x2的图象在每个象限内,y 随x 的增大而增大. [师]还有一点.虽然y =x 2和y=-x2的图象不同,但是在这两个函数图象上任取—点,过这两点分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积相等,都为2.四、画反比例函数图象的步骤,讨论反比例函数图象的性质[生]画图象的步骤有列表,描点,连线.在画反比例函数的图象时应注意:列表时自变量的取值应选取绝对值相等而符号相反的—对一对的数值,并尽量多取一些点,连线时要连成光滑的曲线,而不是折线.反比例函数图象的性质有:1.反比例函数的图象是两支双曲线,当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.2.当k>0时.在每一个象限内,y 随x 的增大而减小;当k<0时,在每一个象限,y 随x 的增大而增大.3.因为在y=xk(k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交.4. 在一个反比例函数图象上任取两点P ,Q ,过点P ,Q 分别作x 、轴,y 轴的平行线,与坐标轴围成的矩形面积为S 1,S 2则S 1=S 25. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.[师]这位同学总结的非常详细,下面进行有关练习.Ⅰ.下列函数中,其图象位于第一、三象限的有哪些?在其图象所在象限内,y 的值随x 值的增大而增大的是哪些( )(1)x y 31=(3)x y 2.0= (2)x y 10-= (4)xy 1007-= 2.在函数xy 3=的图象上任取一点P ,过P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积是多少?分析:根据反比例函数图象的根据,当k >0时,图象位于第一、三象限,在每一个象限内,y 随x ,的大而减小;当k<0时,正好相反,但在xy 31=中,形式好象和反比例函数的形式不相同,但可以化成xy 31=的形式好像和反比例函数.[生]1.图象位于第一、三象限的有(1)(2).在其图象所在象限内,y 的值随x 值的增大而增大的有(3)(4). 2. 由题意可知 S=|k |=3.五、你能用反比例函数的知识解决有关问题吗? 1.一个圆台物体的上底面积是下底面积的41,当下底面放在桌子上时,对桌面的压强是200 Pa ,倒过来放,对桌面的压强是多少?2.一定质量的CO 2,当体积v =5米3时.它的密度ρ=1.98千克/米3,求(1)ρ与v 的函数关系式;(2)当v=9米3时,CO 2的密度.[师]分析:压强p 与受力面积S ,压力F 之间的关系为p=SF,因为是同一物体,所以F 是一定的,由于面积不同,所以压强也不同.质量m ,密度ρ和体积v 之间的关系为:ρ=vm由,由v=5米3,ρ=1.98千克/米3,可知质量m ,实际是已知反比例函数中的k ,就求出了反比例函数关系式. 解:1.当下底面放在桌面上时,对桌面的压强为p 1=SF=200Pa,所以倒过来放时,对桌面的压强p 2=S FS F 441==800Pa. 2.设CO 2的质量为m 千克,将v=5米3,ρ=1.98千克/米3代入公式ρ=vm中,得m=9.9千克.故所求ρ与v 间的函数关系式为ρ=v9.9. (2)当v =9米3时,ρ=v9.9=1.1(千克/米3), Ⅲ.课堂练习 1.对于函数y=x2,当x>0时,y_______0,这部分图象在第______象限;对于y =-x2,当x<0时,y____0,这部分图象在第_____象限. 2.函数y=x10的图象在第____象限内,在每一个象限内,y 随x 的增大而______.3.根据下列条件,分别确定函数y =xk的表达式(1)当x=2时,y =-3;(2)点(-31,21-)在双曲线y =x k上.答案:1.> 一、三 < 二、四2.一、三 减小3.(1)y=x6- (2)y=x 61;Ⅳ.课时小结本节课我们从现实世界出发,抽象出反比例函数的概念,比较了反比例函数y=x 2和y=-x2的图象的联系和区别,归纳了反比例函数的图象和性质,并进一步进行了应用. Ⅴ.课后作业 复习题 A 组 Ⅵ.活动与探究反比例函数图象与矩形的面积 若点A 是反比例函数y=xk(k ≠0)图象上的任意一点,且AB 垂商x 轴,垂足为B ,AC 垂直于y 轴,垂足为C,则矩形面积S ABOC =|k |.=图(1). 1.如图(2),P 是反比例函数)y=xk(k ≠O)图象上的一点,由P 点分别向x 轴,y 轴引垂线,得阴影部分(矩形)的面积为3,则 这个反比例函数的表达式______.2. 如图(3)过双曲线y=x2上两点A 、B 分别作x 轴,y 轴的垂线,若矩形ADDC 与矩形BFOE 的面积分别为S 1,S 2,则S 1与S 2的关系是_____.1.解:由题意得|k |=3.又双曲线的两支分布在第二、四象限,所以k<0,故k =-3. ∴k=x3 . 2.解:由题意得 S 1=S 2=|k |=2.。

反比例函数复习教案

反比例函数复习教案

第十七章 《反比例函数》复习教案一、 课标要求1、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式2、会画反比例函数的图像,探索并掌握掌握反比例函数的性质3、运用反比例函数解决某些实际问题 二、知识清单1、一般的,如果两个变量x 、y 之间的关系可以表示成 (k 为常数,且k ≠0)的形式,那么称y 是x 的反比例函数。

3、用待定系数法确定函数解析式的步骤:① ② ③ ④ 三、例题精讲 1、下列函数:(1)y x =(2)2x y = (3)1y x =-+ 1(4)1y x =+ 3(5)2y x=-, 其中反比例函数有 (填序号) 2、若函数210(3)k y k x -=-是反比例函数,则k3、如果双曲线y=kx经过点(-2,3),那么此双曲线也经过点( ) A .(-2,-3) B .(3,2) C .(3,-2) D .(-3,-2)4、已知圆柱的侧面积是100πcm 2,若圆柱底面半径为r (cm 2),高线长为h (cm ),则h 关于r 的函数的图象大致是 ( )5、已知反比例函数m y 23-=,当______m 时,其图象的两个分支在第一、三象限内;6、已知直线y=kx+b 经过一、二、四象限,则对于双曲线kby x=其中的一个分支,y 随的x 的 而7、一次函数1+-=kx y 与反比例函数xky =在同一坐标系中的图像大致是( )8、 在函数a x a y (12--=为常数)的图象上有三点),1(1y -,),41(2y -,),21(3y ,则1y ,2y ,3y 的大小关系是9、如图,已知一次函数)0(≠+=k b kx y 的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数)0(≠=m xmy 的图象在第一象限交于点C ,CD 垂直于x 轴,垂足为D .若OA =OB =OD =1.(1)求点A 、B 、D 的坐标;(2)一次函数和反比例函数的解析式.10、为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物8分钟燃毕, 此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息,解答下列问题:(1)药物燃烧时y 关于x 的函数关系式为: _____________, 自变量x 的取值范围是:________________;药物燃烧后y 关于x 的函数关系式为:___________________. (2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?x(分钟)y(豪克)86O反比例函数达标检测试卷一.选择题(每题3分,共计30分)1.面积为4的矩形一边为x ,另一边为y ,则y 与x 的变化规律用图象大致表示为 ( )2.下列各点中,在函数xy 2-=的图像上的是( ) A 、(2,1) B 、(-2,1) C 、(2,-2) D 、(1,2) 3.反比例函数y =x n 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、14.若反比例函数y =xk (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2) 5.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )6.若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 7.一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 8.已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,))) A . B . C . .A 、m <0B 、m >0C 、m <21D 、m >21 9.如图,关于x 的函数y=k(x-1)和y=-k(k ≠0), 它们在同一坐标系内的图象大致是10.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ). A 、x <-1 B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2二.填空题(每题3分,共计21分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天 使用的小时数x 之间的函数关系式为 . 12.已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13.若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14.反比例函数22)12(-+=kxk y 在每个象限内y 随x 的增大而增大,则k= .15.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,12),则8k 1+5k 2的值为________. 16. 若m <-1,则下列函数:①()0 x xmy =;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。

反比例函数复习学案

反比例函数复习学案

反比例函数复习学案班级 姓名 等级【考点透视】1.能根据已知条件利用待定系数法确定反比例函数的表达式;2.能正确画出反比例函数的图象,结合图象或表达式说出其性质,并能运用其性质解决简单的实际问题;3.能结合反比例函数图象计算简单图形的面积。

【知识梳理】1.反比例函数的解析式: 或xy = k2.反比例函数的图象与性质:双曲线 (注意:自变量的取值范围是除0以外的一切实数)3.待定系数法求解析式:根据两变量之间的反比例关系,设xk y = 由已知条件求出K 的值,从而确定函数关系式。

4.反比例函数y=k x(k ≠0)中的比例系数K 的几何意义:过双曲线y=k x(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为 .所得三角形面积为 。

【考题例析】一、 反比例函数图像与性质例1.(2012青海) 函数y=kx+1与函数y=k x在同一坐标系中的大致图象是( )例2.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 增大而减小,则k 的取值范围是 _ 。

例3. (2012•常德)对于函数xy 6=,下列说法错误..的是 ( ) A . 它的图像分布在一、三象限 B . 它的图像既是轴对称图形又是中心对称图形 C. 当x>0时,y 的值随x 的增大而增大 D. 当x<0时,y 的值随x 的增大而减小 例4. 在函数y=6x的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3( x 3.y 3),已知x 1<x 2<0<x 3,则下列各式中,正确的是( )A.y 1<0<y 3B.y 3<0<y 1;C.y 2<y 1<y 3D.y 3<y 1<y 2 二、反比例函数关系式例5.(2011潍坊市)点P 在反比例函数)0(≠=k x k y 的图像上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为 。

《反比例函数》复习学案

《反比例函数》复习学案

《反比例函数》复习学案《《反比例函数》复习学案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!【温馨提示】今天将再次记录你的自信、沉着、智慧和收获,请相信自己的实力,祝你成功!【学习目标】1.理解反比例函数的概念,会用待定系数法确定反比例函数的解析式.2.能根据反比例函数的图象或解析式说出其性质.3.能结合反比例函数的图象计算简单图形的面积.【学习重点、难点】1.反比例函数的图象与性质.2.反比例函数解析式的确定.【考情分析】1.考查内容:从近几年山西省中考试卷可以看出,反比例函数解析式的确定,反比例函数的图象和性质以及反比例与一次函数的综合题是中考考查的重点.2.题型赋分:选择题、填空题2—3分,解答题一般在7分左右.3.能力层次:以中、低难度为主.【复习指南】预测2014年中考命题仍延续这一特点,既要重视反比例函数的基本概念和性质,也要重视反比例函数、一次函数与几何问题的综合题.【学习过程】一、考点透视与考题研究★考点一:反比例函数的概念1.内容复习:形如(k为常数且)的函数叫做反比例函数.其中自变量的取值范围是.反比例函数的关系式还可以表示为或(k≠0)2.考题研究:①已知函数是y关于x的反比例函数,则m=②下列函数:(1) (2) (3) (4) (5) (6) 其中y是x的反比例函数的是特别提醒:★考点二:反比例函数的图象与性质OO 1.内容复习:①形状②位置③发展趋势④增减性⑤对称性2.考题研究:①已知反比例函数的图象位于第二、四象限.则m的取值范围是②已知一次函数的图象经过第一、二、四象限,则反比例函数的图象位于第象限.③在反比例函数(k<0)的图象上有两点(-1, ),( , ),则的值是()A.负数B.正数C.非负数D.不能确定已知点(-1,)(2,)(3,)在反比例函数(k为常数) 的图象上,则、、的大小关系是.④函数与 ( )在同一直角坐标系中的图象可能是()ABCD特别提醒:★考点三:反比例函数中的几何意义与解析式确定1.内容复习:如图点P(a、b)、点Q在双曲线上,则ab的值等于;S矩形PAOB=;SRt△QOC=;若SR t△QOC面积为2,那么双曲线的解析式为.2.考题研究:①如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数的图象上,若菱形OABC的面积为4,则的值为.②如图,点A在双曲线上,点B在双曲线上,且AB//轴,C、D在轴上,若四边形ABCD为矩形,且面积为2,则的解析式是.③如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与轴平行,点P(3a,a)是反比例函数( >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为.①题图②题图③题图特别提醒:确定反比例函数解析式的两种方法二、山西考场①(2009年9题).若反比例函数的表达式为,则当 <-1时,的取值范围是.②(2009年12题).反比例函数的图象经过点(-2,3),那么k的值是().A. B. C.- 6D. 6③(2010年15题).如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABC 的面积为2,则这个反比例函数的解析式为.④(2012年10题).已知直线 (a0)与双曲线( ≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(-2,6)B. (-6,-2)C.(-2,-6)D. (6,2)⑤(2013年16题,2分).如图,矩形ABCD在第一象限,AB在x轴正半轴上.AB=3,BC=1,直线经过点C交x轴于点E,双曲线经过点D,则k的值为.⑥(2011年20题,7分).如图,一次函数的图象分别交于x轴,y轴于A、 B两点,与反比例函数的图象交于 C、D两点,DE⊥x轴于点E,已知C(6,-1),DE=3(1)求反比例函数与一次函数的解析式.(2)根据图象直接直接回答,当x为何值时,一次函数的值大于反比例函数的值?三、课堂小结1.本节课你有什么收获?2.本节课你还有什么问题?《反比例函数》复习学案这篇文章共4567字。

人教版九年级下册数学《反比例函数》复习学案

人教版九年级下册数学《反比例函数》复习学案

第十七章 反比例函数(复习)一、 知识归纳1、反比例函数的定义一般地,如果两个变量x,y 之间的关系表示成xky =(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。

反比例函数的自变量不能为零。

反比例函数的解析式可表示为xy=k , y=kx 1-(k 为常数,k ≠0)2、画反比例函数图象:描点法3、反比例函数的图象与性质(如下表)4、反比例函数的应用:(1)过双曲线xky =上任意一点作x 轴、y 轴的垂线,所得矩形的面积等于︱k ︱(2)能根据题意,列反比例函数解析式,并能画出反比例函数图象 (3)会根据图象求反比例函数解析式,并能根据图象回答问题。

二、基础训练1.若函数满足043=+xy,则y 与x 的函数关系式为 ,y 是x 的 - 函数.2.对于函数xy 10=,当x>0时,y 0,这部分图象在第 象限;y 随x 的增大而 .对于函数xy 10-=,当x<0时,y 0,这部分图象在第 象限;y 随x的增大而 .3.若反比例函数xky =( k ≠0),当x>0时, y 随x 的增大而增大,则一次函数y=kx-k 的图象经过 象限。

4.如果反比例函数图象经过点 (1,-2),那么这个反比例函数的解析式为5.已知反比例函数x m y 2=图象过点(-3,-12),且双曲线xm y =位于二、四象限,则m= 6.已知反比例函数xky -=4,若函数图象位于第一、三象限,则k 的取值范围 ;若在每个象限内,y 随x 的增大而增大,则k 的取值范围三.纠错与练习例1、指出下列函数中哪一个是y 关于 x 的反比例函数,并指出其k 的值。

①3y x =-②21y x =- ③3x y π=解 ①是,k = ②是,2k =③是,3k =针对训练:指出下列函数中哪一个是y 关于x 的反比例函数,并指出其k 的值。

①1y kx -= ②xy = ③21y x =例2、已知:y 与2x 成反比例函数,并且当x=3时,y=4 (1)写出y 和x 之间的函数解析式 (2)求当x=1.5时,y 的值 解1:(1)设2ky x=并且当x=3时,y=4 则有:243k=得k =36所以:解析式为36y x=(2)当x=1.5时,36241.5y == 解2:(1)设k y x=并且当x=3时,y=4 则有:43k=得k =12 所以:解析式为12y x=(2)当x=1.5时,1281.5y ==针对训练:已知:y 与3x -成反比例函数,并且当x=2时,y=4 (1)写出y 和x 之间的函数解析式。

反比例函数期末复习学案

反比例函数期末复习学案

《反比例函数》期末复习学案知识梳理1.反比例函数的概念:形如____________的函数叫做反比例函数。

(1)反比例函数y=k x 中的k x 是一个分式; (2)自变量x ≠0,函数与x 轴、y 轴无交点; (3)y=k x 也可写成(0)xy k k =≠或1y kx -=,注意自变量x 的指数为-1,还应注意系数k ≠0这一限制条件.2.反比例函数的图象是_____________;当 k > 0时,图象在第_________象限,在______________,y 随x 的增大而___________; 当 k < 0时,图象在第_________象限,在______________,y 随x 的增大而___________;3.反比例函数y=k x中k 的意义 如图1,设点P (a ,b )是双曲线xk y =上任意一点,作PA⊥x 轴于A 点,PB⊥y 轴于B 点,则1,2PBOA PAO PBO S k S S k ∆∆=== 如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC⊥PA 的延长线于C , 则2PQC S k ∆=图1 图2专题练习题型1:反比例函数的概念(1)下列函数中,y 是x 的反比例函数的是( ).A .x y 3=B .x y 23--=C .13=xyD .2x y =(2)下列函数中,y 是x 的反比例函数的是( ).A .x y 41=B .21xy -= C .21-=x y D .x y 11+= 题型2:待定系数法确定函数解析式.(1)若y 与x1成反比例, x 与y 1成正比例,则y 是z 的( ). A .正比例函数 B .反比例函数 C .一次函数 D .不能确定(2)已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值; (3)y =-2时,x 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授课日期: 2014 年 月 日
学生
教师 授课 时段
年级 八年级
学科
数学
课题
反比例函数
教师寄语 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。

—— 苏轼
教学内容
一、基础知识
1. 定义:一般地,形如x
k y =
(k 为常数,o k ≠)的函数称为反比例函数。

x k
y =还可以
写成kx
y =1
-
2. 反比例函数解析式的特征:
⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.
⑵比例系数0≠k
⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3. 反比例函数的图像 ⑴图像的画法:描点法
① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线)
⑵反比例函数的图像是双曲线,x
k
y =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,
所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。

⑷反比例函数x k y =
(0≠k )中比例系数k 的几何意义是:过双曲线x
k
y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

4.反比例函数性质如下表:
k 的取值 图像所在象限
函数的增减性
o
k>一、三象限
在每个象限内,y值随x的增大而减小
o
k<二、四象限
在每个象限内,y值随x的增大而增大
5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即
可求出k)
直击中考
1.(2013山西)如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线y=1
2
x-1经过点
C交x轴于点E,双曲线
k
y
x
=经过点D,则k的值为________.
2.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF过C点,M为EF的中点,则下列结论正确的是
()
A、当x=3时,EC<EM
B、当y=9时,EC>EM
C、当x增大时,EC·CF的值增大。

D、当y增大时,BE·DF的值不变。

3.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为.
4.(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,
且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1= ,S n= .(用含n的代数式表示)
5.(2013•泸州)如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )在函数
(x >0)的图象
上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1、A 1A 2、A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是 ;点P n 的坐标是 ( (用含n 的式子表示).
6.(2013•铁岭)如图,点P 是正比例函数y=x 与反比例函数y=在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k 的值是 .
7.(2013•遵义)如图,已知直线y=x 与双曲线y=(k >0)交于A 、B 两点,点B 的坐标为(﹣4,﹣2),C 为双曲线y=(k >0)上一点,且在第一象限内,若△AOC 的面积为6,则点C 的坐标为 .
8.(2013•绍兴)在平面直角坐标系中,O 是原点,A 是x 轴上的点,将射线OA 绕点O 旋转,使点A 与双曲线y=
上的点B 重合,若点B 的纵坐标是1,则点A 的横坐标是 .
9.(2013陕西)如果一个正比例函数的图象与一个反比例函数x
y 6
的图象交),(),,(2211y x B y x A ,那

))((1212y y x x --值为 .
10.(2013年武汉)如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),
(0,2),C ,D 两点在反比例函数)0(<=
x x
k
y 的图象上,则k 的值等于 .
11.正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y =x
2
(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的
正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =x
2
(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 . .
12.(2013•恩施州)如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (6,0),反比例函数的图象经过点C .
(1)求点C 的坐标及反比例函数的解析式.
(2)将等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,求n 的值.
13.(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
14.(2013四川宜宾)如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).
(1)求反比例函数的解析式;
(2)若点P (n ,-1)是反比例函数图象上一点,过点P 作PE ⊥x 轴于点E ,延长EP 交直线AB 于点
F ,求△CEF 的面积.
15.(2013菏泽)(1)已知m 是方程x 2
﹣x ﹣2=0的一个实数根,求代数式的
值.
(2)如图,在平面直角坐标系xOy 中,一次函数y=﹣x 的图象与反比例函数
的图象交于A 、B 两点.
①根据图象求k 的值;
②点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,试写出点P 所有可能的坐标.
16.(2013•烟台)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣
21
x+3交AB ,BC 分别于点M ,N ,反比例函数y=k x
的图象经过点M ,N . (1)求反比例函数的解析式;
(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.
17.(2013年广州市)如图11,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别
在x轴、y轴上,点B的坐标为(2,2),反比例函数
k
y
x
(x>0,k≠0)的图像经过线段BC的中点D.
(1)求k的值;
(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC 所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。

18.(2013•咸宁)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.
(1)如果b=﹣2,求k的值;
(2)试探究k与b的数量关系,并写出直线OD的解析式.
19.如图,一次函数的图象与反比例函数y 1= – 3
x ( x <0)的图象相交于A 点,与y 轴、x 轴分别相交
于B 、C 两点,且C (2,0).当x <–1时,一次函数值大于反比例函数的值,当x >–1时,一次函数值小于反比例函数值. (1) 求一次函数的解析式;
(2) 设函数y 2= a x (x >0)的图象与y 1= – 3x (x <0)的图象关于y 轴对称.在y 2= a
x
(x >0)的图象上取一点P (P 点的横坐标大于2),过P 作PQ ⊥x 轴,垂足是Q ,若四边形BCQP 的面积等于2,求P 点的坐标.
Q
P
O
C
B A
y 2
y 1
y
x
(21题图)
教导处。

相关文档
最新文档