运筹学论文

合集下载

(运筹学与控制论专业论文)线性规划的可行点算法

(运筹学与控制论专业论文)线性规划的可行点算法

摘要本文研究的是线性规划的可行点算法,一个由线性规划的内点算法衍生而来的算法.线性规划的内点算法是一个在线性规划的可行域内部迭代前进的算法.有各种各样的内点算法,但所有的内点算法都有一个共同点,就是在解的迭代改进过程中,要保持所有迭代点在可行域的内部,不能到达边界.当内点算法中的迭代点到达边界时,现行解至少有一个分量取零值.根据线性规划的灵敏度分析理论,对线性规划问题的现行解的某些分量做轻微的扰动不会改变线性规划问题的最优解.故我们可以用一个很小的正数赋值于现行锯中等于零的分量,继续计算,就可以解出线陛规划问题的最优解.这种对内点算法的迭代点到达边界情况的处理就得到了线性规划的可行点算法.它是一个在可行域的内部迭代前进求得线性规划的最优解的算法.在此算法中,只要迭代点保持为可行点.本文具体以仿射尺度算法和原始一对偶内点算法为研究对象,考虑这两种算法中迭代点到达边界的情况,得到相对应的’仿射尺度可行点算法’和’原始.对偶可行点算法,.在用理论证明线性规划的可行点算法的可行性的同时,我们还用数值实验验正了可行点算法在实际计算中的可行性和计算效果.关键词:线性规划,仿射尺度算法,原始一对偶内点算法,内点,可行点算法,步长可行点.AbstractderivedThisDaperfocusesonafeasiblepointalgorithmforlinearprogramming,analgorithmfromtheinteriorpointalgorithmsforlineza"programming.TheinteriorpointalgorithmsfindtheoptimalsolutionofthelinearprogrammingbysearchingwithinthefeasmleTe譬ionofthelinearprogramming.ThereareaUkindsofinteriorpointalgorithlrmalltheforlinearprogramnfing.Butalltheseinteriorpointalgorithmsshareaspeciality,whichissolution|terativeDointscannotreachtheboundsAccordingtothesensitivitytheory,theoptimalofthelinearprogrammingwillnotbechangedbylittledisturbancesofthepresentsolution·SoWeletthe{xjIzJ=o,J=1,2,-··)n)equalaverysmallpositivenunlber,goonwiththecomputatio“一andthenwegettheoptimalsolutionofthelinearprogramming.Alltheseleadtothedevelopment。

大学生运筹学论文

大学生运筹学论文

大学生运筹学论文第一篇:大学生运筹学论文论数学与生活内容提要:步入大学,我们的学习已经不再停留于刻板的书本,我们学习的目的也不仅仅是去掌握那些常规的知识,大学学习,我们更多的是去学习一种思想,学习一种态度,然后用我们所学去实践生活。

当我们用心思考,我们也会发现,陪伴我们十几年的恼人的数学也蕴含了丰富的人生哲理。

关键字:生活,思考,哲理一、数学里的奇妙现象有时候我们会思考:无穷的边缘是什么?就像我们弄不懂广袤宇宙的边境是什么,无论多么科学的解释我们也始终想不明白怎么可以存在这样的一个空间去包括宇宙以及宇宙之外的东西。

而代表着这个含义的π=3.1415……..,无穷尽的不规则小数,没有尽头,但是它却确确实实是我们每天都会用到的具有现实意义的数值;二、最美丽的数字——0.618(1)人体上的黄金分割《达芬奇密码》一书中说讲,肩膀到指尖的距离除以肘关节到指尖的距离;臀部到地面的距离除以膝盖到地面的距离。

再看看手指关节、脚趾、脊柱的分节,都会得到PHI(黄金分割比)。

真的会这样吗?我半信半疑地进行了一点近似的计算。

按照一个正常体型的人为例:肩膀到指尖的距离:70㎝肘关节到指尖的距离:43㎝43÷70≈0.614 臀部到地面的距离:80㎝膝盖到地面的距离:49㎝49÷80≈0.613 这些数据的结果都接近于0.618。

(2)生理上的黄金分割再如网上说,人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。

37℃×0.618=22.866℃所以当所有的这些都和黄金分割比联系上时,我们不得不感叹数学的奥秘,真的很不可思议,如果说是巧合,但是当种种现象都联系在一起的时候,就不仅仅是巧合可以解释的了,我们不得不承认这就是数学中蕴含的奥妙。

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计

(运筹学与控制论专业优秀论文)一类最优化问题的算法设计
ii
知识水坝为您提供优质论文
承诺书
本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立 进行研究工作所取得的成果。尽我所知,除文中已经注明引用的内容 外,本学位论文的研究成果不包含任何他人享有著作权的内容。对本 论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明 确方式标明。
本人授权南京航空航天大学可以有权保留送交论文的复印件,允 许论文被查阅和借阅,可以将学位论文的全部或部分内容编入有关数 据库进行检索,可以采用影印、缩印或其他复制手段保存论文。
1.3 本文的主要内容
本文主要研究一类具有特殊形式的最优化问题,求解这一类最优化问题的全 局最优解,并应用到求解互补问题上。虽然目前已经有很多算法,但是我们考虑 到本最优化问题的约束条件是特殊的,因此可以利用约束条件的特殊性构造更为 简单有效的算法。
本文提出了一类新的函数,将它定义为半正定函数。利用这类函数将原问题; 分别转化为无约束最优化和含等式约束的最优化问,并分别设计了算法,进行了 数值实验,验证了算法的有效性。为了给出问题的全局最优解,我们又研究了算 法子问题的全局最优化算法,利用填充函数法来求解子问题。这样就保证了前面 设计的算法可以求得问题的全局最优解。最后,针对约束最优化问题(P),提出 了拟填充函数的概念,构造了一类拟填充函数并设计了算法。具体内容如下:
In this article we propose a new type of function, which is called a semi-positive function. We use this function to make another function, then we can turn the original problem into another one. We give algorithms and numerical results. Then we investigate the sub-problem. Also we propose the definition of quasi-filled function. We propose a quasi-filled function and design algorithm. It mainly contains the following six chapters:

运筹学论文

运筹学论文

运筹学论文摘要本论文主要探讨了运筹学在管理决策中的应用。

首先介绍了运筹学的基本概念和相关理论,然后分析了运筹学在企业管理中的实际应用案例,最后总结了运筹学的优势和局限性,并对未来运筹学研究方向进行了展望。

1. 引言随着企业管理的复杂性和竞争的加剧,越来越多的企业开始重视运筹学在管理决策中的应用。

运筹学作为一门应用数学学科,通过运筹学方法和技术来解决企业面临的各种问题,帮助企业高效运营和优化决策。

本文将从运筹学的基本概念、实际应用案例和研究展望三个方面展开论述。

2. 运筹学基本概念2.1 定义运筹学是一门研究如何对复杂系统进行优化决策的学科。

它以数学为基础,涉及多个学科领域,如线性规划、整数规划、图论、排队论等。

2.2 运筹学方法运筹学通过建立数学模型来描述和分析问题,然后采用优化算法和技术对模型进行求解,得到最优解或近似最优解。

常用的运筹学方法包括线性规划、整数规划、动态规划、启发式算法等。

3. 运筹学在企业管理中的应用案例3.1 生产调度优化运筹学可以帮助企业优化生产调度,提高生产效率和资源利用率。

通过建立生产调度模型,运用线性规划、整数规划等方法,可以实现最优生产调度方案的确定,使得生产过程更加高效。

3.2 配送路径优化对于物流企业来说,配送路径的优化是提高物流效率和降低成本的关键。

运筹学可以通过图论、整数规划等方法,确定最优的配送路径,减少行驶里程和时间,达到节约成本的目的。

3.3 库存管理优化运筹学可以帮助企业优化库存管理,减少库存成本和缺货风险。

通过建立库存模型,根据需求、供应、存储成本等因素,利用线性规划、动态规划等方法,确定最优的库存策略,实现库存成本的最小化和保证供应的可靠性。

4. 运筹学的优势与局限性4.1 优势 - 运筹学可以提供量化的决策支持,帮助企业从数据驱动的角度优化决策; - 运筹学方法和技术可以快速求解大规模、复杂的优化问题; - 运筹学可以提供全局最优解或近似最优解,并具有较高的准确性和可信度。

运筹学结课论文

运筹学结课论文

运筹学结课论文运筹学结课论文运筹学结课论文——基于Matlab的运输问题求解方法探究姓名:苍露露学院:理学院学号:2021052204 班级:信息102班指导教师:葛仁东摘要:运输行业的重要性随着中国经济的不断发展而快速提高,为了降低物流成本,我们有必要研究物流运输中如何组织物资调运才能使总运输成本最少这一重要问题。

而传统的手工解决方式存在着效率低、计算繁琐、数据易丢失等缺点,因此利用MATLAB软件来计算出最佳结果是很有必要的。

本论文以运输问题中一个典型的案例为例阐述了基于MATLAB 的定量分析方法,解决了运输最优方案编制中求解这一大难题,可以广泛应用于物流配送领域,对实践工作具有较强的指导意义。

关键字:Matlab 运输问题产销不平衡问题一、线性规划与运输问题:线性规划是运筹学的一个分支,它是最优化问题领域中最简单、最基本和使用最广泛的方法。

在交通运输领域中,运输是一个最基本的功能,也是物流的核心问题。

将同一种物资从几个不同的发货点运到另外几个不同的收货点,因为运费是单位运价和运输量的乘积,所以如何选择一个合理的运输方案,使总运费最省,这是一个很有应用价值的问题,这类问题就称为运输问题。

研究物资运输过程中最优的运输方案,需要在满足各种资源限制的条件下,找到使运输总成本最少的调运方案。

实践中如果建立数学模型,用线性规划的方法来解决这一问题,则可以节省大量的工作,但由于此类问题所涉及的条件变量较多,一般的数学方法运算难度较大,结果不容易求出,而如果能有效的借助MATLAB 软件中强大的运算功能则可以得到事半功倍的效果。

二、 Matlab求解运输问题的原理:在Matlab 中构建函数l(x)用来解决线性规划问题。

众所周知,运输问题的最优解本质属于极值问题,极值有最大和最小两种,而极大值问题的求解可以转化为极小值问题,因此在Matlab 中以求极小值为标准形式,构建的函数l(x)的具体格式如下:[X,v,e,o,l]=l(F,A,b,m,n,M,N,P,Z)式中:X 为问题的解向量;F 为由目标函数的系数构成的向量;A 为一个矩阵;b 为一个向量,表示线性规划中不等式约束条件,A,b 是系数矩阵和右端向量;m 和n 为线性规划中等式约束条件中的系数矩阵和右端向量;M 和N 为约束变量的下界和上界向量;P 为给定的变量的初始值;Z 为控制规划过程的参数系列;v 为优化结束后得到的目标函数值。

运筹学论文

运筹学论文

运筹学论文1. "运筹学在制造业中的应用案例分析"这篇论文可以研究运筹学在制造业中的应用案例,探讨如何运用运筹学方法来优化制造流程、减少生产成本、提高生产效率等方面的实践经验。

2. "运筹学在物流管理中的应用及挑战"这篇论文可以研究运筹学在物流管理中的应用,分析运筹学方法在物流优化、路线规划、货物配送等方面的应用,并讨论实施这些方法面临的挑战和解决方案。

3. "基于运筹学的供应链管理优化研究"这篇论文可以研究基于运筹学的供应链管理优化方法,分析如何利用运筹学方法来改善供应链的效率和响应能力,以及解决供应链中的库存管理、订单分配等问题。

4. "运筹学在项目管理中的应用研究"这篇论文可以研究运筹学在项目管理中的应用,探讨如何利用运筹学方法来优化项目进度安排、资源分配、风险管理等方面的实践经验,并探讨这些方法在项目管理中的效果和局限性。

5. "基于运筹学的决策支持系统研究"这篇论文可以研究基于运筹学的决策支持系统的开发和应用,分析如何利用运筹学方法来辅助决策制定,提供精确的数据分析和模型建立,以及讨论这些系统在实际决策中的应用效果和局限性。

6. "运筹学在金融风险管理中的应用研究"这篇论文可以研究运筹学在金融风险管理中的应用,分析如何利用运筹学方法来评估和控制金融风险,包括市场风险、信用风险等方面,以及讨论这些方法的优点和局限性。

7. "运筹学在医疗资源优化中的应用研究"这篇论文可以研究运筹学在医疗资源优化中的应用,探讨如何利用运筹学方法来优化医疗资源的配置、排班安排、手术室管理等方面,以提高医疗服务的效率和质量。

8. "基于运筹学的环境保护决策研究"这篇论文可以研究基于运筹学的环境保护决策方法,分析如何利用运筹学方法来评估不同环境保护措施的效果,并对环境保护决策进行优化,以达到经济、社会和环境的可持续发展。

运筹学教学方法研究的论文

运筹学教学方法研究的论文

运筹学教学方法研究的论文运筹学教学方法研究的论文运筹学教学方法研究的论文篇1论文关键词:运筹学教学实践论文摘要:运筹学是经管系普遍开设的一门主干课程、学位课程,教学中存在着课程难度较大,教学方式单一等问题,本文从教学实践出发,总结了目前教学过程中存在的一些问题,并对课程教学方法进行了研究。

运筹学课程以定量化为主的管理科学方法与信息技术相结合,寻求现实中的满意决策方案,培养学生分析、解决实际问题的能力,使他们在处理日常事务时能够自觉地优化问题,也为今后从事经济管理工作的学生奠定扎实的基础。

1、运筹学在教学过程中存在的问题目前,运筹学课程建设正在逐步完善,但实际教学效果有时往往达不到预期的目标。

本课程教学中存在以下几个方面的问题。

(1)课程难度大,学生积极性不高。

运筹学课程和数学知识联系密切,很多例题都是由数学运算得出的,而这门课程一般在大二时才开设,由于学生大多数都是高中时努力学习,上大学后只求及格,所以在大一开设的数学类基础课没有好好学,以至于到开设运筹学课程时基础差,学起来很困难。

(2)教学方式单一化。

运筹学教学仍是教师在板书授课内容,学生记笔记,这样大部分时间用在推导和计算上,令学生感觉枯燥。

(3)与实践联系不很紧密。

运筹学尽管是以应用性为主的学科,但由于学时的限制,老师在每节课多数时间是在讲解某种类型例题的求解方法和计算过程,由于题较复杂,在90分钟时间内只能讲解一、两种类型例题,再加上学生练习,所以时间很紧迫,老师和学生都把会做题作为课程学习的目标,从而认为课程与实际联系不大。

2、教学改革思路对于运筹学教学中出现的问题,笔者认为可以采取以下措施。

(1)针对“课程难度大,学生积极性不高”这一点,我们应适当加入案例。

经过查阅大量资料和教学实践,笔者认为理论和案例的比例在1:2比较合适,即每节课90分中,用30分左右讲解理论,其余时间讲解案例。

这样可以让学生将所学的理论知识有的放矢,既懂得了理论,又能将其应用到实际生活中。

运筹学论文(合集5篇)

运筹学论文(合集5篇)

运筹学论文(合集5篇)第一篇:运筹学论文摘要:运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。

运筹学可以用来很好的解决生活中的许多问题。

运筹学有着广泛的应用,对现代化建设有重要作用。

关键词:运筹学;应用;最优方案人们无论从事任何工作,不管采取什么行动,都希望所制订的工作或行动方案,是一切可行方案中的最优方案,以期获得满意的结果诸如此类的问题,通常称为最优化问题。

运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。

求解最优化问题的关键,一是建立粗细适宜的数学模型,把实际问题化为数学问题;二是选择正确而简便的解法,以通过计算确定最优解和最优值。

最优解与最优值相结合,便是最优方案。

人们按照最优方案行事,即可达到预期的目标。

运筹学是现代数学的一个重要分支,属于信息科学和数学的综合科学,是20世纪4O年代发展起来的一门具有较强实践性的综合学科,它使用许多数学工具(包括概率统计、数理分析、线性代数等)和逻辑判断方法,来研究系统中人、财、物等的组织管理、筹划调度问题,以发挥系统的最大效益。

它的特点是:1.运筹学已被广泛应用于工商企业、军事部门、民政事业等研究组织内的统筹协调问题,故其应用不受行业、部门之限制;2.运筹学既对各种经营进行创造性的科学研究,又涉及到组织的实际管理问题,它具有很强的实践性,最终应能向决策者提供建设性意见,并应收到实效;3.它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。

对所研究的问题求出最优解,寻求最佳的行动方案,所以它也可看成是一门优化技术,提供的是解决各类问题的优化方法。

通常在遇到这些复杂繁琐的事的时候,人们不会考虑太多,仅是凭着第一直觉去处理,结果也因为处理方式的不同而不同。

有的人第一直觉好,就能把事情处理的很好,而有的人却只能接受糟糕的结果。

生活中,如果我们能理智的去分析问题,找到处理问题的最佳办法,那么我们将会避免很多损失和烦恼,取得更大的成功和收获。

运筹学毕业论文

运筹学毕业论文

运筹学毕业论文运筹学毕业论文运筹学是一门研究如何在有限资源下做出最优决策的学科。

它涵盖了数学、统计学和计算机科学等多个学科的知识,通过建立数学模型和运用各种优化方法,帮助人们解决实际问题。

作为一门交叉学科,运筹学在现代社会中扮演着重要的角色,对于提高效率、优化资源利用以及解决各种决策问题具有重要意义。

一、运筹学的基本原理运筹学的基本原理可以概括为三个要素:模型建立、优化方法和决策分析。

首先,模型建立是运筹学的基础。

通过对问题进行抽象和建模,将实际问题转化为数学问题,从而能够运用数学方法进行求解。

模型建立需要考虑问题的目标、约束条件以及相关的变量和参数,以此来描述问题的本质和特点。

其次,优化方法是解决运筹学问题的核心。

优化方法包括线性规划、整数规划、动态规划、图论等多种方法,根据问题的性质和特点选择不同的方法进行求解。

优化方法的目标是寻找问题的最优解,即在满足约束条件的前提下,使目标函数达到最小或最大值。

最后,决策分析是对优化结果进行评估和决策的过程。

通过对优化结果进行分析,评估其对问题的解决程度和可行性,从而为决策者提供决策依据。

决策分析需要综合考虑问题的经济、社会和环境等方面因素,以及决策者的偏好和目标。

二、运筹学在实际问题中的应用运筹学在各个领域都有广泛的应用,下面以物流管理和生产调度为例,介绍其在实际问题中的应用。

物流管理是指对物流过程进行规划、组织、实施和控制的管理活动。

在物流管理中,通过建立供应链网络模型和运用优化方法,可以实现最优的物流路径选择、仓库位置布局、运输调度等,从而降低物流成本、提高物流效率。

例如,通过运筹学方法,可以确定最佳的配送路线和配送车辆数量,使得物流成本最小化,同时满足客户需求。

生产调度是指对生产过程进行规划和控制的管理活动。

在生产调度中,通过建立生产调度模型和运用优化方法,可以实现最优的生产计划和生产调度,从而提高生产效率、降低生产成本。

例如,在工厂生产调度中,通过运筹学方法可以确定最佳的生产顺序和机器调度,使得生产效率最大化,同时满足交货期限和资源约束。

运筹学心得体会论文

运筹学心得体会论文

运筹学心得体会论文【篇一:学习运筹学的心得体会】学习运筹学的体会与心得学习理论的目的就是为了解决实际问题。

图论为计算机领域也奠定了基础,运筹学的计算方法可以借用计算机来完成。

线性规划的理论对我们的实际生活指导意义很大。

当我们遇到一个问题,需要认真考察该问题。

如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。

但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。

那么我们就要寻找别的理论方法来解决问题。

通过对运筹学的学习我掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。

运筹学对我们以后的生活也讲有不小的影响,将运筹学运用到实际问题上去,学以致用。

以上就是我对本学期学习运筹学的总结和体会。

运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。

根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。

表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。

其中沃格尔法得出的解最接近最优解。

然后利用闭回路法或对偶变量法对得到解进行最优性判别。

当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。

在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。

整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。

整数规划中的0-1规划整数问题是一个非常有用的方法。

在实际问题中,该方法能够解决很多问题。

0-1整数规划的解决方法有枚举法和隐枚举法。

指派问题是0-1整数规划中的特例,古人作战讲“夫运筹帷幄之中,决胜千里之外”。

在现代商业社会中,更加讲求运筹学的应用。

作为一名测控的学生,更应该能够熟练的掌握、运用运筹学的精髓,用运筹学的思维思考问题。

运筹学期末论文

运筹学期末论文

运筹学的发展与运用【摘要】运筹学是系统工程学的一门重要专业基础课。

它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。

他的产生、发展与具体实施运用均随着其在各个领域的推广而深入人心。

通过对本学科的学习,我深刻认识到运筹学思想的重要性和实用性,并将其运用于以后的学习、生活和工作中。

【Abstract】Systems Engineering Operations Research is important for a basic course. It is the beginning of the 1930s developed a new discipline, its main purpose is to provide decision-making in the scientific basis for the management is to achieve effective management, one of the important methods correct decision and modern management. His emergence, development and application of specific implementation are with their promotion in various fields and popular. . Through the discipline of study, I deeply understand the importance and usefulness of operations research ideas and applied their future learning, life and work.【关键词】运筹学、运用、发展、心得体会【key words】operational research, apply, develop, comments一、运筹学的产生运筹学原意是操作研究、作业研究、运用研究、作战研究,译作运筹学,是借用了《史记》“运筹策于帷幄之中,决胜于千里之外”一语中“运筹”二字,既显示其军事的起源,也表明它在我国已早有萌。

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇)运筹学是一门应用性很强的学科,在培养学生分析和解决问题的能力,提高学生应用和创新能力方面发挥着重大的作用.本文针对运筹学教学的特点和现今存在的问题,提出了一系列改革建议及方案,构建了理论与实践相结合的教学体系,该体系能够使学生学以致用,增强学生的实践能力,为培养应用创新型人才创造良好条件.第1篇:新业态下民航类专业运筹学教学模式改革研究从网络售票到微信值机,从单一的“售舱位”到运用大数据“提供综合服务”,互联网在深刻改变整个社会的同时,也在冲击传统的航空运输业,航空公司开始关注乘客的兴趣爱好、企业的运输需求,重新定义飞行。

在移动互联网时代,随着消费者对服务要求的不断提高,从关注服务本身,向客户体验和价值链两端不断延伸,服务提供方需要把标准化的服务产品或项目细化拆分,让客户选择自由结合。

航空运输业要想取得竞争优势,也必须不断创新服务理念,发展新业态。

新业态是指基于不同产业间的组合、企业内部价值链和外部产业链环节的分化、融合、行业跨界整合以及嫁接信息及互联网技术所形成的新型企业、商业乃至产业的组织形态。

信息技术革命、产业升级、消费者需求倒逼不断推动新业态产生和发展,也要求高校教育与人才培养模式必须进行与之相适应的变革。

运筹学是民航类专业的一门专业基础课,它是民航运营活动有关数量方面的理论,运用科学的方法来决定如何最佳地运营和设计各种系统的一门学科,对系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

通常以最优、最佳等作为决策目标,避开最劣的方案[1]。

近年来,郑州航院运筹学课程组秉承“航空为本管工结合”的办学理念,针对民航类专业的特点进行了一系列教育教学改革,达到了预期效果。

本文旨在介绍《运筹学》课程的教学改革过程,研究总结成功经验,并提出未来改革发展的思路。

一、运筹学教育教学现况郑州航院交通运输(航空物流)专业、安全工程(民航方向)及工业工程(航空方向)着重培养能够从事民航运输管理、机场运营管理、航空安全管理、跨境电商等经营与管理应用型人才。

(2020年整理)运筹学结课论文.pptx

(2020年整理)运筹学结课论文.pptx
2面粉种类Ⅰ NhomakorabeaⅡ
材料的库存量
材料A/10kg
0
5
15
材料B/10kg
6
2
24
材料C/10kg
1
1
5
利润/元
2
1
解: 先用 X1 和 X2 分别表示该公司制造两种面粉的数量。则该公司可获取
的利润为(2X1+X2)元,令 Z=2X1+X2,因问题中要求获得最大利润,即 max z。
目标函数 约束条件
max Z 2x1 x2
Cj
2
1
0
0
0
Cb

b
X1
X2
X3
X4
X5
0
X3
15
0
5
1
0
0
2
X1
4
1 2/6
0 1/6
0
0
X5
1
0
4/6
0
-1/6 1
Cj-Zj
0
1/3
0
-1/3 0
由于表中还存在大于零的检验数,故重复上述步骤,可得到下表
Cj
2
1
0
0
0
Cb

b
X1
X2
X3
X4
X5
0
X3
15/2
0
0
1 5/4 -15/2
2
X1
7/2
0 0 1 1 4 6 6 3 -3 1 3 3 0
-1
0 6 21 0 5 31 0 0 01 1 3 20 在变换后的系数矩阵中确定独立的零元素。若独立零元素有 n 个,则已 得出最优解;若独立零元素少于 n 个,则做能覆盖所有零元素的最少直 线数目的直线集合。 继续变换系数矩阵。方法是在未被直线覆盖的元素中找出一个最小元 素。对未被直线覆盖的元素所在行(或列)中各元素都减去这一最小元 素。这样,在未被直线覆盖的元素中势必会出现零元素,但同时却又使已

管理运筹学结业论文11

管理运筹学结业论文11

运筹学论文运筹学(operational research,缩写O.R.)的“运筹”就是运算、筹划的意思。

实际上,现实生活中几乎在每个人的头脑中都自然地存在着一种朴素的“选优”和“求好”的思想。

例如,当准备去完成一项任务或去做一件事情时,人们脑子里自然地会产生一个想法,就是在条件允许的范围内,尽可能地找出一个“最好”的办法,去把需要做的事情做好。

实际上这就是运筹学的基本思想。

运筹学作为一门科学最早出现在第二次世界大战前夕,英国面临如何抵御德国飞机轰炸的问题。

当时英国的鲍德西雷达站负责人A.P.罗威建议马上展开对雷达系统运用方面的研究。

为区分于技术方面的研究,他提出了“operational research”这个术语,原意为“作战研究”。

当时所研究和解决的问题都是短期和战术性的问题,第二次世界大战结束以后,在英美两国的军队中相继成立了正式的运筹学研究组织。

并以RAND公司为首的一些部门开始着重研究战略性问题。

例如,未来的武器系统的设计和其合理运用的方法,各种轰炸机系统的评价,未来的武器系统和未来战争的战略部署,以及苏联的军事能力和未来的发展预测等问题。

进入了20世纪60年代,运筹学的研究转入了战略力量的构成和数量问题的研究,同时除了军事领域的应用研究以外,相继在工业、农业、经济和社会问题等各领域都有了应用。

与此同时,运筹学的研究进入了快速发展阶段,并形成了运筹学的许多新的应用分支。

O.R.传入中国后,曾一度被译为“作业研究”或“运用研究”。

1956年,中国学术界通过钱学森、许国志等科学家的介绍,在了解了这门学科后,有关专家就译名问题达成共识,即译为“运筹学”。

其译意恰当的反映了运筹学既源于军事决策,又军民通用的特点,并且赋予其作为一门学科的含义。

同时,相继有以华罗庚教授为首的一大批数学家加入了运筹学的研究队伍,使中国运筹学研究的很多分支很快跟上国际水平,并结合我国的特点在国内进行了推广应用。

特别是经济领域,关于投入产出表的研究与应用、质量控制(质量管理)等方面的应用很有特色。

运筹学结课论文

运筹学结课论文

运筹学与博弈论思想的应用概要:本文从“运筹帷幄”引入运筹学和博弈论,从历史、经济、民生等领域所举例子详细解说了运筹学与博弈论思想在现实中的应用。

关键字:运筹学、博弈论、企业管理、运输问题、影子价格、运筹工作者一、运筹学的的起源与发展普遍认为,运筹学起源于第二次世界大战初期,当时, 英国(随即是美国) 军事部门迫切需要研究如何将非常有限的物资以及人力和物力, 分配与使用到各种军事活动的运行中, 以达到最好的作果。

在第二次世界大战期间, 德国已拥有一支强大的空军, 飞机从德国起飞17 分钟即到达英国本土。

在如此短的时间内, 如何预警和拦截成为一大难题。

1935 年, 为了对付德国空中力量的严重威胁, 英国在东海岸的鲍德西(Birdseye) 成立了关于作战控制技术的研究机构。

1938 年, 鲍德西科学小组负责人( Rowe , A1 P) 把他们从事的工作称为运筹学(Operational research[ 英] ,Operations research[美] ,直译为“作战研究”) 。

因此, 人们把鲍德西作为运筹学的诞生地, 将1935 —1938 年这一时间段作为运筹学产生的酝酿时期。

其实早在古代中国就有“运筹于帷幄之中,决胜于千里之外”之说,后来人们用“运筹帷幄”表示善于策划用兵、指挥战争。

然而“运筹”发展到现代已成为一门重要的学科“运筹学”。

由上述运筹学发展历史可知,运筹学是由军事、经济、生产等各个领域所提出的决策问题的推动而发展起来的一门新兴的学科分支。

所谓运筹学,可以说是一系列用以提高所研究系统的有效性的分析工具。

博弈论属于运筹学的一个分支,是研究博弈行为中竞争各方是否存在着最合理的行动方案,以及如何找到这一合理方案的数学理论和方法。

运筹学包括以下内容:线性规划、非线性规划、动态规划、多目标规划、网络分析、网络规划、排队论、存储论、博弈论、决策论、模型论等。

运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学在经济管理中的运用
古来就有“夫运筹帷幄之中,决胜于千里之外”的名句。

在战乱不断的年代,天下枭雄辈出,各尽其能以求得称霸一方。

然而最后能有所成就,名垂千古,在历史长卷上写下辉煌一笔的人必定都不是庸才。

没有长远的谋略,广阔的眼界,即使强悍如项羽也只能得到一个乌江自刎的结局,终是与真正的帝王之业擦肩而过。

由此可见,运筹学是一门立时极为悠久的学科。

虽然以前人们不曾把它当作一门学科来研究,但是不论我们在做什么,要想取得良好的效果,就不可避免的会运用到运筹学中的知识,即使可能我们自己也没有意识到。

运筹帷幄而能决胜千里的例子比比皆是,从古至今,一直如此。

运筹学在实际中的独特和重要地位也不言而喻。

在竞争激烈的当今社会,商场如战场,有时商场甚至比战场更让人胆怯,具有更高的风险。

战场是智慧与体力的双重对抗,智慧不足时可以凭借勇猛来补足,然而与之相比,商场就是纯智慧的较量。

用一招不慎,满盘皆输来形容也丝毫不为过。

不懂得如何去运筹帷幄,进行长久的规划,那么必将在商业竞争中处于劣势,稍有不慎就可能失去立足之地。

运筹学是一门应用型学科,它广泛应用现有的科学技术知识和数学思维方法,解决实际中提出的专门问题,为决策者选择提供定量依据。

它是一门从实际问题中产生的学科,具有很强的实用性。

其中所谓最优,包含两方面含义:一是从时间上来讲,寻求全过程的最优,二是从空间上来讲,寻求整体的最优。

科学是第一生产力,这一点稍有常识的人都知道,它在任何方面的影响都是不容小觑的。

只有学会应用相应的科学知识来提升自身才可能做到真正的强大,如同手工生产和机械生产的效率有着天壤之别,如果没有科技的引领,那么仅凭微小的改进是难以有大的突破的。

科学技术虽然有着不可估计的力量,但这只是一个基础,关键还要懂得如何去应用。

要有严密的思维,精密的计算,才能事半功倍。

而数学思维则是很好的粘合剂。

它能渗透到一些微小的细节中,将每个环节有机的衔接起来,做到资源最合理的分配利用。

这也是为什么从小就把它视作重点科目来学习的原因,就是为了在潜意识中培养一种严谨的思维能力。

而所谓的最优,只是人们所假设的一种理想状态,它并不是固定存在的,而是所有人都向往达到的目标。

没有人可以达到最优,也没有人敢说自己达到了最优。

人们以它为目标,不断地向它靠近以求得更科学高效的使用方式。

正因为有了这种目标和信念,才有了技术的不断改进和提升。

才使得商场上的竞争气氛更为浓郁,也让时代有不断前进的动力。

运筹学是一门对经济系统进行定量分析和决策的应用学科,是应用分析、实验、量化等方法,对经济管理系统中人力、物力、财力等资源进行系统安排,为决策者提供有依据的最佳方案,以实现最有效的管理,取得最满意的经济效益。

在经济管理中,要提高自身获得的收益,其实就是要做到物尽其用,把一件事物的利用率发挥到最大。

有时候这需要运用到科学技术,如同在石油的利用中人类应考虑到成分的分离。

不仅因为不同成分的效果不同,也要始终贯彻可持续发展的思想,不能仅为了眼前的利益而造成无法弥补的长远的损失。

在经济竞争中,竞争的优势有时往往取决于对细节的重视,进行定量的分析是必不可少的,就如在生产药物时就要严格把握原料的使用剂量,稍有不慎救人的药物也可能变为夺命的毒药。

另外在管理、生产、包装、销售这一系列的过程中也要处处把好关。

不能过于吝啬,以致想不通过自己的技术探究,纯粹想要窃取别人的成果来达到
盈利的目的。

这样的企业绝对无法长久的生存下去,只有拥有自己独立的研发队伍和方向才能在竞争中拥有一席之地。

通过自己的实验寻找到更能被人们认可的方案,这一点在手机功能的研发方面有着很明了的体现。

每个品牌都不甘落后,想要研究出可以自身独有的技术,也正因为如此激烈的竞争,才促进了手机行业的飞速发展和技术的换代更新。

相比物力方面的利用,在我看来人力方面的合理分配更为关键。

物是死的而认识活的,每个人的潜力都是无限的。

懂得挖掘人的潜力,合理的分配到各个岗位上,往往能产生意想不到的效果。

如果将一个只有一般工人能力的人放置在管理层中可能就会给企业的运作带来不必要的麻烦,同样的埋没了有能力的人才也是一种资源浪费。

有了合理的人力和物力的安排那么也就是成功了一大半,但是财力也是一项极其重要的考量因素,没有足够的经济支持,再好的方案只能停留在空想阶段。

但财力的投入也不是越多越好,要有精确的计算,有时资金过于充足也容易让人产生过多的优越感,而紧张一些往往也能激发出一些潜在力量,达到好的效果。

但是资金的利用也要合理,不能在一些不能节省的方面大做文章,像是三鹿奶粉一旦产生了极大的社会危害,即使是大型品牌也躲不过瞬时销声匿迹的结局,所以商场上有些不能禁区也是不能轻易触碰的,商家也始终不能抱着一种侥幸心理,希望通过偷工减料来取得不义之财。

总的来说,运筹学渗透到了经济管理的各个方面,只要学会良好的运用它,那么它也必将在竞争中给一不小的回报。

运筹学的运用极其广泛,不仅仅是在经济管理的领域。

在这学期的选修课学习中我也充分认识到了这一点,也学习到了一些运筹学的思想和方法。

虽然我所学的专业中它的体现好像不是十分明显,但是这种思维意识对我以后的学习生活都有很大的帮助,我很庆幸能参与这半学年的学习。

希望在今后的日子里,能良好的使用它。

相关文档
最新文档