恒成立问题习题

合集下载

一元二次不等式的解法含参不等式恒成立问题及根的分布

一元二次不等式的解法含参不等式恒成立问题及根的分布

范围是
.
第7页/共27页
题型与解法
(四)一元二次方程根的分布问题
例3 分别求使方程x2-mx-m+3=0的两根满足下列条
件的m值的集合:
(1)两根都大于0;
x=m/2
(2)一个根大于0,另一个根小于0;
(3)两根都小于1.
x1
x2
解:令f(x)=x2-mx-m+3且图像与x轴相交
则△=m2-4(-m+3)=(m+6)(m-2)≥0
.
3.已知关于 x 的方程 x2 (m 2)x 1 0 无正根,
求 m 的取值范围.
第16页/共27页
题型与解法
(三)逆向问题
例2.已知不等式 ax2 bx 2 0 的解集为 ( 1 , 1), 求a-b 的值.
23
[思路分析] 由不等式 ax2 bx 2 0 对应的方程 ax2 bx 2 0 的两根为 1 , 1 , 可利用二次方程
两个根都在(k1 , k2 )内
x1<k1 < k2 <x2
y
y
k1 o k2 x
ok1 k2
x
0
k1
b 2a
k2
f
(k1 )
0
f (k2 ) 0
f f
(k1 ) (k2 )
0 0
第15页/共27页
题型与解法
(四)一元二次方程根的分布问题 1.已知方程 x2 2mx m 12 0 .
(A) x 3a或x 4a (B) 3a x 4a
(C) 4a x 3a (D) 3a x 4a
第22页/共27页
课堂练习
3.(1)不等式ax2+bx+2>0的解集是

恒成立能成立问题总结(详细)

恒成立能成立问题总结(详细)

恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。

这类问题在各类考试以及高考中都屡见不鲜。

感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。

在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。

1、函数法(1)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数有:],[),0()(n m x k b kx x f ∈≠+=⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立 例1 若不等式对满足的所有都成立,求的范 围。

m mx x ->-21222≤≤-m m x解析:将不等式化为:,0)12()1(2<---x x m 构造一次型函数:)12()1()(2---=x m x m g 原命题等价于对满足的,使恒成立。

22≤≤-m m 0)(<m g由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得,所以的范围是。

231271+<<+-x x )231,271(++-∈x 小结:解题的关键是将看来是解关于的不等式问题转化为以为变量,为参数x m x 的一次函数恒成立问题,再利用一次函数的图象或单调性解题。

练习:(1)若不等式对恒成立,求实数的取值范围。

01<-ax []2,1∈x a (2)对于的一切实数,不等式恒成立,求40≤≤p 342-+>+p x px x 的取值范围。

(答案:或)x (二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。

恒成立问题

恒成立问题

恒成立、存在性问题对于有关恒成立、存在性问题,一直是高考命题的热点,往往以全称命题或特称命题的形式出现,同时结合函数的单调性、极值、最值等知识进行考查,在高考中多以压轴题或压轴题中的压轴问的形式出现。

如何突破这一难关呢?关键是细心审题及恰当地转化。

现就如何求解恒成立、存在性问题中的参数问题加以分析。

方法1:分离参数法例1.设函数f(x)=lnx-ax, g(x)=ex-ax,其中a为实数。

若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围。

解:因为f`(x)=-a,g`(x)=ex-a,由题意得f`(x)≤0对x∈(1,+∞)恒成立,即a≥对x∈(1,+∞)恒成立,所以a≥1。

因为g`(x)=ex-a在x∈(1,+∞)上是单调增函数,所以g`(x)>g`(1)=e-a。

又g(x)在(1,+∞)上有最小值,则必有e-a<0,即a>e。

综上,可知a的取值范围是(e,+∞)。

点评:求解问题的切入点不同,求解的难度就有差异。

在恒成立问题中有时需要取交集,有时需要取并集,本题解法需要取交集。

一般而言:在同一问题中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集。

方法2:构造函数法例2.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()。

A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]解:当x≤0时,|f(x)|≥axx2-(2+a)x≥0,对x≤0恒成立。

记g(x)=x2-(2+a)x=(x-)2-。

当<0即a<-2时,g(x)的最小值为-,不可能满足条件。

当≥0即a≥-2时,g(x)的最小值为0,满足题意。

当x>0时,|f(x)|≥axln(1+x)-ax≥0a≤,对x>0恒成立。

令θ(x)=,则θ`(x)=。

设t=x+1,则t>1。

记L(t)=-lnt,则L`(t)=<0,所以L(t)在t∈(1,+∞)上为减函数。

恒成立问题题型分析及经典习题

恒成立问题题型分析及经典习题

恒成立题型及解题方法一 一次函数型:给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象 (直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例、对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。

二次函数型1、由二次函数的性质求参数的取值范围例、若关于的不等式在上恒成立,求实数的取值范围.2、转化为二次函数的最值求参数的取值范围例1、已知二次函数满足,而且,请解决下列问题 (1)求二次函数的解析式。

(2)若在区间上恒成立 ,求的取值范围。

例2、设f(x)=x 2-2ax+2,当x[-1,+∞)时,都有f(x)≥a 恒成立,求a 的取值范围。

三.变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求, 且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成 函数的最值问题求解。

例、已知当x ∈R 时,不等式a+cos2x<5-4sinx+45-a 恒成立,求实数a 的取值范围。

x 2220ax x ++>R a (0)1f =(1)()2f x f x x +-=()2f x x m >+[1,1]-m四.根据函数的奇偶性、周期性等性质若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x),(f(-x)=f(x))恒成立 若函数y=f(x)的周期为T ,则对一切定义域中的x,f(x)=f(x+T)恒成立。

例、若f(x)=sin(x+α)+cos(x-α)为偶函数,求α的值。

不等式的恒成立、能成立、恰成立问题

不等式的恒成立、能成立、恰成立问题

不等式的恒成立、能成立、恰成立问题1.恒成立问题:恒成立问题的基本类型类型1:对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m , 令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。

类型2:设)0()(2≠++=a c bx ax x f ],[βα∈x(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f ],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a b a b f a b 或或 例2:若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围. 12m >- 类型3:设)0()(2≠++=a c bx ax x f ,R x ∈(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

恒成立问题题型大全(详解详析)

恒成立问题题型大全(详解详析)

不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。

恒成立问题的基本类型:2f(x) 0在x Rf(x) ax bx c(a 0)类型1:设,(1)且 0f(x) 0在x R;上恒成立 a 0且 0 a 0(2)上恒成立。

2f(x) ax bx c(a 0)类型2:设f(x) 0在x *,+a 0(1)当时,上恒成立或或bbb2a2a2a,() 0 f() 0 f() 0 0ff(x) 0在x *,+ 上恒成立f() 0 f() 0 f(x) 0在x *,+a 0 (2)当时,上恒成立f() 0 bbbf(x) 0在x *,+ 或或2a2a2a 上恒成立类型3:f() 0 0f() 0f(x) 对一切x I恒成立 f(x) min f(x) 对一切x I恒成立 f(x) 。

max类型4: f(x) g(x)对一切x I恒成立 f(x)的图象在g(x)的图象的上方或f(x) g(x)minmax(x I) 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。

一、用一次函数的性质f(x) kx b,x *m,n+ 对于一次函数有:恒成立 ,f(x) 0恒成立 f(m) 0f(m) 0 f(x) 0f(n) 0f(n) 0 12m2 m 22x1 m(x1)例1:若不等式对满足的所有都成立,求x的范围。

解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:222 m 2m(x1)(2x1) 0f(m) m(x1)(2x 1),;令,则时,恒成2 f(2) 02(x1)(2x1) 0 f(m) 0立,所以只需即,所以x的范围 f(2) 02 2(x1)(2x1) 01713x (,)是。

22二、利用一元二次函数的判别式2f(x) ax bx c 0(a 0,x R) 对于一元二在x R(1)上恒次函数有: a 0且 0f(x) 0成立; a 0且 0f(x) 0在x R(2)上恒成立2(m1)x(m1)x2 0例2:若不等式的解集是R,求m的范围。

人教版导数如何解决含参数不等式恒成立问题

人教版导数如何解决含参数不等式恒成立问题

如何解决含参数“不等式恒成立”问题(1)分离参数法分离参数法一定要搞清谁是变量,谁为参数,一般知道谁的范围谁就是变量。

求谁的范围,谁就是参数,利用分离参数法,常用到函数的单调性,基本不等式求最值。

例如:设2)1ln()(ax x x x f --+=,当a 满足什么条件时,)(x f 在⎥⎦⎤⎢⎣⎡--31,21单调递减?解:由题意)(x f 的定义域为),1(+∞-得x x a ax ax x x f ++--=--+=1)12(22111)(2'⇔0)12(22≤+--x a ax ,∈x ⎥⎦⎤⎢⎣⎡--31,21恒成立⇔0122≤++a ax 法一:(分离参数法)0122≤++a ax x a x a +-≤⇒-≤+⇒1121)1(2,又因为11+-=x y 在⎥⎦⎤⎢⎣⎡--31,21单调递增。

2max -=y ,1-≤a 。

(2)分类讨论法有的不等式恒成立问题,参数与变量不是那么容易分离或分离后根本求不出最值(或极限值)那么就需分类讨论法。

上面的习题也可以用分类讨论法:法二(分类讨论法)令122)(++=a ax x g ,∈x ⎥⎦⎤⎢⎣⎡--31,21由题意得00)21({<≤-⇒a g 或00)31({>≤-a g 或1)(0{==x g a 1-≤⇒a 。

例2函数ax x a x x f +-=22ln )(,若函数)(x f 在),1(+∞为单调递减,求实数a 的取值范围。

分析:要求a 的范围,我们就把a 作为参数,优先考虑分离参数法,但是对于这题a 参数没有办法分离,我们只能选择分类讨论法。

解:)(x f 的定义域为),0(+∞xax ax a x a x x f )1)(12(21)(2'-+-=+-=(因式分解是关键)0)1)(12()(≥-+=ax ax x g当0=a 时,1)(-=x g ,不合题意当0>a 时,)(x g y =是开口向上的抛物线,由图象分析可得,若0)(≥x g 在1>x 恒成立,则111≥⇒≤a a当0<a 时,同理分析可得21121-≤⇒≤-a a 。

高中数学新教材同步必修第一册 第2章 习题课 不等式恒成立、能成立问题

高中数学新教材同步必修第一册 第2章 习题课 不等式恒成立、能成立问题

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.已知不等式x2+ax+4<0的解集为空集,则a的取值范围是
√A.{a|-4≤a≤4}
C.{a|a≤-4或a≥4}
B.{a|-4<a<4} D.{a|a<-4或a>4}
解析 由题意得,Δ=a2-16≤0,解得-4≤a≤4.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.已知不等式-x2+4x≥a2-3a在R上有解,则实数a的取值范围为
√A.{a|-1≤a≤4}
C.{a|a≥4或a≤-1}
B.{a|-1<a<4} D.{a|-4≤a≤1}
解析 由题意知,-(x-2)2+4≥a2-3a在R上有解, ∴a2-3a≤4,即(a-4)(a+1)≤0,∴-1≤a≤4.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9.∀x∈{x|2≤x≤3},不等式mx2-mx-1<0恒成立,求m的取值范围.
解 由不等式mx2-mx-1<0,得m(x2-x)<1,
因为x∈{x|2≤x≤3},所以x2-x>;x2-1 x,
1234
4.定义运算ac
db=ad-bc,则不等式a1x
1 x+1<0
对任意
x∈R
恒成立,
则实数 a 的取值范围是_-__4_<_a_≤__0__.
解析 原不等式为ax(x+1)-1<0, 即ax2+ax-1<0,a=0时,不等式为-1<0,符合题意, 当 a≠0 时,有aΔ<=0,a2+4a<0 ⇒-4<a<0, 综上所述,a的取值范围是-4<a≤0.

有关恒成立的几个问题

有关恒成立的几个问题
关恒成立 的几个 问题
陕西 省榆 林市 苏 州 中学 高艳 芳 李万 全
在 不等 式中 ,经 常会 遇到 恒成立 的问题 ,下面 我们 就来 看 几个 有关恒 成 立问题 的解 法 : 1 .在 一元 二次不 等式 中 ,设 f ( x ) = a x 。 + b x + c ( a >0 ) ,我们从 它 的图 象可 以观察 到 ,当△ <0时 ,图象与X 轴没 有交点 ,所 有 的图 象 都 在 X 轴 的上 方 ,由此 可得 a x + b x + c >0恒 成立 ;同 样 ,若 a < 0,而 △ <0时 , 所 有 的图 象都 在 X 轴 的下方 ,由此 可得 a x + b x + c <0 恒 成立 ;具体 习题 中 ,我 们就要 根 据 函数 的 图象来具体 解题 ,如下边 的一 道例题 : 例 1:若关 于 x 的不 等式 ( m + 1 ) x 一 ( 2 m + 2 ) x + 3 ( m一 1 ) <0对 切 实数恒 成 立,求 m 的取值 范围. 分 析 :不等 式 在 m = 一 1 时不 是二 次 不等 式 ,所 以要 进行 分 情况 讨论 ; 解: 若m = 一 1 ,不等 式为 一 6 <0,恒 成立 ; 若 m ≠一 1 ,要 使不等 式恒成 立 ,
l I f( 0 ) >0
② i , c 。 解 得 。 ≤ k c 2 ;
③5 ≥ , l 解 集 为 中 } I f( 1 ) >0
综 合 以上三种 情况可 得 :k <2 3 .其 它的恒 成立 问题 : 般而 言 , a < f ( x ) 恒成 立 ,可 等价 为 a < x ) … ; a > f ( x ) 恒成 立 ,可 等价 为 a = > f ( x ) …; 例 3:对 于任 意实数 X 不 等式 x + 1 i — 一 2> a 恒成 立 ,求 a 的 取 值范 围. 解 :设 x ) =x + r — 一 2 ,则 由绝 对值不 等 式的 几何 意义 可

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题)

导数中恒成立问题〔最值问题〕恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。

知识储备〔我个人喜欢将参数放左边,函数放右边〕先来简单的〔也是最本质的〕如别离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ 〔假设是存在性问题,那么最大变最小,最小变最大〕 1.对于单变量的恒成立问题如:化简后我们分析得到,对[],x a b ∀∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ∃∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题如:化简后我们分析得到,对[]12,,x x a b ∀∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ∀∈,[]2,x c d ∃∈使12()()f x g x ≥,那么只需min min ()()f x g x ≥如:化简后我们分析得到,[]1,x a b ∃∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话〔双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量〕3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题〔2014.03苏锡常镇一模那题特别典型〕今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,〔甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是11,,e e之类〕,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。

高考数学导数与不等式 利用导数研究恒成立问题

高考数学导数与不等式 利用导数研究恒成立问题
解:当x=0时,f(0)=0≥-1,即f(x)≥x-cos x成立.当x>0时,由f(x)≥x-cos x,整理得a≤-1.设g(x)=-1(x>0),则g'(x)=.令g'(x)>0,得x>1,则g(x)在(1,+∞)上单调递增;令g'(x)<0,得0<x<1,则g(x)在(0,1)上单调递减.所以g(x)min=g(1)=e-1,则a≤e-1.综上,实数a的取值范围是(-∞,e-1].
课堂考点探究
课堂考点探究
变式题1 已知f(x)=ax-ln x,x∈(0,e],g(x)=,x∈(0,e],其中e是自然对数的底数, a∈R.(1)当a=1时,求函数f(x)的单调区间和极值;
解: ∵f(x)=x-ln x, ∴f'(x)=1-=,当0<x<1时,f'(x)<0,此时f(x)单调递减;当1<x≤e时,f'(x)>0,此时f(x)单调递增.∴f(x)的单调递减区间为(0,1),单调递增区间为(1,e],f(x)的极小值为f(1)=1,无极大值.
教师备用习题
解:对任意x>0都有f(x)<x+1恒成立,即a(ex-1)<xex+1对x∈(0,+∞)恒成立,因为x>0,所以ex-1>0,所以a<=x+对x∈(0,+∞)恒成立.令g(x)=x+(x>0),则只需a<g(x)min.g'(x)=1+=,令h(x)=ex-x-2(x>0),则h'(x)= ex-1>0恒成立,所以h(x)在(0,+∞)上单调递增,因为h(1)=e-3<0,h(2)=e2-4>0,所以存在唯一的x0∈(1,2),使得h(x0)=0,所以当x∈(0,x0)时,h(x)<0,g'(x)<0,当x∈(x0,+∞)时,h(x)>0, g'(x)>0,所以g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0 +,由-x0-2=0得=x0+2,所以g(x0)=x0+ =x0+1∈(2,3),故a的最大整数值为2.

第三讲 恒成立问题

第三讲 恒成立问题

第三讲 恒成立问题例题精讲分离参数例1、已知函数()[)22,1,x x a f x x x++=∈+∞,若对任意[)()1,,0x f x ∈+∞>恒成立,试求实数a 的取值范围。

答案:()3,-+∞数形结合例2、对于所有实数x ,不等式224x x a +-≥恒成立,则实数a 的最大值是 答案:3变式:方程()94340x x a ++⋅+=恒有两个不相等的实数根,求实数a 的取值范围。

答案:(),8-∞-例3、设,x y R +∈≤恒成立,求实数a 的取值范围。

答案:)+∞变式:设()2f x ax bx c =++,若()712f =,问是否存在,,a b c R ∈,使得不等式()22132222x f x x x +≤≤++对一切实数x 恒成立?证明你的结论。

答案:32a =,1b =,1c =转换主元例4、对于11a -≤≤,不等式2211122x ax x a ++-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭恒成立,则x 的取值范围是 。

答案:()(),02,-∞+∞U变式:设函数()()2f x g x mx m ==-,若对满足1m <的一切m ,都有()()f x g x >,求实数x 的取值范围。

答案:30,4⎡⎤⎢⎥⎣⎦构造函数 例5、 设函数()()121lg x x x n n a f x n+++-+⋅=L ,其中a R ∈,n 是任意给定的自然数,且2n ≥,当1x ≤时,要使()f x 有意义,求a 的取值范围。

答案:1,2n -⎛⎫-+∞ ⎪⎝⎭变式1:已知()()2111111,23n n n S n N f n S S n+++=++++∈=-L 。

(1) 证明:()()1f n f n +>;(2) 试确定实数m 的取值范围,使得对一切大于1的自然数n ,不等式()()()22111log 1log 20m m f n m m -⎡⎤>--⎡⎤⎣⎦⎣⎦恒成立。

高一数学一元二次不等式解法练习题及与含参不等式恒成立的例子

高一数学一元二次不等式解法练习题及与含参不等式恒成立的例子

高一数学一元二次不等式解法练习题及答案例若<<,则不等式--<的解是1 0a 1(x a)(x )01a[ ]A a xB x a.<<.<<11aaC x aD x x a.>或<.<或>x aa11分析比较与的大小后写出答案. a 1a解∵<<,∴<,解应当在“两根之间”,得<<.选.0a 1a a x A 11a a¥例有意义,则的取值范围是.2 x x 2--x 6分析 求算术根,被开方数必须是非负数.解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2.例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理.解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知-=-+=-=-=-⎧⎨⎪⎪⎩⎪⎪baa ()()1211122×得 ab ==-1212,. %例4 解下列不等式(1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成).答 (1){x|x <2或x >4}(2){x|1x }≤≤32!(3)∅(4)R (5)R说明:不能使用解公式的时候要先变形成标准形式.例不等式+>的解集为5 1x 11-x[ ]A .{x|x >0}B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}¥分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x -1>0,即x >1.选C .说明:本题也可以通过对分母的符号进行讨论求解.例与不等式≥同解的不等式是6 0x x--32 [ ]A .(x -3)(2-x)≥0B .0<x -2≤1 |C .≥230--xxD .(x -3)(2-x)≤0解法一原不等式的同解不等式组为≥,≠. ()()x x x ---⎧⎨⎩32020 故排除A 、C 、D ,选B .解法二≥化为=或-->即<≤ x 320x 3(x 3)(2x)02x 3--x两边同减去2得0<x -2≤1.选B . 说明:注意“零”.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1…[ ]A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a -答 选C .说明:注意本题中化“商”为“积”的技巧.例解不等式≥.8 237232x x x -+-"解 先将原不等式转化为3723202x x x -+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x x x x x x x x 002x x 12(x )022∴不等式进一步转化为同解不等式x 2+2x -3<0,即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}.说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 例9 已知集合A ={x|x 2-5x +4≤0}与B ={x|x 2-2ax +a +2≤,若,求的范围.0}B A a ⊆*分析 先确定A 集合,然后根据一元二次不等式和二次函数图像关系,结合,利用数形结合,建立关于的不等式.B A a ⊆解 易得A ={x|1≤x ≤4} 设y =x 2-2ax +a +2(*)(1)B B A 0若=,则显然,由Δ<得∅⊆4a 2-4(a +2)<0,解得-1<a <2.(2)B (*)116若≠,则抛物线的图像必须具有图-特征:∅>应有≤≤≤≤从而{x|x x x }{x|1x 4}12⊆12a 12042a 4a 201412a 22-·++≥-·++≥≤≤解得≤≤a a--⎧⎨⎪⎪⎩⎪⎪22187综上所述得的范围为-<≤.a 1a 187说明:二次函数问题可以借助它的图像求解. 例10 解关于x 的不等式(x -2)(ax -2)>0.分析 不等式的解及其结构与a 相关,所以必须分类讨论. 解 1° 当a =0时,原不等式化为 、x -2<0其解集为{x|x <2};2 a 02(x 2)(x )0°当<时,由于>,原不等式化为--<,其解集为22a a{x|2ax 2}<<; 3 0a 12(x 2)(x )0°当<<时,因<,原不等式化为-->,其解集为22a a{x|x 2x }<或>;2a4° 当a =1时,原不等式化为(x -2)2>0,其解集是{x|x ≠2};5 a 12(x 2)(x )0°当>时,由于>,原不等式化为-->,其解集是22a a{x|x x 2}<或>.2a—从而可以写出不等式的解集为: a =0时,{x|x <2};a 0{x|2a x 2<时,<<};0a 1{x|x 2x }<<时,<或>;2aa =1时,{x|x ≠2};a 1{x|x x 2}>时,<或>.2a说明:讨论时分类要合理,不添不漏.例11 若不等式ax 2+bx +c >0的解集为{x|α<x <β}(0<α<β),求cx 2+bx +a <0的解集.:分析 由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使用韦达定理:解法一 由解集的特点可知a <0,根据韦达定理知:-=α+β,=α·β.bac a⎧⎨⎪⎪⎩⎪⎪ 即=-α+β<,=α·β>.ba c a()00⎧⎨⎪⎪⎩⎪⎪∵a <0,∴b >0,c <0.又×,b a a c b c= ∴=-α+β①由=α·β,∴=α·β②b c c a a c (1)111对++<化为++>,cx bx a 0x x 022b c ac>由①②得α,β是++=两个根且α>β>,1111x x 002b c a c ∴++>即++<的解集为>α或<β.x x 0cx bx a 0{x|x x }22b c a c 11 解法二 ∵cx 2+bx +a =0是ax 2+bx +a =0的倒数方程. 且ax 2+bx +c >0解为α<x <β,∴++<的解集为>α或<β.cx bx a 0{x|x x } 211说明:要在一题多解中锻炼自己的发散思维.例解关于的不等式:<-∈.12 x 1a(a R)xx -1分析 将一边化为零后,对参数进行讨论. /解原不等式变为--<,即<, (1a)00x x ax a x -+--111进一步化为(ax +1-a)(x -1)<0.(1)当a >0时,不等式化为(x )(x 1)01{x|a 1a x1}--<,易见<,所以不等式解集为<<;a a a a ---11(2)a =0时,不等式化为x -1<0,即x <1,所以不等式解集为{x|x <1};(3)a 0(x )(x 1)01{x|x 1x }<时,不等式化为-·->,易见>,所以不等式解集为<或>.a a a aa a---111综上所述,原不等式解集为:当>时,<<;当=时,<;当<时,>或<.a 0{x|a 1ax 1}a 0{x|x 1}a 0{x|x x 1}--a a1…例13 (2001年全国高考题)不等式|x 2-3x|>4的解集是________. 分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式.由可解得<-或>,.(1)x 1x 4(2)∅答 填{x|x <-1或x >4}.例14 (1998年上海高考题)设全集U =R ,A ={x|x 2-5x -6>0},B ={x||x -5|<a}(a 是常数),且11∈B ,则[ ]A .(U A)∩B =RB .A ∪(U B)=R`C .(U A)∪(U B)=RD .A ∪B =R分析 由x 2-5x -6>0得x <-1或x >6,即A ={x|x <-1或x >6}由|x -5|<a 得5-a <x <5+a ,即B ={x|5-a <x <5+a}∵11∈B ,∴|11-5|<a 得a >6∴5-a <-1,5+a >11 ∴A ∪B =R . 答 选D . …说明:本题是一个综合题,涉及内容很广泛,集合、绝对值不等式、一元二次不等式等内容都得到了考查不等式中恒成立问题的解法研究,在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。

不等式恒成立、能成立、恰成立问题专题(17例题+15练习题+答案与解析)

不等式恒成立、能成立、恰成立问题专题(17例题+15练习题+答案与解析)

不等式恒成立、能成立、恰成立问题分析及应用一、不等式恒成立问题的处理方法1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A(2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。

例2、已知(),22x ax x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围;例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln)(44>-+=xcbxxaxxf在1=x处取得极值3c--,其中a、b为常数.(1)试确定a、b的值;(2)讨论函数)(xf的单调区间;(3)若对任意0>x,不等式22)(cxf-≥恒成立,求c的取值范围。

2、主参换位法例5、若不等式a10x-<对[]1,2x∈恒成立,求实数a的取值范围例6、若对于任意1a≤,不等式2(4)420x a x a+-+->恒成立,求实数x的取值范围例7、已知函数323()(1)132af x x x a x=-+++,其中a为实数.若不等式2()1f x x x a'--+>对任意(0)a∈+∞,都成立,求实数x的取值范围.3、分离参数法(1)将参数与变量分离,即化为()()g f xλ≥(或()()g f xλ≤)恒成立的形式;(2)求()f x在x D∈上的最大(或最小)值;(3)解不等式()max()g f xλ≥(或()()ming f xλ≤),得λ的取值范围。

2.3 习题课 不等式恒成立、能成立问题

2.3  习题课 不等式恒成立、能成立问题


0,解得a≥13;
故实数a的取值范围是a≥13.
返回导航
学霸笔记: (1)不等式ax2+bx+c>0的解是全体实数(或恒成立)的条件是:当a= 0时,b=0,c>0;当a≠0时,ቊaΔ><00,. (2)不等式ax2+bx+c<0的解是全体实数(或恒成立)的条件是:当a= 0时,b=0,c<0;当a≠0时,ቊaΔ<<00,.
解析:由题意得,k<x2−5xx+4在x>0上恒成立,令y=x2−5xx+4,只需k<ymin即可, 由基本不等式得g(x)=x+4x-5≥2 4-5=-1,当且仅当x=4x,即x=2时等号成 立. 所以k<-1,则k的取值范围是{k|k<-1}.
返回导航
学霸笔记:(1)转化为对应的二次函数图象与x轴的交点问题. ①当a>0时,ax2+bx+c<0在x∈{x|α≤x≤β}上恒成立⇔y=ax2+bx +c在x=α,x=β时的函数值同时小于0. ②当a<0时,ax2+bx+c>0在x∈{x|α≤x≤β}上恒成立⇔y=ax2+bx +c在x=α,x=β时的函数值同时大于0. (2)用分离参数法转化为相应二次函数的最值或用基本不等式求最 值.
返回导航
02.课后检测案 (17)
返回导航
基础强化 1.(5分)若命题“∀x∈R,x2+ax-4a≥0”为真命题,则实数a的取值 范围是( ) A.-16≤a≤0 B.-16<a<0 C.-4≤a≤0 D.-4<a<0
答案:A
解析:因为∀x∈R,x2+ax-4a≥0,所以a2-4×1×(-4a)=a2+16a≤0,解得 -16≤a≤0,故实数a的取值范围是-16≤a≤0.

恒成立练习题

恒成立练习题

恒成立练习题1a R x x a x a 恒成立,则实数对一切∈<--+-04)2(2)2(2的取值范围是( ))2(]22(]22[)2(--∞---∞,、,、,、,、D C B A2、若不等式)210(0log 2,在<-x xa 内恒成立,则实数a 的取值范围是)21()121()1161()1()1161[,,、,、,、,、 D C B A ∞+3、当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是_4、若不等式142xx a +--≥0在[1,2]上恒成立,则a 的取值范围为.5.对于满足0≤p≤4的实数p ,使342-+>+p x px x 恒成立的x 的取值范围是 . 6、当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]7、若不等式R x a x x ∈≥-++对|1||2|恒成立,则实数a 的取值范围是( )A .),3(+∞B .),3[+∞C .(-∞,3)D .]3,(-∞8、若关于x 的不等式|x-2|+|x+2|>a 的解是全体实数,则实数a 的取值范围是( )A .4a <B .4a> C .0a > D .0a <9、已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为( ) A.2 B.4 C.6 D.8 10、已知a ∈R ,则“2a <”是“|2|||x x a -+>恒成立”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 11、已知a ,b ∈R ,且a >b ,则下列不等式中恒成立的是 A .a 2>b 2B .(21) a <(21)bC .lg (a -b )>0D .ba>1 12、当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 .13、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为( )A (,1][4,)-∞-+∞ B (,2][5,)-∞-+∞ C .[1,2] D .(,1][2,)-∞+∞14.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( )(A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1答案 1、C 2、A 3答案:(5m ≤- 4、a ≤0. 解:a ≤142xx +-在[1,2]上恒成立,a ≤(142xx +-)min =(2(21)1x --)min =05.(-∞,-1)∪(3,+∞) 6答案:D 7答案:D 8答案:A9【解】:)21()()111a y axx y a a x y x y++=+++≥++=,当y =时取等号,所以1()()a x y x y++的最小值为)21,于是)219≥恒成立4a ∴≥ 故选B ;10c 11B125m -≤ 13答案 A解析 因为24314313x x x x a a -≤+--≤+--≤-对对任意x 恒成立,所以22343041a a a a a a -≥-≥≥≤-即,解得或14解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x<0时,-x ≥ax ,∴a ≥-1,综上得11a -≤≤,即实数a 的取值范围是a ≤1,选B 。

课时作业8:习题课 不等式恒成立、能成立问题

课时作业8:习题课 不等式恒成立、能成立问题

习题课 不等式恒成立、能成立问题课时对点练1.一元二次不等式ax 2+bx +c <0的解集为全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0C.⎩⎪⎨⎪⎧ a <0,Δ>0D.⎩⎪⎨⎪⎧a <0,Δ<0 答案 D解析 一元二次不等式ax 2+bx +c <0的解集为全体实数等价于二次函数y =ax 2+bx +c 的图象全部在x 轴下方,需要开口向下,且与x 轴无交点,故需要⎩⎪⎨⎪⎧a <0,Δ<0. 2.若关于x 的不等式-x 2+mx -1≥0有解,则实数m 的取值范围是( )A .{m |m ≤-2或m ≥2}B .{m |-2≤m ≤2}C .{m |m <-2或m >2}D .{m |-2<m <2}答案 A解析 因为关于x 的不等式-x 2+mx -1≥0有解,所以Δ=m 2-4≥0,解得m ≥2或m ≤-2.3.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( )A .{a |-4≤a ≤4}B .{a |-4<a <4}C .{a |a ≤-4或a ≥4}D .{a |a <-4或a >4} 答案 A解析 由题意得,Δ=a 2-16≤0,解得-4≤a ≤4.4.已知不等式-x 2+4x ≥a 2-3a 在R 上有解,则实数a 的取值范围为( )A .{a |-1≤a ≤4}B .{a |-1<a <4}C .{a |a ≥4或a ≤-1}D .{a |-4≤a ≤1} 答案 A解析 由题意知,-(x -2)2+4≥a 2-3a 在R 上有解,∴a 2-3a ≤4,即(a -4)(a +1)≤0,∴-1≤a ≤4.5.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( ) A .{m |-1<m <4}B .{m |m <0或m >3}C .{m |-4<m <1}D .{m |m <-1或m >4}答案 D解析 因为正实数x ,y 满足1x +4y=1, 所以x +y 4=⎝⎛⎭⎫1x +4y ⎝⎛⎭⎫x +y 4=2+4x y +y 4x≥2+24x y ·y 4x=4, 当且仅当x =2,y =8时,x +y 4取得最小值4, 由x +y 4<m 2-3m 有解,可得m 2-3m >4, 解得m >4或m <-1.6.(多选)不等式ax 2-2x +1<0的解集非空的一个必要不充分条件是( )A .a <1B .a ≤1C .a <2D .a <0 答案 BC解析 因为ax 2-2x +1<0的解集非空,显然a ≤0成立,由⎩⎪⎨⎪⎧a >0,Δ=4-4a >0,∴0<a <1,综上,ax 2-2x +1<0的解集非空的充要条件为a <1.7.若不等式x 2+(m -3)x +m <0无解,则实数m 的取值范围是________.答案 1≤m ≤9解析 x 2+(m -3)x +m <0无解,Δ=(m -3)2-4m =m 2-10m +9≤0,解得1≤m ≤9.8.若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是_________. 答案 {k |-3<k ≤1}解析 当k =1时,-1<0恒成立;当k ≠1时,由题意得⎩⎪⎨⎪⎧k -1<0,(k -1)2+4(k -1)<0, 解得-3<k <1,因此实数k 的取值范围为{k |-3<k ≤1}.9.∀x ∈{x |2≤x ≤3},不等式mx 2-mx -1<0恒成立,求m 的取值范围.解 由不等式mx 2-mx -1<0,得m (x 2-x )<1,因为x ∈{x |2≤x ≤3},所以x 2-x >0,所以m (x 2-x )<1可化为m <1x 2-x,因为x 2-x =⎝⎛⎭⎫x -122-14≤6, 所以1x 2-x ≥16,所以m <16. 即m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <16. 10.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围. 解 y <0⇔mx 2-mx -6+m <0⇔(x 2-x +1)m -6<0.∵1≤m ≤3,∴x 2-x +1<6m恒成立, ∴x 2-x +1<63⇔x 2-x -1<0⇔1-52<x <1+52. ∴x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.11.设p :“∀x ∈R ,x 2-mx +1>0”,q :“-2≤m ≤2”,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 ∵∀x ∈R ,x 2-mx +1>0,∴Δ=m 2-4<0,∴-2<m <2,∴命题p :-2<m <2.由集合间的关系可知,p 是q 成立的充分不必要条件.12.在R 上定义运算:x ⊗y =x (1-y ),若∃x ∈R 使得(x -a )⊗(x +a )>1成立,则实数a 的取值范围是( )A .a <-12或a >32B .-12<a <32C .-32<a <12D .a <-32或a >12 答案 A解析 由题意知(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a =-⎝⎛⎭⎫x -122+a 2-a +14, ∴若∃x ∈R ,使得不等式(x -a )⊗(x +a )>1成立,则需函数y =-⎝⎛⎭⎫x -122+a 2-a +14的最大值大于1, 即x =12时,y =a 2-a +14>1成立, 解得a <-12或a >32. 13.对任意x 满足-1≤x ≤2,不等式x 2-2x +a <0成立的必要不充分条件是( )A .a <-3B .a <-4C .a <0D .a >0 答案 C解析 因为x 2-2x +a <0,所以a <-x 2+2x ,又因为-1≤x ≤2,-x 2+2x =-x (x -2)≥-3,所以a <-3,又因为求“对任意x 满足-1≤x ≤2,不等式x 2-2x +a <0成立的必要不充分条件”. 所以C 正确.14.若存在1≤a ≤3,使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >23 解析 令y =ax 2+(a -2)x -2=(x 2+x )a -2x -2,是关于a 的函数,由题意得(x 2+x )-2x -2>0或 (x 2+x )·3-2x -2>0.即x 2 -x -2>0①,或3x 2+x -2>0②.解①可得x <-1或x >2. 解②可得x <-1或x >23. 把①②的解集取并集可得x <-1或x >23.15.关于x 的不等式(a 2-1)x 2-(a -1)x -1≤0的解集为R ,则实数a 的取值范围是________.答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪-35≤a ≤1 解析 当a 2-1=0时,a =1或a =-1,若a =1,不等式为-1≤0,恒成立,若a =-1,不等式为2x -1≤0,解得x ≤12,不符合题意, 当a 2-1≠0时,若要不等式(a 2-1)x 2-(a -1)x -1≤0的解集为R ,则a 2-1<0,且Δ=(a -1)2+4(a 2-1)≤0,解得-35≤a <1, 综上可得-35≤a ≤1. 16.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,求实数λ的取值范围. 解 因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0,解得-8≤λ≤4.即实数λ的取值范围为{λ|-8≤λ≤4}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年12月2日数学试卷
一、选择题(共2小题;共10分)
1. 已知,若恒成立,则的取值范围为
A. C. D.
2. 已知,若恒成立,则的取值范围为
A. C. D.
二、填空题(共2小题;共10分)
3. 若对任意正实数,不等式恒成立,则实数的最小值为.
4. 若对于,恒成立,则的取值范围是.
三、解答题(共6小题;共78分)
5. 已知函数.
(1)当时,恒成立,求实数的取值范围.
(2)当时,恒成立,求实数的取值范围.
6. (1)若不等式对于一切恒成立,求的取值范围;
(2)若不等式对于一切恒成立,求的取值范围.
7. 已知,,且.
(1)若恒成立,求的取值范围;
(2)若恒成立,求的取值范围.
8. 设函数.
(1)若不等式恒成立,求实数的取值范围;
(2)若不等式恒成立,求实数的取值范围.
9. 设函数.
(1)若对于一切实数,恒成立,求的取值范围;
(2)对于,恒成立,求的取值范围.
10. 已知.
(1)求的单调区间;
(2)当时,求证:对于,恒成立;
(3)若存在,使得当时,恒有成立,试求的取
值范围.
答案
第一部分
1. A
2. A
第二部分
【解析】因为对任意正实数,不等式恒成立,
所以等价于,
所以,,
所以实数的最小值为.
【解析】由题意恒成立,

所以.
第三部分
5. (1), .
(2),对称轴,所以:
无解;



.
.
6. (1)由已知可得对一切恒成立,
设,则,当且仅当时,取到最小值,
所以的取值范围是.
(2)因为,则可把原式看作关于的函数,
即,由题意可知,
解之得,
所以的取值范围是.
7. (1)因为,,且,
所以,当且仅当时“”成立,
由恒成立,故.
(2)因为,,
所以,
若恒成立,
则,
当时,不等式化为,解得,
当,不等式化为,解得,
当时,不等式化为,解得.
综上所述的取值范围为.
8. (1)当时,恒成立,当时,要保证恒成立,即
的最小值,解得,故.
(2)由题意可知,函数的图象恒在直线的上方,画出两个函数图象可知,当时,符合题意,当时,只需满足点不在的下方即
可,所以,即.
综上,实数的取值范围是.
9. (1)要恒成立,若,显然;
若,则.
所以的取值范围为.
(2)要恒成立,就要使,.
令,.
当时,是增函数,
所以.
所以,解得.
所以.
当恒成立.
当时,在上是减函数.
所以,解得,
所以.
综上所述,.
10. (1)
当时,
所以.
解得.
当时,解得.
所以单调增区间为,单调减区间为.
(2)设
当时,由题意,当时,恒成立.
所以当时,恒成立,单调递减.

所以当时,恒成立,即.
所以对于,恒成立.
(3)因为.
由⑵知,当时,恒成立,
即对于,,不存在满足条件的;
当时,对于,,此时.
所以,即恒成立,不存在满足条件的;
当时,令,可知与符号相同,为一开口向下的抛物线,且当时, .
又,
所以必存在,使得 .
当时,,,单调递增;
当时,,,单调递减.
当时,,即恒成立.
综上,的取值范围为.。

相关文档
最新文档