【小初高学习】2018-2019学年高中数学人教版A版必修一学案:第一单元 1.1.3 第2课时 补
2018-2019学年高中数学 第一章 计数原理 1.2.1 第1课时 排列与排列数公式学案 新人教A版选修2-3
第1课时排列与排列数公式1.理解排列、排列数的定义,掌握排列数公式及推导方法.2.能用列举法、“树形图”表示出一个排列问题的所有的排列.3.能用排列数公式解决无限制条件的排列问题.,1.排列(1)一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同.排列的定义中包含两个基本内容:一是“取出元素”,二是“按一定顺序排列”.因此,排列要完成的“一件事”是“取出m个元素,再按顺序排列”,“一定的顺序”就是与位置有关,不考虑顺序就不是排列.2.排列数及排列数公式排列数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数表示法A m n全排列n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,这时公式中m=n,即有A n n=n×(n-1)×(n-2)×…×3×2×1阶乘正整数从1到n的连乘积叫做n的阶乘,用n!表示排列数公式乘积式A m n=n(n-1)(n-2)…(n-m+1)阶乘式A m n=n!(n-m)!性质A n n=n!,0!=1备注n,m∈N*,m≤n排列数是指“从n个不同的元素中取出m个元素的所有排列的个数”,即排列共有多少种形式,它是一个数.因此,A m n只代表排列数,而不表示具体的排列.判断正误(正确的打“√”,错误的打“×”)(1)a,b,c与b,a,c是同一个排列.( )(2)同一个排列中,同一个元素不能重复出现.( )(3)在一个排列中,若交换两个元素的位置,则该排列不发生变化.( )(4)从4个不同元素中任取三个元素,只要元素相同得到的就是相同的排列.( )答案:(1)×(2)√(3)×(4)×下面问题中,是排列问题的是( )A.由1,2,3,4四个数字组成无重复数字的四位数B.从60人中选11人组成足球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案:AA24=________,A33=________.答案:12 6若A m10=10×9×…×5,则m=________.答案:6探究点1 排列的概念判断下列问题是否是排列问题,并说明理由.(1)从甲、乙、丙、丁四名同学中选出两名参加一项活动,其中一名同学参加活动A,另一名同学参加活动B;(2)从甲、乙、丙、丁四名同学中选出两名参加一项活动;(3)从所有互质的三位数中选出两个数求其和;(4)从所有互质的三位数中选出两个数求其商;(5)高二(1)班有四个空位,安排从外校转来的三个学生坐到这四个空位中的三个上.【解】(1)是排列,因为选出的两名同学参加的是不同的活动,即相当于把选出的同学按顺序安排到两个不同的活动中.(2)不是排列,因为选出的两名同学参加的是同一个活动,没有顺序之分.(3)不是排列,因为选出的两个三位数之和对顺序没有要求.(4)是排列,因为选出的两个三位数之商会因为分子、分母的顺序颠倒而发生变化,且这些三位数是互质的,不会产生选出的数不同而商的结果相同的可能性,故是排列.(5)是排列,可看作从四个空位中选出三个座位,分别安排给三个学生.判断一个具体问题是否为排列问题的方法1.从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题( )A.1 B.2C.3 D.4解析:选B.因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题.而减法、除法与两数字的位置有关,故是排列问题.2.判断下列问题是否是排列问题:(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?解:(1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.综上,(1)、(3)是排列问题,(2)不是排列问题.探究点2 排列的列举问题四个人A,B,C,D坐成一排照相有多少种坐法?将它们列举出来.【解】先安排A有4种坐法,安排B有3种坐法,安排C有2种坐法,安排D有1种坐法,由分步乘法计数原理,有4×3×2×1=24种.画出树形图:由“树形图”可知,所有坐法为ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.1.[变条件]若本例条件再增加一条“A不坐排头”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA,共18种坐法.2.[变条件]若在本例条件中再增加一条“A,B不相邻”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为ACBD,ACDB,ADBC,ADCB,BCAD,BCDA,BDAC,BDCA,CADB,CBDA,DACB,DBCA共12种.利用“树形图”法解决简单排列问题的适用范围及策略(1)适用范围:“树形图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 5,4种退热药b 1,b 2,b 3,b 4,现从中取两种消炎药和一种退热药同时进行疗效试验,但a 1,a 2两种药或同时用或同时不用,a 3,b 4两种药不能同时使用,试写出所有不同试验方法. 解:如图,由树形图可写出所有不同试验方法如下:a 1a 2b 1,a 1a 2b 2,a 1a 2b 3,a 1a 2b 4,a 3a 4b 1,a 3a 4b 2,a 3a 4b 3,a 3a 5b 1,a 3a 5b 2,a 3a 5b 3,a 4a 5b 1,a 4a 5b 2,a 4a 5b 3,a 4a 5b 4,共14种.探究点3 排列数的计算或证明(1)计算2A 58+7A 48A 88-A 59;(2)求证:A m n +1-A m n =m A m -1n . 【解】 (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5 =8×7×6×5×(8+7)8×7×6×5×(24-9)=1. (2)法一:因为A mn +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·(n +1n +1-m -1) =n !(n -m )!·m n +1-m =m ·n !(n +1-m )!=m A m -1n ,所以A mn +1-A mn =m A m -1n .法二:A mn +1表示从n +1个元素中取出m 个元素的排列个数,其中不含元素a 1的有A mn 个. 含有a 1的可这样进行排列:先排a 1,有m 种排法,再从另外n 个元素中取出m -1个元素排在剩下的m -1个位置上,有A m -1n 种排法. 故A mn +1=m A m -1n +A mn ,所以m A m -1n =A m n +1-A mn .排列数公式的形式及选择方法排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.1.A m12=9×10×11×12,则m =( )A .3B .4C .5D .6解析:选B.等式A m 12=9×10×11×12的右边是4个连续自然数的乘积,且最大数为12,故m =4.2.下列各式中与排列数A mn 相等的是( )A.n !(m -n )!B .n (n -1)(n -2)…(n -m ) C.n n -m +1A n -1nD .A 1n ·A m -1n -1解析:选D.因为A mn =n !(n -m )!,A 1n ·A m -1n -1=n ·(n -1)![n -1-(m -1)]!=n ·(n -1)!(n -m )!=n !(n -m )!,所以A m n =A 1n ·A m -1n -1.1.4×5×6×…×(n -1)×n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:选D.4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4,故4×5×6×…×(n -1)×n =A n -3n .2.从1,2,3,4这四个数字中任取两个不同的数字,则可组成不同的两位数有( ) A .9个 B .12个 C .15个D .18个解析:选B.用树形图表示为:由此可知共有12个.3.A345!=________.解析:A345!=4×3×25×4×3×2×1=15.答案:154.从0,1,2,3这四个数字中,每次取出3个不同的数字排成一个三位数,写出其中大于200的所有三位数.解:大于200的三位数的首位是2或3,于是大于200的三位数有:201,203,210,213,230,231,301,302,310,312,320,321.知识结构深化拓展1.判断一个问题是否是排列的思路排列的根本特征是每一个排列不仅与选取的元素有关,而且与元素的排列顺序有关.这就是说,在判断一个问题是否是排列时,可以考虑所取出的元素,任意交换两个,若结果变化,则是排列问题,否则不是排列问题.2.排列数两个公式的选取技巧(1)排列数的第一个公式A m n=n(n-1)(n-2)…(n-m+1)适用m已知的排列数的计算以及排列数的方程和不等式.在运用时要注意它的特点,从n起连续写出m个数的乘积即可.(2)排列数的第二个公式A m n=n!(n-m)!用于与排列数有关的证明、解方程、解不等式等,在具体运用时,应注意先提取公因式再计算,同时还要注意隐含条件“n、m∈N*,m≤n”的运用.[易错提醒] 公式中的n,m应该满足n,m∈N*,m≤n,当m>n时不成立., [A 基础达标]1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;②从甲、乙、丙三名同学中选出两人参加一项活动;③从a ,b ,c ,d 中选出3个字母;④从1,2,3,4,5这五个数字中取出2个数字组成一个两位数.其中是排列问题的有( ) A .1个 B .2个 C .3个D .4个解析:选B.由排列的定义知①④是排列问题. 2.计算A 67-A 56A 45=( )A .12B .24C .30D .36解析:选D.A 67-A 56A 45=7×6×5×4×3×2-6×5×4×3×25×4×3×2=7×6-6=36.3.若α∈N *,且α<27,则(27-α)(28-α)…(34-α)等于( ) A .A 827-α B .A 27-α34-α C .A 734-αD .A 834-α解析:选D.从27-α到34-α共有34-α-(27-α)+1=8个数.所以(27-α)(28-α)…(34-α)=A 834-α.4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( ) A .6 B .4 C .8D .10解析:选B.列树形图如下:丙甲—乙乙—甲乙甲—丙丙—甲,共4种. 5.不等式A 2n -1-n <7的解集为( ) A .{n |-1<n <5} B .{1,2,3,4} C .{3,4}D .{4}解析:选C.由不等式A 2n -1-n <7, 得(n -1)(n -2)-n <7, 整理得n 2-4n -5<0, 解得-1<n <5.又因为n -1≥2且n ∈N *, 即n ≥3且n ∈N *, 所以n =3或n =4,故不等式A 2n -1-n <7的解集为{3,4}. 6.2A 412+A 512A 513-A 512=________.解析:原式=2×12×11×10×9+12×11×10×9×813×12×11×10×9-12×11×10×9×8=2+813-8=2. 答案:27.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成____个以b 为首的不同的排列,它们分别是____________________________________________________________ ________________________________________________________________________. 解析:画出树形图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed .答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed 8.若集合P ={x |x =A m 4,m ∈N *},则集合P 中共有________个元素. 解析:因为x =A m4, 所以有m ∈N *且m ≤4,所以P 中的元素为A 14=4,A 24=12,A 34=A 44=24, 即集合P 中有3个元素. 答案:39.判断下列问题是否是排列问题:(1)某班共有50名同学,现要投票选举正、副班长各一人,共有多少种可能的选举结果? (2)从2,3,5,7,9中任取两个数分别作为对数的底数和真数,有多少个不同对数值? (3)从集合M ={1,2,…,9}中,任取相异的两个元素作为a ,b ,可以得到多少个焦点在x轴上的椭圆方程x 2a 2+y 2b2=1?解:(1)是.选出的2人担任正、副班长,与顺序有关,所以该问题是排列问题. (2)是.显然对数值与底数和真数的取值的不同有关系,与顺序有关.(3)不是.焦点在x 轴上的椭圆,方程中的a 、b 必有a >b ,即取出的两个数谁是a ,谁是b 是确定的.10.甲、乙、丙三人相互传球,由甲开始发球,经过5次传球,球仍回到甲手中,不同的传球方法共有多少种?解:由甲开始发球,可发给乙,也可发给丙. 若甲发球给乙,其传球方法的树形图如图,共5种.同样甲第一次发球给丙,也有5种情况.由分类加法计数原理,共有5+5=10种不同传球方法.[B 能力提升]11.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数字是( ) A .8 B .5 C .3D .0解析:选C.因为当n ≥5时,A nn 的个位数字是0,故S 的个位数取决于前四个排列数.又A 11+A 22+A 33+A 44=33,故选C.12.A 2n +1与A 3n 的大小关系是( ) A .A 2n +1>A 3n B .A 2n +1<A 3n C .A 2n +1=A 3nD .大小关系不定解析:选D.由题意知n ≥3,A 2n +1-A 3n =(n +1)n -n (n -1)(n -2)=-n (n 2-4n +1),当n =3时,A 2n +1-A 3n =6>0,得A 2n +1>A 3n ,当n ≥4时,A 2n +1-A 3n <0,得A 2n +1<A 3n ,即A 2n +1与A 3n 的大小关系不定.故选D. 13.解下列方程或不等式. (1)3A 3x =2A 2x +1+6A 2x ; (2)A x9>6A x -29.解:(1)由排列数公式,得:⎩⎪⎨⎪⎧3x (x -1)(x -2)=2(x +1)x +6x (x -1),①x ≥3,x ∈N *.② 由①,得3x 2-17x +10=0, 解得x =5或x =23,结合②可知x =5是所求方程的根. (2)原不等式可化为:⎩⎪⎨⎪⎧9!(9-x )!>6×9!(9-x +2)!,①2<x ≤9,x ∈N *.②①式等价于(11-x )(10-x )>6,即x 2-21x +104>0,即(x -8)(x -13)>0,所以x <8或x >13.结合②得2<x <8,x ∈N *,所以所求不等式的解集为{3,4,5,6,7}.14.(选做题)一条铁路有n 个车站,为适应客运需要,新增了m 个车站,且知m >1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解:由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,所以A 2n +m -A 2n =62, 即(n +m )(n +m -1)-n (n -1)=62,所以m (2n +m -1)=62=2×31,因为m <2n +m -1,且n ≥2,m ,n ∈N *,所以⎩⎪⎨⎪⎧m =2,2n +m -1=31, 解得m =2,n =15,故原有15个车站,现有17个车站.。
2019-2020学年度高中数学人教版A版必修一学案:第一单元 1
——教学资料参考参考范本——2019-2020学年度高中数学人教版A版必修一学案:第一单元 1______年______月______日____________________部门1.3.2 奇偶性学习目标 1.结合具体函数,了解函数奇偶性的含义(难点).2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系(重点).3.会利用函数的奇偶性解决简单问题(重点).,完成下面问题:P35-P33预习教材知识点函数的奇偶性函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称【预习评价】(正确的打“√”,错误的打“×”)(1)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )(2)不存在既是奇函数,又是偶函数的函数.( )(3)若函数的定义域关于原点对称,则这个函数不是奇函数,就是偶函数.( )提示(1)×反例:f(x)=x2,存在x=0,f(-0)=-f(0)=0,但函数f(x)=x2不是奇函数;(2)×存在f(x)=0,x∈R既是奇函数,又是偶函数;(3)×函数f(x)=x2-2x,x∈R的定义域关于原点对称,但它既不是奇函数,又不是偶函数.题型一函数奇偶性的判断(1)f(x)=2-|x|; (2)f(x)=+; (3)f(x)=;(4)f(x)=⎩⎪⎨⎪⎧x +1,x>0,-x +1,x<0.解 (1)∵函数f(x)的定义域为R ,关于原点对称,又f(-x)=2-|-x|=2-|x|=f(x),∴f(x)为偶函数.(2)∵函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0, 又∵f(-x)=-f(x),f(-x)=f(x), ∴f(x)既是奇函数又是偶函数.(3)∵函数f(x)的定义域为{x|x≠1},不关于原点对称, ∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称. 当x>0时,-x<0,f(-x)=1-(-x)=1+x =f(x);当x<0时,-x>0,f(-x)=1+(-x)=1-x =f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.规律方法 判断函数奇偶性的两种方法: (1)定义法: (2)图象法:(1)f(x)=x3+x5;(2)f(x)=|x+1|+|x-1|;(3)f(x)=.解(1)函数的定义域为R.∵f(-x)=(-x)3+(-x)5=-(x3+x5)=-f(x),∴f(x)是奇函数.(2)f(x)的定义域是R.∵f(-x)=|-x+1|+|-x-1|=|x-1|+|x+1|=f(x),∴f(x)是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.题型二奇、偶函数的图象问题【例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象.(2)写出使f(x)<0的x的取值集合.解(1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值f(x)<0的x的取值集合为(-2,0)∪(2,5).规律方法 1.巧用奇偶性作函数图象的步骤(1)确定函数的奇偶性.(2)作出函数在[0,+∞)(或(-∞,0])上对应的图象.(3)根据奇(偶)函数关于原点(y轴)对称得出在(-∞,0](或[0,+∞))上对应的函数图象.2.奇偶函数图象的应用类型及处理策略(1)类型:利用奇偶函数的图象可以解决求值、比较大小及解不等式问题.(2)策略:利用函数的奇偶性作出相应函数的图象,根据图象直接观察.【训练2】已知偶函数f(x)的一部分图象如图,试画出该函数在y轴另一侧的图象,并比较f(2),f(4)的大小.解f(x)为偶函数,其图象关于y轴对称,如图,由图象知,f(2)<f(4).考查方向题型三函数奇偶性的应用方向1 利用奇偶性求函数值【例3-1】已知f(x)=x5+ax3+bx-8,若f(-3)=10,则f(3)=( )A.26 B.18 C.10 D.-26解析法一由f(x)=x5+ax3+bx-8,得f(x)+8=x5+ax3+bx.令G(x)=x5+ax3+bx=f(x)+8,∵G(-x)=(-x)5+a(-x)3+b(-x)=-(x5+ax3+bx)=-G(x),∴G(x)是奇函数,∴G(-3)=-G(3),即f(-3)+8=-f(3)-8.又f(-3)=10,∴f(3)=-f(-3)-16=-10-16=-26.法二由已知条件,得①+②得f(3)+f(-3)=-16, 又f(-3)=10,∴f(3)=-26. 答案 D方向2 利用奇偶性求参数值【例3-2】 若函数f(x)=为奇函数,则a =________.解析 ∵f(x)是奇函数,∴f(-x)=-f(x),即=-,显然x≠0,整理得x2-(a +1)x +a =x2+(a +1)x +a ,故a +1=0,解得a =-1.答案 -1方向3 利用奇偶性求函数的解析式【例3-3】 已知函数f(x)(x∈R)是奇函数,且当x >0时,f(x)=2x -1,求函数f(x)的解析式.解 当x <0,-x >0,∴f(-x)=2(-x)-1=-2x -1.又∵f(x)是奇函数,∴f(-x)=-f(x), ∴f(x)=2x +1.又f(x)(x ∈R)是奇函数, ∴f(-0)=-f(0),即f(0)=0.∴所求函数的解析式为f(x)=⎩⎪⎨⎪⎧2x -1,x >0,0,x =0,2x +1,x <0.规律方法 1.利用函数的奇偶性求函数值或参数值的方法:利用函数的奇偶性的定义f(-x)=f(x)或f(-x)=-f(x)可求函数值,比较f(-x)=f(x)或f(-x)=-f(x)的系数可求参数值.2.利用函数奇偶性求函数解析式的步骤(1)“求谁设谁”,即在哪个区间上求解析式,x 就应在哪个区间上设;(2)转化到已知区间上,代入已知的解析式;(3)利用f(x)的奇偶性写出-f(x)或f(-x),从而解出f(x).课堂达标1.下列函数是偶函数的是( ) C.y=D.yB.y=2x2-3A.y=x=x2,x∈(-1,1]解析对于A,f(-x)=-x=-f(x),是奇函数;对于B,定义域为R,满足f(x)=f(-x),是偶函数;对于C和D,定义域不关于原点对称,则不是偶函数,故选B.答案B 2.若函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是( ) D.4C.3B.2A.1解析f(-x)=(m-1)x2-(m-2)x+(m2-7m+12),f(x)=(m-1)x2+(m-2)x+(m2-7m+12),由f(-x)=f(x),得m-2=0,即m=2.答案B 3.已知函数f(x)为奇函数,且当x>0时,f(x)=-x2+-1,则f(-2)=________.解析f(2)=-22+-1=-,又f(x)是奇函数,故f(-2)=-f(2)=.答案924.如图,已知偶函数f(x)的定义域为{x|x≠0,x∈R},且f(3)=0,则不等式f(x)<0的解集为________.解析 由条件利用偶函数的性质,画出函数f(x)在R 上的简图:数形结合可得不等式f(x)<0的解集为(-3,0)∪(0,3).答案 (-3,0)∪(0,3)5.已知f(x)是定义在R 上的奇函数,当x>0时,f(x)=x +1,求f(x)的解析式.解 当x<0时,-x>0,∴f(-x)=-x +1,又f(-x)=-f(x),故f(x)=x -1,又f(0)=0,所以f(x)=⎩⎪⎨⎪⎧x +1,x>0,0,x =0,x -1,x<0.课堂小结1.定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的一个必要条件,f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f(-x)=±f (x)⇔f(-x)∓f(x)=0⇔=±1(f(x)≠0).3.应用函数的奇偶性求值、参数或函数的解析式,要根据函数奇偶性的定义,f(-x)=f(x)或f(-x)=-f(x)对函数值及函数解析式进行转换.。
2018-2019学年高中数学人教A版必修一:1.初高中知识衔接
2019/4/29
档
5
二、因式分解 1.提公因式法 pa+pb+pc=p(a+b+c). 2.公式法 (1)平方差公式:a2-b2=(a+b)(a-b); (2)完全平方公式:a2±2ab+b2=(a±b)2; (3)立方和和立方差公式:a3±b3=(a±b)(a2∓ab+b2). 3.十字相乘法 (1)x2+(p+q)x+pq型:x2+(p+q)x+pq=(x+p)(x+3;bx+c=0(a≠0)的两个根分别为x1,x2,则ax2+bx+c=a(x-x1)(x-x2). 四、二次函数及其性质 1.定义:形如y=ax2+bx+c(a≠0)的函数. 2.性质: (1)开口:当a>0时,开口向上;当a<0时,开口向下.
(2)对称轴:x=- b .
2a (3)最值:(配方法)y=a(x2+ b x)+c=a[x2+2× b x+( b )2]+c-( b )2×a=a(x+ b )2
a
2a 2a
2a
2a
+ 4ac b2 .所以,若 a>0,当 x=- b 时,y 有最小值,最小值为 4ac b2 ;
4a
2a
4a
若 a<0,当 x=- b 时,y 有最大值,最大值为 4ac b2 .
2a
4a
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/4/29
档
9
(4)函数图象与x轴的交点个数 ①当Δ =b2-4ac>0时,函数图象与x轴有两个交点; ②当Δ =b2-4ac=0时,函数图象与x轴有一个交点; ③当Δ =b2-4ac<0时,函数图象与x轴没有交点. 五、不等式的解法 1.一元一次不等式:ax>b(a≠0).
教育最新K122018-2019学年高中数学人教版A版必修一学案:第一单元 1.3.1 第2课时 函数的最大值、最小值
第2课时 函数的最大值、最小值学习目标 1.理解函数的最大(小)值的概念及其几何意义(难点).2.会借助单调性求最值(重点).3.掌握求二次函数在闭区间上的最值(重点).预习教材P30,完成下面问题: 知识点 函数的最大值与最小值(1)任何函数f (x )都有最大值和最小值.( )(2)若存在实数m ,使f (x )≥m ,则m 是函数f (x )的最小值.( )(3)若函数f (x )在区间[a ,b ]上是增函数,则f (x )在区间[a ,b ]上的最小值是f (a ),最大值是f (b ).( )提示 (1)× 反例:f (x )=x 既无最大值,也无最小值.(2)× 若使m 是f (x )的最小值,还需在f (x )的定义域内存在x 0,使f (x 0)=m .(3)√ 由于f (x )在区间[a ,b ]上是增函数,所以f (a )≤f (x )≤f (b ).故f (x )的最小值是f (a ),最大值是f (b ).题型一 用图象法和函数的单调性求函数的最值【例1】 (1)已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x ,x >1.则f (x )的最大值、最小值分别为________,________.(2)求函数f (x )=xx -1在区间[2,5]上的最大值与最小值. (1)解析 作出函数f (x )的图象(如图).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1.当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0. 答案 1 0(2)解 任取2≤x 1<x 2≤5, 则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1, f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1), ∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0, ∴f (x 2)-f (x 1)<0,∴f (x 2)<f (x 1).∴f (x )=xx -1在区间[2,5]上是单调减函数.∴f (x )max =f (2)=22-1=2,f (x )min =f (5)=55-1=54. 规律方法1.图象法求最值的步骤2.利用函数的单调性求最值的两个易错点(1)求函数的最值时应首先求函数的定义域,在定义域内进行.(2)求函数在闭区间上的最值,易出现的失误是不判断函数的单调性而直接将两端点值代入,认为是函数的最值.【训练1】 已知函数f (x )=x +1x . (1)求证f (x )在[1,+∞)上是增函数; (2)求f (x )在[1,4]上的最大值及最小值.(1)证明 设1≤x 1<x 2,则f (x 1)-f (x 2)=(x 1+1x 1)-(x 2+1x 2)=(x 1-x 2)·x 1x 2-1x 1x 2.∵1≤x 1<x 2,∴x 1-x 2<0,x 1x 2>1, ∴x 1x 2-1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[1,+∞)上是增函数. (2)解 由(1)可知,f (x )在[1,4]上递增, ∴当x =1时, f (x )min =f (1)=2, 当x =4时, f (x )max =f (4)=174. 综上所述,f (x )在[1,4]上的最大值是174,最小值是2.题型二 函数最值的实际应用【例2】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2(0≤x ≤400),80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润) 解 (1)设月产量为x 台,则总成本为20 000+100x , 从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000;∴当x =300时,f (x )max =25 000,当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时 ,f (x )max =25 000.即每月生产300台仪器时利润最大,最大利润为25 000元.规律方法求解实际问题的四个步骤(1)读题:分为读懂和深刻理解两个层次,把“问题情景”译为数学语言,找出问题的主要关系(目标与条件的关系).(2)建模:把问题中的关系转化成函数关系,建立函数解析式,把实际问题转化成函数问题.(3)求解:选择合适的数学方法求解函数.(4)评价:对结果进行验证或评估,对错误加以改正,最后将结果应用于现实,作出解释或预测.特别提醒:求解实际问题的步骤也可认为分成“设元——列式——求解——作答”四个步骤.【训练2】某水厂蓄水池有水450吨,水厂每小时向蓄水池注水80吨,同时蓄水池又向居民小区供水,t小时内供水量为8020t吨.现在开始向池中注水并同时向居民供水,多少小时后蓄水池中水量最少?解设t小时后,池中水量为y吨,则y=450+80t-8020t=4(20t-10)2+50,当20t=10,即t=5时,y min=50,所以5小时后蓄水池中水量最少,最少为50吨.【探究1(2)求函数y=-x2-2x+2的单调区间.解(1)函数y=x2-2x+2是开口向上,对称轴为x=1的抛物线,故其单减区间是(-∞,1),单增区间是(1,+∞).(2)函数y=-x2-2x+2的图象是开口向下,对称轴为x=-1的抛物线,故其单减区间是(-1,+∞),单增区间是(-∞,-1).【探究2】函数f(x)=x2-2x+2在区间[-1,0],[-1,2],[2,3]上的最大值和最小值分别是什么?解函数f(x)=x2-2x+2的图象开口向上,对称轴为x=1,(1)因为f (x )在区间[-1,0]上单调递减,所以f (x )在区间[-1,0]上的最大值为f (-1)=5,最小值为f (0)=2;(2)因为f (x )在区间[-1,1]上单调递减,在[1,2]上单调递增,则f (x )在区间[-1,2]上的最小值为f (1)=1,又因为f (-1)=5,f (2)=2,f (-1)>f (2),所以f (x )在区间[-1,2]上的最大值为f (-1)=5.(3)因为f (x )在区间[2,3]上单调递增,所以f (x )在区间[2,3]上的最小值为f (2)=2,最大值为f (3)=5.【探究3】 已知函数f (x )=x 2-ax +1, (1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R)上的最小值.解 (1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,所以区间[0,1]的哪一个端点离对称轴远,则在哪个端点取到最大值, 当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1. (2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12.①当t ≥12时,f (x )在[t ,t +1]上是增函数,∴f (x )min =f (t )=t 2-t +1;②当t +1≤12,即t ≤-12时,f (x )在上是减函数,∴f (x )min =f (t +1)=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎡⎦⎤t ,12上单调递减,在⎣⎡⎦⎤12,t +1上单调递增, 所以f (x )min =f ⎝⎛⎭⎫12=34.规律方法 含参数的二次函数最值问题的解法解决含参数的二次函数的最值问题,首先将二次函数化为y =a (x +h )2+k 的形式,再依a 的符号确定抛物线开口的方向,依对称轴x =-h 得出顶点的位置,再根据x 的定义区间结合大致图象确定最大或最小值.对于含参数的二次函数的最值问题,一般有如下几种类型: (1)区间固定,对称轴变动(含参数),求最值; (2)对称轴固定,区间变动(含参数),求最值; (3)区间固定,最值也固定,对称轴变动,求参数. 通常都是根据区间端点和对称轴的相对位置进行分类讨论.课堂达标1.函数f (x )=-2x +1(x ∈[-2,2])的最小、最大值分别为( ) A .3,5B .-3,5C .1,5D .5,-3解析 因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.答案 B2.函数y =x 2-2x ,x ∈[0,3]的值域为( ) A .[0,3] B .[-1,0] C .[-1,+∞)D .[-1,3]解析 ∵函数y =x 2-2x =(x -1)2-1,x ∈[0,3],∴当x =1时,函数y 取得最小值为-1,当x =3时,函数取得最大值为3,故函数的值域为[-1,3],故选D .答案 D3.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2B .-2C .2或-2D .0解析 由题意a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2.综上知a =±2.答案 C4.函数f (x )=6-x -3x 在区间[2,4]上的最大值为________.解析 ∵6-x 在区间[2,4]上是减函数,-3x 在区间[2,4]上是减函数,∴函数f (x )=6-x -3x 在区间[2,4]上是减函数,∴f (x )max =f (2)=6-2-3×2=-4.答案 -45.已知函数f (x )=⎩⎪⎨⎪⎧x 2-x (0≤x ≤2),2x -1(x >2),求函数f (x )的最大值、最小值.解作出f(x)的图象如图:由图象可知,当x=2时,f(x)取最大值为2;当x=12时,f(x)取最小值为-14.所以f(x)的最大值为2,最小值为-14.课堂小结1.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y=1x.如果有最值,则最值一定是值域中的一个元素.(2)若函数f(x)在闭区间[a,b]上单调,则f(x)的最值必在区间端点处取得,即最大值是f(a)或f(b),最小值是f(b)或f(a).2.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y=f(x)的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.。
推荐学习2018-2019学年高中数学人教版A版必修一学案:第一单元 习题课 集合及其运算
习题课集合及其运算学习目标 1.理解集合的相关概念,会判断集合间的关系(难点、重点).2.会进行集合间的运算.1.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B等于()A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}解析借助数轴知A∪B={x|-1<x<3}.答案 A2.设A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则()A.A⊆B B.B⊆A C.A∩B=∅D.A∪B=R解析易知A是偶数集,B是奇数集,故A∩B=∅.答案 C3.若U={1,2,3,4,5,6,7,8},A={1,2,3},B={5,6,7},则(∁U A)∩(∁U B)=________.解析(∁U A)∩(∁U B)={4,5,6,7,8}∩{1,2,3,4,8}={4,8}.答案{4,8}4.已知集合A={x|x2+2x-2a=0},若A=∅,则实数a的取值范围是________.解析由题意得方程x2+2x-2a=0无实数根,故Δ=22+8a<0,解得a<-1 2.答案{a|a<-1 2}类型一集合的基本概念【例1】(1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中有________个元素.A.4B.5C.6D.7(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.9解析(1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素,故选C.(2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x-y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时,x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.答案(1)C(2)C规律方法与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.【训练1】 (1)设集合A ={x |x 2-3x +2=0},则满足A ∪B ={0,1,2}的集合B 的个数是( )A .1B .3C .4D .6(2)已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为________.解析 (1)易知A ={1,2},又A ∪B ={0,1,2},所以集合B 可以是:{0},{0,1},{0,2},{0,1,2}.(2)当m +2=5时,m =3,M ={1,5,13},符合题意;当m 2+4=5时,m =1或m =-1,若m =1,M ={1,3,5},符合题意;若m =-1,则m +2=1,不满足元素的互异性,故m =3或1.答案 (1)C (2)3或1类型二 集合间的基本关系【例2】 (1)已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)设A ={1,4,2x },若B ={1,x 2},若B ⊆A ,则x =________.(3)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. 解析 (1)用列举法表示集合A ,B ,根据集合关系求出集合C 的个数.由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)由B ⊆A ,则x 2=4或x 2=2x .当x 2=4时,x =±2,但x =2时,2x =4,这与集合元素的互异性相矛盾;当x 2=2x 时,x =0或x =2,但x =2时,2x =4,这与集合元素的互异性相矛盾.综上所述,x =-2或x =0.(3)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧ m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.答案 (1)D (2)0或-2 (3){m |m ≤4}规律方法 根据两集合的关系求参数的方法(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;(2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到. 注意:若题目中含有条件B ⊆A ,A ∩B =B ,A ∪B =A ,则要注意B 是否可为空集,有时需分类讨论.【训练2】 已知集合A ={2,3},B ={x |mx -6=0},若B ⊆A ,则实数m 等于( )A .3B .2C .2或3D .0或2或3解析 当m =0时,方程mx -6=0无解,B =∅,满足B ⊆A ;当m ≠0时,B =⎩⎨⎧⎭⎬⎫6m ,因为B ⊆A ,所以6m =2或6m=3,解得m =3或m =2. 答案 D方向1 【例3-1】 (1)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )等于( )A .{3}B .{4}C .{3,4}D .∅ (2)已知全集U =R ,A ={x |x <-1或x >3},B ={x |0<x <4},则(∁R A )∩B =________.解析 (1)由U ={1,2,3,4},∁U (A ∪B )={4},知(A ∪B )={1,2,3},又B ={1,2},所以A 中一定有元素3,没有元素4,所以A ∩(∁U B )={3}.(2)(∁R A )∩B ={x |-1≤x ≤3}∩{x |0<x <4}={x |0<x ≤3}.答案 (1)A (2){x |0<x ≤3}方向2 利用集合的运算求参数的值或范围【例3-2】 (1)设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2}且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =________,b =________.(2)已知集合A ={x |x 2-4ax +2a +6=0},B ={x |x <0},若A ∩B ≠∅,求a 的取值范围.(1)解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ),∴A ∩(B ∪C )=A .由题意{x |a ≤x ≤b }={x |-1≤x ≤2},∴a =-1,b =2.答案 -1 2(2)解 因为A ∩B ≠∅,所以A ≠∅,即方程x 2-4ax +2a +6=0有实数根,所以Δ=(-4a )2-4(2a +6)≥0,即(a +1)(2a -3)≥0,所以⎩⎪⎨⎪⎧ a +1≥0,2a -3≥0或⎩⎪⎨⎪⎧a +1≤0,2a -3≤0, 解得a ≥32或a ≤-1.① 又B ={x |x <0},所以方程x 2-4ax +2a +6=0至少有一个负根.若方程x 2-4ax +2a +6=0有根,但没有负根,则需有⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2=4a ≥0,x 1x 2=2a +6≥0,解得a ≥32. 所以方程至少有一负根时有a <32.② 由①②取公共部分得a ≤-1.即当A ∩B ≠∅时,a 的取值范围为{a |a ≤-1}.规律方法 集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn 图求解;(2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.【训练3】 已知集合A ={x |2≤x <7},B ={x |3<x <10},C ={x |x <a }.(1)求A ∪B ,(∁R A )∩B .(2)若A ∩C ≠∅,求a 的取值范围.解 (1)因为A ={x |2≤x <7},B ={x |3<x <10},所以A ∪B ={x |2≤x <10}.因为A ={x |2≤x <7},所以∁R A ={x |x <2或x ≥7},则(∁R A )∩B ={x |7≤x <10}.(2)因为A ={x |2≤x <7},C ={x |x <a },且A ∩C ≠∅,所以a >2,所以a 的取值范围是{a |a >2}.1.集合中的元素的三个特征.特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化,对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图,这是数形结合思想的体现.。
2018学年高中数学新课标人教A版必修1同步学案:1-1第1
第一章 集合与函数概念§1.1集合第一课时 集合的含义与表示一、课前准备1.课时目标:了解集合的含义,掌握常用数集的概念和记法,理解集合中元素的三大属性,并能用图形和集合语言(列举法和描述法)表示集合的含义。
2.基础预探(1) 元素与集合有 两种关系,其中数学符号为“∈”和“∉”,它们是表示元素与集合间的关系的专用符号,只能用在元素与集合之间,表示元素与集合的从属关系.(2) 集合的基本性质:① ,② ,③ .(3) 集合按元素个数可分为: ;按元素特征可分为数集和点集等.(4) 集合的两种表示方法:① ,如A={0,1,2,3};② ,如B={|3,x x m =m ∈*N }.二、基本知识习题化1. 用列举法表示下列集合:(1)6|,2A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭; (2)6|2B Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭; (3){}2|6,,C y y x x N y N ==-+∈∈; (4){}2(,)|6,,D x y y x x N y N ==-+∈∈。
2. 描述法表示集合应注意集合的代表元素,如(){}2,|32x y y x x =++,{}2|32x y x x =++,{}2|32y y x x =++是表示不同的集合,第一个表示 ,第二个表示 , 第三个表示 .三、学习引领1.对集合中元素的三大属性的解读确定性:从集合的定义,可以看出,作为一个集合的元素,必须是确定的。
也就是说不确定的对象不能构成集合。
对于给定的集合来说,某元素要么属于这个集合,要么不属于这个集合。
例如,“所有的等边三角形”构成一个集合,因为等边三角形是三条边都相等的三角形,它的性质是确定的;而“清华大学的高才生”就不能构成一个集合,因为组成它的对象是不确定的。
互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说集合中的任何两个元素都是不同的对象,相同的元素归入同一个集合时只能算作一个集合的元素。
2018学年高中数学新课标人教A版必修1同步学案:第一章
第一章 集合与函数概念与性质诊疗一.集合 1. 精要总结集合的有关概念是解决集合问题的基础,也是学习其他数学知识的语言工具,试题多以选择题或填空题的形式出现,主要应用集合的基本概念和元素的特征进行分析和检验. 集合中元素的“三性”是指集合中元素的确定性、元素的互异性和元素的无序性,抓住的集合中元素这三个特性就等于抓住了集合的本质特征,也就抓住了解决问题的理论依据 确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; 集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此要予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的。
因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去.当集合为有限集时,一般有列举法,当集合为无限集时,不宜采用列举法,这时,宜用描述法或图示法.对于同一集合,有时既可用列举法又可用描述法,这时应择优选用.集合中的参数问题,是指集合{|p p 适合的条件}中“p 适合的条件”里面含有参数的问题,解答这类问题类似于其他含有参数的问题,灵活性强,难度也较大.因此,解决此为问题要注意思维的严谨性. 2. 错例辨析例1:已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-,若A B A ⋃=,求实数m 的取值范围.误解:∵A B A ⋃=,∴B A ⊆,得21215m m -≤+⎧⎨-≤⎩,得33m -≤≤.分析:忽视了空集的特性.A A ∅=.正解:⑴若B =∅,则m+1>2m-1,即2m <此时A B A ⋃= ⑵若B ≠∅,则2m ≥∵B A ⊆,∴21215m m -≤+⎧⎨-≤⎩,得33m -≤≤,则23m ≤≤由⑴⑵可知:m 的取值范围是(,3]-∞ 针对练习1已知集合{}260A x x x =+-=,{}10B x mx =+=,若B A Ü,求实数m 的值.例2已知集合{2,,}M a b =,2{2,2,}N a b =且有,M N M N M N ⋃=⋃=求a 、b 的值. 误解:因为,M N M N M N ⋃=⋃=,所以M=N⑴由题意可知:a+2=1或2(1)1a +=或2331a a ++=,解得:a=-1或a=-2或a=0.⑵由题意得:21a a b =⎧⎨=⎩或22a b b a ⎧=⎨=⎩,解得01a b =⎧⎨=⎩或00a b =⎧⎨=⎩或1412a b ⎧=⎪⎪⎨⎪=⎪⎩分析:集合中的元素具有三个特性:确定性、互异性、无序性.上述解法中忽视了元素的互异性原则.正解:⑴据元素的互异性可排除-1和2,∴a=0 ⑵据元素的互异性得01a b =⎧⎨=⎩或00a b =⎧⎨=⎩针对练习2若{}322427A a a a =--+,,, 223211122(38)372B a a a a a a a a ⎧⎫=+-+---+++⎨⎬⎩⎭,,,,,且{}25A B =,,试求实数a .例3已知集合M={y|y=x 2+1,x ∈R},N={y|y=x+1,x ∈R},求M ∩N误解:由方程组211y x y x ⎧=+⎨=+⎩得抛物线和直线的交点为(0,0),(1,2).所以M ∩N={(0,0),(1,2)}分析:在集合运算之前,首先要认清集合中元素的特征,集合M={y|y=x 2+1,x ∈R}是数集,此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,属于图形范畴. 正解:M={y|y=x 2+1,x ∈R}={y|y ≥1},N={y|y=x+1,x ∈R}={y|y ∈R} ∴ M ∩N=M={y|y ≥1} 针对练习3已知{}243A y y x x x ==-+∈R ,,{}222B y y x x x ==--+∈R ,,求A B .二.函数概念与性质 1.精要总结函数是中学数学中最重要的一个基础概念,定义域、值域、对应法则是它的三个要素.函数实质上是表达定义域到值域的元素之间的一种对应关系,这种对应关系可以是一个元素对应一个元素,也可以是多个元素对应一个元素.函数定义中所涉及的两个集合必须是非空的实数集.由函数定义知,由于函数的值域由函数的定义域和对应关系完全确定,于是确定一个函数就只需两个要素:定义域和对应关系.因此,只有当两个函数的定义域和对应关系都分别相同时,才是同一函数.符号)(x f y =是“y 是x 的函数”的数学表示,应理解为:x 是自变量,它是对应关系f 所施加的对象;f 是对应关系,它可以是一个或几个解析式,也可以是图象或表格,还可以用文字描述;y 是自变量对应的函数值,当x 为允许的某一具体值时,相应的y 值为与该自变量对应的函数值.对函数奇偶性的学习注意以下几点:①要正确理解奇函数和偶函数的定义.定义是判断或讨论函数的奇偶性的依据,由定义知,若x 是定义域中的一个数值,则x -也必然在定义域中,因此,函数()y f x =是奇函数或偶函数的一个必不可少的条件是:定义域在数轴上所示的区间关于原点对称.换而言之,所给函数的定义域若不关于原点对称,则这个函数必不具有奇偶性.②奇偶性是函数在定义域上的对称性质.单调性反映函数在某一区间函数值的变化趋势. 函数的奇偶性与单调性是函数的两个重要性质,在解答数学问题时,要善于应用函数的观点,挖掘函数的奇偶性和单调性,并注意奇偶性与单调性的相关关系.③奇函数在0x =有定义,则(0)0f =.事实上(0)(0)f f -=-,所以(0)0f = 对函数单调性的学习注意以下几点:①函数的单调性是针对函数定义域内的某个子区间而言的.有些函数在整个定义域内可能是单调的,如一次函数;有些函数在定义域内的部分区间上是增函数,而在另一部分区间上可能是减函数,如二次函数.②函数单调性定义中的21,x x ,有三个特征:一是任意性,即“任意取21,x x ”,“任意”二字不能随便丢掉.证明单调性时更不可随意以两个特殊值替换;二是21,x x 之间有大小,通常规定21,x x ;三是同属一个单调区间.三者缺一不可.③若函数)(x f 在其定义域内的两个区间B A ,上都是增(减)函数,一般不能简单认为)(x f 在B A 上是增(减)函数.如xx f 1)(=在()0,∞-上是减函数,在()+∞,0上也是减函数,但不能说它在定义域()()+∞∞-,00, 上是减函数. 函数单调性的判断及单调区间的确定的常用方法有:①定义法:它是判断函数的单调性及确定函数单调区间的常用方法,一般地函数的单调性证明都是利用定义来完成的.②复合函数法:对于复合函数[])(x g f y =,若)(x g u =,)(x f y =在所讨论的区间上都是增函数或都是减函数,则[])(x g f y =为增函数;若)(x g u =,)(x f y =在所讨论的区间上一个增函数,另一个是减函数,则y=[])(x g f y =是减函数.③利用课本习题的结论:在公共定义域上两个增函数的和仍然是增函数,两个减函数的和仍然是减函数. 2. 错例辨析例4:已知函数()f x 的定义域为,求函数(1)f x +的定义域 误解:由于函数()f x 的定义域为,即01x ≤≤,112x ∴≤+≤ ∴(1)f x +的定义域是分析:对函数定义域理解不透,不明白()f x 与(())f u x 定义域之间的区别与联系,其实在这里只要明白:()f x 中x 取值的范围与(())f u x 中式子()u x 的取值范围一致就好了. 正解:由于函数()f x 的定义域为,即01x ≤≤∴(1)f x +满足011x ∴≤+≤10x -≤≤,∴(1)f x +的定义域是针对练习4设函数)(x f 的定义域为]1,0[,求函数)0)(()()(>-++=m m x f m x f x g 的定义域. 例5:已知:*,x N ∈5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,求(3)f .误解:∵ 5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,∴(2)(2)53f x x x +=+-=-故5(6)()3(6)x x f x x x -≥⎧=⎨-<⎩,∴(3)f =3-3=0.分析:没有理解分段函数的意义,(3)f 的自变量是3,应代入(2)f x +中去,而不是代入x -5中,只有将自变量化为不小于6的数才能代入解析式求解. 正解:∵ 5(6)()(2)(6)x x f x f x x -≥⎧=⎨+<⎩,针对练习5函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-求))5((f . 例6:求函数2()46y f x x x ==-+,[1,5)x ∈的值域. 误解:22(1)14163,(5)545611f f =-⨯+==-⨯+=又[1,5)x ∈,()f x ∴的值域是[)311,分析:对函数定义中,输入定义域中每一个x 值都有唯一的y 值与之对应,错误地理解为x 的两端点时函数值就是y 的取值范围了.正解:配方,得22()46(2)2y f x x x x ==-+=-+∵[1,5)x ∈,对称轴是2x =∴当2x =时,函数取最小值为(2)f =2,()(5)11f x f <= ()f x ∴的值域是[)211,针对练习6求函数242(14)y x x x =-+-≤≤的值域.例7: 函数y=245x x --的单调增区间是_________.误解:因为函数2()54g x x x =--的对称轴是2x =-,图像是抛物线,开口向下,由图可知2()54g x x x =--在(,2]-∞-上是增函数,所以y=245x x --的增区间是(,2]-∞-误解分析:在求单调性的过程中注意到了复合函数的单调性研究方法,但没有考虑到函数的单调性只能在函数的定义域内来讨论,从而忽视了函数的定义域,导致了解题的错误. 正解:y=245x x --的定义域是[5,1]-,又2()54g x x x =--在区间[5,2]--上增函数,在区间[2,1]-是减函数,所以y=245x x --的增区间是[5,2]-- 针对练习7 求函数62-+=x x y 的单调区间.例8: 判断函数()(1f x x =+的奇偶性.误解:∵()(1f x x =+=∴()()f x f x -===, ∴()(1f x x =+ 分析:对函数奇偶性定义实质理解不全面.对定义域内任意一个x ,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.正解:()(1f x x =+有意义时必须满足10111x x x -≥⇒-<≤+ 即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数 针对练习8判断函数()f x =(x 答案及解析本章诊疗 针对练习:1. 由已知,易得 {}32A =-,,B A ∵Ü,{}3B =-∴或{}2或∅.若{}3B =-,由(3)10m -+=,得13m =; 若{}2B =,由210m +=,得12m =-; 若B =∅,由10mx +=无解,得0m =.13m =∴或12m =-或0m =. 2∵A ∩B={2,5},∴由32275a a a --+=, 解得 2a =或1a =±.当a=1时,2221a a -+=与元素的互异性矛盾,故舍去1a =; 当1a =-时,{}10524B =,,,,,此时{}245AB =,,,这与{}25A B =,矛盾,故又舍去1a =-;当2a =时,{}245A =,,,{}132525B =,,,,,此时{}25AB =,满足题意,故2a =为所求.3. 2243(2)11y x x x =-+=---∵≥,2222(1)33y x x x =--+=-++≤,{}1A y y =-∴≥,{}3B y y =≤, {}13AB y y =-∴≤≤.4. 由题意,得⎩⎨⎧≤-≤≤+≤,10,10m x m x 即⎩⎨⎧+≤≤-≤≤-,1,1m x m m x m ,解此不等式组,需讨论1-m 与m 的大小.(1)当m m <-1,即21>m 时,不等式组无解,此时函数关系不存在; (2)当m m =-1,即21=m 时,21==m x ; (3)当01>>-m m ,即210<<m 时,m ≤x ≤m -1综上,当0<m ≤21时,函数)(x g 的定义域为{|x m ≤x ≤m -1}. 5.由()()12f x f x +=得()()14()2f x f x f x +==+, 所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+6.2(2)2y x =--+∵ 14x ≤≤,∴ 当2x =时,max 2y =,当4x =时,min 2y =- ∴ 所给函数的值域为[2,2]-.7. )(x f 的定义域为),2[]3,(+∞--∞ ,而62-+=x x y .可由u y =和62-+=x x u 复合而成,而u y =单调递增,42521622-⎪⎭⎫ ⎝⎛+=-+=x x x u∴u 在]21,(--∞上是减函数,在),21[+∞-上是增函数, ∴所求的单调递增区间为),2[+∞,单调递减区间为]3,(--∞.8.由⎩⎨⎧>-≥+0101x x 或⎩⎨⎧<-≤+0101x x 得[)1,1-∈x ,定义域不关于原点对称,故)(x f 不是奇函数也不是偶函数.。
2018版高中数学人教版A版必修一学案第一单元 1.2.1 函数的概念 Word版含答案
§ 函数及其表示函数的概念学习目标 .理解函数的概念(重点、难点).了解构成函数的三要素(重点).正确使用函数、区间符号(易错点).预习教材-,完成下面问题:知识点函数的概念()函数的概念如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等. 【预习评价】 (正确的打“√”,错误的打“×”) ()函数的定义域和值域一定是无限集合.( )()根据函数的定义,定义域中的任何一个可以对应着值域中不同的.( ) ()在函数的定义中,集合是函数的值域.( )提示 ()×函数的定义域和值域也可能是有限集,如()=;()×根据函数的定义,对于定义域中的任何一个,在值域中都有唯一确定的与之对应; ()×在函数的定义中,函数的值域是集合的子集. 知识点区间及有关概念 ()一般区间的表示. 设,∈,且<,规定如下:()已知全集=,={<≤},则∁用区间表示为.解析∁={≤或>},用区间可表示为(-∞,]∪(,+∞).答案(-∞,]∪(,+∞)题型一函数关系的判定【例】()下列图形中,不能确定是的函数的是( )()下列各题的对应关系是否给出了实数集上的一个函数?为什么?①:把对应到+;②:把对应到+;③:把对应到;④:把对应到. ()解析任作一条垂直于轴的直线=,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知不满足要求,因此不表示函数关系.答案()解①是实数集上的一个函数.它的对应关系是:把乘再加,对于任意∈+都有唯一确定的值与之对应,如当=-时,有+=-与之对应.同理,②也是实数集上的一个函数.③不是实数集上的函数.因为当=时,的值不存在.④不是实数集上的函数.因为当<时,的值不存在.规律方法.根据图形判断对应是否为函数的方法()任取一条垂直于轴的直线;()在定义域内平行移动直线;()若与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的。
2018版高中数学人教版A版必修一学案:第一单元 章末复习课 Word版含答案 (16)
习题课 函数的应用学习目标 1.体会函数与方程之间的联系,能够解决与函数零点相关的问题(重点).2.了解指数函数、幂函数、对数函数的增长差异(易错点).3.巩固建立函数模型的过程和方法,了解函数模型的广泛应用(重点).1.函数f (x )=e x +3x 的零点个数是( )A .0B .1C .2D .3解析 令f (x )=e x +3x =0,即e x =-3x ,在同一坐标系中作出函数y =e x 和y =-3x 的图象,如图所示,由图知二者有一个交点,即f (x )有1个零点.答案 B2.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( ) A .12,0 B .-2,0 C .12 D .0解析 当x ≤1时,由f (x )=0,得2x -1=0,所以x =0.当x >1时,由f (x )=0,得1+log 2x=0,所以x =12,不成立,所以函数的零点为0,选D . 答案 D3.函数f (x )=ax 2+x -1至少存在一个零点,则a 的取值范围是________.解析 当a =0时,f (x )=x -1有一个零点x =1;当a ≠0时,则零点Δ=1+4a ≥0,解得a ≥-14且a ≠0,综上a 的取值范围是a ≥-14. 答案 ⎣⎡⎭⎫-14,+∞ 4.生产某机器的总成本y (万元)与产量x (台)之间的函数关系式是y =x 2-75x ,若每台机器售价为25万元,则该厂获得最大利润时生产的机器为________台.解析 设生产x 台,获得利润f (x )万元,则f (x )=25x -y =-x 2+100x =-(x -50)2+2 500,故当x =50时,获得利润最大.答案 50方向1 【例1-1】 函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 解析 由f (-1)=12-3<0,f (0)=1>0及零点存在性定理,知f (x )的零点在区间(-1,0)上. 答案 B方向2 判断函数零点的个数【例1-2】 方程|x |-a x=0(a >0)的零点有( ) A .1个 B .2个 C .3个 D .至少1个解析 令f (x )=|x |,g (x )=a x(a >0),作出两个函数的图象,如图,从图象可以看出,交点只有1个.答案 A方向3 根据函数零点求参数的取值范围【例1-3】 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.解析 设y 1=f (x )=|x 2+3x |,y 2=a |x -1|. 在同一平面直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象,如图.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )有两组不同的解. 消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根.所以Δ=(3-a )2-4a >0,即a 2-10a +9>0,解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9.答案 (0,1)∪(9,+∞)规律方法 函数零点问题的解法(1)确定函数零点所在的区间,可利用零点存在性定理或数形结合法.(2)判断零点个数的方法:①解方程法;②零点存在性定理,结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(3)根据函数的零点求参数的取值范围:①直接法:直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数范围;②分离参数法,将参数分离,转化成求函数值域问题加以解决;③数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.【训练1】 (1)函数f (x )=x +lg x -3的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) (2)若方程4x +2x +1+3-a =0有零点,则实数a 的取值范围是________.解析 (1)易知函数f (x )=x +lg x -3在定义域上是增函数,f (1)=1+0-3<0,f (2)=2+lg 2-3<0,f (3)=3+lg 3-3>0.故函数f (x )=x +lg x -3的零点所在的区间为(2,3),选C .(2)由4x +2x +1+3-a =0得a =4x +2x +1+3,又4x +2x +1+3=(2x )2+2·2x +3=(2x +1)2+2,因为2x >0,所以(2x +1)2+2>3.故要使原方程有零点,则a >3.答案 (1)C (2)(3,+∞)类型二 函数模型及其应用【例2】 某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益?其最大收益是多少万元?解 (1)设两类产品的收益与投资额的函数分别为f (x )=k 1x ,g (x )=k 2x .由已知得f (1)=18=k 1,g (1)=12=k 2, 所以f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资稳健型产品为x 万元,则投资风险型类产品为(20-x )万元.依题意得y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20). 令t =20-x (0≤t ≤25),则y =20-t 28+12t =-18(t -2)2+3, 所以当t =2,即x =16时,收益最大,y max =3万元.规律方法 建立函数模型的方法(1)关系分析法:通过寻找实际问题中的关键词和关键量之间的数量关系来建立函数模型.(2)图表分析法:通过列表的方法探求建立函数模型.(3)图象分析法:通过对图象中的数量关系进行分析来建立函数模型.【训练2】 今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P =P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物.(1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.)解 (1)由已知,当t =0时,P =P 0;当t =5时,P =90%P 0.于是有90%P 0=P 0e -5k .解得k =-15ln 0.9(或0.022). (2)由(1)得,P =P 0e(15ln 0.9)t . 当P =40%P 0时,有0.4P 0=P 0e(15ln 0.9)t . 解得t =ln 0.415ln 0.9≈-0.9215×(-0.11)=4.600.11≈41.82. 故污染物减少到40%至少需要42小时.1.对于零点性质要注意函数与方程的结合,借助零点的性质可研究函数的图象、确定方程的根;对于连续函数,利用零点存在性定理,可用来求参数的取值范围.2.函数模型的应用实例的基本题型(1)给定函数模型解决实际问题;(2)建立确定的函数模型解决问题;(3)建立拟合函数模型解决实际问题.3.函数建模的基本过程如图。
2018-2019学年高中数学人教版A版必修一学案:第一单元 1.2.2 第2课时 分段函数及映射
第2课时 分段函数及映射学习目标 1.理解分段函数的定义,并能解决简单的分段函数问题(重点).2.了解映射的概念以及它与函数的联系与区别(难点).预习教材P21-P22,完成下面问题: 知识点1 分段函数 分段函数的定义:(1)前提:在函数的定义域内;(2)条件:在自变量x 的不同取值范围内,有着不同的对应关系; (3)结论:这样的函数称为分段函数. 【预习评价】已知函数f (x )=⎩⎪⎨⎪⎧2x -3,x ≥02x +3,x <0,则f ⎝⎛⎭⎫12=________,f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________. 解析 由题意得f ⎝⎛⎭⎫12=2×12-3=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (-2)=2×(-2)+3=-1. 答案 -2 -1 知识点2 映射 映射的定义:【预习评价】 (正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)在映射的定义中,对于集合B 中的任意一个元素在集合A 中都有一个元素与之对应.( )(3)按照一定的对应关系,从集合A 到集合B 的映射与从集合B 到集合A 的映射是同一个映射.( )提示 (1)√ 根据映射的定义,当映射中的集合是非空数集时,该映射就是函数,否则不是函数;(2)× 映射可以是“多对一”,但不可以是“一对多”;(3)× 从集合A 到集合B 的映射与从集合B 到集合A 的映射不是同一个映射.题型一 映射的概念及应用【例1】 (1)下列对应是集合A 到集合B 上的映射的是( ) A .A =N *,B =N *,f :x →|x -3|B .A =N *,B ={-1,1,-2},f :x →(-1)xC .A =Z ,B =Q ,f :x →3xD .A =N *,B =R ,f :x →x 的平方根(2)已知映射f :A →B ,在f 的作用下,A 中的元素(x ,y )对应到B 中的元素(3x -2y +1,4x +3y -1),求:①A 中元素(-1,2)在f 作用下与之对应的B 中的元素. ②在映射f 作用下,B 中元素(1,1)对应A 中的元素.(1)解析 对于选项A ,由于A 中的元素3在对应关系f 的作用下与3的差的绝对值在B 中找不到象,所以不是映射;对于选项B ,对任意的正整数x ,在集合B 中有唯一的1或-1与之对应,符合映射的定义;对于选项C,0在f 下无意义,所以不是映射;对于选项D ,正整数在实数集R 中有两个平方根(互为相反数)与之对应,不满足映射的定义,故该对应不是映射.答案 B(2)解 ①由题意可知当x =-1,y =2时,3x -2y +1=3×(-1)-2×2+1=-6, 4x +3y -1=4×(-1)+3×2-1=1,故A 中元素(-1,2)在f 的作用下与之对应的B 中的元素是(-6,1).②设在映射f 作用下,B 中元素(1,1)对应A 中的元素为(x ,y ),则⎩⎪⎨⎪⎧3x -2y +1=1,4x +3y -1=1,解之得⎩⎨⎧x =417y =617,即A 中的元素为⎝⎛⎭⎫417,617.规律方法 1.判断一个对应是不是映射的两个关键(1)对于A 中的任意一个元素,在B 中是否有元素与之对应. (2)B 中的对应元素是不是唯一的.2.求对应元素的两种类型及处理思路(映射f :A →B )(1)若已知A 中的元素a ,求B 中与之对应的元素b ,这时只要将元素a 代入对应关系f 求解即可.(2)若已知B 中的元素b ,求A 中与之对应的元素a ,这时构造方程(组)进行求解即可,需注意解得的结果可能有多个.【训练1】 下列各个对应中,构成映射的是( )解析 对于A ,集合M 中元素2在集合N 中无元素与之对应,对于C ,D ,均有M 中的一个元素与集合N 中的两个元素对应,不符合映射的定义,故选B .答案 B【例2】 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,3x +5,-2<x <2,2x -1,x ≥2,求f (-5),f (1),f ⎣⎡⎦⎤f ⎝⎛⎭⎫-52. 解 由-5∈(-∞,-2],1∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (1)=3×1+5=8,f ⎣⎡⎦⎤f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+1=f ⎝⎛⎭⎫-32=3×⎝⎛⎭⎫-32+5=12. 【迁移1】 (变换所求)例2条件不变,若f (a )=3,求实数a 的值. 解 当a ≤-2时,f (a )=a +1=3,即a =2>-2,不合题意,舍去; 当-2<a <2时,f (a )=3a +5=3,即a =-23∈(-2,2),符合题意;当a ≥2时,f (a )=2a -1=3,即a =2∈[2,+∞),符合题意. 综上可得,当f (a )=3时,a 的值为-23或2.【迁移2】 (变换所求)例2的条件不变,若f (x )>2x ,求x 的取值范围. 解 当x ≤-2时,f (x )>2x 可化为x +1>2x ,即x <1,所以x ≤-2; 当-2<x <2时,f (x )>2x 可化为3x +5>2x ,即x >-5,所以-2<x <2; 当x ≥2时,f (x )>2x 可化为2x -1>2x ,则x ∈∅. 综上可得,x 的取值范围是{x |x <2}. 规律方法 1.求分段函数函数值的方法 (1)先确定要求值的自变量属于哪一段区间.(2)然后代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.由分段函数的函数值求自变量的方法已知分段函数的函数值求对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验函数解析式的适用范围,也可先判断每一段上的函数值的范围,确定解析式再求解.【训练2】 函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,2x ,x >2.若f (x 0)=8,则x 0=________.解析 当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6,∴x 0=-6或x 0=6(舍去). 当x 0>2时,f (x 0)=2x 0=8,∴x 0=4. 综上,x 0=-6或x 0=4. 答案 -6或4题型三 分段函数的图象及应用【例3】 (1)已知f (x )的图象如图所示,则f (x )的解析式为________.(2)已知函数f (x )=1+|x |-x2(-2<x ≤2). ①用分段函数的形式表示函数f (x ); ②画出函数f (x )的图象; ③写出函数f (x )的值域.(1)解析 当0≤x ≤1时,f (x )=-1; 当1<x ≤2时,设f (x )=kx +b (k ≠0),则⎩⎪⎨⎪⎧ k +b =-1,2k +b =0,解得⎩⎪⎨⎪⎧k =1,b =-2,此时f (x )=x -2.综上,f (x )=⎩⎪⎨⎪⎧ -1,0≤x ≤1,x -2,1<x ≤2.答案 f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1,x -2,1<x ≤2.(2)解 ①当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x . 所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.②函数f (x )的图象如图所示.③由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 1.由分段函数的图象确定函数解析式的步骤(1)定类型:根据自变量在不同范围内图象的特点,先确定函数的类型. (2)设函数式:设出函数的解析式.(3)列方程(组):根据图象中的已知点,列出方程或方程组,求出该段内的解析式. (4)下结论:最后用“{”表示出各段解析式,注意自变量的取值范围. 2.作分段函数图象的注意点作分段函数的图象时,定义域分界点处的函数取值情况决定着图象在分界点处的断开或连接,特别注意端点处是实心点还是空心点.【训练3】 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1),1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的值域.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].课堂达标1.已知函数f (x )=⎩⎪⎨⎪⎧1x 2+1,x <2,x -2,x ≥2,则f (0)=( )A .2B .2C .1D .0解析 因为0∈(-∞,2),所以f (0)=102+1=1. 答案 C2.下列图形是函数y =x |x |的图象的是( )解析 y =⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,故选D . 答案 D3.如图中所示的对应:其中构成映射的个数为( ) A .3B .4C .5D .6解析 由映射的定义知①②③是映射. 答案 A4.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0x 2,x >0,若f (a )=4,则实数a =________.解析 当a ≤0时,f (a )=-a =4,即a =-4;当a >0时,f (a )=a 2=4,a =2(a =-2舍去),故a =-4或a =2.答案 -4或25.作出y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞)的图象,并求y 的值域.解 y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞). 值域为y ∈[-7,7].图象如右图.课堂小结1.对分段函数的理解(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取值区间端点处函数的取值情况,以决定这些点的虚实情况.2.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”,而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集.于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.。
2018版高中数学人教版A版必修一学案:第一单元 章末复习课 Word版含答案 (6)
§1.3 函数的基本性质1.3.1 单调性与最大(小值)第1课时 函数的单调性学习目标 1.理解单调区间、单调性等概念,会用定义证明函数的单调性(重点、难点).2.会求函数的单调区间,判断单调性(重点).预习教材P27-P28,完成下面问题: 知识点1 增函数与减函数设函数f (x )的定义域为I ,D ⊆I ,对任意x 1,x 2∈D【预习评价】 (正确的打“√”,错误的打“×”)(1)已知f (x )=1x,因为f (-1)<f (2),所以函数f (x )是增函数.( )(2)增减函数定义中的“任意两个自变量的值x 1,x 2”可以改为“存在两个自变量的值x 1,x 2”.( )(3)若函数f (x )在区间(1,2]和(2,3)上均为增函数,则函数f (x )在区间(1,3)上为增函数.( ) 提示 (1)× 由函数单调性的定义可知,要证明一个函数是增函数,需对定义域内的任意的自变量都满足自变量越大,函数值也越大,而不是个别的自变量.(2)× 不能改为“存在两个自变量的值x 1、x 2”.(3)× 反例:f (x )=⎩⎪⎨⎪⎧x ,x ∈(1,2],x -4,x ∈(2,3).知识点2 函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.【预习评价】(1)函数f (x )=x 2+2x -3的单调减区间是________. (2)函数y =|x |在区间[-2,-1]上( ) A .递减B .递增C .先减后增D .先增后减解析 (1)二次函数f (x )的图象开口向上,对称轴为x =-1,故其单调减区间是(-∞,-1).(2)函数y =|x |的单减区间是(-∞,0),又[-2,-1]⊆(-∞,0),所以函数y =|x |在区间[-2,-1]上递减.答案 (1)(-∞,-1) (2)A题型一 求函数的单调区间【例1】 (1)如图所示的是定义在区间[-5,5]上的函数y =f (x )的图象,则函数的单调递减区间是________、________,在区间________、________上是增函数.(2)画出函数y =-x 2+2|x |+1的图象并写出函数的单调区间.(1)解析 观察图象可知,y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5].其中y =f (x )在区间[-5,-2],[1,3]上是增函数,在区间[-2,1],[3,5]上是减函数.答案 [-2,1] [3,5] [-5,-2] [1,3](2)解 y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0],[1,+∞).规律方法 根据函数的图象求函数单调区间的方法 (1)作出函数图象;(2)把函数图象向x 轴作正投影;(3)图象上升对应增区间,图象下降对应减区间. 【训练1】 函数y =1x -1的单调减区间是________.解析 y =1x -1的图象可由函数y =1x 的图象向右平移一个单位得到,如图所示,其单调递减区间是(-∞,1)和(1,+∞).答案 (-∞,1),(1,+∞) 题型二 证明函数的单调性【例2】 证明函数f (x )=x +4x 在区间(2,+∞)上是增函数.证明 任取x 1,x 2∈(2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)x 1x 2-4x 1x 2.因为2<x 1<x 2,所以x 1-x 2<0,x 1x 2>4,x 1x 2-4>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).所以函数f (x )=x +4x 在(2,+∞)上是增函数.规律方法 利用定义证明函数单调性的步骤【训练2】 证明函数f (x )=1x 2在(-∞,0)上是增函数.证明 设x 1,x 2是区间(-∞,0)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=1x 21-1x 22=x 22-x 21x 21x 22=(x 2-x 1)(x 2+x 1)x 21x 22. 因为x 1<x 2<0,所以x 2-x 1>0,x 1+x 2<0,x 21x 22>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=1x 2在(-∞,0)上是增函数.题型三 用单调性解不等式【例3】 已知函数y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求实数a 的取值范围.解 由题知⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23,即所求a 的取值范围是⎝⎛⎭⎫0,23. 规律方法 利用函数的单调性解不等式的方法当函数f (x )的解析式未知时,欲求解不等式,可以依据函数单调性的定义和性质,将符号“f ”脱掉,列出关于未知量的不等式(组),然后求解,此时注意函数的定义域.【训练3】 已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围是________.解析 由题意得⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.答案 ⎣⎡⎭⎫-1,12.答案 (-∞,0)【探究2】 已知函数y =x 2+2ax +3在区间(-∞,1]上是减函数,则实数a 的取值范围是________.解析 函数y =x 2+2ax +3的图象开口向上,对称轴为x =-a ,要使其在区间(-∞,1]上是减函数,则-a ≥1,即a ≤-1.答案 (-∞,-1]【探究3】 分别作出函数f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤1,-2x +3,x >1和g (x )=⎩⎪⎨⎪⎧-2x +5,x ≤1,-2x +7,x >1的图象,并根据其图象的变化趋势判断它们在(-∞,+∞)上的单调性.解 函数f (x )的图象如图(1)所示,由其图象可知f (x )在(-∞,+∞)上是减函数; 函数g (x )的图象如图(2)所示,由其图象可知g (x )在(-∞,+∞)上既不是增函数,也不是减函数.【探究4】 已知函数f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤1,-2x +a ,x >1是减函数,求实数a 的取值范围.解 由题意得,要使f (x )是减函数,需-2×1+5≥-2×1+a ,即a ≤5.【探究5】 若函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +3,x ≤1,ax +1,x >1是减函数,求实数a 的取值范围.解 由题意可得⎩⎪⎨⎪⎧-a ≥1,a <0,12+2a ×1+3≥a ×1+1,解得-3≤a ≤-1,则实数a 的取值范围是[-3,-1].规律方法 已知函数的单调性求参数的关注点(1)视参数为已知数,依据基本初等函数的单调性、函数的图象或函数的单调性的定义,确定函数的单调区间,与已知的单调区间比较求参数;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的函数值的大小关系.课堂达标1.下列函数在区间(0,+∞)上不是增函数的是( ) A .y =2x +1 B .y =x 2+1 C .y =3-xD .y =x 2+2x +1解析 函数y =3-x 在区间(0,+∞)上是减函数. 答案 C2.函数f (x )=-x 2+2x +3的单调减区间是( )A .(-∞,1)B .(1,+∞)C .(-∞,2)D .(2,+∞)解析 易知函数f (x )=-x 2+2x +3是图象开口向下的二次函数,其对称轴为x =1,所以其单调减区间是(1,+∞).答案 B3.若f (x )=(2k -3)x +2是R 上的增函数,则实数k 的取值范围是________. 解析 由题意得2k -3>0,即k >32,故k 的取值范围是⎝⎛⎭⎫32,+∞. 答案 ⎝⎛⎭⎫32,+∞ 4.若函数f (x )是R 上的减函数,且f (a -1)>f (2a ),则a 的取值范围是________. 解析 由条件可知a -1<2a ,解得a >-1. 答案 (-1,+∞)5.证明f (x )=x 2+x 在(0,+∞)上是增函数.证明 设x 1>x 2>0,则f (x 1)-f (x 2)=x 21+x 1-x 22-x 2=(x 1-x 2)(x 1+x 2)+(x 1-x 2)=(x 1-x 2)(x 1+x 2+1),因为x 1>x 2>0,所以x 1-x 2>0,x 1+x 2+1>0,所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )=x 2+x 在(0,+∞)上是增函数.课堂小结1.对函数单调性的理解(1)单调性是与“区间”紧密相关的概念,一个函数在定义域的不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x 1,x 2有以下几个特征:一是任意性,即任意取x 1,x 2,“任意”二字绝不能丢掉,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x 1<x 2;三是属于同一个单调区间.(3)单调性能使自变量取值之间的不等关系和函数值的不等关系正逆互推,即由f(x)是增(减)函数且f(x1)<f(x2)⇔x1<x2(x1>x2).(4)并不是所有函数都具有单调性.若一个函数在定义区间上既有增区间又有减区间,则此函数在这个区间上不存在单调性.2.单调性的证明方法证明f(x)在区间D上的单调性应按以下步骤:(1)设元:设x1,x2∈D且x1<x2;(2)作差:将函数值f(x1)与f(x2)作差;(3)变形:将上述差式(因式分解、配方等)变形;(4)判号:对上述变形的结果的正、负加以判断;(5)定论:对f(x)的单调性作出结论.其中变形为难点,变形一定要到位,即变形到能简单明了的判断符号的形式为止,切忌变形不到位就定号.。
2018版高中数学人教版A版必修一学案第一单元 1.1.3 第2课时 补集及综合应用 Word版含答案
第课时补集及综合应用学习目标.理解全集、补集的概念(难点).准确翻译和使用补集符号和图(重点).会求补集,并能解决一些集合综合运算的问题(重点).预习教材-,完成下面问题:知识点补集的概念()全集:①定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.②记法:全集通常记作.()补集()设集合={},={},={},则∁(∪)=.()已知集合={,},集合={},若∁={},则实数=.解析()∵∪={},∴∁(∪)={}.()由∁={}知∈且∉,即∈{,},故=.答案(){} ()题型一补集的基本运算【例】()设集合=,={>或<},则∁=( ).{<<}.{≤≤}.{≤或≥}.{<或>}()已知全集={,-+},={,},∁={},则实数=.解析()如图,在数轴上表示出集合,可知∁={≤≤}.()由题意可知(\\(=,-+=,))解得=.答案() ()规律方法求补集的方法()列举法表示:从全集中去掉属于集合的所有元素后,由所有余下的元素组成的集合.()由不等式构成的无限集表示:借助数轴,取全集中集合以外的所有元素组成的集合.【训练】()已知全集={≥-},集合={-<≤},则∁=.()设={},={∈+=},若∁={},则实数=.解析()借助数轴得∁={=-或>}.()∵∁={},∴={},∴是方程+=的两个根,∴=-.答案(){=-或>} ()-题型二集合交、并、补的综合运算【例】已知全集={≤},集合={-<<},={-≤≤},求∩,(∁)∪,∩(∁).解利用数轴,分别表示出全集及集合,,先求出∁及∁,再求解.则∁={≤-,或≤≤},∁={<-,或<≤}.所以∩={-<≤};(∁)∪={≤,或≤≤};∩(∁)={<<}.规律方法.求解与不等式有关的集合问题的方法解决与不等式有关的集合问题时,画数轴(这也是集合的图形语言的常用表示方式)可以使问题变得形象直观,要注意求解时端点的值是否能取到..求解集合混合运算问题的一般顺序解决集合的混合运算时,一般先运算括号内的部分,再计算其他部分.【训练】已知集合={<≤},={≤<},={≤<}.求:()(∁)∩(∁);()∁(∪);()(∁)∪(∁);()∁(∩).解()如图所示,可得∩={≤<},∪={≤<},∁={<<或≤≤},∁={<<}∪{}.由此可得:()(∁)∩(∁)={<<}∪{}.。
2018版高一数学人教版A版必修一学案:第一单元 1.3.2 奇偶性
1.3.2 奇偶性学习目标 1.结合具体函数,了解函数奇偶性的含义(难点).2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系(重点).3.会利用函数的奇偶性解决简单问题(重点).预习教材P33-P35,完成下面问题:知识点 函数的奇偶性函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数关于原点对称【预习评价】 (正确的打“√”,错误的打“×”)(1)对于函数y =f (x ),若存在x ,使f (-x )=-f (x ),则函数y =f (x )一定是奇函数.( )(2)不存在既是奇函数,又是偶函数的函数.( )(3)若函数的定义域关于原点对称,则这个函数不是奇函数,就是偶函数.( )提示 (1)× 反例:f (x )=x 2,存在x =0,f (-0)=-f (0)=0,但函数f (x )=x 2不是奇函数;(2)× 存在f (x )=0,x ∈R 既是奇函数,又是偶函数;(3)× 函数f (x )=x 2-2x ,x ∈R 的定义域关于原点对称,但它既不是奇函数,又不是偶函数.题型一 函数奇偶性的判断【例1】 判断下列函数的奇偶性:(1)f (x )=2-|x |;(2)f (x )=+;x 2-11-x 2(3)f (x )=;xx -1(4)f (x )=Error!解 (1)∵函数f (x )的定义域为R ,关于原点对称,又f (-x )=2-|-x |=2-|x |=f (x ),∴f (x )为偶函数.(2)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,又∵f (-x )=-f (x ),f (-x )=f (x ),∴f (x )既是奇函数又是偶函数.(3)∵函数f (x )的定义域为{x |x ≠1},不关于原点对称,∴f (x )是非奇非偶函数.(4)f (x )的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x >0时,-x <0,f (-x )=1-(-x )=1+x =f (x );当x <0时,-x >0,f (-x )=1+(-x )=1-x =f (x ).综上可知,对于x ∈(-∞,0)∪(0,+∞),都有f (-x )=f (x ),f (x )为偶函数.规律方法 判断函数奇偶性的两种方法:(1)定义法:(2)图象法:【训练1】 判断下列函数的奇偶性:(1)f (x )=x 3+x 5;(2)f (x )=|x +1|+|x -1|;(3)f (x )=.2x 2+2xx +1解 (1)函数的定义域为R .∵f (-x )=(-x )3+(-x )5=-(x 3+x 5)=-f (x ),∴f(x)是奇函数.(2)f(x)的定义域是R.∵f(-x)=|-x+1|+|-x-1|=|x-1|+|x+1|=f(x),∴f(x)是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.题型二 奇、偶函数的图象问题【例2】 已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象.(2)写出使f(x)<0的x的取值集合.解 (1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值f(x)<0的x的取值集合为(-2,0)∪(2,5).规律方法 1.巧用奇偶性作函数图象的步骤(1)确定函数的奇偶性.(2)作出函数在[0,+∞)(或(-∞,0])上对应的图象.(3)根据奇(偶)函数关于原点(y轴)对称得出在(-∞,0](或[0,+∞))上对应的函数图象.2.奇偶函数图象的应用类型及处理策略(1)类型:利用奇偶函数的图象可以解决求值、比较大小及解不等式问题.(2)策略:利用函数的奇偶性作出相应函数的图象,根据图象直接观察.【训练2】 已知偶函数f(x)的一部分图象如图,试画出该函数在y轴另一侧的图象,并比较f(2),f(4)的大小.解 f(x)为偶函数,其图象关于y轴对称,如图,由图象知,f (2)<f (4).考查方向 题型三 函数奇偶性的应用方向1 利用奇偶性求函数值【例3-1】 已知f (x )=x 5+ax 3+bx -8,若f (-3)=10,则f (3)=( )A .26 B .18C .10 D .-26解析 法一 由f (x )=x 5+ax 3+bx -8,得f (x )+8=x 5+ax 3+bx .令G (x )=x 5+ax 3+bx =f (x )+8,∵G (-x )=(-x )5+a (-x )3+b (-x )=-(x 5+ax 3+bx )=-G (x ),∴G (x )是奇函数,∴G (-3)=-G (3),即f (-3)+8=-f (3)-8.又f (-3)=10,∴f (3)=-f (-3)-16=-10-16=-26.法二 由已知条件,得Error!①+②得f (3)+f (-3)=-16,又f (-3)=10,∴f (3)=-26.答案 D方向2 利用奇偶性求参数值【例3-2】 若函数f (x )=为奇函数,则a =________.(x +1)(x +a )x解析 ∵f (x )是奇函数,∴f (-x )=-f (x ),即=-,显然(-x +1)(-x +a )-x(x +1)(x +a )xx ≠0,整理得x 2-(a +1)x +a =x 2+(a +1)x +a ,故a +1=0,解得a =-1.答案 -1方向3 利用奇偶性求函数的解析式【例3-3】 已知函数f (x )(x ∈R )是奇函数,且当x >0时,f (x )=2x -1,求函数f (x )的解析式.解 当x <0,-x >0,∴f (-x )=2(-x )-1=-2x -1.又∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=2x +1.又f (x )(x ∈R )是奇函数,∴f (-0)=-f (0),即f (0)=0.∴所求函数的解析式为f (x )=Error!规律方法 1.利用函数的奇偶性求函数值或参数值的方法:利用函数的奇偶性的定义f (-x )=f (x )或f (-x )=-f (x )可求函数值,比较f (-x )=f (x )或f (-x )=-f (x )的系数可求参数值.2.利用函数奇偶性求函数解析式的步骤(1)“求谁设谁”,即在哪个区间上求解析式,x 就应在哪个区间上设;(2)转化到已知区间上,代入已知的解析式;(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x ).课堂达标1.下列函数是偶函数的是( )A .y =x B .y =2x 2-3C .y = D .y =x 2,x ∈(-1,1]x 解析 对于A ,f (-x )=-x =-f (x ),是奇函数;对于B ,定义域为R ,满足f (x )=f (-x ),是偶函数;对于C 和D ,定义域不关于原点对称,则不是偶函数,故选B .答案 B2.若函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是( )A .1 B .2C .3 D .4解析 f (-x )=(m -1)x 2-(m -2)x +(m 2-7m +12),f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12),由f (-x )=f (x ),得m -2=0,即m =2.答案 B3.已知函数f (x )为奇函数,且当x >0时,f (x )=-x 2+-1,则f (-2)=________.1x解析 f (2)=-22+-1=-,又f (x )是奇函数,故f (-2)=-f (2)=.129292答案 924.如图,已知偶函数f (x )的定义域为{x |x ≠0,x ∈R },且f (3)=0,则不等式f (x )<0的解集为________.解析 由条件利用偶函数的性质,画出函数f (x )在R 上的简图:数形结合可得不等式f (x )<0的解集为(-3,0)∪(0,3).答案 (-3,0)∪(0,3)5.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x +1,求f (x )的解析式.解 当x <0时,-x >0,∴f (-x )=-x +1,又f (-x )=-f (x ),故f (x )=x -1,又f (0)=0,所以f (x )=Error!课堂小结1.定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的一个必要条件,f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )∓f (x )=0⇔=±1(f (x )≠0).f (-x )f (x )3.应用函数的奇偶性求值、参数或函数的解析式,要根据函数奇偶性的定义,f (-x )=f (x )或f (-x )=-f (x )对函数值及函数解析式进行转换.。
2018版高中数学人教版A版必修一学案:第一单元 章末复习课 Word版含答案 (15)
章末复习课网络构建核心归纳1.函数的零点与方程的根的关系函数f(x)的零点就是方程f(x)=0的解,函数f(x)的零点的个数与方程f(x)=0的解的个数相等,也可以说方程f(x)=0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.2.函数零点的存在性定理(1)该定理的条件是:①函数f(x)在区间[a,b]上的图象是连续不断的;②f(a)·f(b)<0,即f(a)和f(b)的符号相反.这两个条件缺一不可.(2)该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数.3.函数应用(1)要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.(2)在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.(3)根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.要点一 函数的零点与方程的根 函数的零点与方程的根的关系及应用1.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.【例1】 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.解析 (1)①当x ≤0时,由f (x )=0,即x 2-2=0,解得x =2或x =- 2.因为x ≤0,所以x =- 2.②法一 (函数单调性法)当x >0时,f (x )=2x -6+ln x .而f (1)=2×1-6+ln 1=-4<0,f (3)=2×3-6+ln 3=ln 3>0,所以f (1)·f (3)<0,又函数f (x )的图象是连续的,故由零点存在性定理,可得函数f (x )在(1,3)内至少有一个零点.而函数y =2x -6在(0,+∞)上单调递增,y =ln x 在(0,+∞)上单调递增,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增.故函数f (x )=2x -6+ln x 在(0,+∞)内有且只有1个零点.综上,函数f (x )共有2个零点. 法二 (数形结合法)当x >0时,由f (x )=0,得2x -6+ln x =0, 即ln x =6-2x .如图,分别作出函数y =ln x 和y =6-2x 的图象.显然,由图可知,两函数图象只有一个交点,且在y 轴的右侧,故当x >0时,f (x )=0只有一个解.综上,函数f (x )共有2个零点.(2)由f(x)=0得|2x-2|=b,在同一坐标系中作出函数y=|2x-2|和y=b的图象,如图所示,由图可知0<b<2,即若f(x)有两个零点,则b的取值范围是(0,2).答案(1)2(2)(0,2)【训练1】已知关于x的方程a·4x+b·2x+c=0(a≠0),常数a,b同号,b,c异号,则下列结论中正确的是()A.此方程无实根B.此方程有两个互异的负实根C.此方程有两个异号实根D.此方程仅有一个实根解析由常数a,b同号,b,c异号,可得a,c异号,令2x=t,则方程变为at2+bt+c =0,t>0,由于此方程的判别式Δ=b2-4ac>0,故此方程有2个不等实数根,且两根之积为ca <0,故关于t的方程只有一个实数根,故关于x的方程只有一个实数根.答案 D要点二二分法求方程的近似解(或函数的零点)1.二分法求方程的近似解的步骤(1)构造函数,转化为求函数的零点.(2)明确精确度和函数的零点所在的区间(最好区间左右端点相差1).(3)利用二分法求函数的零点.(4)归纳结论.2.使用二分法的注意事项(1)二分法的实质是通过“取中点”,不断缩小零点所在区间的范围,所以要选好计算的初始区间,保证所选区间既符合条件,又使区间长度尽量小.(2)计算时注意依据给定的精确度,及时检验计算所得的区间是否满足精确度的要求.(3)二分法在具体使用时有一定的局限性,首先二分法只能一次求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法求得.【例2】设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的.先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在一个零点x0,填下表,结论x0解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,所以初始区间为(1,2).因为所以x0≈1.125(不唯一).【训练2】若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;f(1.438)=0.165.那么方程x3+x2-2x-2=0的一个近似根可以为(精确度为0.1)()A.1.2B.1.35C.1.43D.1.5解析∵f(1.438)=0.165>0,f(1.375)=-0.260<0,∴函数f(x)在(1.375,1.438)内存在零点,又1.438-1.375<0.1,结合选项知1.43为方程f(x)=0的一个近似根.答案 C要点三函数的实际应用1.建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x,y分别表示.(2)建立函数模型,将变量y表示为x的函数,此时要注意函数的定义域.(3)求解函数模型,并还原为实际问题的解.2.建模的三个原则(1)简化原则:建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题.【例3】 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x (0≤x ≤5),11(x >5). 假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)要使工厂有盈利,求产量x 的取值范围; (3)工厂生产多少台产品时,可使盈利最多? 解 (1)由题意得G (x )=2.8+x .∴f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8(0≤x ≤5),8.2-x (x >5).(2)①当0≤x ≤5时,由-0.4x 2+3.2x -2.8>0得x 2-8x +7<0,解得1<x <7,∴1<x ≤5. ②当x >5时,由8.2-x >0,得x <8.2, 所以5<x <8.2.综上,当1<x <8.2时,有y >0.即当产量x 大于100台,小于820台时,能使工厂有盈利. (3)当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6; 当x >5时,∵函数f (x )单调递减,∴f (x )<f (5)=3.2(万元),综上,当工厂生产4百台时,可使盈利最多,为3.6万元. 【训练3】 《中华人民共和国个人所得税法》规定,个人所得税起征点为3 500元(即3 500元以下不必纳税,超过3 500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:(1) (2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少? 解 (1)依题意可得: ①当0<x ≤3 500时,y =0. ②当3 500<x ≤5 000时, y =(x -3 500)·3%=0.03x -105. ③当5 000<x <8 000时,y =45+(x -5 000)·10%=0.1x -455, 综上可得y =⎩⎪⎨⎪⎧0,0<x ≤3 500,0.03x -105,3 500<x ≤5 000,0.1x -455,5 000<x <8 000.(2)因为需交税300元, 故有5 000<x <8 000,所以300=0.1x -455,所以x =7 550. 答:刘丽十二月份工资总额为7 550元.。
2018-2019学年高中数学人教版A版必修一学案:第一单元 1.1.1 第2课时 集合的表示
第2课时 集合的表示学习目标 1.掌握集合的两种表示方法:列举法和描述法(重点).2.能够运用集合的两种表示方法表示一些简单的集合(难点).预习教材P3-P5,完成下面问题: 知识点 集合的表示方法 (1)列举法:①定义:把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法;②形式:A ={a 1,a 2,a 3,…,a n }. (2)描述法:①定义:用集合所含元素的共同特征表示集合的方法称为描述法;②写法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.【预习评价】(1)集合{x ∈N *|x -4<2}的另一种表示形式是( ) A .{0,1,2,3,4} B .{0,1,2,3,4,5} C .{1,2,3,4}D .{1,2,3,4,5}(2)方程x 2-1=8的解集用列举法表示为________.解析 (1)由x -4<2得x <6,又x ∈N *,故x 的值为1,2,3,4,5,用列举法表示为{1,2,3,4,5}. (2)由x 2-1=8得x 2=9,即x =±3,故其解集用列举法表示为{-3,3}. 答案 (1)D (2){-3,3}题型一 用列举法表示集合【例1】 用列举法表示下列集合: (1)15的正约数组成的集合; (2)不大于10的正偶数集;(3)方程组⎩⎪⎨⎪⎧2x +y +6=0,x -y +3=0的解集.解 (1)因为15的正约数为1,3,5,15, 所以所求集合可表示为{1,3,5,15}. (2)因为不大于10的正偶数有2,4,6,8,10, 所以所求集合可表示为{2,4,6,8,10}.(3)解方程组⎩⎪⎨⎪⎧ 2x +y +6=0,x -y +3=0,得⎩⎪⎨⎪⎧x =-3,y =0.所以所求集合可表示为{(-3,0)}.规律方法 用列举法表示集合的三个注意点(1)用列举法表示集合时,首先要注意元素是数、点,还是其他的类型,即先定性. (2)列举法适合表示有限集,当集合中元素个数较少时,用列举法表示集合比较方便. (3)搞清集合是有限集还是无限集是选择恰当的表示方法的关键. 【训练1】 用列举法表示下列集合: (1)绝对值小于5的偶数; (2)24与36的公约数;(3)方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1的解集.解 (1)绝对值小于5的偶数集为{-2,-4,0,2,4},是有限集. (2){1,2,3,4,6,12},是有限集.(3)由⎩⎪⎨⎪⎧ x +y =2,2x -y =1,得⎩⎪⎨⎪⎧x =1,y =1.∴方程组⎩⎪⎨⎪⎧ x +y =2,2x -y =1的解集为{(x ,y )|⎩⎪⎨⎪⎧ x +y =2,2x -y =1}={(x ,y )|⎩⎪⎨⎪⎧x =1,y =1}={(1,1)},是有限集.【例(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解 (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故x =3n +2,n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N}.(3)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点的集合可表示为{(x ,y )|xy =0}.【迁移1】 (变换条件)例2(3)改为“用描述法表示平面直角坐标系中位于第二象限的点的集合.”解 位于第二象限的点(x ,y )的横坐标为负,纵坐标为正, 即x <0,y >0,故第二象限的点的集合为{(x ,y )|x <0,y >0}.【迁移2】 (变换条件)例2(3)改为“用描述法表示图中阴影部分点(含边界)的坐标的集合.”解 本题是用图形语言给出的问题,要求把图形语言转换为符号语言.用描述法表示(即用符号语言表示)为{(x ,y )|-1≤x ≤32,-12≤y ≤1,且xy ≥0}.规律方法 用描述法表示集合的注意点 (1)“竖线”前面的x ∈R 可简记为x ; (2)“竖线”不可省略;(3)p (x )可以是文字语言,也可以是数学符号语言,能用数学符号表示的尽量用数学符号表示;(4)同一集合用描述法表示可以不唯一. 题型三 集合表示方法的综合应用【例3】 (1)用列举法表示集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且86-x ∈N =________.(2)集合A ={x ∈kx 2-8x +16=0},若集合A 中只有一个元素,试求实数k 的值,并用列举法表示集合A .(1)解析 ∵x ∈Z 且86-x∈N ,∴1≤6-x ≤8,-2≤x ≤5.当x =-2时,1∈N ;当x =-1时,87∉N ;当x =0时,43∉N ;当x =1时,85∉N ;当x =2时,2∈N ;当x =3时,83∉N ;当x=4时,4∈N ;当x =5时,8∈N.综上可知A ={-2,2,4,5}.答案 {-2,2,4,5}(2)解 ①当k =0时,原方程为16-8x =0. ∴x =2,此时A ={2}; ②当k ≠0时,∵集合A 中只有一个元素,∴方程kx 2-8x +16=0有两个相等实根. ∴Δ=64-64k =0,即k =1. 从而x 1=x 2=4,∴A ={4}. 综上可知,实数k 的值为0或1. 当k =0时,A ={2}; 当k =1时,A ={4}.规律方法 1.识别集合的两个步骤:一看代表元素:例如{x |p (x )}表示数集,{(x ,y )|y =p (x )}表示点集; 二看条件:即看代表元素满足什么条件(公共特性). 2.方程ax 2+bx +c =0的根的个数在涉及ax 2+bx +c =0的根的集合中,要讨论二次项的系数a 是否为0,当a =0时,方程为bx +c =0是一次方程,再分b 是否为0两种情况讨论其根的个数;当a ≠0时,方程ax 2+bx +c =0为二次方程,结合判别式的符号判定其根的个数.【训练2】 用列举法表示下列集合. (1)A ={y |y =-x 2+6,x ∈N ,y ∈N}; (2)B ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N}. 解 (1)因为y =-x 2+6≤6,且x ∈N ,y ∈N , 所以x =0,1,2时,y =6,5,2,符合题意, 所以A ={2,5,6}.(2)(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则应有⎩⎪⎨⎪⎧x =0,y =6,⎩⎪⎨⎪⎧x =1,y =5,⎩⎪⎨⎪⎧x =2,y =2, 所以B ={(0,6),(1,5),(2,2)}.课堂达标1.用列举法表示集合{x |x 2-2x +1=0}为( ) A .{1,1} B .{1}C .{x =1}D .{x 2-2x +1=0}解析 集合{x |x 2-2x +1=0}实质是方程x 2-2x +1=0的解,此方程有两相等实根,为1,故可表示为{1}.故选B .答案 B2.下列各组集合中,表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={3,2},N ={2,3}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={3,2},N ={(3,2)}解析 由于集合中的元素具有无序性,故{3,2}={2,3}. 答案 B3.设集合A ={1,2,3},B ={1,3,9},x ∈A ,且x ∉B ,则x =( ) A .1B .2C .3D .9解析 比较A 和B 中的元素可知x =2.答案 B4.大于3并且小于10的整数的集合用描述法表示为________.解析设该数为x,由题意得3<x<10,且x∈Z,故集合是:{x|3<x<10,x∈Z}.答案{x|3<x<10,x∈Z}5.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图象上所有点组成的集合.解(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,则用列举法表示为{-3,-2,-1,0,1,2,3}.(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2.(3)一次函数y=x+6图象上有无数个点,用描述法表示为{(x,y)|y=x+6}.课堂小结1.集合表示的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则;(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式;(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.。
教育最新K122018-2019学年高中数学人教版A版必修一学案:第一单元 1.1.3 第1课时 并集、交集
1.1.3集合的基本运算第1课时并集、交集学习目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集(重点).2.能使用Venn图表示集合的并集、交集运算结果(难点).3.掌握有关的术语和符号,并会用它们正确进行集合的并集与交集运算(重点).预习教材P8-P9,完成下面问题:知识点1并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集.(2)符号语言:A∪B={x|x∈A或x∈B}.(3)图形语言:如图所示.【预习评价】(1)已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B等于()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}(2)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为________.解析(1)A∪B={x|x>0}∪{x|-1≤x≤2}={x|x≥-1}.(2)A∪B={1,2,3}∪{2,4,5}={1,2,3,4,5},共5个元素.答案(1)A(2)5知识点2交集(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.(2)符号语言:A∩B={x|x∈A且x∈B}.(3)图形语言:如图所示.【预习评价】(1)若集合M={-1,1},N={-2,1,0},则M∩N=()A.{0,-1}B.{1} C.{0}D.{-1,1}(2)若P={x|x≥1},Q={x|-1<x<4},则P∩Q=________.解析(1)M∩N={-1,1}∩{-2,1,0}={1},故选B.(2)如图所示,P∩Q={x|1≤x<4}.答案(1)B(2){x|1≤x<4}题型一并集的概念及简单应用【例1】(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8} C.{3,5,7,8}D.{4,5,6,8}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于()A.{x|-1≤x<3}B.{x|-1≤x≤4}C.{x|x≤4}D.{x|x≥-1}解析(1)由定义知M∪N={3,4,5,6,7,8}.(2)在数轴上表示两个集合,如图,可得P∪Q={x|x≤4}.答案(1)A(2)C规律方法求集合并集的两种方法(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解,此时要注意集合的端点能否取到.【训练1】已知集合M={0,1,3},N={x|x=3a,a∈M},则M∪N=()A.{0}B.{0,3}C.{1,3,9}D.{0,1,3,9}解析易知N={0,3,9},故M∪N={0,1,3,9}.答案 D题型二交集的概念及简单应用【例2】(1)A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为()A .{2}B .{3}C .{-3,2}D .{-2,3}(2)设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B =( ) A .{x |0≤x ≤2} B .{x |1≤x ≤2} C .{x |0≤x ≤4}D .{x |1≤x ≤4}解析 (1)易知A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},图中阴影部分表示的集合为A ∩B ={2},故选A .(2)在数轴上表示出集合A 与B ,如图所示.则由交集的定义知,A ∩B ={x |0≤x ≤2}. 答案 (1)A (2)A规律方法 求集合A ∩B 的常见类型(1)若A ,B 的代表元素是方程的根,则应先解方程求出方程的根后,再求两集合的交集. (2)若集合的代表元素是有序数对,则A ∩B 是指两个方程组成的方程组的解集,解集是点集.(3)若A ,B 是无限数集,可以利用数轴来求解,但要注意利用数轴表示不等式时,含有端点的值用实心点表示,不含有端点的值用空心圈表示.【训练2】 (1)已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2(2)已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N =( ) A .x =3,y =-1 B .(3,-1) C .{3,-1}D .{(3,-1)}解析 (1)8=3×2+2,14=3×4+2,故A ∩B ={8,14},故选D .(2)由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,故M ∩N ={(3,-1)}. 答案 (1)D (2)D【探究1】 设A ,B 是两个集合,若已知A ∩B =A ,A ∪B =B ,由此可分别得到集合A 与B 具有怎样的关系?解 A ∩B =A ⇔A ∪B =B ⇔A ⊆B ,即A ∩B =A ,A ∪B =B ,A ⊆B 三者为等价关系. 【探究2】 若集合={x |x 2+2x -a =0}=∅,求a 的取值范围. 解 由题意知方程x 2+2x -a =0无实根,故Δ=4+4a <0,解得a <-1. 【探究3】 设集合A ={1,2},若B ⊆A ,求B . 解 B =∅或{1}或{2}或{1,2}.【探究4】 设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a -1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围.解 (1)由题可知:A ={x |x 2-3x +2=0}={1,2},∵A ∩B ={2},∴2∈B ,将2带入集合B 中得:4+4(a -1)+(a 2-5)=0,解得:a =-5或a =1.当a =-5时,集合B ={2,10}符合题意; 当a =1时,集合B ={2,-2},符合题意. 综上所述:a =-5或a =1.(2)若A ∪B =A ,则B ⊆A ,∵A ={1,2},∴B =∅或B ={1}或{2}或{1,2}. 若B =∅,则Δ=4(a -1)2-4(a 2-5)=24-8a <0,解得a >3; 若B ={1},则⎩⎪⎨⎪⎧ Δ=24-8a =0,x =-2(a -1)2=1-a =1,即⎩⎪⎨⎪⎧a =3,a =0,不成立; 若B ={2},则⎩⎪⎨⎪⎧Δ=24-8a =0,x =-2(a -1)2=1-a =2,即⎩⎪⎨⎪⎧a =3,a =-1,不成立; 若B ={1,2},则⎩⎪⎨⎪⎧Δ=24-8a >0,1+2=-2(a -1),1×2=a 2-5,即⎩⎪⎨⎪⎧a <3,a =-12,a =±7,此时不成立,综上a >3.规律方法 利用集合交集、并集的性质解题的依据及关注点 (1)依据:A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A .(2)关注点:当集合A ⊆B 时,若集合A 不确定,运算时要考虑A =∅的情况,否则易漏解.【训练3】 已知集合A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∩B =∅,求实数a 的取值范围.解 由A ∩B =∅,(1)若A =∅,有2a >a +3,∴a >3. (2)若A ≠∅,如下图:∴⎩⎪⎨⎪⎧2a ≥-1,a +3≤5,2a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是{a |-12≤a ≤2或a >3}.课堂达标1.设集合A ={0,1,2,3},集合B ={2,3,4},则A ∩B =( ) A .{2,3} B .{0,1}C .{0,1,4}D .{0,1,2,3,4}解析 因为集合A ={0,1,2,3},集合B ={2,3,4},所以A ∩B ={2,3},故选A . 答案 A2.已知集合A ={x |-1≤x <3},B ={x |2<x ≤5},则A ∪B =( ) A .{x |2<x <3} B .{x |-1≤x ≤5} C .{x |-1<x <5}D .{x |-1<x ≤5}解析 ∵集合A ={x |-1≤x <3},B ={x |2<x ≤5},∴A ∪B ={x |-1≤x ≤5},故选B . 答案 B3.已知集合M ={-1,0},则满足M ∪N ={-1,0,1}的集合N 的个数是( ) A .2B .3C .4D .8解析 由M ∪N ={-1,0,1},得到集合M ⊆M ∪N ,且集合N ⊆M ∪N ,又M ={0,-1},所以元素1∈N ,则集合N 可以为{1}或{0,1}或{-1,1}或{0,-1,1},共4个.故选C .答案 C4.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则( ) A .a =3,b =2 B .a =2,b =3 C .a =-3,b =-2D .a =-2,b =-3解析 ∵A ∩B ={(2,5)},∴⎩⎪⎨⎪⎧5=2a +1,5=2+b ,解得a =2,b =3,故选B .答案 B5.已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <3或x ≥7},求: (1)A ∪B ;(2)C ∩B .解 (1)由集合A ={x |3≤x <7},B ={x |2<x <10},把两集合表示在数轴上如图所示:得到A ∪B ={x |2<x <10};(2)由集合B ={x |2<x <10},C ={x |x <3或x ≥7},把两集合表示在数轴上如图所示:则C ∩B ={x |2<x <3或7≤x <10}.课堂小结1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x ∈A ,或x ∈B ”这一条件,包括下列三种情况:x ∈A 但x ∉B ;x ∈B 但x ∉A ;x ∈A 且x ∈B .因此,A ∪B 是由所有至少属于A ,B 两者之一的元素组成的集合.(2)A ∩B 中的元素是“所有”属于集合A 且属于集合B 的元素,而不是部分,特别地,当集合A 和集合B 没有公共元素时,不能说A 与B 没有交集,而是A ∩B =∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.。
2018版高一数学人教版A版必修一学案:第一单元 1.1.1 第1课时 集合的含义
§1.1 集合1.1.1 集合的含义与表示第1课时 集合的含义学习目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性(重点、难点).2.了解元素与集合间的“从属关系”(重点).3.记住常用数集的表示符号并会应用.预习教材P2,完成下面问题:知识点1 元素与集合的概念(1)元素:一般地,把研究对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:一些元素组成的总体,简称集,常用大写拉丁字母A,B,C,…表示.(3)集合相等:指构成两个集合的元素是一样的.(4)集合中元素的特性:确定性、互异性和无序性.【预习评价】 (正确的打“√”,错误的打“×”)(1)漂亮的花可以组成集合.( )(2)由方程x2-4=0和x-2=0的根组成的集合中有3个元素.( )(3)元素1,2,3和元素3,2,1组成的集合是不相等的.( )提示 (1)× “漂亮的花”具有不确定性,故不能组成集合.(2)× 由于集合中的元素具有互异性,故由两方程的根组成的集合中有2个元素.(3)× 集合中的元素具有无序性,所以元素1,2,3和元素3,2,1组成的集合是同一集合.知识点2 元素与集合的关系关系概念记法读法属于如果a是集合A的元素,就说a属于集合A a∈A a属于集合A不属于如果a不是集合A中的元素,就说a不属于集合Aa∉Aa不属于集合A【预习评价】思考 设集合A 表示“1~10以内的所有素数”,3,4这两个元素与集合A 有什么关系?如何用数学语言表示?提示 3是集合A 中的元素,即3属于集合A ,记作3∈A ;4不是集合A 中的元素,即4不属于集合A ,记作4∉A .知识点3 常用数集及表示符号数集非负整数集(自然数集)正整数集整数集有理数集实数集符号NN *或N +ZQR【预习评价】(1)若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14 B .-2C .D .787(2)若<x <,且x ∈Z ,则x =________.210解析 (1)由选项知是实数,但不是有理数,故选D .7(2)大于且小于的整数为2和3,故x =2或3.210答案 (1)D (2)2或3题型一 集合的判定问题【例1】 下列每组对象能否构成一个集合:(1)我们班的所有高个子同学;(2)不超过20的非负数;(3)直角坐标平面内第一象限的一些点;(4)的近似值的全体.3解 (1)“高个子”没有明确的标准,因此不能构成集合.(2)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;(3)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(4)“的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似3值,所以“的近似值”不能构成集合.3规律方法 判断一组对象能否构成集合的依据【训练1】 给出下列说法:①中国所有的直辖市可以构成一个集合;②高一(1)班较胖的同学可以构成一个集合;③正偶数的全体可以构成一个集合;④大于2 011且小于2 017的所有整数不能构成集合.其中正确的有________(填序号).解析 ②中由于“较胖”的标准不明确,不满足集合元素的确定性,所以②错误;④中的所有整数能构成集合,故④错误.答案 ①③题型二 元素与集合的关系【例2】 (1)给出下列关系:①∈R ;②∉Q ;③|-3|∉N ;④|-|∈Q ;⑤0∉N .其中1223正确的个数为( )A .1 B .2 C .3D .4(2)集合A 中的元素x 满足∈N ,x ∈N ,则集合A 中的元素为________.63-x 解析 (1)①②正确;③④⑤不正确.(2)∵∈N ,x ∈N ,∴当x =0时,=2∈N ,∴x =0满足题意;当x =1时,63-x 63-x =3∈N ,∴x =1满足题意;当x =2时,=6∈N ,∴x =2满足题意,当x >3时,63-x 63-x <0不满足题意,所以集合A 中的元素为0,1,2.63-x 答案 (1)B (2)0,1,2规律方法 判断元素与集合关系的两个关键点判断一个元素是否属于一个集合,一要明确集合中所含元素的共同特征,二要看该元素是否满足该集合中元素的共同特征.311【训练2】 设集合M是由不小于2的数组成的集合,a=,则下列关系中正确的是( )A.a∈M B.a∉M C.a=M D.a≠M解析 判断一个元素是否属于某个集合,关键是看这个元素是否具有这个集合中元素的特征,若具有就是,否则不是.∵<2,∴a∉M.113答案 B典例迁移 题型三 集合中元素的特性【例3】 已知集合A含有两个元素a-3和2a-1,若-3是集合A中的元素,试求实数a的值.解 因为-3是集合A中的元素,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0,此时集合A含有两个元素-3,-1,符合要求;若-3=2a-1,则a=-1,此时集合A中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a的值为0或-1.【迁移1】 (变换条件)若把本例中的条件“-3是集合A中的元素”去掉,求a的取值范围.解 由集合元素的互异性知a-3≠2a-1,解得a≠-2,故实数a的取值范围是a≠-2.【迁移2】 (变换条件)若本例中的集合A含有两个元素1和a2,且a∈A,则实数a的值是什么?解 由a∈A可知,当a=1时,此时a2=1,与集合元素的互异性矛盾,所以a≠1;当a=a2时,a=0或1(舍去).综上可知a=0.规律方法 利用集合中元素的互异性求参数的策略及注意点(1)策略:根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中的元素的互异性对集合中的元素进行检验.(2)注意点:利用集合中元素的互异性解题时,要注意分类讨论思想的应用.课堂达标1.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .香港的高楼解析 A ,B ,D 中研究的对象不确定,因此不能构成集合.答案 C2.由形如x =3k +1,k ∈Z 的数组成集合A ,则下列表示正确的是( )A .-1∈A B .-11∈A C .15 D .32解析 -11=3×(-4)+1,故选B .答案 B3.下列三个命题:①集合N 中最小的数是1;②-a ∉N ,则a ∈N ;③a ∈N ,b ∈N ,则a +b 的最小值是2.其中正确命题的个数是( )A .0 B .1 C .2 D .3解析 根据自然数的特点,显然①③不正确.②中若a =,则-a ∉N 且a ∉N ,显然②不32正确.答案 A4.已知集合A 中的元素x 满足x ≥2,若a ∉A ,则实数a 的取值范围是________.解析 由题意a 不满足不等式x ≥2,即a <2.答案 a <25.若集合A 是由所有形如3a +b (a ∈Z ,b ∈Z )的数组成,判断-6+2是不是集合22A 中的元素?解 因为-2∈Z 且2∈Z ,所以-6+2是形如3a +b (a ∈Z ,b ∈Z )的数,即-6+222是集合A 中的元素.2课堂小结1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个特性通常用来判断两个集合的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时补集及综合应用学习目标 1.理解全集、补集的概念(难点).2.准确翻译和使用补集符号和Venn图(重点).3.会求补集,并能解决一些集合综合运算的问题(重点).预习教材P10-P11,完成下面问题:知识点补集的概念(1)全集:①定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.②记法:全集通常记作U.(2)补集(1)设集合U={1,2,3,4,5},A={1,2},B={2,3,4},则∁U(A∪B)=________.(2)已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.解析(1)∵A∪B={1,2,3,4},∴∁U(A∪B)={5}.(2)由∁A B={5}知5∈A且5∉B,即5∈{3,4,m},故m=5.答案(1){5}(2)5题型一补集的基本运算【例1】(1)设集合U=R,M={x|x>2或x<0},则∁U M=()A.{x|0≤x≤2}B.{x|0<x<2}C.{x|x<0或x>2}D.{x|x≤0或x≥2}(2)已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a=________.解析 (1)如图,在数轴上表示出集合M ,可知∁U M ={x |0≤x ≤2}.(2)由题意可知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,解得a =2. 答案 (1)A (2)2规律方法 求补集的方法(1)列举法表示:从全集U 中去掉属于集合A 的所有元素后,由所有余下的元素组成的集合.(2)由不等式构成的无限集表示:借助数轴,取全集U 中集合A 以外的所有元素组成的集合.【训练1】 (1)已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则∁U A =________.(2)设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________. 解析 (1)借助数轴得∁U A ={x |x =-3或x >4}.(2)∵∁U A ={1,2},∴A ={0,3},∴0,3是方程x 2+mx =0的两个根,∴m =-3. 答案 (1){x |x =-3或x >4} (2)-3题型二 集合交、并、补的综合运算【例2】 已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).解 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,再求解.则∁U A ={x |x ≤-2,或3≤x ≤4},∁U B ={x |x <-3,或2<x ≤4}.所以A ∩B ={x |-2<x ≤2};(∁U A )∪B ={x |x ≤2,或3≤x ≤4};A ∩(∁UB )={x |2<x <3}.规律方法 1.求解与不等式有关的集合问题的方法解决与不等式有关的集合问题时,画数轴(这也是集合的图形语言的常用表示方式)可以使问题变得形象直观,要注意求解时端点的值是否能取到.2.求解集合混合运算问题的一般顺序解决集合的混合运算时,一般先运算括号内的部分,再计算其他部分.【训练2】 已知集合S ={x |1<x ≤7},A ={x |2≤x <5},B ={x |3≤x <7}.求:(1)(∁S A )∩(∁S B );(2)∁S (A ∪B );(3)(∁S A )∪(∁S B );(4)∁S (A ∩B ).解 (1)如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7},∁S A ={x |1<x <2或5≤x ≤7},∁S B ={x |1<x <3}∪{7}.由此可得:(1)(∁S A )∩(∁S B )={x |1<x <2}∪{7}.(2)∁S (A ∪B )={x |1<x <2}∪{7}.(3)(∁S A )∪(∁S B )={x |1<x <3}∪{x |5≤x ≤7}={x |1<x <3或5≤x ≤7}.(4)∁S (A ∩B )={x |1<x <3}∪{x |5≤x ≤7}={x |1<x <3或5≤x ≤7}.U U 么?解 如果a ∈∁U B ,那a ∉B ,“a ∈A ∩(∁U B )”意味着a ∈A 且a ∉B .【探究2】 是否存在元素a ,使得a ∈A 且a ∈∁U A ?若集合A ={x |-2<x ≤3},则∁R A 是什么?解 不存在a ,使得a ∈A 且a ∈∁U A ;若A ={x |-2<x ≤3},则∁R A ={x |x ≤-2或x >3}.【探究3】 (1)已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.(2)已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围. 解 (1)∵B ∩(∁U A )={2},∴2∈B ,但2∉A .∵A ∩(∁U B )={4},∴4∈A ,但4∉B .∴⎩⎪⎨⎪⎧ 42+4a +12b =0,22-2a +b =0,解得⎩⎨⎧ a =87,b =-127.∴a ,b 的值分别为87,-127. (2)∁R B ={x |x ≤1或x ≥2}≠∅.∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论.①若A =∅,此时有2a -2≥a ,∴a ≥2.②若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2.∴a ≤1. 综上所述,a ≤1或a ≥2.规律方法 由集合的补集求解参数的方法(1)有限集:由补集求参数问题,若集合中元素个数有限时,可利用补集定义并结合集合知识求解.(2)无限集:与集合交、并、补运算有关的求参数问题,若集合中元素有无限个时,一般利用数轴分析法求解.【训练3】 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值. 解 ∵∁U A ={5},∴5∈U ,且5∉A .∴a 2+2a -3=5,解得a =2或a =-4.当a =2时,|2a -1|=3≠5,此时A ={3,2},U ={2,3,5}符合题意.当a =-4时,|2a -1|=9,此时A ={9,2},U ={2,3,5},不满足条件∁U A ={5},故a =-4舍去.综上知a =2.课堂达标1.设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A =( )A .{1,2}B .{3,4,5}C .{1,2,3,4,5}D .∅解析 根据补集的定义计算.∵U ={1,2,3,4,5},A ={1,2},∴∁U A ={3,4,5}.答案 B2.设全集U =R ,集合A ={x |1<x <4},集合B ={x |2≤x <5},则A ∩(∁U B )=( )A .{x |1≤x <2}B .{x |x <2}C .{x |x ≥5}D .{x |1<x <2} 解析 ∁U B ={x |x <2或x ≥5},A ∩(∁U B )={x |1<x <2}.答案 D3.已知A ={x |x +1>0},B ={-2,-1,0,1},则(∁R A )∩B =( )A.{-2,-1}B.{-2} C.{-1,0,1}D.{0,1}解析因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.答案 A4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.解析∵A={x|1≤x<a},∁U A={x|2≤x≤5},∴A∪(∁U A)=U={x|1≤x≤5},且A∩(∁U A)=∅,因此a=2.答案 25.已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).解将集合U,A,B分别表示在数轴上,如图所示,则∁U A={x|-1≤x≤3};∁U B={x|-5≤x<-1,或1≤x≤3};法一(∁U A)∩(∁U B)={x|1≤x≤3}.法二∵A∪B={x|-5≤x<1},∴(∁U A)∩(∁U B)=∁U(A∪B)={x|1≤x≤3}.课堂小结1.补集定义的理解(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如,当研究数的运算性质时,我们常常将实数集R当做全集.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,还是一种数学思想.(3)从符号角度来看,若x∈U,A U,则x∈A和x∈∁U A二者必居其一.2.与集合的交、并、补运算有关的求参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情形.3.不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集.4.补集的相关性质(1)A∪(∁U A)=U,A∩(∁U A)=∅.(2)∁U(∁U A)=A,∁U U=∅,∁U∅=U.(3)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).。