2013版【名师一号】高中数学(人教A版)选修1-1第二章+圆锥曲线与方程+测试题(含详解)

合集下载

人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 圆锥曲线的光学性质及其应用》优质课教案_3

人教A版高中数学选修1-1《二章 圆锥曲线与方程  2.3 抛物线  圆锥曲线的光学性质及其应用》优质课教案_3

高中数学人教A版2003课标版选修1-1第二章圆锥曲线与方程→2.3抛物线→阅读与思考圆锥曲线的光学性质及其应用《圆锥曲线的光学性质及其应用》的教学设计第一课时抛物线的光学性质及其应用一、教学目标1.理解抛物线的光学性质,并会应用数学推理得出抛物线的光学性质,并会应用它解决数学问题。

2.会用数学建模的思想将实际生活问题数学化,也会用数学建模的思想将数学问题生活化。

二、教学重点理解抛物线的光学性质并会推导。

三、教学难点数学建模思想的应用。

四、教学过程(一)课题引入问题一:手电筒一只很小的灯泡发出的光,会分散地射向各方,但把它装在圆柱形手电筒里,经过适当调节,就能射出一束比较强的平行光线。

这是为什么呢?设计意图:从生活中的一个例子出发,提出问题,引发学生的求知欲,从而提出课题。

(二)课题提出抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的轴。

抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的.问题二:生活问题数学化要探究抛物线的光学性质,首先必须将这样一个光学实际问题,转化为数学问题,进行解释论证,那么我们如何用数学语言阐述并证明抛物线的光学性质?设计意图:提出抛物线的光学性质,并通过列举它在生活中的大量应用,让学生感知数学无处不在,并有将生活问题数学化的欲望。

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1
满足什么条件的点的轨迹是椭圆呢? [提示] 到两定点的距离之和等于定值的点的轨迹是椭 圆.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
椭圆的定义
定义 焦点
平面内与两个定点F1,F2的_距__离__之__和__等__于__定__值___( 大于|F1F2|)的点的轨迹叫做椭圆 两个_定__点___叫做椭圆的焦点
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
4.已知椭圆的焦点在 x 轴上,且焦距为 4,P 为椭圆上一点, 且|F1F2|是|PF1|和|PF2|的等差中项.
(1)求椭圆的方程; (2)若△PF1F2 的面积为 2 3,求 P 点坐标.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)由题意知,2c=4,c=2. 且|PF1|+|PF2|=2|F1F2|=8, 即 2a=8, ∴a=4. ∴b2=a2-c2=16-4=12. 又椭圆的焦点在 x 轴上, ∴椭圆的方程为1x62 +1y22 =1.
数学 选修1-1
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)a,b,c三个量的关系:椭圆的标准方程中,a表示椭 圆上的点M到两焦点间距离的和的一半,可借助图形帮助记 忆.a,b,c(都是正数)恰是构成一个直角三角形的三条边,a 是斜边,所以a>b,a>c,且a2=b2+c2.
数学 选修1-1
第二章 圆锥曲线与方程

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.1.1

对椭圆定义的理解 椭圆的定义揭示了椭圆的本质,定义是判断动点轨迹是不 是椭圆的重要依据.设集合P={M||MF1|+|MF2|=2a},|F1F2|= 2c,其中a,c均为大于0的常数.
当2a>2c时,集合P为椭圆;
当2a=2c时,集合P为线段F1F2; 当2a<2c时,集合P为空集,即动点M的轨迹不存在.
自主学习 新知突破
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆
的过程.
2.了解椭圆的标准方程的推导及简化过程. 3.掌握椭圆的定义、标准方程及几何图形.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
解析: 由椭圆方程知 a2=25,b2=16. ∴a=5,则|PF1|+|PF2|=10.
答案: D
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
2.已知椭圆的焦点分别为(-2,0),(2,0),椭圆上一点到两 个焦点的距离和等于 6,则椭圆的方程为( x2 y2 A. + =1 9 4 x2 y2 C. + =1 5 9 x2 y2 B. + =1 9 5 x2 y2 D. + =1 4 5 )
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
4. 已知椭圆的焦点在 x 轴上, 且焦距为 4, P 为椭圆上一点, 且|F1F2|是|PF1|和|PF2|的等差中项. (1)求椭圆的方程; (2)若△PF1F2 的面积为 2 3,求 P 点坐标.
数学 选修1-1

人教版A版高中数学选修1-1第二章 圆锥曲线与方程2.1 椭圆 信息技术应用《几何画板》探究点的轨迹---椭圆教

人教版A版高中数学选修1-1第二章 圆锥曲线与方程2.1 椭圆 信息技术应用《几何画板》探究点的轨迹---椭圆教

x2 a2
+
y2 b2
=1
(a>b>0)
y2 a2
+
x2 b2
=1(a>b>0)
3.椭圆的几何性质:
e c (0 e 1) a
课件名
用《几何画板》探究点的轨迹:椭圆
概念重温
1.如图所示,一圆形纸片的圆心为O,F是圆内 一定点,M是圆周上一动点,把纸片折叠使M 与F重合,然后抹平纸片,折痕为CD,设CD与 OM交于点P,则点P的轨迹是
课课件件名 名
用《几何画板》探用究《几点何画的板》轨探迹究点:的轨椭迹:圆椭圆
焦半径公式:
焦点在x轴:|MF1| = a + ex , 左加右减
|MF2| = a - ex
焦点在y轴:|MF1| = a + ey , 下加上减
|MF2| = a - ey
课课件件名 名
用《几何画板》探用究《几点何画的板》轨探迹究点:的轨椭迹:圆椭圆
椭圆的第二定义
1、定义:平面内到一个定点F和一条定直线 l
(F不在 l上) 的距离的比为常数e(0<e<1)的点
M的轨迹,叫椭圆。定点F叫焦点,定直线 l 叫准 线。
2、定义式:
_|_M___F__1_|_ d1
=e
_|_M___F__2_|_ d2
=e
左对左,右对右
课件名
用《几何画板》探究点的轨迹:椭圆
椭圆的方程与准线方程
x2 a2
+
y2 b2
=1
左对左,右对右
右准线 方程:
x=
a2 c
左准线 方程:
x=-ac2
左准线 左准线 右准线

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.2

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.2

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
方法二:设弦 AB 所在的直线方程为 y=k(x-4)+1(k≠0),
由yy= 2=k8xx-4+1, 消去 x 并整理,得
ky2-8y-32k+8=0

设 A(x1,y1),B(x2,y2),由根与系数的关系,得 y1+y2=8k, 又∵Q 是 AB 中点,∴y1+2 y2=1.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
特别提醒:对于Δ的使用,应注意前提,即二次项系数不 能为0,特别地,若二次项的系数含参数时应进行分类讨论, 若系数等于0时方程有解,这时得到的直线与抛物线的对称轴 平行.
数学 选修1-1
第二章 圆锥曲线与方程
高效评 知能提升
1.明确直线与抛物线的位置关系,掌握直线与抛物线的 位置关系的判定方法.
2.会用方程、数形结合的思想解决直线与抛物线的位置 关系、弦长及弦中点等问题.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
直线与抛物线只有一个公共点时,当且仅当直线与抛物线 相切,对吗?
|P1P2|= |P1P2|=
1+k2|x1-x2| 1+k12|y1-y2|
2.焦点弦长
若 AB 为抛物线 y2=2px(p>0)的一条过焦点 F 的弦,A(x1, y1),B(x2,y2),则弦长|AB|=|AF|+|BF|=_x_1_+__x2_+__p___.
数学 选修1-1
第二章 圆锥曲线与方程

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.1

[思路点拨] 建立适当的直角坐标系

设出抛物线方程
代入 ――→
求抛物线方程
代入 ――→
结果
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
以拱顶为原点,拱高所在直线为 y 轴,建立
直角坐标系,如题图,设抛物线方程为 x2=-2py(p>0),则点 B
的坐标为a2,-a4,由于点 B 在抛物线上,
所以a22=-2p·-a4,p=a2,
解析: (1)设抛物线的标准方程为 y2=2px(p>0),其焦点为 p2,0,根据题意有p2=3,故 p=6,
因此,标准方程为 y2=12x. (2)设抛物线的标准方程为 y2=2px(p>0),其准线方程为 x= -52,由题意有-p2=-52,故 p=5, 因此,标准方程为 y2=10x.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
(2)将 2y2-5x=0 变形为 y2=52x.
合作探究 课堂互动
高效测评 知能提升
∴2p=52,p=54,开口向右.
∴焦点为58,0,准线方程为 x=-58.
(3)抛物线方程 y=ax2(a≠0)化为标准形式:x2=1ay,
当 a>0 时,则 2p=1a,
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.3 抛物线
2.3.1 抛物线及其标准方程
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破

人教版高中数学选修1-1 第二章《圆锥曲线与方程》师用讲解

人教版高中数学选修1-1 第二章《圆锥曲线与方程》师用讲解

选修1-1 第二章《圆锥曲线与方程》§2.1.1 椭圆及其标准方程【知识要点】● 椭圆的定义:到两个定点 F 1、F 2的距离之和等于定长(12F F >)的点的轨迹.● 标准方程:(1)()222210x y a b a b+=>>,22c a b =-,焦点是 F 1(-c ,0),F 2(c ,0);(2)()222210y x a b a b+=>>,22c a b =-,焦点是 F 1(0,-c ),F 2(0,c ).【例题精讲】【例 1】两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点 P 到两焦点的距离之和等于 10,写出椭圆的标准方程.【例 2】已知椭圆的两个焦点坐标分别是(0,-2)和(0,2)且过35,22⎛⎫- ⎪⎝⎭,求椭圆的标准方程.点评:题(1)根据定义求.若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程.【例 3】判断下列方程是否表示椭圆,若是,求出 a ,b ,c 的值.【例4】已知ΔABC 的一边BC 的长为6,周长为16,求顶点A 的轨迹方程.【基础达标】1.椭圆221259x y +=上一点 P 到一个焦点的距离为 5,则 P 到另一个焦点的距离为( ) A .5 B .6 C .4 D .102.椭圆2211312x y +=上任一点 P 到两个焦点的距离的和为( ) A .26 B .24 C .2 D .2133.已知 F 1,F 2是椭圆221259x y +=的两个焦点,过 F 1的直线交椭圆于 M ,N 两点,则△MNF 2周长为( )A .10B .16C .20D .324.椭圆的两个焦点分别是F 1(-8,0)和F 2(8,0),且椭圆上一点到两个焦点距离之和为 20,则此椭圆的 标准方程为( )A .2212012x y += B .22140036x y += C .22110036x y += D .22136100x y +=5.椭圆2214x y m +=的焦距是 2,则 m 的值为( ) A .5或 3 B .8 C .5 D .166.椭圆221169x y +=的焦距是 ,焦点坐标为 . 7.焦点为(0,4)和(0,-4),且过点()533,-的椭圆方程是 .1~5 ADCCA【能力提高】8.如果方程 x 2+ky 2=2表示焦点在 y 轴上的椭圆,求实数 k 的取值范围.9.写出适合下列条件的椭圆的标准方程:(1)a=4,b =3,焦点在x 轴; (2)a =5,c =2,焦点在y 轴上.10.求到定点(2,0)与到定直线x =8的距离之比为22的动点的轨迹方程.§2.1.2 椭圆的简单几何性质(一)【知识要点】● 熟练掌握椭圆的范围,对称性,顶点,离心率等简单几何性质. ● 掌握标准方程中a ,b ,c 的几何意义,以及a ,b ,c ,e 的相互关系. ● 理解、掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法.【例题精讲】【例 1】已知椭圆的中心在坐标原点 O ,焦点在 x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且离心率为22,求椭圆的方程.【例 2】已知 x 轴上的一定点 A (1,0),Q 为椭圆2214x y +=上的动点,求 A Q 中点 M 的轨迹方程.【例 3】椭圆22110036x y +=上有一点 P ,它到椭圆的左焦点 F 1的距离为 8,求△PF 1F 2的面积.【例 4】设P 是椭圆()22211x y a a+=>短轴的一个端点,Q 为椭圆上的一个动点,求PQ 的最大值.【基础达标】1.已知P 是椭圆22110036x y +=上的一点,若P 到椭圆右焦点的距离是345,则P 点到椭圆左焦点的距离是( ) A .165 B .665 C .758D .778 2.若焦点在 x 轴上的椭圆2212x y m +=的离心率为12,则 m =( ) A .3 B .32 C .83 D .233.已知椭圆的中心在原点,焦点在 x 轴上,且长轴长为 12,离心率为13,则椭圆的方程是( )A .221144128x y += B .2213620x y += C .2213236x y += D .2213632x y += 4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件()1290PF PF a a a+=+>,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.若椭圆短轴长等于焦距的3倍,则这个椭圆的离心率为( )A .14 B .22 C .24 D .126.已知椭圆C 的短轴长为6,焦点F 到长轴的一个端点的距离等于9,则椭圆C 的离心率等于 . 7.离心率12e =,一个焦点是 F (0,-3)的椭圆标准方程为 .1~5 BBDDD【能力提高】8.求过点A(-1,-2)且与椭圆22169x y+=的两个焦点相同的椭圆标准方程.9.已知椭圆的对称轴为坐标轴,离心率23e=,短轴长为85,求椭圆的方程.10.设有一颗卫星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此卫星离地球相距m万千米和43m万千米时,经过地球和卫星的直线与椭圆的长轴夹角分别为2π和3π,求该卫星与地球的最近距离.§2.1.2 椭圆的简单几何性质(二)【知识要点】●掌握椭圆范围、对称性、顶点、离心率、准线方程等几何性质.●能利用椭圆的有关知识解决实际问题,及综合问题.【例题精讲】【例 1】已知椭圆C 的焦点F 1()22,0-和F 2()22,0,长轴长6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.【例 2】椭圆的中心为点E (-1,0),它的一个焦点为F (-3,0),且椭圆的离心率255e =,求这个椭圆的方程.【例 3】已知椭圆2212x y +=的左焦点为F ,O 为坐标原点,求过点O 、F ,并且与直线l :x =-2相切的圆的方程.【例 4】如图,把椭圆2212516x y +=的长轴 AB 分成 8等份,过每个分点作 x 轴的垂线交椭圆的上半部分于 P 1,P 2,P 3,P 4,P 5,P 6,P 7七个点,F 是椭圆的一个焦点,则123++PF P F P F +45++P F P F67+P F P F = .【基础达标】1.椭圆22110036x y +=上的点 P 到它的左焦点的距离是 12,那么点 P 到它的右焦点的距离是( ) A .15 B .12 C .10 D .82.已知椭圆()2221525x y a a +=>的两个焦点为F 1、 F 2,且|F 1F 2|=8,弦 A B 过点 F 1,则△ A BF 2的周长为( )A .10B .20C .241D .4413.椭圆221259x y +=的焦点 F 1、F 2,P 为椭圆上的一点,已知 P F 1⊥PF 2,则△ F 1PF 2的 面积为( ) A .9 B .12 C .10 D .84.椭圆221164x y +=上的点到直线 x +2y 2-=0 的最大距离是( ) A .3 B .11 C .22 D .105.如果椭圆221369x y +=的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A . x -2 y =0 B . x +2 y -4=0 C . 2x +3y -12=0 D . x +2 y -8=06.与椭圆22143x y +=具有相同的离心率且过点(2,3-)的椭圆的标准方程是 . 7.离心率53e =,一个焦点的坐标为5,03⎛⎫- ⎪⎝⎭的椭圆的标准方程是 . F1~5 DDBAD 【能力提高】8.已知椭圆22194x y+=上的点P到其右焦点的距离是长轴两端点到右焦点的距离的等差中项,求P点坐标.9.过椭圆22194x y+=内一点D(1,0)引动弦A B,求弦A B的中点M的轨迹方程.10.椭圆221164x y+=上有两点P、Q,O是原点,若O P、OQ斜率之积为14-.求证22OP OQ+为定值.§2.2.1双曲线及其标准方程【知识要点】●掌握双曲线的定义,熟记双曲线的标准方程;●掌握双曲线标准方程的推导,会求动点轨迹方程;● 会按y 2特定条件求双曲线的标准方程; ● 理解双曲线与椭圆的联系与区别.【例题精讲】【例 1】判断下列方程是否表示双曲线,若是,求出三量 a ,b ,c 的值.【例 2】已知双曲线的焦点在y 轴上,中心在原点,且点()13,42P -、29,54P⎛⎫ ⎪⎝⎭在此双曲线上,求双曲线的标准方程.【例 3】点 A 位于双曲线()222210,0x y a b a b-=>>上, F 1,F 2是它的两个焦点,求△AF 1F 2的重心G 的轨迹方程.【例 4】已知三点 P (5,2)、 F 1(-6,0)、 F 2(6,0).(1)求以F 1、F 2为焦点且过点 P 的椭圆的标准方程;(2)设点 P 、F 1、F 2关于直线 y =x 的对称点分别为 P '、F 1'、F 2',求以F 1'、F 2'为焦点且过点P '的双曲线的标准方程.【基础达标】1.双曲线22221124x y m m-=+-的焦距是( ) A .4 B .22 C .8 D .与 m 有关2.椭圆222+134x y n =和双曲线222116x y n -=有相同的焦点,则实数 n 的值是( ) A .±5 B .±3 C .5 D .93.若0k a <<,双曲线22221x y a k b k -=-+与双曲线22221x y a b-=有( ) A .相同的虚轴 B .相同的实轴 C .相同的渐近线 D .相同的焦点4.过双曲线221169x y -=左焦点 F 1的弦 A B 长为 6,则 △ABF 2(F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .125.设F 1,F 2是双曲线2214x y -=的焦点,点 P 在双曲线上,且 ∠F 1PF 2=90°,则点 P 到x 轴的距离为( )A .1B .55C .2D .5 6.到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于 6的点 M 的轨迹是 .7.方程22+111x y k k=+-表示双曲线,则 k 的取值范围是 .1~5 CBDAB【能力提高】8.求与双曲线221164x y -=有公共焦点,且过点(32,2)的双曲线方程.9.如图,某农场在 P 处有一堆肥,今要把这堆肥料沿道路 P A 或 P B 送到庄稼地 A BCD 中去,已知 P A =100 m ,PB =150m ,∠APB =60°.能否在田地 A BCD 中确定一条界线,使位于界线一侧的点,沿道路 P A 送肥较近;而另一侧的点,沿道路 P B 送肥较近? 如果能,请说出这条界线是一条什么曲线,并求出其方程.10.已知点()3,0A -和()3,0B,动点C 到A 、B 两点的距离之差的绝对值为 2,点 C 的轨迹与直线 y =x -2 交于 D 、E 两点,求线段 D E 的长.§2.2.2 双曲线的简单几何性质(一)【知识要点】● 掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质. ● 掌握等轴双曲线,共轭双曲线等概念.【例题精讲】【例 1】求双曲线2214y x -=的顶点坐标、焦点坐标,实半轴长、虚半轴长和渐近线方程.【例 2】求一条渐近线方程是 3x +4y =0,一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.【例 3】求与双曲线221169x y -=共渐近线且过 A (33,-3)的双曲线的方程.【例 4】已知△ABC 的底边 B C 长为 12,且底边固定,顶点 A 是动点,使sin B -sin C =12sin A ,求点 A 的轨迹.【基础达标】1.下列方程中,以x ±2y =0为渐近线的双曲线方程是( )A .221164x y -= B .221416x y -= C .2212x y -= D .2212y x -= 2.已知双曲线的离心率为 2,焦点是(-4,0),(4,0),则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= 3.过点(3,0)的直线 l 与双曲线 4x 2-9y 2=36只有一个公共点,则直线 l 共有( ) A .1条 B .2条 C .3条 D .4条4.方程mx 2+ny 2+mn =0(m <n <0)所表示的曲线的焦点坐标是( )A .()0m n ±-,B .()0n m ±-,C .()0m n ±-,D .()0n m ±-,5.与双曲线221916x y -=有共同的渐近线,且经过点A (-3,23)的双曲线的一个焦点到一条渐近线的距离是( )A.8 B.4 C.2 D.16.双曲线9y2-4x2=36的渐近线方程是.7.经过点M(3,-1),且对称轴在坐标轴上的等轴双曲线的标准方程是.1~5 AACBC【能力提高】8.求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.9.求以椭圆22+16416x y=的顶点为焦点,且一条渐近线的倾斜角为56π的双曲线方程.10.已知双曲线的方程是16x2-9y2=144.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.§2.2.2 双曲线的简单几何性质(二)【例题精讲】【例 1】如果双曲线的两个焦点分别为F 1(-3,0)、F 2 (3,0),一条渐近线方程为2y x =,那么它的离心率是( )A .63B .4C .2D .3【例 2】过双曲线221916x y -=的左焦点F 1,作倾斜角为=4πα的直线与双曲线交于两点A 、B ,求AB 的长.【例 3】已知动点 P 与双曲线 x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且 c os ∠F 1PF 2的最小值为13-.求动点P 的轨迹方程.【例 4】已知不论 b 取何实数,直线 y =kx +b 与双曲线 x 2-2y 2=1总有公共点,试求实数 k 的取值范围.【基础达标】1.到两定点F 1(-3,0)、F 2 (3,0) 的距离之差的绝对值等于 6的点 M 的轨迹( ) A .椭圆 B .线段 C .双曲线 D .两条射线 4.双曲线的两个顶点将焦距三等分,则它的离心率为( ) A .32 B .3 C .43D .3 5.已知 m ,n 为两个不相等的非零实数,则方程mx -y +n =0与 n x 2+my 2=mn 所表示的曲线可能是( )A B C D6.双曲线22197x y -=的右焦点到右顶点的距离为 . 7.与椭圆22+11625x y =有相同的焦点,且离心率为355的双曲线方程为 .1~5 DDCBC【能力提高】8.设双曲线()222210x y a b a b-=<<的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线lyox yox yox yox的距离为34c ,求此双曲线的离心率.9.求过点M (3,-1)且被点M 平分的双曲线2214x y -=的弦所在直线方程.10.设双曲线 C 1的方程为()222210,0x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线 C 1上的任意一点,引 Q B ⊥PB ,QA ⊥PA ,AQ 与 B Q 交于点 Q ,求 Q 点的轨迹方程.§2.3.1 抛物线及其标准方程【知识要点】● 掌握抛物线的定义.● 标准方程的不同形式及其推导过程.● 熟练画出抛物线的草图,求出抛物线的标准方程、焦点、准线方程.【例题精讲】【例 1】已知抛物线的标准方程是:(1)y 2=12x ,(2)y =12x 2,求它的焦点坐标和准线方程.【例2】求满足下列条件的抛物线的标准方程:(1)焦点坐标是F(-5,0);(2)经过点A(2,-3)【例3】直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形A PQB的面积为()A.48 B.56 C.64 D.72【例4】斜率为1的直线经过抛物线y2=4x的焦点,与抛物线相交于两点A、B,求线段A B 的长.【基础达标】1.抛物线y 2=ax (a ≠0)的准线方程是 ( ) A .4a x =-B .4ax = C .4a x =- D .4a x =2.抛物线的顶点在原点,对称轴为 x 轴,焦点在直线 3x -4y -12=0上,此抛物线的方程是( ) A .y 2=16x B .y 2=12x C .y 2=-16x D .y 2=-12x 3.焦点在直线 3x -4y -12=0上的抛物线标准方程是( ) A .y 2=16x 或 x 2=16y B .y 2=16x 或 x 2=12y C .x 2=-12y 或 y 2=16x D .x 2=16y 或 y 2=-12x4.已知 M (m ,4)是抛物线 x 2=ay 上的点,F 是抛物线的焦点,若|MF |=5,则此抛物线的焦点坐标是( )A .(0,-1)B .(0,1)C .(0,-2)D .(0,2) 5.过抛物线 y 2=4x 的焦点 F 作倾斜角为34π的直线交抛物线于 A 、B 两点,则 A B 的长是( ) A .42 B .4 C .8 D .26.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是 . 7.平面上的动点P 到点 A (0,-2)的距离比到直线 l :y =4的距离小 2,则动点P 的轨迹方程 是 .1~5 AACBC【能力提高】8.点M 到点(0,8)的距离比它到直线 y =-7的距离大 1,求 M 点的轨迹方程.9.抛物线 y 2=16x 上的一点 P 到 x 轴的距离为 12,焦点为 F ,求|PF |的值.10.抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?§2.3.2 抛物线的简单几何性质(一)【知识要点】● 抛物线的范围、对称性、顶点、离心率等几何性质;● 能根据抛物线的几何性质对抛物线方程进行讨论;注意数与形的结合.【例题精讲】【例 1】已知抛物线关于x 轴为对称轴,它的顶点在坐标原点,并且经过点()2,22M -,求它的标准方程.xy O【例2】过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以A B为直径的圆和这抛物线的准线相切.【例3】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px()0p>上,求这个正三角形的边长.【例4】抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以A F、BF为邻边作平行四边形F ARB,试求动点R的轨迹方程.【基础达标】1.过抛物线 y 2=4x 的焦点作直线交抛物线于()11,A x y ,()22,B x y 两点,如果126x x +=,那么|AB | =( )A .10B .8C .6D .42.顶点在原点,焦点在 y 轴上,且过点 P (4,2)的抛物线方程是( ) A .x 2=8y B .x 2=4y C .x 2=2y D .x 2=12y 3.已知 M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点 P (3,1),则MP MF +的最小值为( )A .3B .4C .5D .64.已知抛物线 y 2=-12x 上一点 P (x 0,y 0)到焦点的距离为 8,则 x 0的值为( ) A .-5 B .5 C .-4 D .45.抛物线 y 2=8x 上一点 P 到顶点的距离等于它们到准线的距离,这点坐标是( ) A .()2,4 B .()2,4± C .()1,22 D .()1,22± 6.抛物线 2y 2+5x =0 的准线方程是 .7.过抛物线焦点 F 的直线与抛物线交于 A 、B 两点,若 A 、B 在准线上的射影是 A 2,B 2,则∠A 2FB 2等于 .1~5 BABAD【能力提高】8.抛物线顶点在原点,它的准线经过双曲线22221x y a b-=的一个焦点,并且这条准线与双曲线的实轴垂直,又抛物线与双曲线交于点362⎛⎫ ⎪⎝⎭,,求二者的方程.9.顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为15,求抛物线的方程.p>的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准10.设抛物线y2=2px()0线上,且B C∥轴.证明:直线AC经过原点O.§2.3.2 抛物线的简单几何性质(二)【例题精讲】【例1】过抛物线y2=2x的顶点作互相垂直的二弦O A、OB.(1)求A B中点的轨迹方程.(2)证明:AB与x轴的交点为定点.【例2】已知点 A (2,8),B (x 1,y 1),C (x 2,y 2)在抛物线 y 2=2px 上,△ABC 的重心与此抛 物线的焦点 F 重合.(1)写出该抛物线的方程和焦点F 的坐标; (2)求线段BC 中点 M 的坐标; (3)求 B C 所在直线的方程.【例 3】抛物线 y =-x 2上的点到直线 4x +3y -8=0距离的最小值是( )A .43 B .75 C .85D .3【基础达标】1.已知抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线 3x -4y -12=0时,则此抛物线的方 程是( )A .y 2=16xB .x 2=-12yC .y 2=8x 或x 2=-6yD . y 2=16x 或x 2=-12y 2.抛物线的顶点在原点,对称轴是x 轴,点()5,25-到焦点距离是6,则抛物线的方程为( ) A .y 2=-4x B 、y 2=-2x C 、 y 2=2x D 、 y 2=-4x 或x 2=-36y 3.在抛物线 y =x 2上有三点 A 、B 、C ,其横坐标分别为-1,2,3,在y 轴上有一点D 的纵坐标为 6,那么以 A 、B 、C 、D 为顶点的四边形是( )A .正方形B .平行四边形C .菱形D .任意四边形4.抛物线 y 2=4x 的焦点F ,准线为l ,交 x 轴于 R ,过抛物线上一点 P (4,4)作 P Q ⊥ l 于Q ,则梯形 PFRQ 的面积是( )A .12B .14C .16D .18 5.抛物线 y 2=-4x 关于直线 x +y =2对称的曲线的顶点坐标为( )A .(2,2)B .(0,0)C .(-2,-2)D .(2,0) 6.若动点M (x ,y )到点F (4,0)的距离比它到直线x +5=0的距离小1,则M 点的轨迹方程 是 .7.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离为 .1~5 DABBA【能力提高】8.经过抛物线 y 2=-8x 的焦点且和抛物线的对称轴成 60°角的直线与抛物线交 A 、B 两点,求|AB |.9.求过A(-1,1),且与抛物线y=x2+2有一个公共点的直线方程.10.已知抛物线C:y=x2+4x+72,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.若C在点M的法线的斜率为12-,求点M的坐标(x0,y0).第二章圆锥曲线复习(一)【知识要点】●椭圆定义,椭圆的标准方程,椭圆的性质.●双曲线的定义,双曲线的标准方程及特点,双曲线的几何性质.●抛物线定义,抛物线的几何性质.【例题精讲】【例1】椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近顶点的距离是105-,求椭圆方程.【例 2】已知双曲线2214x y -=和定点12,2P ⎛⎫ ⎪⎝⎭.(Ⅰ)过 P 点可以做几条直线与双曲线 C 只有一个公共点;(Ⅱ)双曲线C 的弦中,以 P 点为中点的弦 P 1P 2是否存在? 并说明理由.【例 3】已知点 A (0,2)及椭圆22+14x y =,在椭圆上求一点 P 使PA 的值最大.【例 4】己知点P 在抛物线 x 2=y 上运动,Q 点的坐标是(-1,2),O 是原点,OPQR (O 、P 、Q 、R顺序按逆时针)是平行四边形,求 R 点的轨迹方程.【基础达标】1.平面上到定点 A (1,1)和到定直线 l :x +2 y =5距离相等的点的轨迹为( )A.直线B.抛物线C.双曲线D.椭圆2.若椭圆2kx2+ky2=1 的一个焦点坐标是(0,4),则k的值为()A.18B.132C.2D.3163.椭圆22+1259x y=上的点M到焦点F1的距离是2,N是M F1的中点,则ON为()A.4 B.2 C.8 D.3 24.如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为()A.32B.62C.32D.25.椭圆22+1259x y=的两焦点F1,F2,过F2引直线L交椭圆于A、B两点,则△ABF1的周长为()A.5 B.15 C.10 D.206.在抛物线y2=2px上,横坐标为4的点到焦点的距离为5,则p的值为.7.若椭圆的两个焦点为F1(-4,0)、F2(4,0),椭圆的弦A B过点F1,且△ABF2的周长为20,那么该椭圆的方程为.1~5 BBACD【能力提高】8.若双曲线的两条渐进线的夹角为60°,求该双曲线的离心率.9.正方形的一条边A B在直线y=x+4上,顶点C、D在抛物线y2=x上,求正方形的边长.10.若椭圆x2+4(y-a)2=4与抛物线x2=2y有公共点,求实数a的取值范围.第二章 圆锥曲线复习(二)【例题精讲】【例 1】已知直线 l 交椭圆22+12016x y =于 M 、N 两点,B (0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线 l 的方程.【例 2】已知倾斜角为4π的直线 l 被双曲线 x 2-4y 2=60截得的弦长82AB =,求直线l 的方程及以AB 为直径的圆的方程.【例 3】已知直线l :x =-1,点F (1,0),以F 为焦点,l 为准线的椭圆中,短轴一端点为B ,P为FB 的中点.(Ⅰ)求 P 点的轨迹方程,并说明它是什么曲线; (Ⅱ)M (m ,0)为定点,求|PM |的最小值.【例 4】已知两定点A (-2,0),B (1,0),如果动点P 满足2PA PB =,求点P 的轨迹所包围的图形的面积.【基础达标】1.已知 M (-2,0),N (2,0),4P M P N -=,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.若圆 x 2+y 2=4上每个点的横坐标不变.纵坐标缩短为原来的13,则所得曲线的方程是( ) A .22+1412x y = B .22+1436x y = C .229+144x y = D .22+1364x y = 3.已知 F 1,F 2是椭圆22+1169x y =的两焦点,过点F 2的直线交椭圆于点A ,B ,若5AB =,则12AF BF -=( )A .3B .8C .13D .164.曲线()()22346225x y x y ---+-=的离心率为( ) A .110 B .12C .2D .无法确定5.抛物线y2=14x 关于直线x-y=0对称的抛物线的焦点坐标是()A.(1,0)B.116⎛⎫⎪⎝⎭,C.(0,1)D.116⎛⎫⎪⎝⎭,6.与椭圆4x2+ 9y2=36有相同的焦点,且过点(-3,2)的椭圆方程为.7.以双曲线22145x y-=的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是.1~5 C CABD 【能力提高】8.设F1,F2为双曲线2214xy-=的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求△F1PF2的面积.9.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,求直线l的斜率的取值范围.10.设椭圆22+162x y=和双曲线2213xy-=的公共焦点为F1,F2,P是两曲线的一个公共点,求cos∠F1PF2的值.。

新人教A版(选修1-1)第二章《圆锥曲线与方程》word教案

新人教A版(选修1-1)第二章《圆锥曲线与方程》word教案

选修1-2 第2章圆锥曲线与方程复习小结教学目的:1通过小结与复习,使同学们完整准确地理解和掌握三种曲线的特点以及它们之间的区别与联系2 通过本节教学使学生较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;并在教学中进一步培养他们形与数结合的思想、化归的数学思想以及“应用数学”的意识3 结合教学内容对学生进行运动变化和对立统一的观点的教育教学重点:三种曲线的标准方程和图形、性质教学难点:做好思路分析,引导学生找到解题的落足点教学过程:一、复习引入椭圆、双曲线:二、讲解范例:例1 根据下列条件,写出椭圆方程⑴ 中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; ⑵ 和椭圆9x 2+4y 2=36有相同的焦点,且经过点(2,-3);⑶ 中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是10-分析: 求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a 2=b 2+c 2及已知条件确定a 2、b 2的值进而写出标准方程 解 ⑴ 焦点位置可在x 轴上,也可在y 轴上,因此有两解:1121611216222=+=+x y y x 或 ⑵ 焦点位置确定,且为(0,5±),设原方程为12222=+by a x ,(a>b>0),由已知条件有⎪⎩⎪⎨⎧=+=-14952222b ab a 10,1522==⇒b a ,故方程为10152=+x y⑶ 设椭圆方程为12222=+by a x ,(a>b>0)由题设条件有⎩⎨⎧-=-=510c a cb 及a 2=b 2+c 2,解得b=10,5=a ,故所求椭圆的方程是5102=+y x 例2 中心在原点,一个焦点为F 1(0,50)的椭圆截直线23-=x y 所得弦的中点横坐标为21,求椭圆的方程 分析:根据题意,可设椭圆的标准方程,与直线方程联立解方程组,利用韦达定理及中点坐标公式,求出中点的横坐标,再由F 1(0,50)知,c=50,5022=-∴b a ,最后解关于a 、b 的方程组即可解:设椭圆的标准方程为)0(12222>>=+b a by a x ,由F 1(0,50)得 5022=-b a把直线方程23-=x y 代入椭圆方程整理得:0)4(12)9(222222=-+-+a b x b x b a设弦的两个端点为),(),,(2211y x B y x A ,则由根与系数的关系得:22221912ba b x x +=+, 又AB 的中点横坐标为21,2196222221=+=+∴ba b x x 223b a =∴,与方程5022=-b a 联立可解出25,7522==b a 故所求椭圆的方程为:1257522=+y x 例3 已知抛物线方程为)0)(1(22>+=p x p y ,直线m y x l =+:过抛物线的焦点F 且被抛物线截得的弦长为3,求p 的值.解:设l 与抛物线交于1122(,),(,),|| 3.A x y B x y AB =则由距离公式|AB|=221221)()(y y x x -+-1212||y y y y -=-则有 2129().2y y -=由.02,).1(2,21222=-+⎪⎩⎪⎨⎧+=+-=+p py y x x p y p y x 得消去 .,2.04)2(2212122p y y p y y p p -=-=+∴>+=∆从而.294)2(,4)()(2221221221=+--+=-p p y y y y y y 即由于p>0,解得43=p 三、小结 :(1)直线与曲线的位置关系有相离、相切、相交三种(2)可通过解直线方程与曲线方程解的个数来确定他们的位置关系但有一解不一定是相切,要根据斜率作进一步的判定 四、课后作业:五、板书设计(略)六、课后记:采用数形结合、类比联想(椭圆)、启发诱导的教学方法,注重思维能力的培养和学生动手操作的能力的训练。

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.1

(人教版)高中数学选修1-1课件:第2章 圆锥曲线与方程2.3.2.1

数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
[思路点拨] 第(1)问将距离|PA|的最小值问题转化为函数 最小值问题,即代数方法解决几何问题.第(2)问可用点到直线 距离公式求距离,利用函数思想求最小值,也可采用求出与已 知直线平行的抛物线的切线,再求出切点,两平行直线的距离 即为距离的最小值.
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(4)抛物线的焦点在对称轴上,准线垂直于对称轴,焦点到 准线的距离为 p,它是一个不变量,不随抛物线位置的变化而变 化,焦点与准线分别在顶点的两侧,且它们到顶点的距离相等, 均为p2.
数学 选修1-1
第二章 圆锥曲线与方程
∵点 M 到焦点的距离等于点 M 到准线的距离.
∴点 M 到 x 轴的距离是1156. 答案: D
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.顶点在原点,焦点是 F(0,5)的抛物线方程是( )
A.y2=20x
B.x2=20y
C.y2=210x
D.x2=210y
数学 选修1-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.根据下列条件求抛物线的标准方程: (1)焦点是 F(-8,0),准线是 x=8; (2)如图所示,等边三角形 OAB 的边长为 8 3,且其三个顶 点均在抛物线 E:x2=2py(p>0)上.求抛物线 E 的方程.
数学 选修1-1

人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 2.3 抛物线(通用)》优质课教案_6

人教A版高中数学选修1-1《二章 圆锥曲线与方程  2.3 抛物线  2.3 抛物线(通用)》优质课教案_6

抛物线及其标准方程教案教学要求:掌握抛物线的定义、标准方程、几何图形,能够求出抛物线的方程,能够解决简单的实际问题.教学重点:求出抛物线的方程.教学难点:抛物线标准方程的推导过程.教学过程:一、复习准备:1、提问:你能回顾一下在椭圆、双曲线中学过的动点、定点、定直线吗?2、讨论:若一个动点(,)p x y 到一个定点F 和一条定直线l 的距离相等,这个点的运动轨迹是怎么样的呢?二、讲授新课:1、教学抛物线① 定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(定义的实质可归纳为”一动三定”)② 抛物线的标准方程:22(0)y px p => 焦点坐标是( ,0)2p F 准线方程是x=-2p22(0)y px p =-> 焦点坐标是( ,0)2p F - 准线方程是x=2p22(0)x py p => 焦点坐标是(0, )2p F 准线方程是y=-2p22(0)x py p =-> 焦点坐标是(0, )2p F - 准线方程是y=2p2、教学例题:①出示例1:求满足下列条件的抛物线的标准方程:(1)焦点坐标是(5,0 )F -(2)经过点(3,2 )A -(3)焦点在直线240x y --=上(抛物线草图----抛物线方程---参数p )②变式训练:求顶点在原点,焦点在x轴上的抛物线且截直线-+=.210x y③出示例2:已知抛物线的标准方程是(1)28=, 求它的焦点坐y x8=,(2) 2y x标和准线方程(教师示范→学生板演→小结)3、小结:抛物线的定义;抛物线的标准方程.三、巩固练习:1.根据下列条件写出抛物线的标准方程:(1)焦点坐标是(0,4)(2)准线方程是y=4-2. 抛物线2(0)=≠y ax a3.作业:课本P69 1、2题。

人教版高中数学选修1-1第二章圆锥曲线与方程2.3抛物线阅读与思考圆锥曲线的光学性质及其应用教学课件共18张

人教版高中数学选修1-1第二章圆锥曲线与方程2.3抛物线阅读与思考圆锥曲线的光学性质及其应用教学课件共18张
提出假设→计算机模拟验证→理论证明→实际应用
作业布置
1、完成双曲线、抛物线光学性质的证明,形成报告;
2、已知椭圆C
:
x2 +
25
y2 9
1, F1, F2分别是其左右焦点,
点Q(2,1), M是椭圆上的一动点,求 | MF1 | | MQ |的
取值范围;
3、思考:你能将圆锥曲线的光学性质进行组合设计出 具有实用价值的作品吗?
P (x0,y0) 当P为(0, b)时,根据椭圆的对称性显然成立.
F1
A F2
l
x 当法线PA的斜率存在时,记为:y r
故取法线PA的一个方向向量n uuur r
y0 (1, k
a2 b2
y0 ( x0a2
) (1, b2
x x0 y0 ). x0
),
uuur r 则cos F1P, n
回音壁
一人站在东配殿墙下轻 声说话,另一人在西配 殿墙下听得清清楚楚。
刁尼秀斯之耳
俘虏秘密商讨的计划, 总是被看守识破
圆锥曲线光学性质探究的一般“套路”
通过折纸初步认识椭圆的光学性质
提出假设
利用几何画板进行验证
计算机模拟
将实际问题转化为数学问题用
实际应用
圆锥曲线的光学性质
1、从抛物线焦点发出的光线,经过抛物线上 的一点反射后,反射光线平行于抛物线的轴。
2、从椭圆上一个焦点发出的光线,经过椭圆 反射后,反射光线汇聚于椭圆的另一个焦点。
3、从双曲线一个焦点发出的光线,经过双曲 线反射后,反射光线是散开的,看起来像是从 另一个焦点射出的一样。
课堂小结
1 知识层面 是什么?为什么?有何用? 2 方法层面 用代数的方法研究几何问题 3 思想层面 从特殊到一般、类比、化归等 4 过程层面

人教A版高中数学选修1-1《二章 圆锥曲线与方程 2.3 抛物线 2.3 抛物线(通用)》优质课教案_5

人教A版高中数学选修1-1《二章 圆锥曲线与方程  2.3 抛物线  2.3 抛物线(通用)》优质课教案_5

2.3.1 抛物线及其标准方程学习目标:1.掌握抛物线的定义及焦点、准线的概念.2.会求简单的抛物线的方程.抛物线的定义:l 平面内与一个定点F和一条定直线l的_______的点的轨迹叫做抛物线.即____________________.(注:__________________)怎样求抛物线的方程?抛物线的标准方程:小试牛刀例1.求下列抛物线的开口、焦点坐标和准线方程例2.(1)焦点为F(0,-2)的抛物线的标准方程是( )A. x y 82=B. x y 82-=C. y x 82=D. y x 82-=(2)准线方程为41-=x 的抛物线的标准方程是( ) A. x y =2 B. y x =2 C. x y -=2 D. y x -=2(3)经过点)2,4(--的抛物线的标准方程是( )A. x y -=2B. y x 82=C. y x x y 822-=-=或D. y x x y 822-==或一点反思:例3.(1)设抛物线x y 82=上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A. 4B. 6C. 8D. 12(2)已知抛物线的顶点在原点,焦点在y 轴,抛物线上的点)2,(-m P 到焦点的距离为4,则m 的值为( )A. 4B. -2C. 4或-4D. 12或-2能力提升:1. 若动圆与圆1)2(22=+-y x 相外切,又与直线01=+x 相切,则动圆圆心的轨迹方程是____________________________.2. 若位于y 轴右侧的动点M 到F (2,0)的距离比它到y 轴的距离大2,则点M 的轨迹方程是_________________________.课后巩固1.准线方程为y =23的抛物线的标准方程为( )A .x 2=83yB .x 2=-83yC .y 2=-83xD .y 2=83x2.已知抛物线y -2 016x 2=0,则它的焦点坐标是( )A .(504,0) B.⎝ ⎛⎭⎪⎫18 064,0 C.⎝ ⎛⎭⎪⎫0,18 064 D.⎝ ⎛⎭⎪⎫0,1504 3.抛物线y =12x 2上的点到焦点的距离的最小值为( )A .3B .6 C.148 D.1244.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,4)5.抛物线y 2=2x 上的两点A ,B 到焦点的距离之和是5,则线段AB 中点的横坐标是________. 6.抛物线过原点,焦点在y 轴上,其上一点P (m ,1)到焦点的距离为5,则抛物线的标准方程是________.7.求满足下列条件的抛物线的标准方程.(1)焦点在坐标轴上,顶点在原点,且过点(-3,2);(2)顶点在原点,以坐标轴为对称轴,焦点在直线x -2y -4=0上.8.已知动圆M 与直线y =2相切,且与定圆C :x 2+(y +3)2=1外切,求动圆圆心M 的轨迹方程.1.准线方程为y =23的抛物线的标准方程为( )A .x 2=83yB .x 2=-83yC .y 2=-83xD .y 2=83x解析:由准线方程为y =23,知抛物线焦点在y 轴负半轴上,且p2=23,则p =43.故所求抛物线的标准方程为x 2=-83y . 答案:B2.已知抛物线y -2 016x 2=0,则它的焦点坐标是( ) A .(504,0)B.⎝ ⎛⎭⎪⎫18 064,0C.⎝⎛⎭⎪⎫0,18 064 D.⎝⎛⎭⎪⎫0,1504 解析:抛物线的标准方程为x 2=12 016y ,故其焦点为(0,18 064). 答案:C3.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148 D.124解析:将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148.答案:C4.一动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,4)解析:由题意易知直线x +2=0为抛物线y 2=8x 的准线,由抛物线的定义知动圆一定过抛物线的焦点.答案:B5.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是焦点,|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .x 1,x 3,x 2成等差数列C .y 1,y 2,y 3成等差数列D .y 1,y 3,y 2成等差数列解析:由抛物线的定义知|AF |=x 1+p 2,|BF |=x 2+p2,|CF |=x 3+p2.因为|AF |,|BF |,|CF |成等差数列,所以2⎝ ⎛⎭⎪⎫x 2+p 2=⎝ ⎛⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫x 3+p 2,即2x 2=x 1+x 3.故x 1,x 2,x 3成等差数列.故选A.答案:A 二、填空题6.抛物线y 2=2x 上的两点A ,B 到焦点的距离之和是5,则线段AB 中点的横坐标是________.解析:由抛物线的定义知点A ,B 到准线的距离之和是5,则AB 的中点到准线的距离为52,故AB 中点的横坐标为x =52-12=2.答案:27.抛物线过原点,焦点在y 轴上,其上一点P (m ,1)到焦点的距离为5,则抛物线的标准方程是________.解析:由题意,知抛物线开口向上,且1+p2=5,所以p=8,即抛物线的标准方程是x2=16y.答案:x2=16y8.焦点为F的抛物线y2=2px(p>0)上一点M在准线上的射影为N,若|MN|=p,则|FN|=________.解析:由条件知|MF|=|MN|=p,MF⊥MN,在△MNF中,∠FMN=90°,得|FN|=2p.答案:2p三、解答题9.求满足下列条件的抛物线的标准方程.(1)焦点在坐标轴上,顶点在原点,且过点(-3,2);(2)顶点在原点,以坐标轴为对称轴,焦点在直线x-2y-4=0上.解:(1)当焦点在x轴上时,设抛物线的标准方程为y2=-2px(p>0).把(-3,2)代入,得22=-2p×(-3),解得p=2 3.所以所求抛物线的标准方程为y2=-4 3x.当焦点在y轴上时,设抛物线的标准方程为x2=2py(p>0).把(-3,2)代入,得(-3)2=4p,解得p=9 4.所以所求抛物线的标准方程为x2=9 2y.(2)直线x-2y-4=0与x轴的交点为(4,0),与y轴的交点为(0,-2),故抛物线的焦点为(4,0)或(0,-2).当焦点为(4,0)时,设抛物线方程为y2=2px(p>0),则p2=4,所以p =8.所以抛物线方程为y 2=16x . 当焦点为(0,-2)时,设抛物线方程为x 2=-2py (p >0),则-p2=-2,所以p =4.所以抛物线方程为x 2=-8y .10.已知动圆M 与直线y =2相切,且与定圆C :x 2+(y +3)2=1外切,求动圆圆心M 的轨迹方程.解:设动圆圆心为M (x ,y ),半径为r ,则由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等,则动圆圆心的轨迹是以C (0,-3)为焦点,y =3为准线的一条抛物线,其方程为x 2=-12y .B 级 能力提升1.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( )A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x 2解析:当a >0时,抛物线开口向上,准线方程为y =-14a,则点M 到准线的距离为3+14a =6,解得a =112,抛物线方程为y =112x 2.当a <0时,开口向下,准线方程为y =-14a,点M 到准线的距离为⎪⎪⎪⎪⎪⎪3+14a =6,解得a =-136,抛物线方程为y =-136x 2.答案:D2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x上一动点P到直线l1和直线l2的距离之和的最小值为________.解析:由已知得抛物线的焦点为F(1,0),由抛物线的定义知:动点P到直线l1和直线l2的距离之和的最小值即为焦点F(1,0)到直线l1:4x-3y+6=0的距离,由点到直线的距离公式得:d=|4-0+6|=2,所以动点P到直线l1和直线l2的距离之和的最小42+(-3)2值是2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选修1-1第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .y 2=28xC .y 2=-28xD .x 2=28y2.设P 是椭圆x 225+y 216=1上的点.若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .103.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( ) A .-1 B .1 C .-1020D.1024.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( )A .(5,0)或(-5,0)B .(52,332)或(52,-332)C .(0,3)或(0,-3)D .(532,32)或(-532,32)5.(2010·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1D.x 227-y 29=16.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上点M (m ,-2)到焦点的距离为4,则m 的值为( )A .4或-4B .-2C .4D .2或-28.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,且它的一个焦点在抛物线y 2=12x 的准线上,则此双曲线的方程为( )A.x 25-y 26=1 B.x 27-y 25=1 C.x 23-y 26=1D.x 24-y 23=19.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)10.椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点到两焦点的距离分别为d 1,d 2,焦距为2c ,若d 1,2c ,d 2成等差数列,则椭圆的离心率为( )A.12 B.22 C.32D.3411.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=y -12B .x 2=2y -116 C .x 2=2y -1 D .x 2=2y -212.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率的取值范围是( )A .(1,3)B .(1,2)C .(1,3]D .(1,2]二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2010·福建)若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则b 等于________.14.若中心在坐标原点,对称轴为坐标轴的椭圆经过点(4,0),离心率为32,则椭圆的标准方程为________.15.设F 1和F 2是双曲线x 24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为________.16.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)求与椭圆4x 2+9y 2=36有相同的焦距,且离心率为55的椭圆的标准方程.18.(12分)已知抛物线y 2=6x ,过点P (4,1)引一条弦P 1P 2使它恰好被点P 平分,求这条弦所在的直线方程及|P 1P 2|.19.(12分)已知椭圆方程为x 29+y 24=1,在椭圆上是否存在点P (x ,y )到定点A (a,0)(其中0<a <3)的距离的最小值为1,若存在,求出a 的值及P 点的坐标;若不存在,说明理由.20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l 为圆O :x 2+y 2=b 2的一条切线,记椭圆C 的离心率为e .(1)若直线l 的倾斜角为π3,且恰好经过椭圆C 的右顶点,求e 的大小;(2)在(1)的条件下,设椭圆C 的上顶点为A ,左焦点为F ,过点A与AF 垂直的直线交x 轴的正半轴于B 点,且过A ,B ,F 三点的圆恰好与直线l :x +3y +3=0相切,求椭圆C 的方程.21.(12分)设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),抛物线C 2:x 2+by =b 2.(1)若C 2经过C 1的两个焦点,求C 1的离心率;(2)设A (0,b ),Q (33,54b ),又M ,N 为C 1与C 2不在y 轴上的两个交点,若△AMN 的垂心为B (0,34b ),且△QMN 的重心在C 2上,求椭圆C 1和抛物线C 2的方程.22.(12分)(2010·北京)已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,直线y =t 与椭圆C 交于不同的两点M ,N ,以线段MN 为直径作圆P ,圆心为P .(1)求椭圆C 的方程;(2)若圆P 与x 轴相切,求圆心P 的坐标;(3)设Q (x ,y )是圆P 上的动点,当t 变化时,求y 的最大值.参考答案1. 解析 由条件可知p2=7,∴p =14,抛物线开口向右,故方程为y 2=28x .答案 B2. 解析 由题可知a =5,P 为椭圆上一点,∴|PF 1|+|PF 2|=2a =10.答案 D3. 解析 把方程化为标准形式-x 2-1m +y 2-3m=1,∴a 2=-3m ,b 2=-1m . ∴c 2=-3m -1m =4,解得m =-1. 答案 A4. 解析 |PF 1|+|PF 2|=2a =10,∴|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=25. 当且仅当|PF 1|=|PF 2|=5时,取得最大值, 此时P 点是短轴端点,故选C. 答案 C5. 解析 本题主要考查双曲线与抛物线的几何性质与标准方程,属于容易题.依题意知⎩⎨⎧ba =3,c =6,c 2=a 2+b 2,⇒a 2=9,b 2=27,所以双曲线的方程为x 29-y 227=1. 答案 B6. 解析 如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |, ∴|AP |+|PF |=|AP |+|PN |≥|AN 1|, 当且仅当A ,P ,N 三点共线时取等号, ∴P 点的横坐标与A 点的横坐标相同即为1, 则可排除A 、C 、D 项,故选B. 答案 B7. 解析 由题可知,p2-(-2)=4,∴p =4.∴抛物线的方程为x 2=-8y . 将(m ,-2)代入可得m 2=16, ∴m =±4.故选A. 答案 A8. 解析 抛物线y 2=12x 的准线方程为x =-3,由题意,得⎩⎨⎧c =3,ca =3,c 2=a 2+b 2.解得a 2=3,b 2=6,故所求双曲线的方程为x 23-y 26=1. 答案 C9. 解析 直线x +2=0是抛物线的准线,又动圆圆心在抛物线上,由抛物线的定义知,动圆必过抛物线的焦点(2,0).答案 B10. 解析 由椭圆的定义可知d 1+d 2=2a ,又由d 1,2c ,d 2成等差数列, ∴4c =d 1+d 2=2a ,∴e =c a =12. 答案 A11. 解析 由y =14x 2⇒x 2=4y ,焦点F (0,1),设PF 中点Q (x ,y )、P (x 0,y 0), 则⎩⎪⎨⎪⎧2x =0+x 0,2y =1+y 0,4y 0=x 20,∴x 2=2y -1.答案 C12. 解析 |PF 2|2|PF 1|=(|PF 1|+2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当|PF 1|=4a 2|PF 1|,即|PF 1|=2a 时取等号.又|PF 1|≥c -a ,∴2a ≥c -a . ∴c ≤3a ,即e ≤3.∴双曲线的离心率的取值范围是(1,3] 答案 C13. 解析 由题意知b 2=12,解得b =1.答案 114. 解析 若焦点在x 轴上,则a =4,由e =32,可得c =23,∴b 2=a 2-c 2=16-12=4,椭圆方程为x 216+y 24=1,若焦点在y 轴上,则b =4,由e =32,可得c a =32,∴c 2=34a 2.又a 2-c 2=b 2,∴14a 2=16,a 2=64.∴椭圆方程为x 216+y 264=1.答案 x 216+y 264=1,或x 216+y 24=115. 解析 由题设知⎩⎪⎨⎪⎧ ||PF 1|-|PF 2||=4,①|PF 1|2+|PF 2|2=20,②)②-①2得|PF 1|·|PF 2|=2.∴△F 1PF 2的面积S =12|PF 1|·|PF 2|=1.答案 116. 解析 如图,设双曲线一个焦点为F ,则△AOF 中,|OA |=a ,|OF |=c ,∠FOA =60°.∴c =2a ,∴e =c a =2.答案 217. 解 把方程4x 2+9y 2=36写成x 29+y 24=1,则其焦距2c =25,∴c = 5.又e =c a =55,∴a =5.b 2=a 2-c 2=52-5=20,故所求椭圆的方程为x 225+y 220=1,或y 225+x 220=1.18. 解 设直线上任意一点坐标为(x ,y ),弦两端点P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减,得(y 1+y 2)(y 1-y 2)=6(x 1-x 2).∵y 1+y 2=2,∴k =y 1-y 2x 1-x 2=6y 1+y 2=3. ∴直线的方程为y -1=3(x -4),即3x -y -11=0.由⎩⎪⎨⎪⎧y 2=6x ,y =3x -11,得y 2-2y -22=0, ∴y 1+y 2=2,y 1·y 2=-22.∴|P 1P 2|= 1+1922-4×(-22)=22303.19. 解 设存在点P (x ,y )满足题设条件,则|AP |2=(x -a )2+y 2.又∵x 29+y 24=1,∴y 2=4(1-x 29).∴|AP |2=(x -a )2+4(1-x 29) =59(x -95a )2+4-45a 2.∵|x |≤3,当|95a |≤3,又0<a <3即0<a ≤53时,|AP |2的最小值为4-45a 2.依题意,得4-45a 2=1,∴a =±152∉⎝ ⎛⎦⎥⎤0,53, 当95a >3,即53<a <3.此时x =3,|AP |2取最小值(3-a )2.依题意,得(3-a )2=1,∴a =2.此时P 点的坐标是(3,0).故当a =2时,存在这样的点P 满足条件,P 点坐标为(3,0).20. 解(1)如图,设直线l 与圆O 相切于E 点,椭圆C 的右顶点为D , 则由题意易知,△OED 为直角三角形,且|OE |=b ,|OD |=a ,∠ODE =π3,∴|ED |=|OD |2-|OE |2=c (c 为椭圆C 的半焦距).∴椭圆C 的离心率e =c a =cos π3=12.(2)由(1)知,c a =12,∴可设a =2m (m >0),则c =m ,b =3m ,∴椭圆C 的方程为x 24m 2+y 23m 2=1.∴A (0,3m ),∴|AF |=2m .直线AF 的斜率k AF =3,∴∠AFB =60°.在Rt △AFB 中,|FB |=|AF |cos ∠AFB =4m ,∴B (3m,0),设斜边FB 的中点为Q ,则Q (m,0),∵△AFB 为直角三角形,∴过A ,B ,F 三点的圆的圆心为斜边FB 的中点Q ,且半径为2m ,∵圆Q 与直线l :x +3y +3=0相切, ∴|m +3|1+3=2m .∵m 是大于0的常数,∴m =1.故所求的椭圆C 的方程为x 24+y 23=1.21. 解 (1)由已知椭圆焦点(c,0)在抛物线上,可得c 2=b 2,由a 2=b 2+c 2=2c 2,有c 2a 2=12⇒e =22.(2)由题设可知M 、N 关于y 轴对称, 设M (-x 1,y 1),N (x 1,y 1)(x 1>0), 由△AMN 的垂心为B ,有BM →·AN →=0⇒-x 21+(y 1-34b )(y 1-b )=0.由点N (x 1,y 1)在抛物线上,x 21+by 1=b 2,解得y 1=-b 4,或y 1=b (舍去),故x 1=52b ,M (-52b ,-b 4),N (52b ,-b 4),得△QMN 重心坐标(3,b 4).由重心在抛物线上得3+b 24=b 2,∴b =2,M (-5,12),N (5,-12),又∵M ,N 在椭圆上,得a 2=163, 椭圆方程为x 2163+y 24=1,抛物线方程为x 2+2y =4.22. 解 (1)∵c a =63,且c =2,∴a =3,b =a 2-c 2=1.∴椭圆C 的方程为x 23+y 2=1.(2)由题意知P (0,t )(-1<t <1), 由⎩⎨⎧ y =t ,x 23+y 2=1,得x =±3(1-t 2), ∴圆P 的半径为3(1-t 2).∴3(1-t 2)=|t |,解得t =±32.∴点P 的坐标是(0,±32).(3)由(2)知,圆P 的方程为x 2+(y -t )2=3(1-t 2).∵点Q (x ,y )在圆P 上,∴y =t ±3(1-t 2)-x 2≤t +3(1-t 2). 设t =cos θ,θ∈(0,π),则t +3(1-t 2)=cos θ+3sin θ=2sin(θ+π6), 当θ=π3,即t =12,且x =0,y 取最大值2.。

相关文档
最新文档