小升初奥数课程简便运算
小升初简便运算专题讲解
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+ 5.07+ 2.9434÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
小升初常考简便运算
小学数学简便运算方法归类一、带符号搬家法〔根据:加法交换律和乘法交换率〕当一个计算题只有同一级运算〔只有乘除或只有加减运算〕又没有括号时,我们可以“带号搬家〞。
二、结合律法〔一〕加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
〔即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
〕2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
〔即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
〕c)〔二〕去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
〔现在没有括号了,可以带符号搬家了哈 ) 〔注:去掉括号是添加括号的逆运算〕2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
〔现在没有括号了,可以带符号搬家了哈)〔注:去掉括号是添加括号的逆运算〕三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(11-3-1-1) 128632.提取公因式注意相同因数的提取。
0.92 ×1.41 +0.92 ×16×7-3×75135 13 3.注意构造,让算式满足乘法分配律的条件。
小升初奥数简便运算专题讲解 (1)
路漫漫其修远兮,吾将上下而求索 - 百度文库奥数之计算综合目录:计算专题1小数分数运算律的运用:计算专题2大数认识及运用计算专题3分数专题计算专题4列项求和计算专题5计算综合计算专题6超大数的巧算计算专题7利用积不变、拆数和乘法分配率巧解计算题:计算专题8牢记设字母代入法计算专题9利用a ÷b=b a 巧解计算题:计算专题10利用裂项法巧解计算题计算专题11(递推法或补数法)计算专题12.斜着约分更简单计算专题13定义新运算计算专题14解方程计算专题15等差数列计算专题16尾数与完全平方数计算专题17加法原理、乘法原理计算专题18分数的估算求值计算专题19简单数论奥数专题20周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯ 6、22222392781243++++7、 1111111111111111() ()()()89101191011128910111291011+++⨯+++-++++⨯++计算专题5计算综合【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++3610152128364550552、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算熟记规律,常能化难为易。
2023年小升初简便运算专题讲解
6月12日:小升初简便运算明确三点:1、一般状况下,四则运算旳计算次序是:有括号时,先算,没有括号时,先算,再算 ,只有同一级运算时,从左往右 。
2、由于有旳计算题具有它自身旳特性,这时运用运算定律,可以使计算过程简朴,同步又不轻易出错。
加法互换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法互换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分派律:(a+b)×c=a×c+b×c3、注意:对于同一种计算题,用简便措施计算,与不用简便措施计算得到旳成果相似。
我们可以用两种计算措施得到旳成果对比,检查我们旳计算与否对旳。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一种计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+(); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算1、12.06+5.07+2.942、3、4、30.34-10.2+9.66 + 125÷2×8 5、34÷4÷1.7+102×7.3÷5.16、7×3÷7×37、8、二、结合律法1、加括号法(1)当一种计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号背面直接添括号,括到括号里旳运算本来是加还是加,是减还是减。
不过在减号背面添括号时,括到括号里旳运算,本来是加,目前就要变为减;本来是减,目前就要变为加。
小升初奥数分数的简便运算
注意:将一个数转 化成两数相 加减的形式 要求转化后 的式子在运 算完成后依 然等于原数
,其值不发生 变化。例如:999 可化为 1000 -1。其结果与原 数字保持一 致。
17 3 16
18 7 19
67 31 69
36×3345
27×2278
7×78
一、简便运算
(1)59
,进行简便运 算。
一、连乘——乘法交换律 的应用
涉及定律:乘法交换律 a×b=b×a 基本方法:将分数相乘的因数互相 交换,先行运算。
5 4 14 13 7
3 1 5 56
13 3 6 14 8 26
25×176 ×78
5 8
×23
×185
2 29
×(15×3219
)
二、乘法分配律 的应用 (8 4 )27 9 27
涉及定律:乘法分配律 (ab)ca cbc
基本方法:将括号中相加减的两项分别与括号外的分数相 乘,
符号保持不 变。
( 1 1)4 10 4
(3 1) 16 42
54×( 89
-
5 6
)
(172
-
1 5
)×60
(
5 6
-
5 9
)×158
三、乘法分配律 的逆运算
涉及定律:乘法分配律 逆向定律 a b a c a (b c )
2 7 2 9 16 9
15 3 10 3 3 21 ×4 + 21 ×4 - 4
四:数字化加式 或减式 涉及定律:乘法分配律 逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通 的数字转化为整式整 百或 1 等与另一个较小的数相加减的形式, 再按照乘法分配律逆向 运算解题。
(完整版)小升初简便运算奥数专题讲解
奥数之简便运算目录:计算专题1 小数分数运算律的运用: 计算专题2 大数认识及运用 计算专题3 分数专题 计算专题4 列项求和 计算专题5 计算综合 计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题: 计算专题8 牢记设字母代入法 计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题 计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单 计算专题13 定义新运算 计算专题14 解方程 计算专题15 等差数列计算专题16 尾数与完全平方数计算专题17 加法原理、乘法原理计算专题18 分数的估算求值计算专题19 简单数论奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124⨯+⨯例题三:32232537.96555⨯+⨯例题四:36⨯1.09+1.2⨯67.3例题五: 81.5⨯15.8+81.5⨯51.8+67.6⨯18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975⨯0.25+39769.754⨯- 4、 999999×222222+333333×3333345、 45⨯2.08+1.5⨯37.66、1391371137 138138⨯+⨯7、72⨯2.09-1.8⨯73.6 8、 53.5⨯35.3+53.5⨯43.2+78.5⨯46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5⨯+⨯+⨯例题三:199319941199319921994⨯-+⨯例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六: 2010×201120112011-2011×201020102010 【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+⨯⨯-3、99999⨯77776+33333⨯666664、30122-301125、999⨯274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:443745⨯ 27⨯1526例题二:1173158⨯1164179⨯例题三:13274155⨯+⨯例题四:5152566139131813⨯+⨯+⨯例题五:11664120÷2010201020102011÷【综合练习】1、 73⨯74752、200820102009⨯ 3、115776⨯4、131441513445⨯+⨯ 5、13392744⨯+⨯ 6、1451179179⨯+⨯7、238238238239÷ 8、73171131581516152⨯+⨯+⨯计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++⨯⨯⨯⨯例题二:1111.......2446684850++++⨯⨯⨯⨯例题三:179111315131220304056-+-+-例题四:1111111248163264128++++++例题五:(1111234+++)⨯(11112345+++)-(111112345++++)⨯(111234++)【综合练习】1、1111........1011111212134950++++⨯⨯⨯⨯2、1111112612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++⨯⨯⨯⨯⨯6、22222392781243++++7、 1111111111111111() ()()()89101191011128910111291011+++⨯+++-++++⨯++计算专题5计算综合 【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111⨯111111111 例题三: 12324671421135261072135⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯例题四:201012010220103111...1111222...2222333...3333=÷个个个例题五: 从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+991-1991131-131121-1211【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011 个个⋯⋯⨯⋯⋯3、1612886443224201612108654⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ 4、 2201242012222222444444个个⋯⋯⋯⋯ 62012666666个⋯⋯÷5、(1+3+5+7+…+1999)-(2+4+6+8+…+1998)6、⎪⎭⎫ ⎝⎛⨯⋯⋯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算 熟记规律,常能化难为易。
(完整版)小升初简便运算奥数专题讲解
(完整版)小升初简便运算奥数专题讲解戴氏教育新津总校新津县太康东路奥数之简便运算目录:计算专题1 小数分数运算律的运用:计算专题2 大数认识及运用计算专题3 分数专题计算专题4 列项求和计算专题5 计算综合计算专题6 超大数的巧算计算专题7 利用积不变、拆数和乘法分配率巧解计算题:计算专题8 牢记设字母代入法计算专题9 利用a ÷b=ba巧解计算题:计算专题10 利用裂项法巧解计算题计算专题11 (递推法或补数法) 计算专题12 斜着约分更简单计算专题13 定义新运算计算专题14 解方程计算专题15 等差数列计算专题16 尾数与完全平方数计算专题17 加法原理、乘法原理计算专题18 分数的估算求值计算专题19 简单数论奥数专题20 周期问题在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要掌握一定的解题方法和规律一点都不难。
下面老师跟你支支招:计算专题1小数分数运算律的运用:【例题精选】例题一: 4.75+9.63+(8.25-1.37)例题二:11 333387797906666124+?例题三:32232537.96555+?例题四:36?1.09+1.2?67.3例题五: 81.5?15.8+81.5?51.8+67.6?18.5 【练习】1、 6.73-892(3.271)1717+- 2、71713(43)0.7513413-+-3. 975?0.25+39769.754- 4、999999×222222+333333×3333345、 45?2.08+1.5?37.66、1391371137 138138?+?7、72?2.09-1.8?73.6 8、 53.5?35.3+53.5?43.2+78.5?46.5计算专题2大数认识及运用【例题精讲】例题一:1234+2341+3412+4123 例题二:4223.411.157.6 6.5428 5+?+?例题三:199319941199319921994-+?例题四:(229779+)÷(5579+)例题五:有一串数1, 4, 9, 16,25……它们是按照一定规律排列的,那么其中第2010个数与2011个数相差多少?例六:2010×201120112011-2011×201020102010【综合练习】1、 23456+34562+45623+56234+623452、198819891987 198819891+?-3、99999?77776+33333?666664、30122-301125、999?274+62746、(83619711++)÷(3541179++)7、123456789×987654321-123456788×987654322计算专题3分数专题【例题精讲】例题一:44374527?1526例题二:11731581164179例题三:13274155+?例题四:5152566139131813 +?+?例题五:11664120÷2010 20102010 2011÷【综合练习】1、 73?74 752、2008201020093、1157764、131441513445+? 5、13392744+? 6、1451179179+?7、238238238239÷ 8、73171131581516152+?+?计算专题4列项求和【例题精讲】例题一:1111.......12233499100++++例题二:1111.......2446684850++++例题三:179111315131220304056-+-+-例题四:1111111 248163264128++++++例题五:(1111234+++)?(11112345+++)-(111112345++++)?(111234++)【综合练习】1、1111 ........ 1011111212134950 ++++2、111111 2612203042+++++3、1111142870130208++++ 4、191113151420304256-+-+5、201020102010201020101223344556++++6、22222392781243++++7、1111111111111111 () ()()() 89101191011128910111291011 +++?+++-++++?++计算专题5计算综合【例题精讲】例题一: 11111......1212312341234 (4950)+++++++++++++++例题二: 111111111?111111111 例题三: 12324671421135261072135+??++??+??例题四:201012010220103111...1111222...2222333...3333=÷142431424314243个个个例题五:从2000到6999这5000个数中数字只和能被5整除的数一共有多少个?例六:100+99—98—97+96+95—94—93……+4+3—2—1例七:??+????? ?????? ??+???? ?????? ??+991-1991131-131121-1211 【综合练习】1、1111111111+++++++++361015212836455055 2、76666666666666201062011434214434421个个3、1612886443224201612108654??+??++??+?? 4、443442144344212201242012222222444444个个443442162012666666个??÷5、(1+3+5+7+...+1999)-(2+4+6+8+ (1998)6、??1001-151-141-131-121-17、(13 +23 )+(14 +24 +34 )+(15 +25 +35 +45 )+…+(1100 +2100 +3100 +4100 +…+99100 )计算专题6超大数的巧算熟记规律,常能化难为易。
数学-奥数竞赛-小升初奥数:第2次课:分数乘法简便运算
第一种:乘法交换律的应用 第二种:乘法分配律的应用
第三种:乘法分配律的逆运算
第四种:乘法交换律与乘法分 配律相结合
分数简便运算的种类: 第五种:数字化加式或减式 第六种:带分数化加式 第七种:添加因数“1” 第八种:裂项法和拆项法
第一种:乘法交换律的应用
3 1 5 56
35 1
3
9
6 10
16
第三种:乘法分配律的逆运算
55 51 69 96
5(5 1) 9 66
5 1 9
5 9
1 1 11 2 15 3 2
1 ( 1 1) 2 15 3
12 25
1 5
第四种:乘法交换律与乘法分 配律相结合
11 6 6 8 13 19 13 19 6 11 6 8 13 19 13 19
3 3 86
3 3 86
第六种:带分数化加式
第七种:添加因数“1”
111 5 59 1 1 1 1 5 59
1 1 1 5 9
1 10 59
2 9
15 3 10 3 - 3 21 4 21 4 4
15 3 10 3 - 3 1 21 4 21 4 4
3 15 10 -1 4 21 21
3 4 4 21
1 7
14 23 17 23 23
31
31
14 23 17 23 231
31
31
23
14
17
1
31 31
23 246Fra bibliotek第八种:裂项法和拆项法 1 1 1 ... 1 1 2 23 3 4 99100
思路: 1 1 1
1 2 2
1 11 23 2 3
小升初简便运算专题讲解
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+ 5.07+ 2.9434÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
小升初数学专项题第三讲 简便运算(二)_通用版
第三讲 简便运算(二)【知识梳理】在实际的奥数练习中,有些题目并不能直接变形,要从算式的整体特点出发,如通过拆项,或从数字的构成上出发,进行变形后,才能使计算简便。
【典例精讲1】435×2525+63.3×525思路分析:虽然435与525的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把63.3分成50.8和12.5两部分。
当出现12.5×5.4时,我们又可以将5.4看成6-0.6,这样计算就简便多了。
解答:435×2525+63.3×525=435×2525+(50.8+12.5)×5.4=435×2525+50.8×5.4+12.5×5.4=(4.6+5.4)×50.8+12.5×(6-0.6)=508+75-7.5=575.5小结:首先要进行拆项,再利用运算律。
【举一反三】1、6.8×16.8+19.3×3.22.39×3738+37×138【典例精讲2】1234+2341+3412+4123思路分析:整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是可以变成1×1111+2×1111+3×1111+4×1111,再利用乘法分配律就可解决。
解答:1234+2341+3412+41231×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110小结: 要注意数字的构成,然后进行分解转化。
【举一反三】3、34567+45673+56723+67345+734564、84567+45678+67845+78456+567845、224.64+424.64+624.64+824.64+1024.64答案及解析:1.【解析】先把19.3拆成16.8+2.5,得到6.8×16.8+(16.8+2.5)×3.2,再利用乘法分配律得到:6.8×16.8+16.8×3.2+2.5×3.2,最后再一次利用乘法分配律解决即可。
(完整word版)小升初奥数课程简便运算【精选】整理版
四、借来还去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难嘛。
9999+999+99+9 4821-998 1. 拆分法 顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25 1.25×88 3.6×0.25 2. 巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。
7.6÷0.25 3.5÷0.125 七、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可 以学一下。
简便运算(一) 专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37)小学生小升初数学常见简便计算总结要想提高计算能力,首先要学好各种运算的法则、运算定律及性质,这是计算的基础。
小升初简便运算专题讲解
明确三点:1、 一般情况下,四则运算的计算顺序是:有括号时,先算___________ ,没有括号时,先算 _______________________ ,再算 _____________ ,只有同一级运算时,从左往右 ______________________ 。
2、 由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b ) +c=a+ (b+c )乘法交换律:a x b=b x a 乘法结合律:(a x b )x c=a x (b x c)乘法分配律:(a+b )x c=a x c+b x c3、 注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法 得到的结果对比,检验我们的计算是否正确。
4、 熟记规律,常能化难为易:① 25X4=100, ② 125X8-1000, ® L -0. 25-259L4④夕=0. 75=75^ ⑤--0. 125=12. 5检 ®- =0L 375=37. 5%, ⑦丄=0. 625=62.気4i3 S⑧丁 -0. 875-B7. 5%g一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-()-() a x b x c=a x ( ) x ( );a 宁 b * c=a * () 宁(); a x b * c=a *( ) x ( ),a*b x c=a x ( ) *()例1 :用简便算法计算1 S7 — + r ■—1---- -- --- -------—12.06 + 5.07 + 2.946 x — - 1 S 4 - IS x O 2530.34 — 10.2 + 9.66 + 125 * 2 x 8二、结合律法 1、加括号法(1 )当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号 里的运算原来是加还是加,是减还是减。
小升初奥数课程简便运算【精选】整理版
小升初奥数课程简便运算【精选】整理版1、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;abc=acb,abc=acb,abc=acb,abc=acb)二、结合律法(一)加括号法1、当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
) a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a-(b-c), a-b-c= a-( b +c);2、当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
) abc=a(bc), abc=a(bc), abc=a(bc), abc=a(bc)(二)去括号法1、当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈)(注:去掉括号是添加括号的逆运算)a+(b+c)= a+b+c a+(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c2、当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
小升初简便运算专题讲解
小升初简便运算明确三点:1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c3、注意:对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。
我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
4、熟记规律,常能化难为易:一、变换位置(带符号搬家)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+( )+( ); a+b-c=a-( )+( );a-b-c=a-( )-( )a×b×c=a×( ) ×( );a÷b÷c=a÷( ) ÷( );a×b÷c=a÷( )×( ),a÷b×c=a×( )÷( )例1:用简便算法计算12.06+5.07+2.94 34÷4÷1.7+102×7.3÷5.130.34-10.2+9.66 + 125÷2×8二、结合律法1、加括号法(1)当一个计算模块(同级运算)只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前保留原符号,括号前是加号,括号里不变号,括号前是减号,括号里要变号)根据:加法结合律a+b+c=a+( ); a+b-c=a+( ) a-b+c=a-( ); a-b-c=a-( )例2:用简便方法计算(2)当一个计算模块(同级运算)只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
小升初奥数第次课分数乘法简便运算
+
1 3
1 4
+...+
1 99
1 100
......
= 1 1
100
99
= 100 2020/6/5
1 1 1 ... 1 45 56 67 3 940
111111 2 6 12203042
11 1 1 1 6 42 56 72
2020/6/5
Hale Waihona Puke 11 1 ... 1 35 57 79 9 799
232
46
2020/6/5
第八种:裂项法和拆项法 1 1 1 ... 1 12 23 34 9 9100
思路: 11 1 1
11 22 2
11 1 1 2233 2 3
11 1 1 33 44 3 4
11 1 1 9999110000 99 100
裂项法
=
1
1 2
+
1 2
1 3
29 29 30
28 1 30
第六种:带分数化加式
25 5 4 8
(25 5)4 8
25454 8
100 5 2
102 1 2
2020/6/5
333 1 3 3
14 1 1 25 13
2020/6/5
第七种:添加因数“1”
111 5 59 1111 5 59
1 1 1 5 9
11 1 ... 1 14 47 710 9 7100
2020/6/5
2020/6/5
2020/6/5
第五种:数字化加式或减式
87 3 86
(861) 3 86
86 3 1 3 86 86
3 3 86
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学简便运算方法归类一、带符号搬家法(根据:加法交换律和乘法交换率)当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带 号搬家”。
(a+b+c=a+c+b,a+b-c=a-c+b,a-b+c=a+c-b,a-b-c=a-c-b;a ×b ×c=a ×c ×b,a ÷b ÷c=a ÷c ÷b,a ×b ÷c=a ÷c ×b,a ÷b ×c=a ×c ÷b)二、结合律法(一)加括号法1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。
但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。
(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
)a+b+c=a+(b+c), a+b-c=a +(b-c), a-b+c=a -(b-c), a-b-c= a-( b +c);2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。
但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。
(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
) a ×b ×c=a ×(b ×c), a ×b ÷c=a ×(b ÷c), a ÷b ÷c=a ÷(b ×c), a ÷b ×c=a ÷(b ÷c)(二)去括号法1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。
但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)a+(b+c)= a+b+c a +(b-c)= a+b-c a- (b-c)= a-b+c a-( b +c)= a-b-c2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。
但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)a ×(b ×c) = a ×b ×c, a ×(b ÷c) = a ×b ÷c, a ÷(b ×c) = a ÷b ÷c , a ÷(b ÷c) = a ÷b ×c三、乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配24×(1211-83-61-31) 2.提取公因式注意相同因数的提取。
0.92×1.41+0.92×8.59 516×137-53×1373.注意构造,让算式满足乘法分配律的条件。
257×103-257×2-257 2.6×9.9四、借来还去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难嘛。
9999+999+99+9 4821-9981. 拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
3.2×12.5×25 1.25×88 3.6×0.252. 巧变除为乘也就是说,把除法变成乘法,例如:除以41可以变成乘4。
7.6÷0.25 3.5÷0.125七、裂项法分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
分数裂项的最基本的公式这一种方法在一般的小升初考试中不常见,属于小学奥数方面的知识。
有余力的孩子可以学一下。
简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1计算下面各题。
1. 6.73-2 817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-1153. 14.15-(778 -61720 )-2.125 4. 13713 -(414 +3713)-0.75例题2。
计算33338712 ×79+790×6666114原式=333387.5×79+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2计算下面各题:1. 3.5×114 +125%+112 ÷452. 975×0.25+934×76-9.75 3. 925 ×425+4.25÷1604. 0.9999×0.7+0.1111×2.7例题3。
计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3=1.2×(32.7+67.3)=1.2×100=120疯狂操练 3计算:1. 45×2.08+1.5×37.6 2. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6例题4。
计算:335 ×2525 +37.9×625原式=335 ×2525+(25.4+12.5)×6.4 =335 ×2525+25.4×6.4+12.5×6.4 =(3.6+6.4)×25.4+12.5×8×0.8=254+80=334练习4计算下面各题:1. 6.8×16.8+19.3×3.22.139×137138+137×11383. 4.4×57.8+45.3×5.6例题5。
计算81.5×15.8+81.5×51.8+67.6×18.5原式=81.5×(15.8+51.8)+67.6×18.5=81.5×67.6+67.6×18.5=(81.5+18.5)×67.6=100×67.6=6760练习53.53.5×35.3+53.5×43.2+78.5×46.54.235×12.1+235×42.2-135×54.35. 3.75×735-38×5730+16.2×62.5答案:练一: 1、=6 2、=1 3、=11 4、=5练二: 1、=7.5 2、=975 3、=4250 4、=0.9999 练三: 1、=150 2、=2600 3、=120 4、=18练四: 1、=176 2、=13868693、=508练五: 1、=7850 2、=5430 3、=1620简便运算(二)专题简析:计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。
例题1。
计算:1234+2341+3412+4123简析注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答:原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=11110练习11.23456+34562+45623+56234+623452.45678+56784+67845+78456+845673.124.68+324.68+524.68+724.68+924.68例题2。
计算:245×23.4+11.1×57.6+6.54×28原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8× 7.2=2.8×88.8+88.8×7.2=88.8×(2.8+7.2)=88.8×10=888练习2计算下面各题:1.99999×77778+33333×666662.34.5×76.5-345×6.42-123×1.453.77×13+255×999+510例题3。
计算1993×1994-11993+1992×1994原式=(1992+1)×1994-1 1993+1992×1994=1992×1994+1994-1 1993+1992×1994=1 练习3计算下面各题:1. 362+548×361362×548-1862. 1988+1989×19871988×1989-13. 204+584×19911992×584-380 -1143例题4。