2020年全国高考数学第二轮复习 专题五 立体几何第3讲 用空间向量的方法解立体几何问题 理

合集下载

高考数学大二轮复习第1部分专题5立体几何第3讲用空间向量的方法解立体几何问题课件201811225190

高考数学大二轮复习第1部分专题5立体几何第3讲用空间向量的方法解立体几何问题课件201811225190

利用空间向量求线线 角、线面角、面面角
以具体几何体为命题背景,直接求角或已知角求 相关量
利用空间向量解决探索 性问题或其他问题
1.常借助空间直角坐标系,设点的坐标探求点的 存在问题 2.常利用空间向量的关系,设某一个参数,利用 向量运算探究平行、垂直问题
• 备考策略 • 本部分内容在备考时应注意以下几个方面: • (1)加强对空间向量概念及空间向量运算律的理解,掌握空
又PF=1,EF=2,故PE⊥PF.
可得PH= 23,EH=32.
则H(0,0,0),P
0,0,
3 2
,D
-1,-32,0

―→ DP

1,32,
3 2

―→ HP

0,0, 23为平面ABFD的一个法向量.
设DP与平面ABFD所成角为θ,则sinθ=所以BF⊥平 NhomakorabeaPEF.
又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.
(2)方法一:作PH⊥EF,垂足为H.
由(1)得,PH⊥平面ABFD.
以H为坐标原点,
―→ HF
的方向为y轴正方向,设正方形ABCD的边长为2,建立
如图所示的空间直角坐标系H-xyz.
由(1)可得,DE⊥PE.
又DP=2,DE=1,所以PE= 3.
1.(2018·全国卷Ⅰ,18)如图,四边形ABCD为正方形,E,F分别为AD,BC的 中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.
(1)证明:平面PEF⊥平面ABFD.
(2)求DP与平面ABFD所成角的正弦值.
[解析] (1)由已知可得,BF⊥PF,BF⊥EF,PF∩EF=F,
3.模、夹角和距离公式 (1)设a=(a1,a2,a3),b=(b1,b2,b3),则 |cao|=s〈aa,·a=b〉__=___a__21+____a__22__+__|aa__a|·|__bb32__|=________a,_21+_a_1ba_122_+ +__aa_223_b_2b+_21_+a_3_bb_223_+__b_32 . (2)距离公式 设A(x1,y1,z1),B(x2,y2,z2),则 |A→B|= x1-x22+y1-y22+z1-z22.

2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]

2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]

第3讲 圆锥曲线中的综合问题专题强化训练1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,2 B .(1,+∞)C .(1,2)D.⎝ ⎛⎭⎪⎫12,1 解析:选C.由题意可得,2k -1>2-k >0,即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C. 2.(2019·浙江高考冲刺卷)已知F 为抛物线4y 2=x 的焦点,点A ,B 都是抛物线上的点且位于x 轴的两侧,若OA →·OB →=15(O 为原点),则△ABO 和△AFO 的面积之和的最小值为( )A.18B.52C.54D.652 解析:选D.设直线AB 的方程为:x =ty +m ,A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m ,0),⎩⎪⎨⎪⎧4y 2=x x =ty +m ,可得4y 2-ty -m =0, 根据根与系数的关系有y 1·y 2=-m4,因为OA →·OB →=15,所以x 1·x 2+y 1·y 2=15,从而16(y 1·y 2)2+y 1·y 2-15=0, 因为点A ,B 位于x 轴的两侧, 所以y 1·y 2=-1,故m =4.不妨令点A 在x 轴上方,则y 1>0,如图所示.又F (116,0), 所以S △ABO +S △AFO =12×4×(y 1-y 2)+12×116y 1=6532y 1+2y 1≥265y 132×2y 1=652, 当且仅当6532y 1=2y 1,即y 1=86565时,取“=”号,所以△ABO 与△AFO 面积之和的最小值是652,故选D.3.(2019·绍兴市柯桥区高考数学二模)已知l 是经过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点F 且与实轴垂直的直线,A ,B 是双曲线C 的两个顶点,若在l 上存在一点P ,使∠APB =60°,则双曲线的离心率的最大值为( )A.233B. 3 C .2 D .3 解析:选A.设双曲线的焦点F (c ,0),直线l :x =c , 可设点P (c ,n ),A (-a ,0),B (a ,0), 由两直线的夹角公式可得tan ∠APB =⎪⎪⎪⎪⎪⎪k PA-k PB1+k PA ·k PB=⎪⎪⎪⎪⎪⎪n c +a -n c -a 1+n 2c 2-a 2=2a |n |n 2+(c 2-a 2)=2a|n |+c 2-a 2|n |=tan 60°=3,由|n |+c 2-a 2|n |≥2|n |·c 2-a 2|n |=2c 2-a 2,可得3≤a c 2-a2,化简可得3c 2≤4a 2,即c ≤233a ,即有e =c a ≤233.当且仅当n =±c 2-a 2,即P (c ,±c 2-a 2),离心率取得最大值233.故选A.4.(2019·福州质量检测)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5 D .5解析:选C.由题意知,抛物线C :y 2=4x 的焦点F (1,0),准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1,由⎩⎪⎨⎪⎧x =-1y =2(x -1),x ≤1,得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|QF ||FF 1|=252=5,故选C.5.(2019·鄞州中学期中)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,且PF 1⊥PF 2,e 1,e 2分别是两曲线C 1,C 2的离心率,则9e 21+e 22的最小值是( )A .4B .6C .8D .16解析:选C.设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴长为2a 2,取椭圆与双曲线在一象限内的交点为P ,由椭圆和双曲线的定义分别有|PF 1|+|PF 2|=2a 1①,|PF 1|-|PF 2|=2a 2②,因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=4c 2③,①2+②2,得|PF 1|2+|PF 2|2=2a 21+2a 22④,将④代入③得a 21+a 22=2c 2,则9e 21+e 22=9c 2a 21+c 2a 22=5+9a 222a 21+a 212a 22≥8,故9e 21+e 22的最小值为8.6.(2019·金华十校二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的实轴长为42,虚轴的一个端点与抛物线x 2=2py (p >0)的焦点重合,直线y =kx -1与抛物线相切且与双曲线的一条渐近线平行,则p =( )A .4B .3C .2D .1解析:选A.抛物线x 2=2py 的焦点为⎝ ⎛⎭⎪⎫0,p 2,所以可得b =p2,因为2a =42⇒a =22,所以双曲线的方程为x 28-4y 2p 2=1,可求得渐近线方程为y =±p 42x ,不妨设y =kx -1与y =p42x 平行,则有k =p 42.联立⎩⎪⎨⎪⎧y =p 42x -1x 2=2py⇒x 2-p 222x +2p =0,所以Δ=⎝ ⎛⎭⎪⎫-p 2222-8p =0,解得p =4.7.(2019·浙江“七彩阳光”联盟高三联考)已知椭圆的方程为x 29+y 24=1,过椭圆中心的直线交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF 2的周长的最小值为________,△ABF 2的面积的最大值为________.解析:连接AF 1,BF 1,则由椭圆的中心对称性可得C △ABF 2=AF 2+BF 2+AB =AF 1+AF 2+AB =6+AB ≥6+4=10,S △ABF 2=S △AF 1F 2≤12·25·2=2 5.答案:10 2 58.(2019·东阳二中改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP ⊥PQ ,则椭圆C 的离心率为________.解析:不妨设点P 在第一象限,O 为坐标原点,由对称性可得|OP |=|PQ |2=a2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =|OP ||OA |=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎫a4,3a 4,代入椭圆方程得116+3a 216b 2=1,故a 2=5b 2=5(a 2-c 2),所以椭圆C 的离心率e =255. 答案:2559.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1,F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是________.解析:设椭圆的长轴长为2a ,双曲线的实轴长为2m ,则2c =|PF 2|=2a -10,2m =10-2c ,所以a =c +5,m =5-c ,所以e 1e 2=c c +5×c 5-c =c 225-c 2=125c2-1,又由三角形的性质知2c +2c >10,由已知2c <10,c <5,所以52<c <5,1<25c 2<4,0<25c 2-1<3,所以e 1e 2=125c2-1>13.答案:⎝ ⎛⎭⎪⎫13,+∞ 10.(2019·杭州市高考数学二模)抛物线y 2=2px (p >0)的焦点为F ,点A ,B 在抛物线上,且∠AFB =120°,过弦AB 中点M 作准线l 的垂线,垂足为M 1,则|MM 1||AB |的最大值为________.解析:设|AF |=a ,|BF |=b ,连接AF 、BF , 由抛物线定义,得|AF |=|AQ |,|BF |=|BP |, 在梯形ABPQ 中,2|MM 1|=|AQ |+|BP |=a +b . 由余弦定理得,|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab , 配方得,|AB |2=(a +b )2-ab ,又因为ab ≤⎝ ⎛⎭⎪⎫a +b 22,所以(a +b )2-ab ≥(a +b )2-14(a +b )2=34(a +b )2,得到|AB |≥32(a +b ). 所以|MM 1||AB |≤12(a +b )32(a +b )=33,即|MM 1||AB |的最大值为33. 答案:3311.(2019·衢州市教学质量检测)已知椭圆G :x 2a 2+y 2b2=1(a >b >0)的长轴长为22,左焦点F (-1,0),若过点B (-2b ,0)的直线与椭圆交于M ,N 两点.(1)求椭圆G 的标准方程; (2)求证:∠MFB +∠NFB =π; (3)求△FMN 面积S 的最大值.解:(1)因为椭圆x 2a 2+y 2b2=1(a >b >0)的长轴长为22,焦距为2,即2a =22,2c =2,所以2b =2,所以椭圆的标准方程为x 22+y 2=1.(2)证明:∠MFB +∠NFB =π,即证:k MF +k NF =0, 设直线方程MN 为y =k (x +2),代入椭圆方程得: (1+2k 2)x 2+8k 2x +8k 2-2=0, 其中Δ>0,所以k 2<12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2= -8k 21+2k 2,x 1x 2=8k 2-21+2k2, k MF +k NF =y 1x 1+1+y 2x 2+1=k (x 1+2)x 1+1+k (x 2+2)x 2+1=k [2+x 1+x 2+2(x 1+1)(x 2+1)]=0.故∠MFB +∠NFB =π.(3)S =12·FB |y 1-y 2|=12|k ||x 1-x 2|=128(1-2k 2)k2(1+2k 2)2.令t =1+2k 2, 则S =2-t 2+3t -22t2=-2⎝ ⎛⎭⎪⎫1t -342+18,当k 2=16(满足k 2<12)时,S 的最大值为24.12.(2019·浙江金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值.解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4. (2)设直线AB 的方程为y =kx +m ,则|m -2|1+k2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m , 所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减,当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.13.(2019·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A 、B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23, 由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条; 当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得:y 1-y 2x 1-x 2=-14×x 1+x 2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得:x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得:y 20<59,由:r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得:13<r <63.所以半径r 的取值范围为(13,63) .14.(2019·严州中学月考改编)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,P (m ,0)为C 的长轴上的一个动点,过P 点且斜率为45的直线l 交C 于A ,B 两点.当m =0时,PA →·PB →=-412.(1)求椭圆C 的方程;(2)证明:|PA |2+|PB |2为定值. 解:(1)因为离心率为35,所以b a =45.当m =0时,l 的方程为y =45x ,代入x 2a 2+y 2b 2=1并整理得x 2=a 22.设A (x 0,y 0),则B (-x 0,-y 0), PA →·PB →=-x 20-y 20=-4125x 20=-4125·a 22. 又因为PA →·PB →=-412,所以a 2=25,b 2=16,椭圆C 的方程为x 225+y 216=1.(2)证明:将l 的方程为x =54y +m ,代入x 225+y216=1,并整理得25y 2+20my +8(m 2-25)=0. 设A (x 1,y 1),B (x 2,y 2), 则|PA |2=(x 1-m )2+y 21=4116y 21,同理|PB |2=4116y 22.则|PA |2+|PB |2=4116(y 21+y 22)=4116[(y 1+y 2)2-2y 1y 2]=4116·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-4m 52-16(m 2-25)25=41.所以|PA |2+|PB |2为定值.15.(2019·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A 、B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程; (2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x-p2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px ,即3x 2-5px +34p 2=0, 所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b ,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 中点的坐标M 为(m 28+b ,m 8),即线段CD 的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以k MC 2=m8m 28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m 2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。

2020高考数学核心突破《专题5 立体几何 第3讲 空间向量及其在立体几何中的应用》

2020高考数学核心突破《专题5 立体几何 第3讲 空间向量及其在立体几何中的应用》

专题五 第3讲1.如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( B )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α解析 若CD ⊥AB ,则∠A ′DB 为二面角A ′-CD -B 的平面角,即∠A ′DB =α.若CD 与AB 不垂直,在△ABC 中,过A 作CD 的垂线交线段CD 或CD 的延长线于点O ,交于BC 于E ,连结A ′O ,则∠A ′OE 为二面角A ′-CD -B 的平面角,即∠A ′OE =α,∵AO =A ′O ,∴∠A ′AO =α2.又A ′D =AD ,∴∠A ′AD =12∠A ′DB .而∠A ′AO 是直线A ′A 与平面ABC 所成的角,由线面角的性质知∠A ′AO <∠A ′AD ,则有α<∠A ′DB .综合有∠A ′DB ≥α,故选B.2.如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD 和BC 的中点,则异面直线AN, CM 所成的角的余弦值是 78.解析 连接DN ,取DN 的中点H ,连接HM ,由N ,M ,H 均为中点,知|cos ∠HMC |即为所求.因为AB =AC =BD =CD =3,AD =BC =2,又M ,N 为AD ,BC 的中点,所以CM ⊥AD ,AN ⊥BC ,所以CM =CD 2-MD 2=22,AN =AC 2-NC 2=22,MH =12AN =2,HC =NC 2+NH 2=3,则cos ∠HMC =CM 2+MH 2-HC 22CM ·MH =78.故异面直线AN ,CM 所成角的余弦值为78.3.已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b·e 1=2,b·e 2 =52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=__1__,y 0=__2__,|b |= 22 .解析 ∵e 1,e 2是单位向量,e 1·e 2=12,∴cos 〈e 1,e 2〉=12,又∵0°≤〈e 1,e 2〉≤180°,∴〈e 1,e 2〉=60°.不妨把e 1,e 2放到空间直角坐标系Oxyz 的平面xOy 中,设e 1=(1,0,0),则e 2=⎝⎛⎭⎫12,32,0,再设OB →=b =(m ,n ,r ),由b·e 1=2,b·e 2=52,得m =2,n =3,则b=(2,3,r ).而x e 1+y e 2是平面xOy 上任一向量,由|b -(x e 1+y e 2)|≥1知点B (2,3,r )到平面xOy 的距离为1,故可得r =1,则b =(2,3,1),∴|b |=2 2.又由|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1,知x 0e 1+y 0e 2=(2,3,0),解得x 0=1,y 0=2.4.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为 25.解析 如图,建立空间直角坐标系Axyz ,设AB =2,QM =m (0≤m ≤2),则F (2,1,0),E (1,0,0),M (0,m,2)(0≤m ≤2).AF →=(2,1,0),ME →=(1,-m ,-2), cos θ=|cos 〈AF →,ME →〉|=⎪⎪⎪⎪⎪⎪AF →·ME →|AF →|·|ME →|=⎪⎪⎪⎪⎪⎪⎪⎪2-m 5·m 2+5=|m -2|5m 2+25.设y =(m -2)25m 2+25,则y ′=2(m -2)(5m 2+25)-(m -2)2·10m (5m 2+25)2=(m -2)[(10m 2+50)-(m -2)·10m ](5m 2+25)2=(m -2)(50+20m )(5m 2+25)2.当0<m <2时,y ′<0,∴y =(m -2)25m 2+25在(0,2)上单调递减.∴当m =0时,y 取最大值, 此时cos θ取最大值,(cos θ)max =|0-2|5×02+25=25. 5.如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .解析 由题意,AB ,AD ,AE 两两垂直,以A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12.(1)OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), 所以OM →·BA →=0,所以OM →⊥BA →.因为棱柱ADE -BCF 是直三棱柱,所以AB ⊥平面BCF ,所以BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,所以OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).因为DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0), 由n 1·DF →=n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎨⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12.同理可得n 2=(0,1,1). 因为n 1·n 2=0,所以平面MDF ⊥平面EFCD .6.(教材回归)如图,四棱锥P -ABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC = 2.(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH →=2HD →,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H -PB -C 的余弦值.解析 (1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2. 又BC =2,所以CD =2,所以BC ⊥BD .因为PD ⊥底面ABCD ,所以PD ⊥BC ,又PD ∩BD =D , 所以BC ⊥平面PBD , 所以平面PBD ⊥平面PBC .(2)由(1)可知∠BPC 为PC 与平面PBD 所成的角, 所以tan ∠BPC =63,所以PB =3,PD =1. 由CH →=2HD →及CD =2,可得CH =43,DH =23.以点D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立如图所示空间直角坐标系.则B (1,1,0),P (0,0,1),C (0,2,0),H ⎝⎛⎭⎫0,23,0. 设平面HPB 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧HP →·n =0,HB →·n =0,即⎩⎨⎧-23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2). 设平面PBC 的法向量为m =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧PB →·m =0,BC →·m =0,即⎩⎪⎨⎪⎧x 2+y 2-z 2=0,-x 2+y 2=0,取x 2=1,则m =(1,1,2). 又cos 〈m ,n 〉=m·n |m||n|=-217, 故观察图形知二面角H -PB -C 的余弦值为217. 7.(母题营养)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ; (2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点.若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E的长.解析 如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点,得M ⎝⎛⎭⎫1,12,1,N (1,-2,1).(1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量.MN →=⎝⎛⎭⎫0,-52,0,由此可得MN →·n =0,又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0). 设n 1=(x 1,y 1,z 1)为平面ACD 1的法向量, 则⎩⎪⎨⎪⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x 1-2y 1+2z 1=0,2x 1=0.不妨设z 1=1,可得n 1=(0,1,1).设n 2=(x 2,y 2,z 2)为平面ACB 1的法向量,则⎩⎪⎨⎪⎧n 2·AB 1→=0,n 2·AC →=0,又AB 1→=(0,1,2),得⎩⎪⎨⎪⎧y 2+2z 2=0,2x 2=0.不妨设z 2=1,可得n 2=(0,-2,1). 因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010, 于是sin 〈n 1,n 2〉=31010.所以二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1], 则E (0,λ,2),从而NE →=(-1,λ+2,1). 又n =(0,0,1)为平面 ABCD 的一个法向量, 由已知,得cos 〈NE →,n 〉=NE →·n |NE →|·|n |=1(-1)2+(λ+2)2+12=13,整理得λ2+4λ-3=0, 又因为λ∈[0,1],解得λ=7-2. 所以,线段A 1E 的长为7-2.8.如图,在四棱锥S -ABCD 中,底面ABCD 为梯形,AD ∥BC ,AD ⊥平面SCD ,AD =DC =2,BC =1,SD =2,∠SDC =120°.(1)求SC 与平面SAB 所成角的正弦值;(2)求平面SAD 与平面SAB 所成的锐二面角的余弦值.解析 如图,在平面SCD 中,过点D 作DC 的垂线交SC 于E ,以D 为原点,DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.则有D (0,0,0),S (0,-1,3),A (2,0,0),C (0,2,0),B (1,2,0). (1)设平面SAB 的法向量为n =(x ,y ,z ),∵AB →=(-1,2,0),AS →=(-2,-1,3),AB →·n =0,AS →·n =0,∴⎩⎪⎨⎪⎧-x +2y =0,-2x -y +3z =0,取y =3,得n =(23,3,5). 又SC →=(0,3,-3),设SC 与平面SAB 所成角为θ, 则sin θ=|cos 〈SC →,n 〉|=2323×210=1020,故SC 与平面SAB 所成角的正弦值为1020. (2)设平面SAD 的法向量为m =(a ,b ,c ), ∵DA →=(2,0,0),DS →=(0,-1,3),则有⎩⎪⎨⎪⎧2a =0,-b +3c =0,取b =3,得m =(0,3,1).∴cos 〈n ,m 〉=n·m|n|·|m|=8210×2=105, 故平面SAD 与平面SAB 所成的锐二面角的余弦值是105.9.(数学文化)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交于点F ,连结DE ,DF ,BD ,BE .(1)证明:PB ⊥平面DEF 试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解析 (1)如图,以D 为原点,射线DA ,CD ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设PD =DC =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB →=(λ,1,-1), 因为点E 是PC 的中点,所以E ⎝⎛⎭⎫0,12,12,DE →=⎝⎛⎭⎫0,12,12, 于是PB →·DE →=0,即PB ⊥DE . 又已知EF ⊥PB ,而DE ∩EF =E , 所以PB ⊥平面DEF .因PC →=(0,1,-1),DE →·PC →=0,所以DE ⊥PC , 所以DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB . (2)由PD ⊥平面ABCD ,知DP →=(0,0,1)是平面ABCD 的一个法向量. 由(1)知,PB ⊥平面DEF ,所以BP →=(-λ,-1,1)是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则cos π3=⎪⎪⎪⎪⎪⎪BP →·DP →|BP →|·|DP →|=⎪⎪⎪⎪⎪⎪1λ2+2=12, 解得λ=2,所以DC BC =1λ=22.故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =22.10.(考点聚焦)如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解析 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面P AB ,所以AD →是平面 P AB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2),设平面PCD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),Q 是线段BP 上的动点,设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值. 又因为|BP |=12+22=5,所以|BQ |=25|BP |=255.。

2020版高考数学大二轮复习第二部分专题3立体几何第3讲空间向量与立体几何课件理

2020版高考数学大二轮复习第二部分专题3立体几何第3讲空间向量与立体几何课件理
(1)求证:SC⊥平面 SAD; (2)设A→E=12E→B,求平面 SEC 与平面 SBC 所成的二面角的正弦值.
解析:(1)证明: ∵BC⊥SD ,BC⊥CD, 则 BC⊥平面 SDC, 又 BC∥AD, 则 AD⊥平面 SDC,SC⊂平面 SDC, SC⊥AD, 又在△SDC 中,SC=SD=2, DC=AB=2 2,故 SC2+SD2=DC2 则 SC⊥SD ,又 SD∩AD=D ∴SC⊥平面 SAD
则 A(0,0,0),B(0,2,0),C(2,4,0),D(2,0,0),P(1,2),
假设存在 M(a,b,c)满足要求,设CCMP =λ(0≤λ≤1),即C→M=λC→P, 所以 M(2-λ,4-3λ,2λ),
易得平面 PBD 的一个法向量为B→C=(2,2,0). 设 n 为平面 ABM 的一个法向量,A→B=(0,2,0), A→M=(2-λ,4-3λ,2λ)
立体几何中的探索性问题
考情调研
考向分析
在探索性问题中,涉及用向量法先计算,再判断,考查热点 1.探索点的存在性.
是空间角的求解.题型以解答题为主,要求有较强的运算能 2.探索平行或垂直关系.
力,广泛应用函数与方程的思想、转化与化归思想.
[题组练透] 1.如图,四棱锥 P-ABCD 中,AB∥DC,∠ADC=π2,AB=AD=12CD=2,PD=PB = 6,PD⊥BC.
设PPBF=λ(λ∈[0,1]), 则P→F=(2λ,2λ,-2λ),F(2λ,2λ,-2λ+2), 所以E→F=(2λ+1,2λ-1,-2λ+2),
易得平面 ABCD 的一个法向量为 m=(0,0,1). 设平面 PDC 的法向量为 n=(x,y,z),
n·P→C=0, 由n·P→D=0,

专题五 第3讲 空间向量及解题方法

专题五 第3讲 空间向量及解题方法

第3讲 空间向量方法解立体几何1.直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110 B.25 C.3010 D.22 答案 C解析 方法一 由于∠BCA =90°,三棱柱为直三棱柱,且BC =CA =CC 1.建立如图(1)所示空间直角坐标系.设正方体棱长为2,则可得A (0,0,0),B (2,2,0),M (1,1,2),N (0,1,2),∴BM →=(1,1,2)-(2,2,0)=(-1,-1,2),AN →=(0,1,2). ∴cos 〈BM →,AN →〉=BM →·AN →|BM →||AN →|=-1+4(-1)2+(-1)2+22×02+12+22=36×5=3010.方法二 如图(2),取BC 的中点D ,连接MN ,ND ,AD ,由于MN 綊12B 1C 1綊BD ,因此有ND 綊BM ,则ND 与NA 所成的角即为异面直线BM 与AN所成的角.设BC =2,则BM =ND =6,AN =5,AD =5, 因此cos ∠AND =ND 2+NA 2-AD 22ND ·NA =3010.2.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥EFDC ;(2)求二面角E -BC -A 的余弦值. (1)证明 由已知可得AF ⊥DF ,AF ⊥FE , 所以AF ⊥平面EFDC ,又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC .(2)解 过点D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以点G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系Gxyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC ,又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF ,由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.以空间几何体为载体考查空间角是高考命题的重点,与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.热点一 利用向量证明平行与垂直设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)则有: (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.例1 如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12. (1)OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0, ∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量,且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0. 得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD .方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA → =-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .思维升华 用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.跟踪演练1 如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,点E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .证明 (1)以点A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1), ∵点E ,F 分别是PC ,PD 的中点, ∴E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB ⊂平面P AB ,EF ⊄平面P AB , ∴EF ∥平面P AB .(2)由(1)可知PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A , ∴DC ⊥平面P AD . ∵DC ⊂平面PDC , ∴平面P AD ⊥平面PDC .热点二 利用空间向量求空间角设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)面面夹角设平面α、β的夹角为θ(0≤θ<π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 例2 如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面P AB ,所以AD →是平面P AB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ), 又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.思维升华 (1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.跟踪演练2 如图,在直三棱柱ABC —A 1B 1C 1中,底面△ABC 是直角三角形,AB =AC =1,AA 1=2,点P 是棱BB 1上一点,满足BP →=λBB 1→(0≤λ≤1).(1)若λ=13,求直线PC 与平面A 1BC 所成角的正弦值;(2)若二面角P —A 1C —B 的正弦值为23,求λ的值.解 以点A 为坐标原点O ,分别以AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为AB =AC =1,AA 1=2,则A (0,0,0),B (1,0,0),C (0,1,0),A 1(0,0,2),B 1(1,0,2),P (1,0,2λ).(1)由λ=13得,CP →=⎝⎛⎭⎫1,-1,23,A 1B →=(1,0,-2),A 1C →=(0,1,-2), 设平面A 1BC 的法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·A 1C →=0, 得⎩⎪⎨⎪⎧x 1-2z 1=0,y 1-2z 1=0.不妨取z 1=1,则x 1=y 1=2,从而平面A 1BC 的一个法向量为n 1=(2,2,1). 设直线PC 与平面A 1BC 所成的角为θ, 则sin θ=|cos 〈CP →,n 1〉|=⎪⎪⎪⎪⎪⎪CP →·n 1|CP →|·|n 1|=2233, 所以直线PC 与平面A 1BC 所成的角的正弦值为2233.(2)设平面P A 1C 的法向量为n 2=(x 2,y 2,z 2),A 1P →=(1,0,2λ-2), 由⎩⎪⎨⎪⎧n 2·A 1C →=0,n 2·A 1P →=0, 得⎩⎪⎨⎪⎧y 2-2z 2=0,x 2+(2λ-2)z 2=0.不妨取z 2=1,则x 2=2-2λ,y 2=2, 所以平面P A 1C 的法向量为n 2=(2-2λ,2,1). 则cos 〈n 1,n 2〉=9-4λ34λ2-8λ+9,又因为二面角P —A 1C —B 的正弦值为23,所以9-4λ34λ2-8λ+9=53,化简得λ2+8λ-9=0,解得λ=1或λ=-9(舍去), 故λ的值为1.热点三 利用空间向量求解探索性问题存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.例3 如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.解 (1)由题意,易得DM ⊥DA ,DM ⊥DC ,DA ⊥DC .如图所示,以点D 为坐标原点,DA ,DC ,DM 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.则D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E (12,1,0),所以NE →=(-12,0,-1),AM →=(-1,0,1).设异面直线NE 与AM 所成角为θ, 则cos θ=|cos 〈NE →,AM →〉| =|NE →·AM →||NE →|·|AM →|=1252×2=1010.所以异面直线NE 与AM 所成角的余弦值为1010. (2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN ,连接AE . 因为AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ),λ∈[0,1], 又EA →=(12,-1,0),所以ES →=EA →+AS →=(12,λ-1,λ).由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,解得λ=12,此时AS →=(0,12,12),|AS →|=22.经检验,当AS =22时,ES ⊥平面AMN . 故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22. 思维升华 空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.跟踪演练3 如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面于直线AB ,且AB =BP =2,AD =AE =1,AE ⊥AB ,且AE ∥BP .(1)设点M 为棱PD 的中点,求证:EM ∥平面ABCD ;(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD 所成角的正弦值等于25?若存在,试确定点N 的位置;若不存在,请说明理由.(1)证明 由已知,平面ABCD ⊥平面ABPE ,且BC ⊥AB ,则BC ⊥平面ABPE ,所以BA ,BP ,BC 两两垂直,故以点B 为原点,BA →,BP →,BC →分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系.则P (0,2,0),D (2,0,1),M ⎝⎛⎭⎫1,1,12,E (2,1,0),C (0,0,1),所以EM →=⎝⎛⎭⎫-1,0,12. 易知平面ABCD 的一个法向量n =(0,1,0), 所以EM →·n =(-1,0,12)(0,1,0)=0,所以EM →⊥n ,又EM ⊄平面ABCD , 所以EM ∥平面ABCD .(2)当点N 与点D 重合时,直线BN 与平面PCD 所成角的正弦值为25.理由如下:PD →=(2,-2,1),CD →=(2,0,0),设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·PD →=0,n 1·CD →=0,得⎩⎪⎨⎪⎧2x 1-2y 1+z 1=0,2x 1=0,取y 1=1,得平面PCD 的一个法向量等于n 1=(0,1,2),假设线段PD 上存在一点N ,使得直线BN 与平面PCD 所成的角α的正弦值等于25.设PN →=λPD →(0≤λ≤1),则PN →=λ(2,-2,1)=(2λ,-2λ,λ), BN →=BP →+PN →=(2λ,2-2λ,λ). 所以sin α=|cos 〈BN →,n 1〉|=|BN →·n 1||BN →||n 1|=25×(2λ)2+(2-2λ)2+λ2=25×9λ2-8λ+4=25.所以9λ2-8λ-1=0, 解得λ=1或λ=-19(舍去).因此,线段PD 上存在一点N ,当N 点与D 点重合时,直线BN 与平面PCD 所成角的正弦值等于25.如图,在五面体中,四边形ABCD 是矩形,AB ∥EF ,AD ⊥平面ABEF ,且AD =1,AB =12EF=22,AF =BE =2,点P 、Q 分别为AE 、BD 的中点.(1)求证:PQ ∥平面BCE ; (2)求二面角A -DF -E 的余弦值.押题依据 利用空间向量求二面角全面考查了空间向量的建系、求法向量、求角等知识,是高考的重点和热点.(1)证明 连接AC ,∵四边形ABCD 是矩形,且Q 为BD 的中点,∴点Q 为AC 的中点, 又在△AEC 中,点P 为AE 的中点,∴PQ ∥EC , ∵EC ⊂面BCE ,PQ ⊄面BCE ,∴PQ ∥平面BCE . (2)解 如图,取EF 的中点M ,连接AM ,因为由题意知AM 2+AF 2=MF 2,则AF ⊥AM ,以点A 为坐标原点,以AM ,AF ,AD 所在直线分别为x ,y ,z 轴,建立空间直角坐标系. 则A (0,0,0),D (0,0,1),M (2,0,0),F (0,2,0).可得AM →=(2,0,0),MF →=(-2,2,0),DF →=(0,2,-1). 设平面DEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·MF →=0,n ·DF →=0.故⎩⎪⎨⎪⎧ -2x +2y =0,2y -z =0,即⎩⎪⎨⎪⎧x -y =0,2y -z =0. 令x =1,则y =1,z =2,故n =(1,1,2)是平面DEF 的一个法向量.∵AM ⊥面ADF ,∴AM →为平面ADF 的一个法向量. ∴cos 〈n ,AM →〉=n ·AM →|n |·|AM →|=2×1+0×1+0×26×2=66.由图可知所求二面角为锐角, ∴二面角A -DF -E 的余弦值为66.A 组 专题通关1.已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM ( )A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内 答案 D解析 由已知得M 、A 、B 、C 四点共面.所以AM 在平面ABC 内,选D.2.如图,点P 是单位正方体ABCD —A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为( )A .0B .1C .0或1D .任意实数答案 C解析 AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD 1→,AA 1→与AB →垂直,这时AP →·AB →=0;AC →,AB 1→与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选C.3.在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,2).若S 1,S 2,S 3分别是三棱锥D -ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) A .S 1=S 2=S 3 B .S 2=S 1且S 2≠S 3 C .S 3=S 1且S 3≠S 2 D .S 3=S 2且S 3≠S 1 答案 D解析 如图所示,△ABC 为三棱锥在坐标平面xOy 上的正投影,所以S 1=12×2×2=2.三棱锥在坐标平面yOz 上的正投影与△DEF (E ,F 分别为OA ,BC 的中点)全等, 所以S 2=12×2×2= 2.三棱锥在坐标平面xOz 上的正投影与△DGH (G ,H 分别为AB ,OC 的中点)全等,所以S 3=12×2×2= 2.所以S 2=S 3且S 1≠S 3.故选D.4.如图,三棱锥A -BCD 的棱长全相等,点E 为AD 的中点,则直线CE 与BD 所成角的余弦值为()A.36B.32C.336D.12答案 A解析 设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →) =12AD →2-12AD →·AB →-AC →·AD →+AC →·AB → =12-12cos 60°-cos 60°+cos 60°=14. ∴cos 〈CE →,BD →〉=CE →·BD →|CE →||BD →|=1432=36.选A.5.已知正三棱柱ABC —A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( ) A.64 B.104 C.22 D.32答案 A解析 如图所示建立空间直角坐标系,设正三棱柱的棱长为2,则O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,故sin θ=|AB 1→·BO →||AB 1→||BO →|=64.6.正方体ABCD —A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →·AP →的取值范围是________.答案 [0,1]解析 以DA 所在的直线为x 轴,DC 所在的直线为y 轴,DD 1所在的直线为z 轴,建立空间直角坐标系Dxyz .则D (0,0,0),C (0,1,0),A (1,0,0),B (1,1,0),D 1(0,0,1). ∴DC →=(0,1,0),BD 1→=(-1,-1,1). ∵点P 在线段BD 1上运动,∴设BP →=λBD 1→=(-λ,-λ,λ),且0≤λ≤1. ∴AP →=AB →+BP →=DC →+BP →=(-λ,1-λ,λ), ∴DC →·AP →=1-λ∈[0,1].7.在一直角坐标系中,已知点A (-1,6),B (3,-8),现沿x 轴将坐标平面折成60°的二面角,则折叠后A 、B 两点间的距离为________. 答案 217解析 如图为折叠后的图形,其中作AC ⊥CD ,BD ⊥CD ,则AC =6,BD =8,CD =4, 两异面直线AC ,BD 所成的角为60°, 故由AB →=AC →+CD →+DB →, 得|AB →|2=|AC →+CD →+DB →|2=68, ∴|AB →|=217.8.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确命题的序号是________. 答案 ①②解析 设正方体的棱长为1,①中(A 1A →+A 1D 1→+A 1B 1→)2=A 1C →2=3A 1B 1→2=3,故①正确;②中A 1B 1→-A 1A →=AB 1→,由于AB 1⊥A 1C ,故②正确;③中A 1B 与AD 1两异面直线所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中|AB →·AA 1→·AD →|=0.故④也不正确.9.如图所示,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,F A =FE ,∠AEF =45°.(1)求证:EF ⊥平面BCE ;(2)设线段CD ,AE 的中点分别为点P ,M ,求证:PM ∥平面BCE . 证明 因为△ABE 是等腰直角三角形,AB =AE , 所以AE ⊥AB ,因为平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD =AB . 所以AE ⊥平面ABCD ,所以AE ⊥AD ,即AD ,AB ,AE 两两垂直,建立如图所示的空间直角坐标系.设AB =1,则AD =AE =1.(1)A (0,0,0),B (0,1,0),D (1,0,0),E (0,0,1),C (1,1,0),因为F A =FE ,∠AEF =45°,所以∠AFE =90°,从而F (0,-12,12),EF →=(0,-12,-12),BE →=(0,-1,1),BC →=(1,0,0). 于是EF →·BE →=0+12-12=0,EF →·BC →=0,所以EF ⊥BE ,EF ⊥BC ,因为BE ⊂平面BCE ,BC ⊂平面BCE ,BC ∩BE =B , 所以EF ⊥平面BCE .(2)M ⎝⎛⎭⎫0,0,12,P (1,12,0), 从而PM →=(-1,-12,12),于是PM →·EF →=⎝⎛⎭⎫-1,-12,12·⎝⎛⎭⎫0,-12,-12=0+14-14=0.所以PM ⊥EF ,又EF ⊥平面BCE , 直线PM 不在平面BCE 内, 故PM ∥平面BCE .10.如图所示的多面体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC =BC =BD =2AE =2,点M 是AB 的中点.(1)求证:CM ⊥EM ;(2)求平面EMC 与平面BCD 所成的锐二面角的余弦值. (1)证明 ∵AC =BC ,点M 是AB 的中点, ∴CM ⊥AB .∵EA ⊥平面ABC ,CM ⊂平面ABC ,∴CM ⊥EA , 又∵EA ∩AB =A ,∴CM ⊥平面AEM , 又EM ⊂平面AEM ,∴CM ⊥EM .(2)解 以点M 为原点,分别以MB ,MC 所在直线为x ,y 轴建立坐标系Mxyz ,如图,则M (0,0,0),C (0,2,0),B (2,0,0),D (2,0,2),E (-2,0,1), ∴ME →=(-2,0,1),MC →=(0,2,0), BD →=(0,0,2),BC →=(-2,2,0), 设平面EMC 的一个法向量m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·ME →=0,m ·MC →=0, 即⎩⎨⎧-2x 1+z 1=0,2y 1=0,∴⎩⎨⎧z 1=2x 1,y 1=0,取x 1=1,则m =(1,0,2), 设平面BCD 的一个法向量n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0, 即⎩⎨⎧-2x 2+2y 2=0,2z 2=0,∴⎩⎪⎨⎪⎧x 2=y 2,z 2=0, 取x 2=1,则n =(1,1,0), ∴cos 〈m ,n 〉=m·n|m||n |=12×3=66, ∴平面EMC 与平面BCD 所成的锐二面角的余弦值为66. B 组 能力提高11.如图,在正方体ABCD -A 1B 1C 1D 1中,点O 为线段BD 的中点.设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A .[33,1] B .[63,1] C .[63,223] D .[223,1]答案 B解析 根据题意可知平面A 1BD ⊥平面A 1ACC 1且两平面的交线是A 1O ,所以过点P 作交线A 1O 的垂线PE , 则PE ⊥平面A 1BD ,所以∠A 1OP 或其补角就是直线OP 与平面A 1BD 所成的角α. 设正方体的边长为2,则根据图形可知直线OP 与平面A 1BD 可以垂直.当点P 与点C 1重合时可得A 1O =OP =6, A 1C 1=22,所以12×6×6×sin α=12×22×2,所以sin α=223;当点P 与点C 重合时,可得sin α=26=63. 根据选项可知B 正确.12.如图,在正方体ABCD -A 1B 1C 1D 1中,点P 在直线BC 1上运动时,有下列三个命题:①三棱锥A -D 1PC 的体积不变;②直线AP 与平面ACD 1所成角的大小不变;③二面角P -AD 1-C 的大小不变.其中真命题的序号是________.答案 ①③解析 ①中,∵BC 1∥平面AD 1C ,∴BC 1上任意一点到平面AD 1C 的距离相等,所以体积不变,正确;②中,点P 在直线BC 1上运动时,直线AB 与平面ACD 1所成角和直线AC 1与平面ACD 1所成角不相等,所以不正确;③中,点P 在直线BC 1上运动时,点P 在平面AD 1C 1B 中,既二面角P —AD 1-C 的大小不受影响,所以正确.13.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 、F 分别为BB 1、CD 的中点,则点F 到平面A 1D 1E 的距离为______________. 答案3510解析 以点A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则A 1(0,0,1),E (1,0,12),F (12,1,0),D 1(0,1,1).∴A 1E →=(1,0,-12),A 1D 1→=(0,1,0).设平面A 1D 1E 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A 1E →=0,n ·A 1D 1→=0,即⎩⎪⎨⎪⎧x -12z =0,y =0.令z =2,则x =1.∴n =(1,0,2).又A 1F →=(12,1,-1), ∴点F 到平面A 1D 1E 的距离为d =|A 1F →·n ||n |=|12-2|5=3510. 14.如图,直三棱柱ABC —A 1B 1C 1中,AA 1=AB =AC =1,点E ,F 分别是CC 1,BC 的中点,AE ⊥A 1B 1,点D 为棱A 1B 1上的点.(1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为1414?若存在,说明点D 的位置,若不存在,说明理由.(1)证明 ∵AE ⊥A 1B 1,A 1B 1∥AB ,∴AE ⊥AB ,又∵AA 1⊥AB ,AA 1⊂面A 1ACC 1,AE ⊂面A 1ACC 1,AA 1∩AE =A , ∴AB ⊥面A 1ACC 1.又∵AC ⊂面A 1ACC 1,∴AB ⊥AC ,以A 为原点建立如图所示的空间直角坐标系Axyz ,则有A (0,0,0),E ⎝⎛⎭⎫0,1,12,F ⎝⎛⎭⎫12,12,0,A 1(0,0,1),B 1(1,0,1), 设D (x,0,z ),A 1D →=λA 1B 1→,且λ∈(0,1),即(x,0,z -1)=λ(1,0,0),∴D (λ,0,1),∴DF →=(12-λ,12,-1), ∵AE →=⎝⎛⎭⎫0,1,12,∴DF →·AE →=12-12=0, ∴DF ⊥AE .(2)存在点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为1414.理由如下: 由(1)可知平面ABC 的法向量n =(0,0,1).设平面DEF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·FE →=0,m ·DF →=0, ∵FE →=(-12,12,12),DF →=⎝⎛⎭⎫12-λ,12,-1, ∴⎩⎨⎧-12x +12y +12z =0,⎝⎛⎭⎫12-λx +12y -z =0, 即⎩⎪⎨⎪⎧ x =32(1-λ)z ,y =1+2λ2(1-λ)z ,令z =2(1-λ),则n =(3,1+2λ,2(1-λ)).∵平面DEF 与平面ABC 所成锐二面角的余弦值为1414, ∴|cos 〈m ,n 〉|=|m·n||m||n |=1414, 即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414, 解得λ=12或λ=74(舍), ∴当点D 为A 1B 1中点时满足要求.。

2020版高考数学二轮复习 专题四立体几何与空间向量第3讲立体几何中的向量方法课件理

2020版高考数学二轮复习 专题四立体几何与空间向量第3讲立体几何中的向量方法课件理
立体几何与空间向量
立体几何中的向量方法
1
PART ONE
知识回顾
1.线、面的位置关系与向量的关系
设直线 l,m 的方向向量分别为 a=(a1,b1,c1),b=(a2,b2,c2).平面
α,β 的法向量分别为 μ=(a3,b3,c3),v=(a4,b4,c4).
□ (1)l∥m⇒a∥b⇔a=kb⇔____0_1__a_1=__k_a_2_,__b_1=__k_b_2_,__c1_=__k_c_2 ________; □ □ (2)l⊥m⇔a⊥b⇔a·b=___0_2_0__⇔____0_3__a_1_a_2+__b_1_b_2+__c_1_c_2=__0____; □ □ (3)l∥α⇔a⊥μ⇔a·μ=___0_4_0___⇔__0_5__a_1a_3_+__b_1_b_3+__c_1_c_3=__0_____;
核心知识回顾
真题VS押题
配套作业
□ (4)l⊥α⇔a∥μ⇔a=kμ⇔__0_6_a_1_=__k_a_3,__b_1_=__k_b_3,__c_1_=__kc_3____; □ (5)α∥β⇔μ∥v⇔μ=kv⇔__0_7__a_3=__k_a_4_,__b_3=__k_b_4_,__c_3=__k_c_4___; □ □ (6)α⊥β⇔μ⊥v⇔μ·v=__0_8_0__⇔____0_9__a_3a_4_+__b_3b_4_+__c_3c_4_=__0___.
又E→1E=-
23,12,-1,故E→1E·n1=0,又
E1E⊄平面
FCC1,
所以 E1E∥平面 FCC1.
核心知识回顾
真题VS押题
配套作业
(2)D→1A=( 3,-1,-2),D→1C=(0,2,-2), 设平面 D1AC 的法向量 n2=(a,b,c),

高考数学中利用空间向量解决立体几何的向量方法五在立体几何中综合应用ppt课件

高考数学中利用空间向量解决立体几何的向量方法五在立体几何中综合应用ppt课件

oD
量为 m (2 ,2 ,1 ) x A
显然有 mn
故 平面AEH∥平面BDGF
H C1 B1
y C B
二、 用空间向量处理“垂直”问 题设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则
线线垂直 l ⊥ m a ⊥ b a b 0 ; 线面垂直 l ⊥ a ∥ u a ku ;
线面平行 l ∥ a u a u 0 ;
面面平行 ∥ u ∥ v u kv.
注意:这里的线线平行包括线线重合,线面平行 包括线在面内,面面平行包括面面重合.
例1.在正方体
D1
ABCD-A1B1C1D1中,A1 P、Q分别是A1B1和
P
BC上的动点,且
A1P=BQ,M是AB1
M
的中点,N是PQ的
x=0 y= -2z
令z=1得, n=(0,-2,1)
显然有m n=0,即,mn 面AEF面ACF
练习2 已知ABCD是矩形,PD⊥平面
ABCD,PD=DC=a,AD= 2a ,
M、N分别是AD、PB的中点。
P
求证:平面MNC⊥平面PBC;
D M• A
N

C
B
小结:
利用向量的有关知识解决一些立体几何的问题,是 近年来很“热”的话题,其原因是它把有关的“证明” 转化为“程序化的计算” 。本课时讲的内容是立体几 何中的证明“线面平行、垂直”的一些例子,结合我们 以前讲述立体几何的其他问题(如:求角、求距离等), 大家从中可以进一步看出基中一些解题的“套路”。
高考数学中利用空间向量解决立体几何的向量方法五在立 体几何中综合应用ppt课件
前段时间我们研究了用空间向量求 角(包括线线角、线面角和面面角)、求 距离(包括线线距离、点面距离、线面 距离和面面距离)

2020版高三数学二轮复习(全国理)讲义:专题五 第三讲 用空间向量的方法解立体几何问题

2020版高三数学二轮复习(全国理)讲义:专题五   第三讲    用空间向量的方法解立体几何问题

第三讲用空间向量的方法解立体几何问题高考考点考点解读本部分内容在备考时应注意以下几个方面:(1)加强对空间向量概念及空间向量运算律的理解,掌握空间向量的加、减法,数乘、数量积运算等.(2)掌握各种角与向量之间的关系,并会应用.(3)掌握利用向量法求线线角、线面角、二面角的方法.预测2020年命题热点为:(1)二面角的求法.(2)已知二面角的大小,证明线线、线面平行或垂直.(3)给出线面的位置关系,探究满足条件的某点是否存在.Z知识整合hi shi zheng he1.向量法求空间角(1)异面直线所成的角:设a,b分别为异面直线a,b的方向向量,则两异面直线所成的角满足cosθ=|a·b||a||b|.(2)线面角设l是斜线l的方向向量,n是平面α的法向量,则斜线l与平面α所成的角满足sinθ=|c ·n ||c ||n |. (3)二面角①如图(ⅰ),AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.②如图(ⅱ)(ⅲ),n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.(4)点到平面的距离的向量求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离d =|AB →·n ||n |.2.利用向量方法证明平行与垂直设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4).(1)线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=k a 2,b 1=k b 2,c 1=k c 2. (2)线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. (3)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 3+b 1b 3+c 1c 3=0. (4)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=k a 3,b 1=k b 3,c =k c 3. (5)面面平行α∥β⇔μ∥v ⇔μ=k v ⇔a 3=k a 4,b 3=k b 4,c 3=k c 4. (6)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0. 3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a ·acos 〈a ,b(2)距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 |AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.Y 易错警示i cuo jing shi1.在建立空间直角坐标系时,易忽略说明或证明建系的条件.2.忽略异面直线的夹角与方向向量夹角的区别:两条异面直线所成的角是锐角或直角,与它们的方向向量的夹角不一定相等.3.不能区分二面角与两法向量的夹角:求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.1.(2018·全国卷Ⅰ,18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD . (2)求DP 与平面ABFD 所成角的正弦值.[解析] (1)由已知可得,BF ⊥PF ,BF ⊥EF ,PF ∩EF =F , 所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)方法一:作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF ―→的方向为y 轴正方向,设正方形ABCD 的边长为2,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3. 又PF =1,EF =2,故PE ⊥PF . 可得PH =32,EH =32. 则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0,DP ―→=⎝⎛⎭⎫1,32,32,HP ―→=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ,则sin θ==343=34.所以DP 与平面ABFD 所成角的正弦值为34. 方法二:因为PF ⊥BF ,BF ∥ED ,所以PF ⊥ED , 又PF ⊥PD ,ED ∩DP =D ,所以PF ⊥平面PED , 所以PF ⊥PE ,设AB =4,则EF =4,PF =2,所以PE =23, 过P 作PH ⊥EF 交EF 于H 点, 由平面PEF ⊥平面ABFD , 所以PH ⊥平面ABFD ,连接DH ,则∠PDH 即为直线DP 与平面ABFD 所成的角, 由PE ·PF =EF ·PH ,所以PH =23×24=3,因为PD =4,所以sin ∠PDH =PH PD =34,所以DP 与平面ABFD 所成角的正弦值为34.2.(2018·全国卷Ⅱ,20)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值.[解析] (1)因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC .(2)连接OM ,如图,以O 为坐标原点,OB ―→的方向为x 轴正方向,OC ―→的方向为y 轴正方向,OP ―→的方向为z 轴正方向,建立空间直角坐标系.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),Ap ―→=(0,2,23),取平面P AC 的法向量OB ―→=(2,0,0).设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ).由Ap ―→·n =0,AM ―→·n =0得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知得|cos 〈OB ―→,n 〉|=32.所以23|a -4|23(a -4)2+3a 2+a 2=32.解得a =-4(舍去),a =43.所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23), 所以cos 〈PC ―→,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. 3.(2018·北京卷,16)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC =5,AC =AA 1=2.(1)求证:AC ⊥平面BEF . (2)求二面角B -CD -C 1的余弦值. (3)证明:直线FG 与平面BCD 相交.[解析] (1)因为CC 1⊥平面ABC ,AC ⊂平面ABC , 所以CC 1⊥AC .在平行四边形A 1ACC 1中,E ,F 分别是AC ,A 1C 1的中点, 所以EF ∥CC 1, 所以AC ⊥EF .在△ABC 中,AB =BC ,E 是AC 的中点, 所以AC ⊥BE ,又因为AC ⊥EF ,BE ,EF ⊂平面BEF ,BE ∩EF =E , 所以AC ⊥平面BEF .(2)如图,建立空间直角坐标系E -xyz ,则E (0,0,0),A (1,0,0),B (0,2,0),C (-1,0,0),A 1(1,0,2),B 1(0,2,2),C 1(-1,0,2),D (1,0,1),F (0,0,2),G (0,2,1),显然EB ―→=(0,2,0)是平面CDC 1的一个法向量, 设m =(x ,y ,z )是平面BCD 的一个法向量, 又BC ―→=(-1,-2,0),BD ―→=(1,-2,1),所以⎩⎪⎨⎪⎧-x -2y =0,x -2y +z =0,不妨取y =1,则x =-2,z =4,所以平面BCD 的一个法向量为m =(-2,1,4), cos 〈EB ―→,m 〉==0+2×1+02×(-2)2+12+42=2121, 由图知,二面角B -CD -C 1为钝角, 所以,二面角B -CD -C 1的余弦值为-2121. (3)方法一:记CD ,EF 交点为I ,连接BI ,由(1)及已知,EF ∥CC 1,CC 1∥BB 1, 所以EF ∥BB 1,直线BG 与直线FI 共面, 又因为BG =12BB 1=12AA 1=A 1D ,A 1D <FI ,所以四边形BGFI 是梯形,直线FG 与直线BI 一定有交点, 又因为BI ⊂平面BCD ,FG ⊄平面BCD , 所以直线FG 与平面BCD 相交.方法二:反证法.显然FG ⊄平面BCD ,假设FG ∥平面BCD ,下面推出矛盾. 记CD ,EF 交点为I ,连接BI ,因为FG ∥平面BCD ,平面BCD ∩平面BGFI =BI , 所以FG ∥BI ,由(1)及已知,EF ∥CC 1,CC 1∥BB 1, 所以EF ∥BB 1,即BG ∥FI , 所以四边形BGFI 是平行四边形, 所以BG =FI ,而BG =12BB 1=12AA 1=A 1D <FI ,矛盾,所以直线FG 与平面BCD 相交.4.(2017·全国卷Ⅲ,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.[解析] (1)证明:由题设可得△ABD ≌△CBD , 从而AD =CD .又△ACD 是直角三角形,所以∠ADC =90°. 取AC 的中点O ,连接DO ,BO , 则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中 ,BO 2+AO 2=AB 2, 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度. 建立如图所示的空间直角坐标系O -xyz , 则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E (0,32,12), 故AD →=(-1,0,1),AC →=(-2,0,0),AE →=(-1,32,12). 设n =(x ,y ,z )是平面DAE 的法向量, 则⎩⎪⎨⎪⎧ n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0, 可取n =(1,33,1). 设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3), 则cos 〈n ,m 〉=n ·m |n ||m |=77.所以二面角D -AE -C 的余弦值为77.命题方向1 利用空间向量证明平行与垂直关系例1 (2018·济南二模)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD . (3)平面PCD ⊥平面P AD .[解析] 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0.所以BE ⊥DC . (2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥P A ,P A ∩AD =A , 所以AB ⊥平面P AD ,所以向量AB →=(1,0,0)为平面P AD 的法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面P AD . 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0), 设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0, 不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →.所以平面P AD ⊥平面PCD . 『规律总结』利用空间向量证明平行与垂直的方法与步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用向量表示出问题中所涉及的点、直线、平面的要素;(3)通过空间向量的运算研究平行、垂直关系; (4)根据运算结果解释相关问题. G 跟踪训练en zong xun lian如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB . (2)求证:平面P AD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E (12,1,12),F (0,1,12),EF →=(-12,0,0),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊄平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,。

(通用版)2020版高考数学复习专题五立体几何5.3空间向量课件理

(通用版)2020版高考数学复习专题五立体几何5.3空间向量课件理
依题意,������������=(1,0,0)是平面 ADE 的法向量,又������������=(0,2,h),可得������������ · ������������=0,又因为直线 BF⊄平面 ADE,所以 BF∥平面 ADE.
-9-
高考真题体验
典题演练提能
(2)解:依题意,������������ =(-1,1,0),������������ =(-1,0,2),������������ =(-1,-2,2). 设 n=(x,y,z)为平面 BDE 的法向量,
取 n=(1, 3,1),故 sin θ=|cos<������������·n>|=||������������������������|··|������������|| = 45.因此,直线 EF 与平面 A1BC 所成的角的余弦值为35.
-7-
高考真题体验
典题演练提能
2.(2019天津·17)
-4-
高考真题体验
典题演练提能
(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平 面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.
由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平 面A1BC上的射影在直线A1G上.
连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其 补角).
如图,AE⊥平面
ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.
(1)求证:BF∥平面ADE;
(2)求直线CE与平面BDE所成角的正弦值;
(3)若二面角E-BD-F的余弦值为
1 3
,求线段CF的长.
-8-

2020年高考数学(理科)大二轮复习课件:专题五 立体几何、立体几何中的向量方法

2020年高考数学(理科)大二轮复习课件:专题五 立体几何、立体几何中的向量方法

()
关闭
A.10 B.12
C.14 D.16
由三视图可还原出几何体的直观图如图所示.该五面体中有两个侧 面是全等的直角梯形,且该直角梯形的上底长为 2,下底长为 4,高为 关闭
2B,则 S 梯=(2+4)×2÷2=6,所以这些梯形的面积之和为 12.
解析 答案
核心归纳
-22-
规律总结
拓展演练
4.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正
6
1a3∶5a3=1∶5=1.
66
5
关闭
D
解析 答案
核心归纳
-20-
规律总结
拓展演练
2.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的
三视图,则该多面体的表面积为( )
A.18+36 5
B.54+18 5
C.90
关闭
由D题.81意知该几何体为四棱柱,且四棱柱的底面是边长为 3 的正方形,
(2017 全国Ⅱ,理 4) (201面7 全体国的Ⅲ切,接理问8)题中的
(2018 全国Ⅰ,理 7) (201有8 全关国几Ⅱ何,体理的16表) 面积、
(2018 全国Ⅲ,理 3) (201体8 全积国的Ⅲ考,查理又10是) 高考
的一个热点,难度不大,
主要以选择题、填空题
的形式考查.
复习策略
抓住考查的主 要题目类型进 行训练,重点有 三个:一是三视 图中的几何体 的形状及面积、 体积;二是求柱 体、锥体、台体 及球的表面积、 体积;三是求球 与多面体的相 切、接问题中的 有关几何体的 表面积、体积.
当 D 在 O 的正上方时, VD-ABC=13S△ABC·(R+|OO1|)=13 ×9 3 ×6=18 3,最大. 故选 B.

高考数学中利用空间向量解决立体几何的向量方法三ppt课件

高考数学中利用空间向量解决立体几何的向量方法三ppt课件

GEF的距离。
z
G
d|nBE| 2 11.
n
11
xD
C
F
A
E
B
y
练习3:
正方体AC1棱长为1,求BD与平面GB1D1的
距离
Z D1
DD 1 n C1 d
A1
B1
n
G D
A X
C Y
B
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C
与平面A1BC1的距离
Z D1
A1
B1
AD n C1 d n
ABC 是D正 方 SB 形 面 A ,BC ,DS 且A 与 面 ABC 所D成 的 45, 角S 点 为 到A 面BC 的D 距 离 1, 为A 求C 与 SD 的 距 离 。
z S
B
Ay
xC
D
结论1
点 P 到平面的距离可以通过,
在平面内任取一点 A,求向量PA在
平面的法向量n上的投影来解决.
P
n
则 d=| PO |= | PA | cos APO.
∵ PO ⊥ , n , ∴ PO ∥ n .
A O
∴cos∠APO=|cos PA, n |.
∴d=| PA||cos PA, n |= | PA | | n | | cos PA, n | = | PA n | .
|n|
|n|
n
N
A
方法指导:若点P为平面α外一点,点A为平面α内任 一点,平面的法向量为n,则点P到平面α的距离公式 为
如何用向量法求点到平面的距离:
如图 A, 空间一点 P 到平面 的距离为 d,已知平面 的
一个法向量为 n ,且 AP 与 n 不共线,能否用 AP 与 n 表示 d ?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题五 立体几何第3讲 用空间向量的方法解立体几何问题真题试做1.(2020·陕西高考,理5)如图,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ).A .55 B .53 C .255 D .352.(2020·四川高考,理14)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是__________.3.(2020·山东高考,理18)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.4.(2020·福建高考,理18)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.5.(2020·天津高考,理17)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,PA =AD =2,AC =1.(1)证明PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.考向分析从近几年的高考试题来看,高考对本专题的考查主要有以下几个方面:一是证明空间平行关系,如(2020福建高考,理18)的第(2)问;二是利用空间向量证明垂直关系,如(2020山东高考,理18)的第(1)问和(2020福建高考,理18)的第(1)问;三是利用空间向量求角,如(2020山东高考,理18)的第(2)问;(2020天津高考,理17)的第(2)问和(2020四川高考,理14),此类问题多以多面体为载体,常以解答题的形式出现,重在考查学生的空间想象能力.本专题是高考的必考内容之一,通常为一道综合题,常出现在几道解答题的中间位置,难度不是很大.在多数情况下,传统法、向量法都可以解决,但首先应考虑向量法,这样可以降低难度.预测在今后高考中,本部分内容仍旧主要以解答题的形式出现,难度为中档.考查内容仍旧是利用空间向量的数量积及坐标运算来解决立体几何问题,其中利用空间向量求空间角仍然是重点.热点例析热点一利用空间向量证明平行问题【例1】如图所示,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.规律方法利用空间向量证明平行问题的方法(1)线线平行:直线与直线平行,只需证明它们的方向向量平行.(2)线面平行:利用线面平行的判定定理,证明直线的方向向量与平面内一条直线的方向向量平行;利用共面向量定理,证明平面外直线的方向向量与平面内两条相交直线的方向向量共面;证明直线的方向向量与平面的法向量垂直.(3)面面平行:平面与平面的平行,除了利用面面平行的判定定理转化为线面平行外,只要证明两个平面的法向量平行即可.下面用符号语言表述为:设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).(1)线线平行:l∥m⇔a∥b⇔a=k b⇔a1=ka2,b1=kb2,c1=kc2.(2)线面平行:l∥α⇔a⊥u⇔a·u=0⇔a1a3+b1b3+c1c3=0.(3)面面平行:α∥β⇔u∥v⇔u=k v⇔a3=ka4,b3=kb4,c3=kc4.变式训练1 如图,已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.热点二利用空间向量证明垂直问题【例2】如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F,求证:(1)PA∥平面EDB;(2)PB⊥平面EFD.规律方法利用空间向量证明垂直问题的方法(1)线线垂直:直线与直线的垂直,只要证明两条直线的方向向量垂直.(2)线面垂直:利用线面垂直的定义,证明直线的方向向量与平面内的任意一条直线的方向向量垂直;利用线面垂直的判定定理,证明直线的方向向量与平面内的两条相交直线的方向向量垂直;证明直线的方向向量与平面的法向量平行.(3)面面垂直:平面与平面的垂直,除了用面面垂直的判定定理转化为线面垂直外,只要证明两个平面的法向量垂直即可.下面用符号语言表述为:设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).(1)线线垂直:l⊥m⇔a⊥b⇔a·b=0⇔a1a2+b1b2+c1c2=0.(2)线面垂直:l⊥α⇔a∥u⇔a=k u⇔a1=ka3,b1=kb3,c1=kc3.(3)面面垂直:α⊥β⇔u⊥v⇔u·v=0⇔a3a4+b3b4+c3c4=0.变式训练2 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长. 热点三 利用空间向量求角和距离【例3】如图所示,在三棱柱ABC -A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面AA 1B 1B ,且C 1H = 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1-B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长. 规律方法 (1)夹角计算公式 ①两条异面直线的夹角若两条异面直线a 和b 的方向向量分别为n 1,n 2,两条异面直线a 和b 所成的角为θ,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|.②直线与平面所成的角若直线a 的方向向量为a ,平面α的法向量为n ,直线a 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=⎪⎪⎪⎪⎪⎪a ·n |a ||n |.③二面角设n 1,n 2分别为二面角的两个半平面的法向量,其二面角为θ,则θ=〈n 1,n 2〉或θ=π-〈n 1,n 2〉,其中cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|.(2)距离公式①点点距离:点与点的距离,是以这两点为起点和终点的向量的模;②点线距离:点M 到直线a 的距离,设直线的方向向量为a ,直线上任一点为N ,则点M到直线a 的距离d =|MN u u u u r |sin 〈MN u u u u r,a 〉;③线线距离:两条平行线间的距离,转化为点线距离;两条异面直线间的距离,转化为点面距离或者直接求公垂线段的长度;④点面距离:点M 到平面α的距离,如平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN u u u u r ||cos 〈MN u u u u r ,n 〉|=||||MN ⋅u u u u rn n ;⑤线面距离:直线和与它平行的平面间的距离,转化为点面距离; ⑥面面距离:两平行平面间的距离,转化为点面距离.变式训练3 已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1为A 1C 1与B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan β=2tan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的高.热点四 用向量法解决探索性问题【例4】如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SE ∶EC 的值;若不存在,请说明理由.规律方法 (1)用空间向量解决立体几何问题的步骤及注意事项 ①建立空间直角坐标系,要写理由,坐标轴两两垂直要证明;②准确求出相关点的坐标(特别是底面各点的坐标,若底面不够规则,则应将底面单独抽出来分析),坐标求错将前功尽弃;③求平面法向量;④根据向量运算法则,求出三角函数值或距离; ⑤给出问题的结论.(2)利用空间向量巧解探索性问题空间向量最适合于解决这类立体几何中的探索性问题,它无需进行繁杂的作图、论证、推理,只需通过坐标运算进行判断.在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,所以使问题的解决更简单、有效,应善于运用这一方法解题.变式训练4 如图,平面PAD ⊥平面ABCD ,ABCD 为正方形,∠PAD =90°,且PA =AD =2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG ;(2)求异面直线EG 与BD 所成的角的余弦值;(3)在线段CD 上是否存在一点Q ,使得A 到平面EFQ 的距离为45?若存在,求出CQ 的值;若不存在,请说明理由.思想渗透转化与化归思想——利用向量解决空间位置关系及求角问题主要问题类型:(1)空间线面关系的证明; (2)空间角的求法;(3)存在性问题的处理方法. 求解时应注意的问题:(1)利用空间向量求异面直线所成的角时,应注意角的取值范围;(2)利用空间向量求二面角的平面角时,应注意观察二面角是钝角还是锐角.【典型例题】(2020·北京高考,理16)如图1,在Rt△ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.图1图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以DE ⊥A 1D ,DE ⊥CD . 所以DE ⊥平面A 1DC .所以DE ⊥A 1C . 又因为A 1C ⊥CD ,所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·1A B u u u r =0,n ·BE u u u r=0. 又1A B u u u r =(3,0,23-),BE u u u r=(-1,2,0),所以3230,20.x z x y ⎧-=⎪⎨-+=⎪⎩令y =1,则x =2,3z =.所以n =(2,1,3). 设CM 与平面A 1BE 所成的角为θ.因为CM u u u u r=(0,1,3),所以sin θ=|cos 〈n ,CM u u u u r 〉|=·||||CMCM u u u u ru u u u r n n =48×4=22,所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直. 理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D u u u u r =0,m ·DP u u u r=0. 又1A D u u u u r =(0,2,-23),DP u u u r=(p ,-2,0), 所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3,所以m =⎝ ⎛⎭⎪⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0,即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.1.已知AB u u u r=(1,5,-2),BC uuu r =(3,1,z ),若,AB BC BP ⊥u u u r u u u r u u u r =(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 的值分别为( ).A .337,-157,4B .407,-157,4C .407,-2,4D .4,407,-152.已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 在平面α内的是( ).A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.(2020·湖北武昌调研,7)已知E ,F 分别是正方体ABCD -A 1B 1C 1D 1棱BB 1,AD 的中点,则直线EF 和平面BDD 1B 1所成的角的正弦值是( ).A .26 B .36 C .13 D .664.在四面体PABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC 的距离为__________.5.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是__________.6.已知在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =4,AA 1=4,点M 是棱D 1C 1的中点.求直线AB 1与平面DA 1M 所成角的正弦值.7.(2020·江苏镇江模拟,22)在正方体ABCD -A 1B 1C 1D 1中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO .(1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若平面CDE ⊥平面CD 1O ,求λ的值.参考答案命题调研·明晰考向 真题试做 1.A 2.90°3.(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, 所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°. 因此∠ADB =90°,AD ⊥BD .又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED ,所以BD ⊥平面AED . (2)解法一:由(1)知AD ⊥BD ,所以AC ⊥BC . 又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,不妨设CB =1,则C (0,0,0),B (0,1,0),D ⎝⎛⎭⎪⎫32,-12,0,F (0,0,1),因此BD u u u r =⎝ ⎛⎭⎪⎫32,-32,0,BF u u ur =(0,-1,1).设平面BDF 的一个法向量为m =(x ,y ,z ),则m ·BD u u u r =0,m ·BF u u u r=0,所以x =3y =3z ,取z =1,则m =(3,1,1).由于CF uuu r =(0,0,1)是平面BDC 的一个法向量,则cos 〈m ,CF uuu r 〉=||||CFCF ⋅u u u ru u u r m m =15=55,所以二面角F -BD -C 的余弦值为55. 解法二:取BD 的中点G ,连接CG ,FG ,由于CB =CD , 因此CG ⊥BD .又FC ⊥平面ABCD ,BD ⊂平面ABCD , 所以FC ⊥BD .由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG .故BD ⊥FG .所以∠FGC 为二面角F -BD -C 的平面角.在等腰三角形BCD 中,由于∠BCD =120°,因此CG =12CB .又CB =CF ,所以GF =CG 2+CF 2=5CG ,故cos∠FGC =55,因此二面角F -BD -C 的余弦值为55.4.解:(1)以A 为原点,AB u u u r ,AD u u u r ,1AA u u ur 的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a2,1,0,B 1(a,0,1), 故1AD u u u u r =(0,1,1),1B E u u u r =⎝ ⎛⎭⎪⎫-a 2,1,-1,1AB u u u r =(a,0,1),AE u u u r =⎝ ⎛⎭⎪⎫a 2,1,0.∵11AD B E ⋅u u u u r u u u r =-a2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP u u u r=(0,-1,z 0).又设平面B 1AE 的法向量n =(x ,y ,z ). ∵n ⊥平面B 1AE ,∴n ⊥1AB u u u r ,n ⊥AE u u u r ,得⎩⎪⎨⎪⎧ax +z =0,ax2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a2,-a .要使DP ∥平面B 1AE ,只要n ⊥DP u u u r ,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴1AD u u u u r 是平面A 1B 1E 的一个法向量,此时1AD u u u u r=(0,1,1). 设1AD u u u u r与n 所成的角为θ,则cos θ=11||||AD AD ⋅u u u u r u u u u r n n =-a 2-a 21+a 24+a2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos 30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.5.解法一:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝ ⎛⎭⎪⎫-12,12,0,P (0,0,2). (1)证明:易得PC uuu r =(0,1,-2),AD u u u r=(2,0,0),于是0PC AD⋅u u u r u u u r=, 所以PC ⊥AD .(2)PC uuu r =(0,1,-2),CD uuu r=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则0,0,PC CD ⎧⋅⎪⎨⋅⎪⎩u u u r u u u r==n n 即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m ·n |m ||n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2],由此得BE u u u r =⎝ ⎛⎭⎪⎫12,-12,h .由CD uuu r=(2,-1,0),故cos 〈BE u u u r ,CD uuu r 〉||||BE CDBE CD ⋅u u u r u u u ru u ur u u u r = =3212+h 2×5=310+20h 2, 所以310+20h2=cos 30°=32, 解得h =1010,即AE =1010. 解法二:(1)证明:由PA ⊥平面ABCD ,可得PA ⊥AD ,又由AD ⊥AC ,PA ∩AC =A ,故AD ⊥平面PAC .又PC ⊂平面PAC ,所以PC ⊥AD .(2)如图,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH .因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt△PAC 中,PA =2,AC =1,由此得AH =25.由(1)知AD ⊥AH ,故在Rt△DAH 中,DH =AD 2+AH 2=2305.因此sin∠AHD =AD DH =306. 所以二面角A -PC -D 的正弦值为306. (3)如图,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由于BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD sin ∠ADC =15,故sin∠AFB =15.在△AFB 中,由BF sin∠FAB =AB sin∠AFB ,AB =12,sin∠FAB =sin 135°=22,可得BF =52.由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos∠FAB ,可得AF =12.设AE =h ,在Rt△EAF 中,EF =AE 2+AF 2=h 2+14.在Rt△BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理,得cos 30°=BE 2+BF 2-EF 22BE ·BF .可解得h =1010.所以AE =1010.精要例析·聚焦热点热点例析【例1】证明:设11C B u u u u r=a ,11C D u u u u r =b ,1C C u u u u r =c ,因为B 1BCC 1为平行四边形,所以1B C u u u r=c -a .又O 是B 1D 1的中点,所以1C O u u u u r =12(a +b ),1OD u u u u r =11C D u u u u r -1C O u u u u r =b -12(a +b )=12(b -a ).因为D 1D C 1C ,所以1D D u u u u r=c ,所以11OD OD D D u u u r u u u u r u u u u r ===12(b -a )+c .若存在实数x ,y ,使11B C xOD yOC u u u r u u u r u u u u r=+(x ,y ∈R )成立,则 c -a =x ⎣⎢⎡⎦⎥⎤12(b -a )+c +y ⎣⎢⎡⎦⎥⎤-12(a +b )=-12(x +y )a +12(x -y )b +x c .因为a ,b ,c 不共线,所以⎩⎪⎨⎪⎧12(x +y )=1,12(x -y )=0,x =1,所以⎩⎪⎨⎪⎧x =1,y =1,所以11B C OD OC u u u r u u u r u u u u r=+,所以1B C u u u r ,OD u u u r ,1OC u u u u r是共面向量.因为1B C u u u r 不在OD u u u r ,1OC u u u u r 所确定的平面ODC 1内,所以1B C u u u r∥平面ODC 1,即B 1C ∥平面ODC 1. 【变式训练1】证明:如图建立空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). (1)取AB 中点为N ,则N (2,0,0),C (0,4,0),D (2,0,2),∴DE u u u r=(-2,4,0),NC u u u r =(-2,4,0),∴DE u u u r =NC u u ur ,∴DE ∥NC .又NC 在平面ABC 内, ∴DE ∥平面ABC .(2)1B F u u u u r =(-2,2,-4),EF u u u r =(2,-2,-2),AF u u u r=(2,2,0), 1B F EF ⋅u u u u r u u u r =(-2)×2+2×(-2)+(-4)×(-2)=0,则1B F u u u u r ⊥EF u u u r,∴B 1F ⊥EF , ∵1B F u u u u r ·AF u u u r =(-2)×2+2×2+(-4)×0=0,∴1B F u u u u r ⊥AF u u u r,即B 1F ⊥AF .又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .【例2】 证明:如图所示建立空间直角坐标系,D 为坐标原点,设DC =a .(1)连接AC 交BD 于G ,连接EG .依题意得A (a,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫0,a 2,a 2.∵底面ABCD 是正方形, ∴G 是此正方形的中心,∴点G 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,0,PA u u u r =(a,0,-a ),EG u u u r =⎝ ⎛⎭⎪⎫a 2,0,-a 2,∴PA u u u r=2EG u u u r ,则PA ∥EG .而EG ⊂平面EDB 且PA ⊄平面EDB , ∴PA ∥平面EDB .(2)依题意得B (a ,a,0),PB u u u r=(a ,a ,-a ). 又DE u u u r =⎝ ⎛⎭⎪⎫0,a 2,a 2,∴PB u u u r ·DE u u u r =0+a 22-a 22=0,∴PB ⊥DE .由已知EF ⊥PB ,且EF ∩DE =E , ∴PB ⊥平面EFD .【变式训练2】解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为PA ⊥平面ABCD ,所以PA ⊥BD . 又PA ∩AC =A ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0),所以PB u u u r=(1,3,-2),AC u u u r =(0,23,0).设PB 与AC 所成角为θ,则cos θ=||||PB ACPB AC ⋅u u u r u u u ru u u r u u u r =622×23=64. (3)由(2)知BC uuu r=(-1,3,0).设P (0,-3,t )(t >0),则BP u u u r=(-1,-3,t ).设平面PBC 的法向量m =(x ,y ,z ),则BC uuu r ·m =0,BP u u u r·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0.令y =3,则x =3,z =6t.所以m =⎝ ⎛⎭⎪⎫3,3,6t .同理,平面PDC 的法向量 n =⎝ ⎛⎭⎪⎫-3,3,6t .因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t2=0,解得t =6,所以PA = 6.【例3】解:如图所示,建立空间直角坐标系,点B 为坐标原点.依题意得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC u u u r =(-2,-2,5),11A B u u u u r=(-22,0,0),于是cos 〈AC u u u r ,11A B u u u u r 〉=1111||||AC A B AC A B ⋅u u u r u u u u ru u u r u u u u r =43×22=23. 所以异面直线AC 与A 1B 1所成角的余弦值为23. (2)易知1AA u u u r =(0,22,0),11AC u u u u r=(-2,-2,5).设平面AA 1C 1的法向量m =(x ,y ,z ),则11100.A C AA ⎧⋅⎪⎨⋅⎪⎩u u u u r u u u r ==m m即⎩⎨⎧ -2x -2y +5z =0,22y =0.不妨令x =5,可得m =(5,0,2).同样地,设平面A 1B 1C 1的法向量n =(r ,p ,q ),则111100AC A B ⎧⋅⎪⎨⋅⎪⎩u u u u r u u u u r ==n n 即⎩⎨⎧-2r -2p +5q =0,-22r =0.不妨令p =5,可得n =(0,5,2).于是cos 〈m ,n 〉=m ·n |m ||n |=27·7=27,从而sin 〈m ,n 〉=357.所以二面角A -A 1C 1-B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N ⎝ ⎛⎭⎪⎫22,322,52.设M (a ,b,0), 则MN u u u u r =⎝ ⎛⎭⎪⎫22-a ,322-b ,52.由MN ⊥平面A 1B 1C 1,得111100.MN A B MN AC ⎧⋅⎪⎨⋅⎪⎩u u u u r u u u u r ==即⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫22-a ·(-22)=0,⎝ ⎛⎭⎪⎫22-a ·(-2)+⎝ ⎛⎭⎪⎫322-b ·(-2)+52·5=0.解得⎩⎪⎨⎪⎧a =22,b =24,故M ⎝⎛⎭⎪⎫22,24,0, 因此BM u u u u r =⎝ ⎛⎭⎪⎫22,24,0.所以线段BM 的长|BM u u u u r |=104.【变式训练3】解:设正四棱柱的高为h . (1)证明:连接AO 1,AA 1⊥底面A 1B 1C 1D 1于A 1,∴AB 1与底面A 1B 1C 1D 1所成的角为∠AB 1A 1,即∠AB 1A 1=α. ∵AB 1=AD 1,O 1为B 1D 1的中点, ∴AO 1⊥B 1D 1.又A 1O 1⊥B 1D 1,四边形A 1B 1C 1D 1是正方形,∴∠AO 1A 1是二面角A -B 1D 1-A 1的平面角,即∠AO 1A 1=β.∴tan α=AA 1A 1B 1=h ,tan β=AA 1A 1O 1=2h . ∴tan β=2tan α.(2)建立如图空间直角坐标系,有A (0,0,h ),B 1(1,0,0),D 1(0,1,0),C (1,1,h ),∴1AB u u u r =(1,0,-h ),1AD u u u u r=(0,1,-h ),AC u u u r =(1,1,0). 设平面AB 1D 1的一个法向量为n =(x ,y ,z ).∵11n AB n AD ⎧⊥⎪⎨⊥⎪⎩u u u u r u u u u r ,⇔1100.AB AD ⎧⋅⎪⎨⋅⎪⎩u u u r u u u u r ==n n 取z =1,得n =(h ,h,1),∴点C 到平面AB 1D 1的距离为d =||||AC ⋅u u u rn n =|h +h +0|h 2+h 2+1=43,则h =2. 【例4】(1)证明:连接BD ,设AC 交BD 于点O ,连接SO .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB,OC ,OS 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz .设底面边长为2,则高SO =6,∴S (0,0,6),D (-2,0,0),C (0,2,0).∴OC u u u r =(0,2,0),SD u u u r=(-2,0,-6). ∴OC u u u r ·SD u u u r=0,故OC ⊥SD ,即AC ⊥SD .(2)解:由题意知,平面PAC 的一个法向量DS uuu r=(2,0,6),平面DAC 的一个法向量为OS u u u r =(0,0,6),设所求的二面角为θ,则cos θ=·||||OS DSOS DS u u u r u u u ru u ur u u u r =32. 故所求二面角的大小为30°. (3)解:在侧棱SC 上存在一点E ,使BE ∥平面PAC .由(2)知DS uuu r是平面PAC 的一个法向量,且DS uuu r =(2,0,6),CS u u u r=(0,-2,6).设CE u u u r =t CS u u u r ,则BE u u u r =BC uuu r +BE u u u r =(-2,2(1-t ),6t ),而BE u u u r ·DS uuur =0⇒t=13, 从而当SE ∶EC =2∶1时,BE u u u r ⊥DS uuur ,又BE 不在平面PAC 内,故BE ∥平面PAC .【变式训练4】解:∵平面PAD ⊥平面ABCD ,而∠PAD =90°, ∴PA ⊥平面ABCD .而ABCD 是正方形,即AB ⊥AD,故可建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:∵PB u u u r =(2,0,-2),FE u u u r=(0,-1,0),FG u u u r =(1,1,-1),设平面EFG 的法向量为n 0=(x 0,y 0,z 0).∴0000FE FG ⎧⋅⎪⎨⋅⎪⎩u u u r u u u r ==n n ∴⎩⎪⎨⎪⎧-y 0=0,x 0+y 0-z 0=0.令x 0=1,则⎩⎪⎨⎪⎧x 0=1,y 0=0,z 0=1,∴n 0=(1,0,1).又∵PB u u u r·n 0=2×1+0+(-2)×1=0, ∴PB u u u r⊥n 0.又∵PB ⊄平面EFG , ∴PB ∥平面EFG .(2)∵EG u u u r =(1,2,-1),BD u u u r=(-2,2,0),∴cos 〈EG u u u r ,BD u u u r 〉=||||EG BDEG BD ⋅u u u r u u u ru u ur u u u r =36, 故异面直线EG 与BD 所成的角的余弦值为36. (3)假设在线段CD 上存在一点Q 满足题设条件,令CQ =m (0≤m ≤2),则DQ =2-m , ∴点Q 的坐标为(2-m,2,0),∴EQ uuu r=(2-m,2,-1). 而EF u u u r=(0,1,0),设平面EFQ 的法向量为n =(x ,y ,z ),∴(,,)(0,1,0)0,(,,)(2,2,1)0,EF x y z EQ x y z m ⎧⋅⋅⎪⎨⋅⋅--⎪⎩u u u r u u u r ====n n ∴⎩⎪⎨⎪⎧y =0,(2-m )x +2y -z =0.令x =1,则n =(1,0,2-m ),∴点A 到平面EFQ 的距离d =||||AE ⋅u u u rn n=|2-m |1+(2-m )2=45,即(2-m )2=169, ∴m =23或m =103>2不合题意,舍去,故存在点Q ,当CQ =23时,点A 到平面EFQ 的距离为45.创新模拟·预测演练1.B 2.A 3.B 4.33a 5.666.解:建立如图所示的空间直角坐标系,可得有关点的坐标为D (0,0,0),A (4,0,0),B (4,2,0),C (0,2,0),A 1(4,0,4),B 1(4,2,4),C 1(0,2,4),D 1(0,0,4),∴M (0,1,4).∴DM u u u u r=(0,1,4),1DA u u u u r =(4,0,4),1AB u u u r =(0,2,4).设平面DA 1M 的法向量为n =(x ,y ,z ),∴1=0=0DM DA ⎧⋅⎪⎨⋅⎪⎩u u u u r u u u u rn n 即⎩⎪⎨⎪⎧y +4z =0,4x +4z =0.取z =-1,得x =1,y =4.∴平面DA 1M 的一个法向量为n =(1,4,-1). 设直线AB 1与平面DA 1M 所成角为θ,∴sin θ=11||||||AB AB ⋅u u u r u u u r n n =1015,∴直线AB 1与平面DA 1M 所成角的正弦值为1015. 7.解:(1)不妨设正方体的棱长为1,以DA u u u r ,DC u u u r ,1DD u u u u r为单位正交基底,建立如图所示的空间直角坐标系D -xyz ,则A (1,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,C (0,1,0),D 1(0,0,1),E ⎝ ⎛⎭⎪⎫14,14,12, 于是DE u u u r =⎝ ⎛⎭⎪⎫14,14,12,1CD u u u ur =(0,-1,1).由cos 〈DE u u u r ,1CD u u u u r 〉=11||||DE CD DE CD ⋅u u u r u u u u ru u ur u u u u r =36, 所以异面直线DE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的法向量为m =(x 1,y 1,z 1),由m ·CO uuu r =0,m ·1CD u u u u r=0,得⎩⎪⎨⎪⎧12x 1-12y 1=0,-y 1+z 1=0,取x 1=1,得y 1=z 1=1,得m =(1,1,1). 由D 1E =λEO ,则E ⎝ ⎛⎭⎪⎫λ2(1+λ),λ2(1+λ),11+λ, DE u u u r =⎝ ⎛⎭⎪⎫λ2(1+λ),λ2(1+λ),11+λ.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD uuu r =0,n ·DE u u u r=0,得⎩⎪⎨⎪⎧y 2=0,λx 22(1+λ)+λy 22(1+λ)+z 21+λ=0,取x 2=2,得z 2=-λ,即n =(2,0,-λ).因为平面CDE ⊥平面CD 1F , 所以m ·n =0,得λ=2.。

相关文档
最新文档