高二数学课件 解三角形复习
高二 数学 人教版 解三角形复习【精编版】
解三角形【考点概述】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能运用正弦、余弦定理等知识和方法解决一些与几何计算和测量有关的实际问题.【重点难点】三角形中的边角互化、一解两解问题以及动态最值问题.【知识要点】: 1、 正弦定理:CcB b A a sin sin sin ===2R 正弦定理的变形:sin :sin :sin ::A B C a b c =利用正弦定理,可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和一角.(2)已知两边和其中一边对角,求另一边的对角,进而求出其他的边和角. 2、余弦定理:=2a A bc cb cos 222-+; cosA =bca cb 2222-+ =2b B ac c a cos 222-+; cosB =acb c a 2222-+ =2c C ab b a cos 222-+; cosC =abc b a 2222-+ 利用余弦定理,可以解决以下三类有关三角形的问题: (1)已知三边,求三个角.(2)已知两边和它们的夹角,求第三边和其他两个角. (3)已知两边和其中一边对角,求第三边和其他两个角. 3、三角形的面积公式:C ab S ABC sin 21=∆=A bc B ac sin 21sin 21=.【基础训练】1、在中,已知,,,求= .2、在中,若sinA ︰sinB ︰sinC =5︰7︰8,则B = . 4、在ABC ∆中,已知a ,b ,c 分别是角A 、B 、C 的对边,若,cos cos AB b a =则ABC ∆的形状是 .ABC △2AC =3BC =4cos 5A =-sin B ABC ∆【典例分析】:例1、(1)在A B C ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =3,b =32,A =30°,则B = . 变式1:在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =32,A =30°,则边c = .变式2:在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,已知a =33,b =32,A =30°,则B 有几解?例2:在中,分别是角的对边,且. (Ⅰ)求角的大小;(Ⅱ)当a =6时,求其面积的最大值,并判断此时的形状.例3:如图:在中,若4,7b c ==,BC 的中点为D ,且72AD =,求cos A .【巩固练习】1、在△ABC 中,若b = 1,c,则a= . 2、某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人根据上述条件,下列说法正确的是( ).(1)不能作出这样的三角形 (2)可作出一个锐角三角形 (3)可作出一个直角三角形 (4)可作出一个钝角三角形ABC ∆c b a ,,C B A ,,2sin 2)2cos(12CB A +=++πA ABC ∆ABC ∆23C π∠=3、一质点受到平面上的三个力(单位:牛顿)的作用而处于平衡状态.已知,成角,且,的大小分别为2和4,则的大小为 .4、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,bA +C =2B ,则sinC =5、在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2,若△ADC的面积为3, 则∠BAC =______ .6.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B.7.[2014·全国新课标卷Ⅰ] 如图13,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN=60°,C 点的仰角∠CAB =45°,以及∠MAC=75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图138.[2014·新课标全国卷Ⅰ] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b)·(sin A -sin B)=(c -b)sin C ,则△ABC 面积的最大值为________.9. [2015·新课标全国卷Ⅰ]在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是123,,F F F 1F 2F 0601F 2F 3F10.[2015·新课标全国卷Ⅰ](本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若90B =,且a =求ABC ∆的面积.11.根据下列条件,判断三角形的形状. (1)CcB b A a cos cos sin == (2)cos cos b A a B ⋅=⋅ (3)cos cos a A b B ⋅=⋅12. 在ABC ∆中,sin sin sin a b Ba B A+=-,且cos()cos 1cos 2A B C C -+=-,试判断ABC ∆的形状13.已知在ABC ∆中,()sin sin cos sin 0A B B C +-=,sin cos20B C +=,求角A B C 、、的大小.14.在ABC ∆中,c =b a >,C=4π,且有tan tan 6A B ⋅=,试求a b 、及此三角形的面积.作业(共40分,限时25分钟)1、(5分)在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=则角A 的大小为2、(5分)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 .3、(5分)满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是4、(5分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -=, sinC =,则A = .5. (5分)ABC ∆中,A B 、的对边分别是 a b 、,且A =60 ,a b ==那么满足条件的ABC∆为( )A.有一个解B.有两个解C.无解D.不能确定 6. (5分)某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人( ) A.不能作出这样的三角形 B.能作出一个锐角三角形 C.能作出一个直角三角形 D.能作出一个钝角三角形7. (5分)在ABC ∆中,内角A B C 、、的对边分别是a b c 、、,若22a b -=,sin C B =,则A =( )A.30B.60C.120D.1508. (5分)在ABC ∆中,满足22(cos cos )()cos a b B c C b c A -=-,则三角形的形状是 .老师相信你可以做得很好的! 教师评语。
人教新课标版数学高二-数学必修5第一章《解三角形》知识整合
数学·必修5(人教A版)一、本章的中心内容是如何解三角形.正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章的学习应当达到以下学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际生活问题.3.本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.在初中,学生已经学习了相关边角关系的定性知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全等”.“在任意三角形中有大边对大角,小边对小角”的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形”.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.4.在此内容之前我们已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,用了向量的方法,发挥了向量方法在解决问题中的威力.5.勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.二、学数学的最终目的是应用数学.能把实际问题抽象成数学问题,把所学的数学知识应用到实际问题中去,通过观察、分析、归纳、类比、抽象、概括、猜想等发现问题,确定解决问题的科学思维方法,学会把数学知识应用于实际.1.正弦定理可建立边角关系,角的正弦越大所对的边就越长.2.由正弦值得出角的大小时特别要注意是一个解还是两个解.一般地,解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.3.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角.4.把a=k sin A,b=k sin B代入已知等式可将边角关系全部转化为三角函数关系.5.余弦定理是三角形边角之间的共同规律,勾股定理是余弦定理的特例.6.余弦定理的应用范围是:①已知三边,求三角;②已知两边及一个内角,求第三边.7.已知两边及其中一边所对的角用余弦定理时可能有两个解,注意用三边特点取舍.解决实际测量问题一般要充分理解题意,正确作出图形,从中抽象出一个或几个三角形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,然后解三角形,得到实际问题的解.8.解斜三角形应用题的一般步骤.(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.(4)检验:检验上述所求的解是否有实际意义,从而得出实际问题的解.9.平面上两点的距离测量问题一般有如下几类情况:(1)A、B两点都在河的两岸,一点可到达,另一点不可到达.方法是可到达一侧再找一点进行测量.(2)A、B两点都在河的对岸(不可到达).方法是在可到达一侧找两点进行测量.(3)A、B两点不可到达(如隔着一座山或建筑).方法是找一点可同时到达A、B两点进行测量.10.利用正弦定理和余弦定理来解高度问题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.11.测量高度的一般方法是选择能观察到测量物体的两点,分别测量仰角或俯角,同时测量出两个观测点的距离,再利用解三角形的方法进行计算.12.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理、余弦定理求出需要的元素,就可以求出三角形的面积.13.利用正弦定理、余弦定理、面积公式将已知条件转化为方程组是解决复杂问题的常见思路,将方程化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系.14.许多试题既可用正弦定理也可用余弦定理解决,甚至可以两者兼用,当一个公式求解受阻时要及时考虑其他公式列式.15.本章问题的高考要求不高,学习时要立足基本问题,熟练掌握测量的一般技巧,正确使用定理列方程求解,无须过多延伸与拓广.题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a .解析:如图,设CD =DB =x ,在△ACD 中,cos C =72+x 2-⎝ ⎛⎭⎪⎫7222×7×x ,在△ACB 中,cos C =72+(2x )2-422×7×2x, 所以72+x 2-⎝ ⎛⎭⎪⎫7222×7×x =72+(2x )2-422×7×2x. 解得x =92. 所以a =2x =2×92=9.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.解析:由余弦定理得BD 2=22+22-2×2×2cos 120°=12,∴BD =2 3.∵BC =CD =2,C =120°,∴∠CBD =30°,∴∠ABD =90°,∴S 四边形ABCD =S △ABD +S △BCD=12×4×23sin 90°+12×2×2×sin 120°=5 3. 答案:5 3题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin(A -B )=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解析:解法一:由正弦定理可得2sin B =sin A +sin C ,∵B =60°,∴A +C =120°,A =120°-C ,将其代入上式,得2sin 60°=sin(120°-C )+sin C ,展开整理,得32sin C +12cos C =1,∴sin(C +30°)=1,∴C +30°=90°.∴C =60°,故A =60°,∴△ABC 是正三角形.解法二:由余弦定理可得b 2=a 2+c 2-2ac cos B ,∵B =60°,b =a +c 2, ∴⎝ ⎛⎭⎪⎪⎫a +c 22=a 2+c 2-2ac cos 60°. ∴(a -c )2=0,∴a =c ,∴a =b =c ,∴△ABC 为正三角形.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A =b sin B,得sin B =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?解析:由正弦定理a sin A =b sin B得: ①当b sin A <a <b 时,有两解,此时23<b <43;②当a ≥b 时或B 为90°(b 为斜边)时,有一解,此时b ≤23或b =43;③当a <b sin A 时无解,此时b >4 3.题型4 正、余弦定理在实际问题中的应用如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解析:如下图,作DM ∥AC 交BE 于N ,交CF 于M ,高中数学-打印版精校版DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130, EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理得:cos ∠DEF =DE 2+EF 2-DF 22DE ×EF =1302+1502-102×2982×130×150=1665.。
高二数学 解三角形和不等式
1 1 x2y x2y 3 2y x 32 2
xy x
y
xy
当且仅当 2 y x .再由 x+2y=1 解得 xy
x 2 1, y 1 2 . 2
1、若 1 < 1 < 0 ,则下列结论不正确的是( D )
ab
A. a2 <b2
B. ab<b2
C. b a >2 ab
3
3
Q 如图可知,当直线y - 2 x z 33
经过可行域上的点M时,直线在
y轴上的截距 z 最大,即z最大 3
解方程组
x 2y 8 3x y 9
得
x
y
2 3
,即
M
2,3
所以zmax=2x+3y=4+9=13=1.3(万元)
答:每天应生产A型桌子2张,B型桌子3张才能获
最大利润1.3万元。
2、若 logx 2 log y 2 0,则下列不等式中成立的是( D)
1
A. x 2
1
y2
B.
( 1 )x y 3
3 x y
C. ( 1 )1 x 3 1 y
3
D.
( 1 )1 x 3
3 1 y
log x 2 log y 2 0 ? 1 x y ?
1、已知 a b 0, c d 0 ,那么下列判断中
B
C
基本不等式的变形:
a2 b2 2ab ab a2 b2 2
a b 2 ab ab a b 2
ab ( a b )2 a2 b2
2
2
4. 目标函数 z 2x y ,变量 x, y 满足
x 4y 3 0
3x 5 y 25 ,则有 ( C ) y
人教版高二数学必修5高二解三角形期中复习题及答案
高二数学期中复习(1)《解三角形》一、 选择题(每小题5分,满分60分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60°D .60°或1202.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若a =,2A B =,则cos B =( )3.长为5、7、8的三角形的最大角与最小角之和为 ( ) A 90° B 120° C 135° D 150°4.不解三角形,下列判断正确的是( )A.7a =,14b =,30A =,有两解 B.30a =,25b =,150A =,有一解 C.6a =,9b =,45A =,有两解 D.9b =,10c =,60B =,无解 5. 已知锐角三角形三边分别为3,4,a ,则a 的取值范围为( )A .15a <<B .17a <<C 5a <<D 7a << 6.在ABC ∆中,若2sin sin cos2AB C =,则ABC ∆是( ) A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形7. 在ABC ∆中,A ∠=600,AB =2,且ABC S ∆=,则BC 边的长为( )A B .3 C D . 8.ABC ∆ 中,1,2==c a 则C 角的取值范围是( ) A .⎥⎦⎤⎝⎛6,0π B. ⎥⎦⎤⎢⎣⎡3,6ππ C. ⎪⎭⎫⎢⎣⎡2,3ππ D. ⎪⎭⎫⎝⎛ππ,2 9. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( )A13 B 12 C 34D 0 10.如果满足60=∠ABC ,12=AC ,k BC =的△ABC 恰有一个,那么k 的取值范围是( )A .38=kB .120≤<kC .12≥kD .120≤<k 或38=k11.在ABC ∆中,3A π=,3BC =,则ABC ∆的周长为( )A.)33B π++B.)36B π++ C.6sin()33B π++ D.6sin()36B π++ 12.如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A .)sin(sin sin αββα-a B .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-aD .)cos(sin cos βαβα-a二、填空题(每小题4分,满分16分)13、若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,则它的内切圆半径等于________14、在ABC ∆中,2,3,AB BC AC ===ABC ∆外接圆半径R = 15.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若,,a b c 成等差数列,30,B =ABC ∆的面积为32,则b =____. 16、如图,测量河对岸的塔高AB 时,可以选与 塔底B 在同一水平面内的两个测点C 与D .测得00153030BCD BDC CD ∠=∠==,,米,并在点C 测得塔顶A 的仰角为060, 则塔高AB= 米。
高二数学必修五 第一章 解三角形
高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
高二数学解三角形:正弦、余弦定理苏教版知识精讲
高二数学解三角形:正弦、余弦定理苏教版【本讲教育信息】一. 教学内容:解三角形:正弦、余弦定理二. 教学目标:1. 能够应用正、余弦定理进行边角关系的相互转化;2. 能够利用正、余弦定理判断三角形的形状;3. 能够利用正、余弦定理证明三角形中的三角恒等式;4. 会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法。
三. 知识要点:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,其比值为外接圆的直径。
即R C c B b A a 2sin sin sin ===(其中R 表示三角形的外接圆半径) 利用正弦定理,可以解决以下两类有关三角形的问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角。
(从而进一步求出其他的边和角)已知a ,b 和A ,用正弦定理求B 时的各种情况:⑴若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a⑵若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a2. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
第一形式,2b =B ac c a cos 222-+,第二形式,cosB =ac b c a 2222-+ 利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角。
3. 两内角与其正弦值:在△ABC 中,B A B A sin sin <⇔<,…4. 三内角与三角函数值的关系:在△ABC 中sin(A+B)=sinC cos(A+B) -cosC tan(A+B) -tanC ==2cos 2sin C B A =+ 2sin 2cos C B A =+ tan cot 22A B C += tan tan tan tan tan tan A B C A B C ++=⋅⋅解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。
高二数学解三角形和不等式
4、小明在某岛上的 A 处,上午 11 时测得在 A 的北偏东 600 的 C 处有一艘轮船,12 时 20 分时测得该船航行到北偏西 600 的 B 处,12 时 40 分时又测得轮船到达位于 A 正西方 5 千米 的港口 E 处,如果该船始终保持匀速直线运动,求: (1)点 B 到 A 的距离; (2)船的航行速度。
3 m 1 4 三角形的三条边长,那么 m 的取值范围是________.
4. 目标函数 z 2 x y ,变量 x, y 满足
x 4 y 3 0 y 3 x 5 y 25 ,则有 ( ) C x 1 3x+5y-25=0
A. z max 12, z min 3 B. z max 12, z 无最小值 C. z min 3, z 无最大值 D. z 既无最大值,也无最小值
400 A、 3
400 3 B、 3
A
30o
200 3 C、 3
E
60o
200 D、 3
200 m
D
B
C
基本不等式的变形:
a b a b 2ab ab 2 ab a b 2 ab ab 2 2 2 ab 2 a b ab ( ) 2 2
2 2 2
2
;
C
E
5
A
(2)∵在 ABE 中,由余弦定理得
BE 2 AB 2 AE 2 2 AB AE cos30 16 4 3 3 31 25 2 5 3 3 2 3 93 BE 3
31 20 所以轮船速度是 93 (千米/小时) 3 60
C
4x x
D
C
A
高中数学必修5高中数学复习课《解三角形》PPT
题型分析 高考展望
正弦定理和余弦定理是解三角形的工具,而解三角 形问题是高考每年必考的热点问题之一.命题的重点 主要有三个方面:一是以斜三角形为背景求三角形 的基本量、求三角形的面积、周长、判断三角形形 状等;二是以实际生活为背景,考查解三角形问题; 三是与其他知识的交汇性问题,此类试题一直是命 题的重点和热点.(本节课复习一、三,二应用下节 课复习)
点评
解析答案
变式训练 1 设△ABC 的内角 A,B,C 的对边分别为 a,b,c,且 bsin A = 3acos B. (1)求角B的大小;
解 ∵bsin A= 3acos B,
由正弦定理得 sin Bsin A= 3sin Acos B.
在△ABC中,sin A≠0,
即得 tan B= 3.
(1)若a2-c2=b2-mbc,求实数m的值;
解
f(x)=2cos
2x(
3cos
2x-sin
2x)=2
3cos22x-2sin
2xcos
x 2
= 3+ 3cos x-sin x= 3+2sin(π3-x),
由 f(A)= 3+1,可得 3+2sin(π3-A)= 3+1,
所以 sin(π3-A)=12.
∵B∈(0,π),∴B=π3.
解析答案
(2)若b=3,sin C=2sin A,求a,c的值. 解 ∵sin C=2sin A,由正弦定理得c=2a, 由余弦定理b2=a2+c2-2accos B,
即 9=a2+4a2-2a·2acos π3, 解得 a= 3,∴c=2a=2 3.
解析答案
2.设 G 是△ABC 的重心,且 7sin A·G→A+3sin B·G→B+3 7sin C·G→C=0,则角 B 的大小为_______.
《高二数学解三角形》课件
在地理测量中,利用解三角形的方法可以精确地测量方向。例如,使用 罗盘和三角函数可以确定一个物体的方向。
03
卫星轨道确定
在卫星轨道确定中,解三角形也是非常重要的工具。通过解三角形,可
以精确地计算卫星的位置和速度。
几何图形中的应用
三角形面积计算
解三角形的一个重要应用是计算三角 形的面积。通过解三角形,可以找到 三角形的底和高,然后使用公式计算 面积。
代数方法解题主要依赖于三角形的边和角的关系,通过代数 运算来求解三角形。
代数方法解题通常需要利用三角形的边和角的关系,如余弦 定理、正弦定理等,通过代数运算来求解三角形的角度、边 长等参数。这种方法适用于已知条件较为复杂,需要精细计 算的情况。
几何方法解题
几何方法解题主要依赖于几何图形的性质和定理,通过构造辅助线、图形变换等 方式来求解三角形。
正弦定理
总结词
利用正弦定理求解三角形的边长或角度。
详细描述
正弦定理是解三角形的重要工具,它建立了三角形边长和对应角正弦值之间的关 系。通过已知的边长和角度,我们可以使用正弦定理求解其他边长或角度。
余弦定理
总理是另一种求解三角形的方法,它建立了三角形边长的平方和与角度余弦值之间 的关系。通过已知的边长和角度余弦值,我们可以使用余弦定理求解其他边长或角度。
解三角形的重要性
总结词
解三角形在数学、物理、工程等领域具有广泛的应用价值。
详细描述
解三角形在数学中扮演着重要的角色,它不仅是解决几何问题的基础,也是解决物理、工程等领域问题的重要工 具。例如,在物理学中,解三角形可以用于解决力学、光学、电磁学等方面的问题;在工程学中,解三角形可以 用于解决建筑、机械、航空航天等方面的问题。
高中数学 高二第一讲学生版 解三角形
第一讲: 解三角形利用正、余弦定理解三角形取值范围为主,以解三角形与三角函数的结合为命题热点,试题多以大题的形式出现,难度中等.[考点精要]解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A +B +C =π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B +C =π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角. (4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边. [典例] 设锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且有a =2b sin A . (1)求B 的大小;(2)若a =33,c =5,求b .[类题通法]利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.[题组训练]1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.3.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值.三角形形状的判定判断三角形的形状是一种常见的题型,就是利用条件寻找边的关系或角的关系,题型多为选择题、解答题,难度中等.[考点精要] 三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C2.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.[典例] 在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[类题通法]根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有: ①通过正弦定理实现边角转化; ②通过余弦定理实现边角转化; ③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.[题组训练]1.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形2.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形D .等腰直角三角形 3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎫cos 3A 2,sin 3A 2,n =⎝⎛⎭⎫cos A 2,sin A 2,且满足|m +n |= 3.(1)求角A的大小;(2)若b+c=3a,试判断△ABC的形状.正、余弦定理的实际应用主,难度一般.[考点精要](1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.[典例]如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[类题通法]应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.[题组训练]1.要测量底部不能到达的电视塔AB 的高度,如图,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m2.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m ,则旗杆的高度为________m.课后作业:1.在△ABC 中,若a =7,b =3,c =8,则其面积等于( ) A .12 B.212C .28D .6 32.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A 的值为( )A.19B.13 C .1 D.723.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的边长为( ) A. 3 B .3 C.7D .74.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( ) A .一定是锐角三角形B .可能是直角三角形,也可能是锐角三角形C .一定是钝角三角形D .一定是直角三角形5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知8b =5c ,C =2B ,则cos C =________.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan A tan B =2cb,则边c 的值为________.7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.8.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c 且a cos C ,b cos B ,c cos A 成等差数列. (1)求B 的值;(2)求2sin 2 A +cos(A -C )的范围.。
高中数学第一章解三角形1.1.2余弦定理(第2课时)正弦定理和余弦定理bb高二数学
12/9/2021
第八页,共三十九页。
2
PART TWO
题型探究(tànjiū)
2021/12/9
第九页,共三十九页。
题型一 利用(lìyòng)正弦、余弦定理解三角形
例 1 在△ABC 中,若 ccos B=bcos C,cos A=23,求 sin B 的值.
A.锐角三角形
√ B.直角三角形 C.钝角(dùnjiǎo)三角形 D.不能确定
解析 由正弦定理知,sin A=2aR,sin B=2bR,sin C=2cR.
∴sin2A+sin2B<sin2C可化为a2+b2<c2,a2+b2-c2<0.
a2+b2-c2 ∴cos C= 2ab <0.
∴角C为钝角(dùnjiǎo),△ABC为钝角三角形.
12/9/2021
第二十七页,共三十九页。
核心(héxīn)素养之数学运算
HEXINSUYANGZHISHUXUEYUNSUAN
求三角形一角的值
典例 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,若(a2+c2-b2)tan B
பைடு நூலகம்
= 3ac,则角 B 的值为
π A.6
√B.3π或23π
π C.3
1.正弦定理及常见变形
a (1)sin
b
c
A=__s_i_n_B__=__s_in__C__=2R(其中
R
是△ABC_外__接__圆_的__半__径___);
(bànjìng)
(2)a=bssiinnBA=cssiinnCA=2Rsin A;
高中数学解三角形ppt课件
4.已知三边a、b、c,应用余弦定理求A、B,再由A+B+C = π, 求角C.
20
5.方向角一般是指以观测者的位置为中心,将正北或正南方向作 为起始方向旋转到目 标的方向线所成的角(一般指锐角),通常表达成.正北或正南, 北偏东××度, 北偏西××度,南偏东××度,南偏西××度.
6
7
考点2: 三角形中的三角变换
8
9
10
考点3 与三角形的面积相关的题
11
题型2:已知面积求线段长或角
12
13
C
14
15
16
17
18
19
解三角形应用举例
1.已知两角和一边(如A、B、C),由A+B+C = π求C,由正弦定理 求a、b
2.已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定 理先求较短边所对的角,然后利用A+B+C = π,求另一角.
23
24
25
Hale Waihona Puke 此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
26
6.俯角和仰角的概念:在视线与水平线所成的角中,视线在水 平线上 方的角叫仰角,视线在水平线下方的角叫俯角.如图中OD、 OE是视线,是仰角, 是俯角.
21
7.关于三角形面积问题
22
用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方 向的上空,分别测得气球的仰角是α和β,已知B、D间的距离为a,测 角仪的高度是b,求气球的高度.
高中数学二轮复习解三角形课件
6+ 4
2 .
6.(2019·全国卷Ⅲ)△ABC 的内角 A,B,C 的对边分别为 a, b,c.已知 asinA+2 C=bsin A.
(1)求 B; (2)若△ABC 为锐角三角形,且 c=1,求△ABC 面积的取值 范围.
解:(1)由题设及正弦定理得 sin AsinA+2 C=sin Bsin A. 因为 sin A≠0,所以 sinA+2 C=sin B. 由 A+B+C=180°,可得 sinA+2 C=cosB2, 故 cos B2=2sinB2cosB2. 因为 cosB2≠0,所以 sinB2=12,所以 B=60°.
∴S△ABC=12acsin B=12×4 3×2 3× 23=6 3.
答案:6 3
3.(2019·全国卷Ⅱ)△ABC 的内角 A,B,C 的对边分别为 a,
b,c.已知 bsin A+acos B=0,则 B=________. 解析:∵bsin A+acos B=0,∴sina A=-cbos B.由正弦定理
sBinDC=sin∠BCBDC,
∴BD=sBinC∠·siBnDCC=3×245=125
2 .
2
∴cos∠ABD=cos(45°-A)=cos 45°cos A+sin 45°sin A=
22×45+ 22×35=7102.
答案:125 2
72 10
5.(2019·全国卷Ⅰ)△ABC 的内角 A,B,C 的对边分别为 a, b,c,设(sin B-sin C)2=sin2A-sin Bsin C.
=acos
C+
3 3 sin
C,a=2,c=2
3
6,则
C=________.
[解析] (1)因为 acos B=3bcos A,
2016届高三数学最新复习课件:解三角形(共40张PPT)
三角形形状的判定
判断三角形的形状,应围绕三角形的边角关系进 行思考,主要看其是否是正三角形、等腰三角形、 直角三角形、钝角三角形或锐角三角形,要特别 注意“等腰直角三角形”与“等腰三角形或直角三 角形”的区别.
例2 (2010年高考辽宁卷)在△ABC中,A,B, C分别为内角A,B,C的对边,且2asin A=(2b +c)sinB+(2c+b)sin C. (1)求A的大小; (2)若sin B+sin C=1,试判断△ABC的形状. 【思路点拨】 利用正弦定理或余弦定理进行边 角互化,转化为边边关系或角角关系.
∴AB=AD·sisnin∠B ADB=1s0isnin456°0°=10×2
3 2 =5
6.
2
【名师点评】 应熟练掌握正、余弦定理及其变 形.解三角形时,有时可用正弦定理,也可用余 弦定理,应注意用哪一个定理更方便、简捷.
练习:在△ABC中,角A,B,C所对的边分别 为a,b,c,且b2+c2=a2+bc.
【解】 (1)因为 cos2C=1-2sin2C=-14,所以 sinC =± 410,3 分 又 0<C<π,所以 sinC= 410.5 分
(2)当
a=2,2sinA=sinC
时,由正弦定理 a = c sinA sin
, C
得 c=4.8 分
由 cos2C=2cos2C-1=-14,且 0<C<π 得
考点四 三角形中的综合问题
例 3:(2014 年浙江)在△ABC 中,内角 A,B,C 所对的边 分别为 a,b,c,已知 4sin2A-2 B+4sinAsinB=2+ 2.
(1)求角 C 的大小; (2)已知 b=4,△ABC 的面积为 6,求边长 c 的值.
高二数学解三角形1(PPT)3-3
富含钾,钾在人体中主要分布在细胞内,维持着细胞内的渗透压,参与能量代谢过程,因此经常吃马铃薯,可防止动脉粥样硬化,医学专家认为,每天吃一 个马铃薯,能大大减少中风的危险。 [] ⒉ 吃马铃薯不必担心脂肪过剩,因为它只含有.%的脂肪,每天多吃马铃薯可以减少脂肪的摄入,使多余的脂肪渐渐 被身体代谢掉。近几; QQ业务乐园 https:// QQ业务乐园 ;年,意大利、西班牙、美国、加拿大、俄罗斯等国先后涌现出了一批风味独特的 马铃薯食疗餐厅,以满足健美人士的日常需求。 [] ⒊养胃 中医认为,马铃薯能和胃调中、健脾益气,对治疗胃溃疡、习惯性便秘等疾病大有裨益,而且它 还兼有解毒消炎的作用。 [] ⒋降血压 马铃薯中含有降血压的成分,具有类似降压的作用,能阻断血管紧张素Ⅰ转化为血管紧张素Ⅱ,并能使具有血管活性 作用的血管紧张素Ⅱ的血浆水平下降,使周围血管舒张,血压下降。 [] ⒌通便 马铃薯中的粗纤维,可以起到润肠通便的作用,从而避免便秘者用力憋气排 便而导致血压的突然升高。 [] 工业价值 马铃薯具有较高的开发利用价值,除自身的营养价值和用价值外,还通过深加工可以增值,使农民、企业和国家增 加收入;马铃薯深加工产品(淀粉、全粉、变性淀粉及其衍生物)为食品、医、化工、石油、纺织、造纸、农业、建材等行业提供了大量丰富的原材料;由 于马铃薯自身分子结构的特点和特殊性能,其应用是其他类淀粉制品所无法替代的。 [] 土豆皮变绿后能不能食用 土豆变绿是生活中常见的现象。而对于变 绿的土豆,常听到的一种说法是,土豆变绿就不能吃了,土豆皮变绿会产生一种叫龙葵素的毒素,如果吃了就会中毒。对于这个说法,有人认为的确是不能
正弦定理
a b c 2R (R为三角形外接圆半径) sin A sin B sin C
高二数学教案之高二人教A版必修5系列教案:1.解三角形复习课
高二数学教案之高二人教A版必修5系列教案:1.解三角形复习课解三角形复习课(一)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题。
过程与方法:采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架,并通过练习、训练来巩固深化解三角形实际问题的一般方法。
教学形式要坚持引导――讨论――归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯,让学生在具体的实践中结合图形灵活把握正弦定理和余弦定理的特点,有利地进一步突破难点。
情感态度与价值观:让学生在探究中体验愉悦的成功体验,让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,●教学重点1. 应用正、余弦定理进行边角关系的相互转化问题(内角和的灵活运用)。
2. 三角形的形状的确定(大边对大角,“两边和其中一边的对角”的讨论). ●教学难点让学生转变观念,由记忆到理解,由解题公式的使用到结合图形去解题和校验。
●教学过程【复习导入】近年广东高考中,解三角形的题目已填空、选择为主,难度要求每年有所不同,结合大题16题出题也不鲜见;关键是借三角形对于我们结合图形分析做题,以及锻炼严谨慎密的逻辑思维大有裨益。
1.正弦定理:abc???2R (2R可留待学生练习中补充) sinAsinBsinC111S??absinC?bcsinA?acsinB.222余弦定理:a?b?c?2bccosA c?a?b?2abcosC222222b2?a2?c2?2accosBa2?b2?c2b2?c2?a2a2?c2?b2求角公式:cosA? cosB? cosC?2ab2bc2ac 点评:符号语言方便应用,文字语言有助于记忆。
2.思考:各公式所能求解的三角形题型?正弦定理: 已知两角和一边或两边和其中一边的对角球其他边角,或两边夹角求面积。
余弦定理:已知两边和夹角求第三边,或已知三边求角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3、如图,在坡度中一定的山坡上的一点A测得山顶上 一建筑物顶端C对于山坡的斜度为15,向山顶前进100米 后到达B点,又测得建筑物顶端C对于山坡的斜度为45 , 已知建筑物高CD=50米,求此山坡相对水平面倾斜角θ的 余弦值。
C
解:在ABC中,BAC=15
ABC=180 45 135 ACB 30
【基础自测】
1、在ABC中,a 4,B 45 ,C=75 则b (A)
A、4 6 B、4 2 C、4 3 D、32
3
3
2、在ABC中,a 4,B 135 ,c= 2则b (B )
A、10 B、26 C、14 D、2 7
3、在ABC中,a 2,b= 3,A 45 ,则B 60 或120 4、在ABC中,a 5,b= 2,c 3,则A 45
AB 100在ABC中由正弦定理得 θ
100 BC
A
sin 30 sin15
D B
E
BC 100 6 2 2 5(0 6 2) 4
例3、如图,在坡度中一定的山坡上的一点A测得山顶上
一建筑物顶端C对于山坡的斜度为15,向山顶前进100米
后到达B点,又测得建筑物顶端C对于山坡的斜度为45 ,
【反馈检测】
1、在ABC中,bsinB c sin C,且sin2 A sin2 B sin2 C
则它是(C )三角形
A、等腰 B、直角 C、等腰直角 D、等腰或直角
2、在ABC中,c 6,A 30 ,B=120
则S ABC
(
)
A、9 B、18 C、9 3 D、18 3
C
7
3、在ABC中,a 8,b=5,S 12,则cos2C 25
第一章: 解三角形复习
【学习目标】:灵活运用正弦定 理、余弦 定 理等 知识和方法进一步解决有关三角形问题,掌握三角 形的面积公式的推导和应用。 【重点难点】: 灵活运用定理解有关的三角形问题, 会解决简单有关测量的问题。
【课前导学】
1、正弦定理:sina A 2、余弦定理:a2 b2 3、三角形面积:S
b c 2R 也可变形为
sin B sinC
c2 2bccos A 也可变形为 cos
1 absin C 1 ac sin B 1
a 2Rsin A
A b2 c2 a2 2bc
bc sin A
等。 等。
2
2
2
4、解斜三角形的常规解法:
已知条件 定理选用
一般解法
AAS、ASA 正弦定理 (两角一边)
AB • AC 2 cb cos A=2即bc 4
cos 2 A co(s B+C)
由余弦定理得
2cos2 A cosA1 0
4 b2 c2 4即
解得cos A 1,cos A (1 舍去) (b c)2 16
2
b c 4
A (0,)A=
3
bc 4 b=2,c=2
故求得A ,b=2,c=2
2ac
2
2ac
2
又b 7,a b 4
9 2ac 1 即ac 3 2ac 2
所以,S= 1 ac sin B 2
=1 3 2
3=3 3 24
【课内探究】:
例2、在ABC中,若a=2,cos2A=cos(B+C)
AB • AC=2,求角A及b、c的大小
解:(1)在ABC中,A+B+C=
co(s B C) cosA
由A+B+C=180°求第三角,再用 正弦定理求另外两边
SAS (两边夹角)
余弦定理
用余弦定理求第三边,再用余弦定 理求另一角,后用内角和求第三角
SSS (三边)
余弦定理
SSA
正弦定理
(两边及对角) 或余弦定理
用余弦定理求出两角,用内角和定 理求第三角。
先用正弦定理求另一对角,或用余 弦定理求第三边,解的情况有三种。
即sin A 2sin Acos B 又在三角形中sin A 0
所以,cosB 1,又因为B (0,)
2
所以B=
3
【课内探究】:
例1、在ABC中,若bcosC (2a c)cos B,(1)求B的大小;
若b 7,a b 4,求ABC的面积S
解:(2)由(1)及余弦定理的变形得
a2 c2 b2 1 即(a c)2 2ac b2 1
3 1
小结:
本章知识框架图
正弦定理 解三角形
余弦定理 应用举例
【方法总结】
1、运用面积公式求解,关键在于熟记公式的特征: 两边及其夹角正弦值的乘积的一半.根据面积公 式,题中条件缺少哪个量就用正余弦定理求哪个 量,其实质还是解三角形。
2、解斜三角形的实际问题,关键是分析题意,分清 已知与所求,根据题意画出示意图,将已知量与未 知量归结到三角形中去,运用正弦定理、余弦定理 或两角和差公式解决问题.
5、在ABC中,a 2,A=30 ,C 45 ,则SABC 3 1
【课内探究】:
例1、在ABC中,若bcosC (2a c)cos B,(1)求B的大小; 若b 7,a b 4,求ABC的面积S
解:(1)由正弦定理及bcosC (2a c)cos B, 得sin BcosC 2sinAcosB sinC cos B
4、答案(1)C=60 (2)a b 5
已知建筑物高CD=50米,求此山坡相对水平面倾斜角θ的
余弦值。
解:在BCD中,DBC=45
C
BDC=90 ,CD 50m
由正弦定理得, 50 BCห้องสมุดไป่ตู้
sin 45 sin(90 )
θ A
D B
E
即 50 5(0 6 2) 解得cos 3 1
sin 45
cos
所以求得此山坡相对水平面倾斜角θ的余弦值为