Optimal manufacturing–remanufacturing policies in a lean production environment

合集下载

考虑产品绿色度的闭环供应链联盟决策

考虑产品绿色度的闭环供应链联盟决策

考虑产品绿色度的闭环供应链联盟决策作者:张远芳时倩倩来源:《物流科技》2024年第03期文章编号:1002-3100(2024)03-0134-07摘要:在闭环供应链中,选择合适的联盟可以帮助制造商更好地从事绿色产品制造活动。

针对考虑产品绿色度的供应链联盟问题,文章利用博弈分析技术,分析集中决策(C模型)、分散决策(D模型)、制造商与零售商联盟(MR模型)和制造商与第三方回收商联盟(MC模型)等4种模型下的闭环供应链的最优决策问题,并比较分析不同模型下的最优解。

最后,通过算例仿真分析了绿色偏好系数和研发成本投入系数对决策中的最优解的影响。

结果发现,集中决策模型下的联盟最优,而制造商与零售商联盟优于与第三方回收商联盟。

关键词:绿色度;研发成本投入;闭环供应链;联盟决策中图分类号:F273.7 文献标志码:A DOI:10.13714/ki.1002-3100.2024.03.032Abstract: In a closed-loop supply chain, choosing the right alliance can help manufacturers better engage in the manufacturing of green products. For the problem of supply chain alliance considering product greenness, this paper uses game analysis technology to analyze centralized decision(C model), decentralized decision(D model), manufacturer and retailer alliance (MR model)and manufacturer and third party recycling. The optimal decision-making problem of the closed-loop supply chain under the four models of the business alliance(MC model), and comparative analysis of the optimal solution under different models. Finally, the influence of green preference coefficient and R&D cost input coefficient on the optimal solution in decision-making is analyzed by numerical simulation. The results show that the alliance under the centralized decision model is optimal, and the alliance between manufacturers and retailers is better than the alliance with third-party recyclers.Key words: greenness; R&D cost input; closed-loop supply chain; alliance decision0 引言目前,生产环境无害且资源利用率高的绿色产品成为实现环境可持续发展的主要途径。

美蓓亚三美株式会社

美蓓亚三美株式会社

美蓓亚三美集团绿色采购管理要领EM10507 附属文件环境化学物质清单Ver.2.00Ⅰ 禁用物质Ⅱ 预计禁用物质Ⅲ 顾客要求禁用物质Ⅳ 管理物质发行:2018年02月01日实行:2018年04月02日美蓓亚三美株式会社Ⅰ禁用物质国内外法律规定、国际条约等禁止或限制使用的化学物质中,本公司产品中可能含有的化学物质。

* 如未指定限制值单位,则单位为ppm。

所有限制要求均为低于限制数值。

No. 化学物质(群)名 限制对象(分类)美蓓亚三美集团限制值(单位:ppm)备注主要参照的法律规定1 镉及其化合物・树脂、树脂产品、树脂材料(包括橡胶、胶膜等)・涂料、油墨、颜料、染料、润滑油脂、油脂、胶合剂(无挥发成分状态)5 RoHS指令(2011/65/EU)EU REACH规则AnnexⅩⅦ<适用豁免>RoHS适用豁免品 ・无铅焊料(焊锡棒、焊线、松香芯焊锡、焊锡膏、焊锡球)・印刷线路板焊接部・部件的焊锡电镀部位(如引线端子等)・部件的镀锡部位(热浸镀除外)20・黄铜、锌及锌合金・铝及铝合金・部件的镀锡以外的金属电镀部位・无电解镀镍部位・厚膜浆料材料、电阻75其他 752 铅及其化合物・树脂、树脂产品、树脂材料(包括橡胶、胶膜等)・涂料、油墨、颜料、染料、润滑油脂、油脂、胶合剂(无挥发成分状态)100 RoHS指令(2011/65/EU)<适用豁免>RoHS适用豁免品 ・无铅焊料(焊锡棒、焊线、松香芯焊锡、焊锡膏、焊锡球)500・印刷线路板焊接部・部件的焊接电镀部分(包括引线端等熔焊电镀在内)・部件的镀锡部分・部件镀锡之外的金属电镀部分・化学镀镍部分1,000其他 1,0003 六价铬化合物所有用途 1,000 RoHS指令(2011/65/EU)<适用豁免>RoHS适用豁免品4 汞极其化合物所有用途 禁止有意添加且限制值为1,000RoHS指令(2011/65/EU)<适用豁免>RoHS适用豁免品5 PBB;聚溴联苯 所有用途 1,000 RoHS指令(2011/65/EU) 6 PBDE;聚溴联苯醚 所有用途 1,000 RoHS指令(2011/65/EU)7 PCB;多氯化联苯 所有用途 禁止有意添加且限制值为50 化审法EU POPs规则 AnnexⅠ8 PCN;聚氯化萘(氯数 1以上) 所有用途 禁止有意添加且限制值为50化审法EU POPs规则AnnexⅠ9 PCT;聚氯三联苯 所有用途 禁止有意添加且限制值为50 化审法EU REACH规则 AnnexⅩⅦ10 石棉类 所有用途 禁止有意添加 安卫法德国化学品禁止规则EU REACH规则AnnexⅩⅦ11 短链氯化石蜡(碳数10-13)(CAS No.85535-84-8) 所有用途 禁止有意添加且限制值为1,000化审法EU POPs规则AnnexⅠ12 臭氧层消耗物质*蒙特利尔协议附属文件A(类别Ⅰ、Ⅱ)附属文件B(类别Ⅰ、Ⅱ、Ⅲ)附属文件C(类别Ⅰ、Ⅱ、Ⅲ)附属文件E(类别Ⅰ) 所有用途 禁止有意添加 臭氧层保护法EU规则((EC) No1005/2009)13 氢氟烃(HFC)、全氟碳(PFC)、六氟化硫(SF6) 所有用途 禁止有意添加 EU规则((EU) No517/2014)14 双(三丁基锡)=氧化物;TBTO(CAS No. 56-35-9) 所有用途 禁止有意添加且锡元素1,000化审法EU REACH规则AnnexⅩⅦ15 三取代有机锡化合物(三丁基锡(TBT)化合物、三苯基锡(TPT)化合物等) 所有用途 禁止有意添加且锡元素1,000化审法EU REACH规则AnnexⅩⅦ16 二丁基锡(DBT)化合物 所有用途 锡元素1,000 EU REACH规则AnnexⅩⅦ17 二辛基锡(DOT)化合物 仅适用于以下物品・接触皮肤的纤维产品・玩具、儿童用品、育儿产品・双组分室温固化(RTV-2)成型试剂盒 锡元素1,000 EU REACH规则AnnexⅩⅦ18 特定胺化合物及生成特定胺类的部分偶氮染料及颜料(着色剂)(*1) 所有用途 30EU REACH规则AnnexⅩⅦ19 甲醛;福尔马林(CAS No. 50-00-0) 使用纤维板、刨花板以及复合板的木工产品(扬声器、架子等)0.1(测量值密闭小室法)德国化学品禁止规则20 镍及其化合物 长期接触皮肤的用途(耳机、耳麦等) 0.5μg/cm2/week试验标准EN1811:2011+A1:2015 EU指令(94/27/EC) EU REACH规则 AnnexⅩⅦ21 砷及其化合物(包括三氧化二砷、五氧化二砷) 仅适用于木材防腐剤、玻璃消泡剂、澄清剂等用途1,000 EU REACH规则AnnexⅩⅦPRTR法22 放射性物质所有用途 禁止有意添加 放射线障害防止法23 全氟辛烷磺酸(PFOS)及其盐 所有用途 禁止有意添加且限制值为1000 化审法EU POPs规则 AnnexⅠ24 特定苯并三唑2-(2H-1,2,3-苯并三唑-2-基)-4,6-二叔丁基苯酚(UV-320)(CAS No. 3846-71-7) 所有用途 禁止有意添加化审法25 氯化钴(CAS No. 7646-79-9) 所有用途 禁止有意添加且限制值为1,000化审法EU规则((EC) No1272/2008)26 氧化铍(CAS No. 1304-56-9) 所有用途 禁止有意添加且限制值为1,000劳动安全卫生法EU规则((EC) No1272/2008)27 富马酸二甲酯(DMF)(CAS No. 624-49-7) 所有用途 0.1 欧州委员会决议(2009/251/EC)EU REACH规则AnnexⅩⅦ28 磷酸三(2-氯乙基)酯(TCEP)(CAS No. 115-96-8) 所有用途 1,000 EU REACH规则AnnexⅩⅣ佛蒙特州 法律规定29 磷酸三(1-氯-2-丙基)酯(TCPP)(CAS No. 13674-84-5)用于树脂、纤维的阻燃剂用途 1,000 佛蒙特州 法律规定30 磷酸三(1,3-二氯-2-丙基)酯(TDCPP)(CAS No. 13674-87-8)用于树脂、纤维的阻燃剂用途 1,000 佛蒙特州 法律规定31 六溴环十二烷(HBCDD)以及所有主要非对映体 所有用途 禁止有意添加且限制值为100化审法EU REACH规则AnnexⅩⅣEU POPs规则Annex I32 二苯胺与苯乙烯和 2,4,4-三甲基戊烯的反应产物(BNST)(CAS No.68921-45-9) 除橡胶材料外的所有用途(但,轮胎橡胶材料属于限制对象)禁止有意添加 加拿大环境保护法33 全氟辛酸(PFOA)及其盐和酯(*2) 所有用途 1,000 关于使用挪威特定有害化学物质等的规则34 PAHs (下述8种物质) 长期或反复直接接触皮肤或口腔的橡胶或塑料部件玩具 各成分0.5 EU REACH规则AnnexⅩⅦ苯并[a]芘(CAS No. 50-32-8)苯并[e]芘(CAS No. 192-97-2)苯并[a]蒽(CAS No. 56-55-3)屈(CAS No. 218-01-9)苯并[b]荧蒽(CAS No. 205-99-2)玩具以外的成形品各成分1苯并[j]荧蒽(CAS No. 205-82-3)苯并[k]荧蒽(CAS No. 207-08-9)二苯并[a,h]蒽(CAS No. 53-70-3)35 卤代二苯甲烷(*3)所有用途 禁止有意添加 EU REACH规则AnnexⅩⅦ36 邻苯二甲酸二(2-乙基己基)酯(DEHP)(CAS No. 117-81-7) 玩具、儿童产品禁止有意添加且6种物质总量1,000台湾CNS4797(玩具安全标准)美国消费者产品安全法新法(CPSIA)日本玩具安全标准(ST标准)EU REACH规则AnnexⅩⅦ邻苯二甲酸二丁酯(DBP) (CAS No. 84-74-2)邻苯二甲酸丁苄酯(BBP) (CAS No. 85-68-7)邻苯二甲酸二异壬酯(DINP) (CAS No. 28553-12-0) (CAS No.68515-48-0)邻苯二甲酸二异癸酯(DIDP) (CAS No. 26761-40-0)邻苯二甲酸二正辛酯(DNOP)(CAS No. 117-84-0)37 苯(CAS No. 71-43-2) 玩具、儿童产品 5 EU REACH规则AnnexⅩⅦ物质或混合物 1,00038 三(1-氮丙啶基)氧化膦(TAPO)(CAS No. 545-55-1) 直接接触皮肤的纤维产品 禁止有意添加 EU REACH规则AnnexⅩⅦ39 三(2,3-二溴丙基)磷酸酯(TBPP)(CAS No. 126-72-7) 直接接触皮肤的纤维产品 禁止有意添加 EU REACH规则AnnexⅩⅦ40 高氯酸盐 所有用途产品的 0.006 加利福尼亚州高氯酸盐法规41 2,4,6-三-叔-丁基苯酚(CAS No. 732-26-3)所有用途 禁止有意添加 化审法42 汞、镉、六价铬、铅 捆包材料 总量:100 EU指令(94/62/EC) (*1) 特定胺化合物一览No. 化学物质名 CAS No.1 4-氨基偶氮苯 60-09-32 邻氨基苯甲醚 90-04-03 2-萘胺 91-59-84 3,3'-二氯联苯胺 91-94-15 4-氨基二苯基 92-67-16 联苯胺 92-87-57 邻甲苯胺 95-53-48 4-氯 - 邻 - 甲苯胺 95-69-29 2,4-甲苯二胺 95-80-710 邻氨基偶氮甲苯 97-56-311 5-硝基邻甲苯胺 99-55-812 4,4'-亚甲基双(2-氯苯胺) 101-14-413 4,4'-二氨基二苯基甲烷 101-77-914 4,4'-氧基二苯胺及其盐 101-80-415 P-氯苯胺 106-47-816 3,3'-二甲氧基联苯胺 119-90-417 3,3'-二甲基联苯胺 119-93-718 邻氨基对甲苯甲醚 120-71-819 2,4,5-三甲基苯胺 137-17-720 4,4'-硫代二苯胺 139-65-121 2,4-二氨基茴香醚 615-05-422 3,3'-二甲基-4,4'-二氨基二苯基甲烷 838-88-0(*2)全氟辛酸(PFOA)及其盐和酯No. 化学物质名 CAS No.1 全氟辛酸(PFOA) 335-67-12 全氟辛酸铵(APFO) 3825-26-13 全氟辛酸钠盐 335-95-54 全氟辛酸钾盐 2395-00-85 全氟辛酸银盐 335-93-36 全氟辛酸氟化物 335-66-07 全氟辛酸甲酯 376-27-28 全氟辛酸乙酯 3108-24-5(*3) 卤代二苯甲烷No. 化学物质(群)名 CAS No.1 四氯二苯甲烷单甲基酯 76253-60-62 单二氯二苯基甲烷 81161-70-83 单甲基二溴二苯基甲烷 99688-47-8II 预计禁用物质相关法律法规等规定了使用期限的物质。

中国运筹学会排序分会第六次代表会议暨学术交流会

中国运筹学会排序分会第六次代表会议暨学术交流会

中国运筹学会排序专业委员会第七次全国代表会议暨学术交流会会议纪要中国运筹学会排序专业委员会第七次代表会议暨学术交流会于2009年11月14日到16日在暨南大学管理学院召开。

来自全国各地近九十位专家、学者和研究生出席本次会议。

这次会议由越民义教授致开幕词,暨南大学科技处处长李霆与管理学院院长李从东教授出席开幕式并讲话,秦裕瑗教授在闭幕式上发表热情洋溢的讲话。

1990年中国运筹学会在上海第二工业大学召开了全国第一次排序学术交流会,会上成立了排序专业委员会,标志着我国的排序(调度)论研究和应用进入新的阶段。

1993年在武汉、1996年在郑州、1999年在长沙、2002年在沈阳和2005年在上海,又相继召开第2到第6次排序学术交流会。

2005年以来,在第六届全体委员的努力下,在开展学术交流等方面做了许多工作。

这次在暨南大学召开的会议,由于部分院校教学评估和甲流影响,部分代表不能出席,然而,这次出席人数近九十人,是历次会议中比较多的。

15日上午的全体会议根据相关章程选举了新一届理事,85张有效选票选举产生38位理事,组成排序专业委员会新一届的理事会。

这次会议聘请6位顾问,并聘请13位资深理事,让德高望重、身体健康、可以坚持工作的老专家和老教授得以继续为排序(调度)学科做出贡献。

同时,也使一批年轻的专家进入理事会,给理事会带来新的活力,实现了理事会的新老交替。

全体会议选举产生的38位理事中有26位理事出席了第七届理事会第一次会议,用无记名投票的方式选举张峰为理事长,选举张玉忠、王国庆、邢文训、陈秋双为副理事长,选举窦文卿为秘书长。

新当选的排序专业委员会理事长张峰主持了第七届理事会第一次会议,新当选的理事和聘请的资深理事就排序(调度)学科发展和应用、理事会的工作和发展等问题展开热烈的讨论,提出了一些很好的建议。

根据“中国运筹学会分支机构管理条例”第九条之规定,七届一次理事会决定第八次代表会议2013年在天津举行,由南开大学承办,并打算在2010年或者2011年举行学术交流会或者理事会会议,研究学科发展方向和开展应用研究问题。

【文献综述】定价策略研究

【文献综述】定价策略研究

文献综述工商管理定价策略研究为了有效地开展市场营销、增加销售收入和提高利润,企业不仅要给产品制定基本价格,而且还需要对制定的基本价格适时的进行修改。

价格是市场营销的组合中十分敏感而又难以控制的因素,直接关系到市场对产品的结合搜程度,影响市场需求和企业的利润,涉及生产者、经营者和消费者等多方面的利益。

定价策略是市场营销组合策略中极其重要的组成部分。

因为定价策略是市场营销的一个组成部分,现在从市场营销的发展阶段入手,对定价策略的发展历程和相关观点整理如下分析,第一阶段:初创阶段。

市场营销于19世纪末到20世纪20年代在美国创立,源于工业的发展。

这时市场营销学的研究特点是:a. 着重推销术和广告术,没有出现现代市场营销的理论、概念和原则;b.营销理论还没有得到社会和企业界的重视。

第二阶段:应用阶段。

20世纪20年代至二战结束为应用阶段,此阶段市场营销的发展表现在应用上。

市场营销理论研究开始走向社会,被广大企业界所重视。

第三阶段:形成发展时期。

20世纪50年代至80年代为市场营销学的发展阶段,市场开始出现供过于求的状态。

有些学者开始对市场营销进行更深层的研究,而且对于营销中的价格策略也有了进一步的研究。

早在1953年,美国营销学者鲍顿就提出了“市场营销组(MarketingMix)”概念,1960年,20世纪营销学权威之一的杰罗姆·麦肯锡博士在其第1版《基础营销学》中就第一次提出了营销组合的4P战略。

4p是指:产品、价格、渠道、促销。

具体有如下四个模块:一、产品的组合,主要包括产品的实体、服务、品牌、包装。

它是指企业提供给目标市场的货物、服务的集合,包括产品的效用、质量、外观、式样、品牌、包装和规格,还包括服务和保证等因素。

二、定价的组合,主要包括基本价格、折扣价格、付款时间、借贷条件等。

它是指企业出售产品所追求的经济回报。

三、分销的组合,它主要包括分销渠道、储存设施、运输设施、存货控制。

它代表企业为使其产品进入和达到目标市场所组织,实施的各种活动,包括途径、环节、场所、仓储和运输等。

Manufacturing_and_Construction

Manufacturing_and_Construction

R&D Pathway 4 C Current t St State-of-the-Art t f th A t
Target Innovation 1. Pre‐Planning & Lessons Learned (OE) Reinforcing Steel Density Reduction Reinforcing Steel Prefabrication Lifting and Rigging Current State Excellent progress in Japanese program and in US nuclear major component replacements. To be proven in US nuclear new build. Utility early project cash flow restrictions may be an impediment. Recent developments in commercial sector with use of high strength reinforcing steel and “headed headed rebar rebar”. Japanese program is getting great benefit from reinforcing steel prefabrication and use of “SC” walls. Large crane concept has been proven in Japanese program. Needs are for “flexible” flexible large crane approaches and increasing lifting speeds for very heavy components. Both are in development. Prefabrication is prevalent, modularization is gaining momentum, manufacturing is yet to be exploited but represents significant opportunity. Considerable progress in last five years in the availability of modeling software (BIM). Extensive Japanese use of models for planning. Wide acknowledgement that these are valuable and will be utilized in new nuclear nuclear.

脱硫胺液除油新技术的工业侧线试验

脱硫胺液除油新技术的工业侧线试验

脱硫胺液除油新技术的工业侧线试验张百庆,吴红梅(陕西延长石油(集团)有限责任公司永坪炼油厂,陕西延川,717208)摘要:为解决炼油厂脱硫胺液带油、影响净化干气产品质量及下游硫磺回收装置运行等问题,某炼油厂采用AMFD自适应高效除油技术+MPE颗粒除油脱固技术+CFC组合纤维深度破乳3级分离除油技术,进行了15d工业侧线试验。

试验结果表明:通过该技术设备净化,胺液中油含量由3.5%降至1%,除油效果显著,提高了循环胺液的品质,保障了干气脱硫及硫磺回收装置的稳定运行,具有较高的工业化价值。

关键词:胺液;油水分离;侧线试验中图分类号:TE624.5文献标识码:A文章编号:1671-4962(2024)01-0026-04 Industrial side-line experiment of a new technology for oil removal fromdesulphurized amine solutionZhang Baiqing,Wu Hongmei(Yongping Refinery,Shaanxi Yanchang Petroleum(Group)Co.,Ltd.,Yanchuan717208,China)Abstract:In order to solve the problems of oil carrying in desulphurized amine liquid in refinery,affecting the quality of purified dry gas products and the operation of downstream sulfur recovery unit,a refinery adopted AMFD adaptive efficient oil removal technology+MPE particle oil removal technology+CFC composite fiber deep demulsification3-stage separation and oil removal technology to carry out a15-day industrial side-line experiment.The experiment results showed that the oil content in the amine solution was reduced from3.5%to1%by the purification technology to get the remarkable oil removal effect.It improved the quality of the circulating amine solution,guaranteed the stable operation of the dry gas desulfurization and sulfur recovery equipment with high industrial value.Keywords:amine solution;separation of oil and water;side-line experiment炼油行业处理油品精制过程中产生的含硫化物的酸性气体一般采用胺法脱硫技术,包括吸收、解吸、再生和硫回收等4个步骤。

斯道拉恩索推出生物复合材料

斯道拉恩索推出生物复合材料

39International Information丙烯的透明度,使其达到与PET 和PS 相媲美的透明度。

含有Millad NX 8000的抗冲透明聚丙烯可用于日用品和食品领域的大型挤吹包装,引领聚丙烯包装领域新一代透明标准,为快消领域的包装提供更优的解决方案。

Millad NX 8000透明剂在片材和热成型工艺中也具有极高价值,含有Millad NX 8000 的超透聚丙烯片材可以广泛应用于水果、肉制品和快餐食品包装领域,例如热成型食品包装盒和盖子,翻盖式包装盒、塑封式托盘等。

Millad NX 8000是一款获得独立环境索赔认证机构——UL Environment(美国保险商实验室的全资子公司)认证的绿色环保添加剂。

它使聚丙烯的加工温度降低至190℃-200℃,最多可比传统透明剂的工作温度低40℃,从而减少10%的电能消耗并提升生产效率,有助于整个行业的碳排放水平大幅度降低。

此外,加工温度的降低使得聚丙烯的冷却时间随之缩短,因此塑料铸模商及加工商可借助Millad NX 8000透明剂提高产量并压缩整体生产成本。

Hyperform HPN 高速成核剂可提高聚丙烯和聚乙烯的结晶温度,从而缩短零件的脱模时间,使生产效率提高10%-20%;美利肯的添加剂产品还能有效提高树脂的性能。

例如,Hyperform HPN 聚丙烯成核剂能保证零部件的加工均匀性,从而实现优异的尺寸稳定性,提高物理性能,减少零件的翘曲和收缩情况。

Hyperform HPN 成核剂还可以提高HDPE 树脂抗湿性和抗氧化性,使用该项技术制成的标准药瓶可以延长药品的保存期限。

斯道拉恩索推出生物复合材料斯道拉恩索集团于近日推出DuraSense TM 牌木基生物复合材料。

这是斯道拉恩索用可再生材料解决方案取代化石基材料的又一重大举措。

DuraSense 或将成为取代塑料的高性能、可持续的生物复合材料。

DuraSense 能通过利用基于木材的可再生纤维来替代大部分化石基的塑料。

绿色制造技术(英文版)PPT

绿色制造技术(英文版)PPT

Related Research of Green Manufacturing Research
Main Research Contents of Green Manufacturing
Expected conclusion of Green Manufacturing
Contents
The Background of Green Manufacturing Research
3、Domestic Research Status [7]
Tsinghua University, China Academy of Machinery Science & Technology, Shanghai Jiao Tong University, Hefei University of Technology and other colleges and universities has done a lot of
Nano-brush plating technology in remanufacturing connecting rod
Remanufacturing aluminum alloy Remanufacturing crankshaft by automation arc spraying cylinder by laser cladding technology
Industrial carbon dioxide emissions about 2.5 million tons
一. The background of green manufacturing Research
Solid waste
Solid waste must have a lot of land

极塑美全面介绍

极塑美全面介绍

– 5 mm 光斑使激光靶向真皮乳头层和真皮上层。 – 重复的刺激使异常的微脉管封闭,减少弥散性红斑。
• 批量加热
– 高频率的重复脉冲产生批量加热效应。 – 批量加热导致血管舒张-导致局部血流增加,因此增加了激光的靶 点。 – 靶点的增加又增加了激光的加热效应,产生更大的批量加热效应。
• 愈合反应与胶原刺激
Laser Genesis 优点
功能强大,没有耗材,多功能应用,是最常用的激光
David J. Goldberg, M.D. and Chrys Schmults, M.D.
Laser Genesis 优点
•没有社交休止期 •随时均可治疗 •最小的不适感 •无耗材 •所有皮肤类型均可使用
临床适应症
Laser Genesis 和 Limelight 原理
治疗黄褐斑
• 40-60%的黄褐斑病人有微小血管引发的炎症
• Laser Genesis是完美的解决微小血管和炎症的手段
–尤其是针对敏感皮肤
• 然而,黄褐斑还有色素问题 • 色素需要IPL,调Q激光和外用药等等
E, H, Kim et al, “The vascular characteristics of melasma” J of Dermatological Science (2007), 46, 111 -116
– 确认了Titan使皮肤表面以下1-3mm处真皮层受热。
• 以光线为基础的治疗方法确保无论何种皮肤结构(真 皮层变厚,脂肪层)都能提供相同,一致的加热。
A Cutera Aesthetic Seminar
作用机制
1 mm
3 mm
Titan
治疗前 2次治疗后6月
David Goldberg, MD

基于UDI实现医疗器械供应链全程追溯管理

基于UDI实现医疗器械供应链全程追溯管理

FEATURES引言医疗器械唯一标识(Unique Device Identification ,UDI )是唯一、精准识别医疗器械的基础[1],通过UDI 可对医疗器械产品的全链条通查通识,是实现医疗器械供应链全程追溯、加强医疗器械全生命周期管理、提升监管效能、保证民众用械安全的重要手段[2]。

自国家药监局会同国家卫生健康委于2019年7月联合开展唯一标识系统试点工作开展以来,我国出台了医疗器械UDI 系统规则、发布了相关标准、建成了唯一标识数据库,省药监局积极开展试点工作,医疗器械企业积极参与试点,医疗机构不断拓展唯一标识应用[1]。

目前我国处于UDI 体系建设的初级阶段[3],UDI 系统的建立与实施,将会从医疗器械产品的注册、生产、流通、稽查与不良事件监测等环节,进一步完善政府、生产企业、流通机构及使用单位的医疗器械质量安全监管体系[4]。

现已报道有部分医疗机构已实现医疗器械产品的院内追溯,虽设计制定了院内外耗材基础信息追溯制度和数据互通标准,但尚未真正实现实际医疗器械产品的院内外信息互联互通;还报道有生产企业与医疗机构信息系统对接,通过UDI 对某一类低值耗材的动态数据实现追溯,但未能覆盖其他医疗器械产品[5-8]。

医疗器械供应链的全程涉及生产、流通、使用、监管各环节,且每个环节都有独立的信息系统,所以各环节的消息是闭塞的[5]。

国药集团中国医疗器械有限公司(以下收稿日期:2021-01-04基金项目:军队后勤重大项目(ALB18R004)。

通信作者:刘亚芝,高级工程师,主要研究方向为医疗器械质量管理、医疗器械供应链全流程可追溯管理和医疗器械全生命周期精益管理。

通信作者邮箱:***********************基于UDI 实现医疗器械供应链全程追溯管理李杨1,刘亚芝1,赵宇1,张锋1,周卫萍2,周强3,刘郭欢1,周蕾1,王小蕊11. 中国医疗器械有限公司,北京 100028;2. 复旦大学附属金山医院 医学装备部,上海 200540;3. 国药集团医疗器械研究院有限公司,北京 100028[摘 要] 目的 基于医疗器械唯一标识(Unique Device Identification ,UDI )及信息化技术对医疗器械产品供应链上的全链条数据通查通识,以加强医疗器械全生命周期管理,实现医疗器械供应链的全程追溯,保证民众用械安全。

阿尔法拉維(Alfa Laval)三花型(Tri-Clover)和三綜合型(Tri-Weld)適用於

阿尔法拉維(Alfa Laval)三花型(Tri-Clover)和三綜合型(Tri-Weld)適用於

connections.Alfa Laval offers a full line of UltraPure Fittings that aremanufactured in compliance with the current ASME BPE Standard.All BPE items are individually capped and bagged in clear6mil.Poly bags.All product is labeled with a bar code,product informationand manufacturing date.This provides the optimum identification and ensures that the product arrives to the job site in a clean orbital weld condition.Technical DataWide Range of Surface Finish offering-Alfa Laval offers a rangeof Mechanical Polish as well as Electropolish finishes.Mechanical polishing is achieved by using a progressive series of abrasives,from low to high grit.This allows a consistent internal finish and both optimal and economical cleaning.Electropolishing is a further process that promotes a chromium-enriched surface layer that maximizes corrosion resistance as well as minimizing bacterial buildup on surface cavities. Metallurgy-Incoming raw material goes through a stringent inspection process to ensure its chemistry will be ideal for both weldability and electropolishing Quality Control Methods-Our manufacturing facilities operate under an approved ISO9001quality standard.Wall thickness integrity is maintained through the use of fabrication grade minimum wall tubing for all cold-formed tubular products.Our BPE fittings are designed for use with all current orbital welding equipment.After cold forming, our tube product is resized to ensure that the ovality falls within the prescribed BPE tolerances.End facing is provided with a machined square-cut method.This allows for the most accurate and consistent orbital weld result.All fittings are put through100%visual inspection and ovality and squareness tolerances are inspected with calibrated equipment.Surface finish is inspected with a calibrated profilometer to ensure the Roughness average(Ra)maximum is not exceeded. Hygenic fittings identified with this symbol on the following pages are accepted as meeting the3A Hygenic standards by the appropriate committees of the International Association of Milk,Food and Environmental Sanitarians,U.S.Public Health Service,and Dairy Industry Committee.ID or Product Contact SurfaceMaximum Surface Roughness (Ra)Finish code Microinches (µ-inch)Micrometers (µm)ASME BPE Finish CodePolishing Method OD or Product Non-contact Surface#1UnpolishedUnpolished #3320.8-----Mechanical polished Unpolished#7320.8-----Mechanical polished Polished to Ra,32µ-inch/0.8µm PC 200.5SF1Mechanical polishedUnpolished PD 150.4SF4Mechanical polished and electropolished UnpolishedPL 200.5SF1Mechanical polishedPolished to Ra,32µ-inch/0.8µm PM150.4SF4Mechanical polished and electropolishedPolished to Ra,32µ-inch/0.8µmService Rating of Tri-Clamp ®ConnectionsService Ratings*(PSI)Size Tube OD½&¾inch1&1½inch 2inch 2½inch 3inch4inch 6inch 13MHLA (Screw tightened to maximum)at 70°F --150150150150100--at 250°F --12512512512575--13MHHM (Wing nut tightened to 25in.lb.of torque)at 70°F --500450400350300150at 250°F --3003002001951507513MHHS (Wing nut tightened to 25in.lb.of torque)at 70°F 2200600550450350300--at 250°F 1200300275225175150--13MHP (Bolts tightened to 20ft.lb.of torque)at 70°F --1500100010001000800300at 250°F --1200800800800600200A13MO (1-3"nuts tightened to 20in.lb.,4"to 30in.lb.)at 70°F --50035030020010075at 250°F --25020015010010050A13MHM (Wing nut tightened to 25in.lb.of torque)at 70°F --500450400350300150at 250°F--30025020017515075*Service ratings are based on hydrostatic tests using standard-molded Buna-N material gaskets,with proper installation of ferrules,assembly of joints and absence of shock pressure.Contact Tri-Clover ®for service of other type and material gaskets,and for ratings at higher temperatures.All ratings shown are dependent upon related components within the systems and proper installation.For temperatures above 250°F,we recommend using only 13MHP clamps.This information is only valid if Tri-Clover ®clamps,ferrules,and gaskets are used.Tri-Clamp ®Gasket MaterialsCharacteristicBuna-N (U)EPDM (E)Fluoro-elastomer(SFY)Silicone (X)PTFE (G)Hardness,Shore A 70707070---Tensile Strength,psi 1875165012121340---Original Physical Properties Elongation,%340317272260---Temperature Range-65to 200°F -60to 300°F -20to 350°F -40to 400°F -40to 200°F *Acid Resistance Good Good to Excel.Good to Excel.Poor to Good Good to Excel.Alkali ResistanceFair to Good Good to Excel.Poor to Good Poor to Fair Excellent Resistance to Fats/Oils Good to Excel.Poor Good to Excel.Poor to GoodExcellent Abrasion Resistance ExcellentGoodGood to Excel.Poor Fair ResistanceCompression Set ResistanceGoodFairGood to Excel.Good to Excel.Cold Flows*Note:PTFE materials tendency to "cold flow"and incompressibility,limit its max.temperature to 200°F due to possible leaking problems.Basic Dimensions of Tri-Clamp®Connection for Hygenic OD-TubingOD Outer Diameter(Inches)ID Inner Diameter(Inches)Wall Thickness(Inches/Gauge)A Ferrule Face(Inches)½0.370.065/16ga.0.984¾0.620.065/16ga.0.98410.870.065/16ga. 1.9841½ 1.370.065/16ga. 1.9842 1.870.065/16ga. 2.5162½ 2.370.065/16ga. 3.0473 2.870.065/16ga. 3.5794 3.870.083/14ga. 4.682 Hygenic Tube InformationTube OD Tube ID Wall Thickness Volume Weight Dry Weight withWaterFlow(GPM)at a Mean VelocityInches Inches Inches Gal/100ft Lbs/100ft Lbs/100ft5fps7fps10fps ½0.370.0650.5630.635.3 1.7 2.3 3.4¾0.620.065 1.5748.261.3 4.7 6.69.410.870.065 3.0965.891.59.313191½ 1.370.0657.66100.9164.82332462 1.870.06514.27136.1255.14360862½ 2.370.06522.92171.2362.469961383 2.870.06533.6206.4486.71011412024 3.8340.08359.97351.8851.91802523606 5.7820.109136.39694.71832.240957381887.7820.109247.07930.62991.174110381482Technical InformationPipe Schedule and Chemical CompositionSchedule5PipeSize OD Inches ID Inches Wall Thickness ⅛0.4050.3350.035¼0.5400.4420.049⅜0.6750.5770.049½0.8400.7100.065¾ 1.5000.9200.0651 1.315 1.1850.0651¼ 1.660 1.5300.0651½ 1.900 1.7700.0652 2.375 2.2450.0652½ 2.875 2.7900.0833 3.500 3.3340.0833½ 4.000 3.8340.0834 4.500 4.3340.0835 5.563 5.3450.1096 6.625 6.4070.109 88.6258.4070.109Chemical Composition%304316LC0.0800.030MN 2.000 2.000P0.0450.045S0.0300.030*Si 1.000 1.000Cr18.0-20.016.0-18.0Ni8.0-13.010.0-14.0Mo- 2.0-3.0*The sulfur content for316L ASME BPE fittings is0.005-0.017%for all weld ends.Material Test Reports(MTRs)Easy Online Access to Comprehensive FittingsInformationA5-alpha character serial ID is stenciled on to each new316SS fitting As one of the most comprehensive and technologically advanced reports in the market,our new Material Test Reports(MTRs)provide detailed information that takes traceability and validation to a new level. Alfa Laval has established a new standard as all MTRs are available24 hours a day,7days a week online at .Simply type a5-alpha character code(e.g.AAABC)called the serial ID,which you can find stenciled on each new316SS fitting,to access the following information:•All heat certification numbers used to manufacture the fitting •Date the fitting was manufactured•The fitting’s part number and description•View and print any MTR and the above informationThis web site will even allow you to print the MTR or original heat certification from the raw material supplier.If you do not know the actual number,MTRs can be searched by either MTR serial ID or heat certification number.Go to and follow these simple steps to access MTRs: Step1.Once at our website,click on the MTRlinkStep2.On the MTR page,click"View Material TestReportsStep3.Enter or search for the SerialIDConnection TypesClamp FittingsTri-Clamp HDI-Line H-LineA connection is made up of a plain ferrule,a clamp,and a gasket.Tees,elbows and reducers are available with Tri-Clamp connections.All three styles are in compliance with3A standards for C.I.P.(clean in place).The three types of clamp fittings are designed for use in Food,Dairy,Pharmaceutical and Chemical Industries.•Tri-Clamp connections are the industry standard,having nueter-style ferrules to simplify design and installation.•H-Line and HDI-Line male/female ferrules self-align during tightening so joints are quick and easy to assemble or take apart.•H-Line uses the same series of clamps as the Tri-Clamp.Threaded FittingsBevel Seat John Perry DCA connection is made up of a plain ferrules,a threaded ferrule,a nut and a gasket.The faces on Bevel Seat fittings are angled to create a metal to metal sealing surface.A John Perry fitting consistes of a flat-faced threaded ferrule,a flat-faced plain ferrule and a profiled gasket.These joints are particularly useful with swing connections and flow diverter panels.A DC fitting utilizes the Bevel Seat plain ferrule and a threaded ferrule with a grooved face to retain a gasket.The three types of threaded fittings are designed for use in the Food,Dairy,and Beverage processing industries.Bevel Seat Joints are in compliance with3A standards for manual cleaning.Both John Perry and DC fittings are in compliance with3A standards for C.I.P.(clean-in-place).•Bevel Seat•John Perry•DCLoss of head pressure due to friction.Loss is shown in feet ofhead.Loss through tubing is for1ft.of tubeCapacity O.D.1"O.D.1½"O.D.2"O.D.2½"O.D.3"O.D.4"in U.S.I.D0.902"I.D. 1.402"I.D. 1.870"I.D. 2.370"I.D. 2.870"I.D. 3.834"G.P.M.Tubing Elbow Tee Tubing Elbow Tee Tubing Elbow Tee Tubing Elbow Tee Tubing Elbow Tee Tubing Elbow Tee20.010.010.140.0250.020.250.0350.0250.25100.120.060.40.020.010.150.0050.0150.1150.250.10.80.040.020.250.0130.020.15200.430.22 1.50.060.030.30.020.0250.20.0050.020.10.0030.020.06250.660.4 2.30.080.040.40.0250.030.250.0060.030.150.0040.030.08300.930.7 3.30.1050.060.550.0350.050.30.0080.050.20.0050.040.135 1.22 1.25 5.20.1350.090.80.040.060.40.0110.060.250.0060.050.13400.170.11 1.00.050.080.50.0150.070.30.0070.060.15450.210.16 1.30.0630.10.60.020.090.350.0080.0650.18500.250.2 1.60.0730.120.70.0220.10.40.010.070.2600.340.35 2.20.10.180.90.030.120.450.0150.080.25800.570.76 3.70.160.3 1.50.050.150.550.020.10.41000.85 1.35 5.80.230.44 2.30.0750.180.60.030.110.50.0080.040.1 120 1.18 2.059.10.320.64 3.30.1050.21 1.00.040.130.60.010.050.15 1400.420.85 4.50.140.23 1.250.050.160.80.0130.060.2 1600.54 1.13 5.80.170.28 1.60.070.2 1.10.0150.070.25 1800.67 1.457.40.2050.31 2.00.080.21 1.30.020.080.3 2000.81 1.829.00.2450.35 2.50.10.26 1.60.0250.090.4 2200.95 2.2211.00.290.41 3.00.120.3 1.90.0280.10.5 240 1.10 2.6313.50.340.48 3.70.140.33 2.20.0350.110.55 2600.390.53 4.50.1650.39 2.50.040.1150.6 2800.450.61 5.30.190.42 2.80.0450.120.65 3000.5150.7 6.20.220.5 3.10.050.130.7 3500.68 1.058.50.280.67 4.10.070.150.9 4000.86 1.5511.00.360.88 5.20.0850.18 1.2 450 1.05 2.2513.50.44 1.1 6.60.1050.2 1.5 5000.54 1.48.00.130.23 1.75 5500.64 1.79.50.150.27 2.1 6000.75 2.0510.20.1750.3 2.5 6500.87 2.4113.00.20.34 2.8 700 1.0 2.815.00.230.4 3.4 7500.260.43 3.8 8000.30.5 4.4 8500.330.56 5.0 9000.370.62 5.7 9500.410.7 6.3 10000.450.87.0 11000.53 1.068.6NOTES: 1.For elbows-R/D=1.5 2.Flow thru teesFlow A to B3.Test medium-water at70°F Port C capped offPrepared by members of the hygenic pump subgroupof the natl.assn.of dairy equipment manufacturers.ESE00301ENUS1507Alfa Laval reserves the right to change specifications without priornotification.ALFA LAVAL is a trademark registered and owned by Alfa LavalCorporate AB.©Alfa LavalHow to contact Alfa LavalContact details for all countriesare continually updated on our website. Please visit toaccess the information direct.。

某型舰载电子产品小子样可靠性评估研究

某型舰载电子产品小子样可靠性评估研究

现代电子技术Modern Electronics TechniqueJan. 2024Vol. 47 No. 22024年1月15日第47卷第2期0 引 言在装备研制过程中,产品可靠性评估经常会遇到不同环境条件下可靠性信息折算与综合问题,解决这类问题的关键是确定产品的环境因子[1‐5]。

本文通过引入环境因子的概念,将不同环境条件下产生的试验数据通过环境因子进行折合,转化为同一环境条件下的数据信息进行分析。

环境因子法可以有效综合产品不同环境下的可靠性信息,使可利用的可靠性数据信息更加充分,可靠性评估结果更加准确。

环境因子指的是装备在某种环境条件下的可靠性特征量与基准环境条件下的可靠性特征量之比,主要用来对产品在不同环境下的可靠性信息进行折算与综合[6]。

目前,对环境因子的研究方法基本可分为基于统计推断和基于预计技术两类[7]。

本文提出一种基于手册预计法的环境因子计算方法,该方法的基本思路是根据预计手册中提供的元件数据计算电子设备在不同环境下的失效率,根据一定的计算原则来获得相应的环境DOI :10.16652/j.issn.1004‐373x.2024.02.016引用格式:刘超然,李天辰,李磊,等.某型舰载电子产品小子样可靠性评估研究[J].现代电子技术,2024,47(2):85‐88.某型舰载电子产品小子样可靠性评估研究刘超然1, 李天辰2, 李 磊2, 王 陶1, 吴超云1(1.广电计量检测集团股份有限公司, 广东 广州 510656; 2.中国人民解放军92578部队, 北京 100161)摘 要: 可靠性评估是对产品可靠性水平进行评价,对产品可靠性要求进行验证的重要方法与手段。

为解决装备研制过程中遇到的小子样可靠性评估问题,引入环境因子和信息融合的概念,提出一种确定环境因子的方法和步骤。

首先,给出指数分布产品基于手册预计法的环境因子计算方法和步骤;然后,结合工程实例展示了产品环境因子具体的计算过程;最后,借助环境因子达到了不同环境条件下可靠性数据信息融合的目的,实现了产品的可靠性综合评估,解决了产品小子样可靠性评估的问题。

中文题目一般不超过20个字

中文题目一般不超过20个字

DOI:10.19573/j.issn2095-0926中文题目(一般不超过20个字)作者A1,作者B2(1. 某大学某学院,城市名邮编;2. 某大学某学院,城市名邮编)摘要:采用第三人称的写法,不必使用“本文”、“作者”等词作为主语。

摘要约200字为宜,是一篇独立的、完整的短文,要反映科技论文的目的、方法及主要结果与结论,充分反映该研究的创新之处。

句子结构严谨、完整,表达简明,语义确切,逻辑性强。

缩写词在第一次出现时要给出全称。

结果和结论尽可能量化、具体。

高质量的摘要有利于论文被文献检索系统收录,引起同行的重视。

(针对(什么)问题,)采用(什么)方法,对(哪些项目)进行了(哪些)方面的研究,取得了(什么)结果或发现(什么)问题,得到了(什么)结论或提出了(什么)解决方案。

关键词:关键词1;关键词2;……(关键词为3-8个)Title in English(一般为短语形式,不用陈述句)Author1,Author2(1.A ffiliation, City Post Code, China; 2. Affiliation, City Post Code, China)Abstract: 英文摘要应与中文摘要相对应,用第三人称写法;用过去时叙述作者工作,用现在时叙述作者结论;取消不必要的语句,如"It is reported"等,其他要求同中文摘要。

Key words: keyword1;keyword2;keyword3;keyword4;…引言不列入层次标题中,简要介绍论文的研究背景和目的,包括问题的提出及相关领域前人(标注参考文献)对这一问题做了那些工作,存在哪些不足;希望解决什么问题,该问题的解决有什么作用和意义,从而引出本论文的研究主题及创新性(在引言的最后部分,交代本文所做的工作)。

引言的写作要开门见山,言简意赅,突出重点。

引言一般与结论相呼应,在引言中提出的问题,在结论中应有解答。

引言一般不分段,不要插入图、表、公式等。

马尔文仪器助生物塑料工业优化生产

马尔文仪器助生物塑料工业优化生产
作 为 制 药 设 备 的 领 先 供 应 商 ,梅 特 勒 托 利 多 Ga v n res
在 推 出了针 对可 追溯性 序 列化 管理 的 XMV喷码 影像 识别 系
上 海 外 高 桥 发 电有 限 责 任 公 司 是 以 上 海 外 高 桥 发 电厂 为 统 后 ,为 了 让 制 药 行 业 的 客 户 获 得 更 精 确 的 产 品 处 理 结 果 , 2M 基 础 组 建 而 成 的 公 司 。 上 海 外 高 桥 发 电厂 是 国 家 “ 五 ” 重 将 自动 检 重 秤 与 之 有 机 结 合 ,推 出 了 紧 凑 型 设 计 的 XS V 八 点 工 程 , 也 是 上 海 浦 东 第 一 批 十 大 基 础 设 施 工 程 投 资 最 多 的
天 力 公 司 完 成 ,设 备 年 利 用 为 7 6 小 时 , 产 线 能 力 ≥ l t l0 生 4/ h,有 效 容 积 为 5 0 ,采 用 先 进 、成 熟 、可 靠 的 技 术 ,装 置 0 m, 的服 务寿命 可达 3 0年 。
梅特 勒 一托利 多推 出新 型 自动 检 重秤
天力 公司 与上海 外高 桥 电力 股份 有 限公司 的首 次合 作得
到 了山东 省科学 院领导 的大 力支 持 。 生产 线坚 持 工艺简 捷 、 该 设 计 合 理 、技 术 先 进 、节 能 降 耗 、减 少 污 染 的 原 则 ,在 设 计 、
制造 、安装 、调 试 、试验 及检查 、 试运 等方 面均按 照标 准 由
方 面也 要求对 聚 合物 性能 进行 严格 控 制 。
N a u e 0r t r W kS的 研 究 专 家 J d Ra" a l称 赞 说 , e id l i
“ sn Ro a d和 TDAma x的卓越 性 能为我 们提 供 了 巨大 价值 ” , “ 我们使 用马 尔文 Ro a d毛 细管流 变仪 评估 添加剂 和分 子结 sn

灵芝总三萜富集用不同型号大孔吸附树脂的筛选

灵芝总三萜富集用不同型号大孔吸附树脂的筛选

·药物研发·灵芝总三萜富集用不同型号大孔吸附树脂的筛选陈婧 罗欣钟海燕 刘泽浈 李鹏(福建医科大学药学院福州 350122)摘要目的:筛选出适合灵芝总三萜富集的大孔吸附树脂。

方法:选择8种大孔吸附树脂,以灵芝总三萜的吸附率及解吸率为考察指标,通过大孔吸附树脂静态吸附-解吸实验,筛选出合适的大孔吸附树脂。

结果:HPD400型大孔吸附树脂对灵芝总三萜的静态吸附率为67.27%,解吸率为97.50%。

结论:HPD400型大孔吸附树脂适用于灵芝总三萜的富集。

关键词 灵芝三萜大孔吸附树脂中图分类号:R284.2 文献标志码:A 文章编号:1006-1533(2023)23-0111-05引用本文陈婧, 罗欣, 钟海燕, 等. 灵芝总三萜富集用不同型号大孔吸附树脂的筛选[J]. 上海医药, 2023, 44(23): 111-115.Screening of macroporous adsorption resin for the enrichmentof total triterpenes from Ganoderma lucidumCHEN Jing, LUO Xin, ZHONG Haiyan, LIU Zezhen, LI Peng(School of Pharmacy, Fujian Medical University, Fuzhou 350122, China)ABSTRACT Objective: To screen macroporous adsorption resin for enrichment of total triterpenes from Ganoderma lucidum. Methods: Eight kinds of macroporous adsorption resins were chosen, and the adsorption rate and desorption rate of total triterpenes were used as evaluation indexes. The optimal macroporous adsorption resins were selected through static adsorption and desorption experiments. Results: The adsorption rate and the desorption rate of total triterpenes by macroporous adsorption resin HPD400 were 67.27% and 97.50%. Conclusion: Macroporous adsorption resin HPD400 is suitable to the enrichment of total triterpenes.KEY WORDS Ganoderma lucidum; triterpene; macroporous adsorbent resin赤芝[Ganoderma lucidum(Leyss. ex Fr.)Karst.]为多孔菌科真菌的干燥子实体,是一种传统中药材,使用历史非常悠久[1]。

氧化铝生产过程中金属镓回收现状及展望

氧化铝生产过程中金属镓回收现状及展望

• 14 •轻金属2020年第12期氧化铝生产过程中金属镓回收现状及展望崔保河(沈阳铝镁设计研究院有限公司,辽宁沈阳110001)摘要:金属镓是战略性金属,氧化铝企业副产品,氧化铝行业提供了全球90%产量。

作为氧化铝生产大国,我国粗镓产量非常大,约占世界80%以上。

最近十年,国际上金属镓的供应和价格变动剧烈,为我国氧化铝企业科学决策造成了极大困扰。

本文对金属镓行业现状进行分析,并对金属镓后期市场进行了初步预测。

关键词:氧化铝;镓;预测中图分类号:TF843.1 文献标识码:A文章编号:1002-1752(2020)12-0014-03DOI:10.13662/j. cnki. qjs. 2020. 12. 004Current situation and prospect of gallium recovery in alumina productionCui Baohe^Shenyang Aluminum and Magnesium Engineering and Research Institute Co;Ltd.,Shenyang 110001, China) Abstract : Gallium is a strategic metal and by - product of alumina enterprises. Alumina industry provides 90% of global output. As a big alumina produc­er ,the output of crude gallium in China is very large, accounting for more than 80% of the world. In the last decade, the supply and price of gaUium in the world have changed dramatically, which has caused great trouble for the scientific decision - making of alumina enterprises in China. In this paper , the current situation of metal gallium industry is analyzed , and the market of metal gallium in the later stage is preliminarily predicted.Key words : alumina ; gallium ; predicted1综述镓在地壳中的含量为0.0015%。

注射剂无菌隔离灌装线-德国optima公司

注射剂无菌隔离灌装线-德国optima公司

OPTIMA GROUP pharma GmbH Facility Gladenbach, Germany 冻干机厂
Assembly 组装厂 Administration 办公区
METALL + PLASTIC 隔离器厂 Facility Radolfzell / Lake Constance, Germany
Additional benefits 其它优势 • Cost savings (from integrated engineering and project management and documentation effort) 成本降低(项目管理和验证文件资料的成本) • Time savings (from integrated engineering and project
Products 适用的产品
Customized solutions for vials, ampoules, syringes. 西林瓶或注射器
Focus / Speciality 特长
Upgrades from pilot plants to production plants with flexible systems and highest automation. 高度灵活和自动化的生产车间,包括中试型和生产型
Project 项目
• Single point project management 同一个项目管理 • Single PO 同一个合同订单 • Interface clarity 连接处责任明确 • Uniform HMIs, hardware & software 统一的操作界面/硬件/软件 • Uniform documentation 统一的文件资料 Technical 技术 • Integrated engineering team and technologies 工程和技术统一 • Uniform spare parts catalogues 备件手册统一 • Integrated IT structures (hardware & software) IT 结构统一

非常详尽介绍比利时优美科公司材料(Umicore)

非常详尽介绍比利时优美科公司材料(Umicore)

Co
Ni
Mn Cu Li Fe
solid-state chemistry & ceramics synthesis material solutions precursor synthesis through precipitation
Co- & Ni-based powders, oxides & chemicals
health & safety
~5%
optics
prec. metls chemistry
Zn oxides
nanopowders
Co recycling
Ge recycling
recycling solutions
prec. metls recycling
Zn recycling
clean technologies
• ReBat cathode materials • ReBat materials R&D • 89 people
Shanghai (China)
• Co powders • 51 people • 75% Umicore
Brugge (Belgium)
• organic Co & other metal compounds • 64 people
Ag Au Pt Pd Rh Ir Ru In Se Te Sn Bi Cu Pb Ni Sb As
precious metals services
industrial applications end-of-life materials
3
business group breakdown 2007
fuel cells
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Optimal manufacturing–remanufacturing policiesin a lean production environmentSergio Rubio a,*,Albert Corominas b,1aUniversity of Extremadura,School of Industrial Engineering,Avenida de Elvas s/n,06071Badajoz,Spain b Technical University of Catalonia,Institute of Industrial and Control Engineering,Avinguda Diagonal 647,Planta 11,08028Barcelona,SpainReceived 20July 2006;received in revised form 5December 2007;accepted 12December 2007Available online 23December 2007AbstractThis study analyses a production-management model that considers the possibility of implementing a reverse-logistics system for remanufacturing end-of-life products in a lean production environment (as opposed to models that use EOQ approaches).Decision variables are identified (including manufacturing and remanufacturing capacities and return rates and use rates for end-of-life products)and optimal policies are determined.Moreover,the structure of these optimal pol-icies is analysed.The conclusion drawn is that,in many realistic scenarios,mixed policies (that is,with return rates and use rates strictly between 0and 1)can be optimal.This conclusion is contrary to results published in earlier studies,which are based on more restrictive assumptions.Ó2007Elsevier Ltd.All rights reserved.Keywords:Reverse-logistics;Lean production;Remanufacturing;Supply chain management1.IntroductionAccording to Dowlatshahi (2005),remanufacturing is a $53billion industry in the US alone.Costs derived from reverse-logistics activities in the US exceed $35billion per year.The customer returns rate may be as high as 15%of sales in the coming years,and in sectors such as catalogue sales and e-commerce it could reach as much as 35%.In recent years,research on supply chain management has been paying attention on the recov-ery processes of end-of-life products for reuse,recycling or remanufacturing.As a result,a new research area called reverse-logistics has emerged by focusing on the management of products once they are no longer desired or can no longer be used by the consumers (Flapper,Van Nunen,&Van Wassenhove,2005).Without a doubt,reverse-logistics has become a matter of strategic importance –an element that companies must con-sider in decision-making processes concerning the design and development of their supply chains.0360-8352/$-see front matter Ó2007Elsevier Ltd.All rights reserved.doi:10.1016/j.cie.2007.12.009*Corresponding author.Tel.:+34924289600;fax:+34924289601.E-mail addresses:srubio@unex.es (S.Rubio),albert.corominas@ (A.Corominas).1Tel.:+34934011615;fax:+34934016605.Available online at Computers &Industrial Engineering 55(2008)234–242S.Rubio,A.Corominas/Computers&Industrial Engineering55(2008)234–242235The following are the most often-cited reasons(Thierry,Salomon,Van Nunen,&Van Wassenhove,1995; De Brito&Dekker,2004;Ravi,Shankar,&Tiwari,2005)as to why companies establish or participate in reverse-logistics systems:1.Economic reasons,both direct(consumption of raw materials,reduction of disposal costs,recovery of theadded value of used products,etc.)and indirect(an environmentally friendly image and compliance with current and future legislation).2.Legal reasons,because current legislation in many countries(including,for example,members of the Euro-pean Union)holds companies responsible for recovering or properly disposing of the products they put on the market.3.Social reasons,because society is aware of environmental issues and demands that companies behave morerespectfully towards the natural environment,especially with regard to issues like emissions and the gener-ation of waste.The legal reason has traditionally been viewed as having a negative effect on companies’ability to com-pete,due to the costs involved in adapting processes and industrial operations to comply with regulations. Nevertheless,according to Porter and van der Linde(1995),properly designed environmental laws can spur innovations capable of compensating for the cost of compliance.These‘‘innovation offsets”not only reduce the net cost of compliance but also generate sustainable competitive advantages by reducing overall man-ufacturing costs and time to market and increasing the value of the product for the consumer.Thus,in addition to companies’legal responsibility,the potential for gaining competitive advantages by complying with environmental legislation is a further reason for adopting environmentally friendly policies such as reverse-logistics systems.This interest in reverse-logistics has attracted the attention of not only companies and professionals but also academia,which has been tackling this issue in recent years(Prahinski&Kocabasoglu,2006).Many of the studies published on reverse-logistics have focused on aspects of production planning and inventory manage-ment(Rubio,Chamorro,&Miranda,2008).Some of the most notable works have analysed the effects of the flow of returned products on traditional inventory-management models(see,for example,Fleischmann et al., 1997;De Brito&Dekker,2003;Minner,2003;Fleischmann&Minner,2004,for a review of the same).However,these studies assume that such a returnflow exists,without questioning whether its establishment is appropriate in economic terms and in light of the traditional producer–consumer logistical structure.It seems reasonable to assume that a company considering the development of a reverse-logistics system must first analyse how the introduction of such a recovery system would affect the capacity and resources of its cur-rent production system.Traditionally,the studies that have analysed these matters have predetermined the capacity of both the production systems(manufacturing and remanufacturing)and the systems that manage them(for example,EOQ models in constant–demand scenarios),thereby obtaining results that ultimately con-sist of optimal strategies that call for using all available capacity in either the manufacturing process or the remanufacturing process(Richter,1996;Dobos&Richter,2003and Dobos&Richter,2004)rather than adopting mixed strategies(manufacturing and remanufacturing).Our study explores these matters through an analysis carried out in a deterministic environment in which we assume that market demand is constant.Under this assumption,we propose a model that could be described as lean or just-in-time(JIT)production,in contrast to other models covered in the literature that are based on economic order quantity(EOQ)or some variation of this model(Harris,1913).Lean production is one of the most influential manufacturing paradigm of recent times(Holweg,2007)that can be considered as a multi-dimensional approach that encompasses a wide variety of management practices,including just-in-time,quality management,work teams,etc.,in an integrated system that producesfinished products at the pace of the customer demand with little or no waste(Shah&Ward,2003).One of the early messages of JIT philosophy is related to‘zero inventories’or‘stockless production’;in this sense,Bicheno,Holweg,and Niessmann(2001)indicate that JIT or lean thinking has raised the idea of batches should always be as small as possible,in order to achieve one-pieceflow with batches sizes of one.In addition,Hines,Holweg,and Rich(2004)point out that lean production has been extended considerably over its lifespan,from automotive to manufacturing,and even to services,and indicate,as a need for research,236S.Rubio,A.Corominas/Computers&Industrial Engineering55(2008)234–242to analyse how lean systems can be created in a‘greenfield’environment,so the application of lean thinking to remanufacturing can be regarded as a contribution in this area.The main goal of this study is to analyse under what conditions(capacity,return rate,remanufacturing rate)a reverse-logistics system should be introduced at a company that uses a JIT production-management system.The idea is for the manufacturing process to be able to adjust its capacity to the demand in order to avoid inventory generation and excess capacity.The next section briefly reviews some earlier studies that have analysed these matters.In subsequent sections we present our model,describe the assumptions and sce-narios we use and illustrate them with a numerical exercise.The last section presents the main conclusions of this study.2.Literature reviewAs mentioned above,studies that analyse the effects of returnflow on the traditional supply chain tend to look at its effects on inventory management,basing their analysis on the EOQ approach.In general,these studies can be classified according to whether the model used is deterministic or stochastic.Authors who use deterministic models,like ours,include Schrady(1967),who describes a traditional EOQ model with returnflow that alternates between one production lot and several lots of remanufactured(repaired)used products((1,R)policy)and obtains simple equations for the respective lots.Nahmias and Rivera(1979)gen-eralise this model by considering afinite repair rate and Mabini,Pintelon,and Gelders(1992)extend it to include multiple products,also with afinite remanufacturing rate.Koh,Hwang,Sohn,and Ko(2002)build upon the model by Nahmias and Rivera(1979)by calculating the optimal lot sizes in(P,1)and(1,R)policies and considering various scenarios for demand rates,return rates and economic-recovery rates.Teunter(2004) generalises the latter study by considering afinite manufacturing rate and compares the work of Koh et al. (2002)and Nahmias and Rivera(1979)for some of the proposed scenarios.Teunter(2001)includes a disposal option in the model by Schrady(1967)and generalises it using(P,1)policies that alternate various production lots with one remanufacturing lot,thereby optimising the size of each lot.Dobos and Richter(2004)study a system that includes the option of disposing of returned products and they also considerfinite manufacturing and remanufacturing rates,using a predetermined inventory-management policy that consists in preparing m lots of remanufactured products and n manufactured lots.Dobos and Richter(2006)extend this model for the case of quality consideration.As mentioned above,these authors draw conclusions similar to those of Richter (1996)and Dobos and Richter(2003)with regard to the suitability of pure strategies(production or reman-ufacturing)as opposed to mixed strategies(production and remanufacturing).Unlike these other studies,we propose a model that allows the manufacturing capacity and,if necessary, the remanufacturing capacity to be adjusted,under the assumption of a known and constant demand.Thus, we avoid inventory generation and contribute a new approach to the study of production-management sys-tems that deals with the economic recovery(remanufacturing,recycling,reuse)of end-of-life products and encourages the sustainable management of the supply chain.3.Explanation of the modelLet us assume that the market demand(D unit/year)is currently satisfied by a manufacturing process(For-ward System)whose capacity is perfectly suited to the demand rate,which we assume to be deterministic.We wish tofind out whether a reverse-logistics system(Revlog System)can be implemented for the economic recovery of used products.The Revlog System(Fig.1)consists of two different lines of production,which we refer to as the Manufacturing Line and the Remanufacturing Line.The Manufacturing Line manufactures ‘‘original”products that satisfy the demand that cannot be met by the Remanufacturing Line,which involves a process of economic recovery of end-of-life products.This process begins when products are returned at the return rate r=a D.The returned products are inspected and their suitability for remanufacturing is deter-mined.At a rate of u=d r=da D,the suitable items are sent to the remanufacturing facilities,where they are adapted to meet part of the market demand.Unsuitable items are discarded at the rate of d=rÀu. The remanufactured products are identical to the original products in terms of quality,so there is no distinc-tion between a manufactured and a remanufactured product.We will consider a =0(only manufacturing)and a =1;d =1(only remanufacturing)as pure strategies,whereas there will be a mixed policy if 0<a <1and/or 0<d <1.Parameters and variablesD Demanda Rate at which end-of-life products are returned:r =a Dd Rate at which returned products are used:u =da Dd Rate at which returned products are discarded:d =r Àuc M Variable unit cost of manufacturing original productsc W Variable unit cost of disposing of returned productsI B ,I R ,I M Annualised capacity costs of the end-of life product return facilities,remanufacturing facilities andmanufacturing facilities,respectively,when capacities are givenTC FWD ,TC RL Total cost of the Forward System and of the Revlog System,respectively,when capacities are given U B (a ),/B (a )Total cost and average variable cost per unit,respectively,of returning end-of-life products U M (a ,d ),/M (d ),f M Total cost,average variable cost per unit and marginal cost of manufacturing,respec-tivelyU R (a ,d ),/R (d ),f R Total cost,average variable cost per unit and marginal cost of remanufacturing,respec-tively TC C FWD ;TC C RL Total cost of the Forward System and of the Revlog System,respectively,when capacities are variableI B (a ),I M (ad ),I R (ad )Annualised capacity costs of the end-of life product return facilities,manufacturing facil-ities and remanufacturing facilities,respectively,when capacities are variableInitially,we assume that the capacity costs in the model are constant and that the capacity of each of the manufacturing and remanufacturing processes is sufficient and perfectly suited to the demand,regardless of the investments made in each of the facilities.We will later relax this assumption.We calculate the value of the total costs for each of the proposed systems as follows:3.1.Forward systemTC FWD ¼I M þc M DS.Rubio,A.Corominas /Computers &Industrial Engineering 55(2008)234–2422373.2.Revlog SystemLet us assume that the process of returning end-of-life products is represented by the return-cost function U B(a)=I B+D/B(a),where/B(a)is increasing and convex,in keeping with the assumption that increases in the return rate will go hand in hand with growing increases in the cost of returning used products(Fig.2).It seems reasonable to assume that,because of location or transport,etc.,it will be increasingly difficult for the company to increase the number of returned products.Therefore,the cost of returning each additional used unit–the marginal return cost–continually increases.This assumption relative to the marginal return cost has been adopted in several recent studies(Savaskan,Bhattacharya,&Van Wassenhove,2004;Savaskan& Van Wassenhove,2006).Ferguson and Toktay(2006)provide cases where the collection cost is convexincreasing in quantity.We can represent this function as/BðaÞ¼R af BðxÞd x,where f B(a)(such that d f Bd aP0)is proportional to themarginal return cost for end-of-life products.Similarly,at least in the short term,the cost associated with the remanufacturing process will increase as the percentage of returned products considered suitable for remanufacturing(d)increases.We assume that, depending on the different levels of quality of the returned products,different activities may be required for their economic recovery(remanufacturing)and that therefore the costs will vary.Thus,as the percentage of used products that are suitable increases,the quality of the products will become less consistent and the remanufacturing process will therefore become more complex and costly.In short,we are assuming that the marginal cost of remanufacturing increases monotonously.Ferguson and Toktay(2006)also point outthat manyfirms experience a convex increasing processing cost.Thus,we define the remanufacturing cost function as U R(a,d)=I R+a D/R(d),where/RðdÞ¼R df RðxÞd x,with d f R P0,which means that/R(d)is convex(but U R(a,d)may not).It must be pointed out that both f B and f R functions may be non-continuous functions(for instance, because/B or/R are step-wise linear functions).Let us assume that the cost of disposal is directly proportional to the number of returned units that are ultimately not included in the remanufacturing process:U W(a,d)=c W(1Àd)a D.Finally,the original Manufacturing Line in the Revlog System is represented by the costs generated to sat-isfy the demand that cannot be met through the remanufacturing process:U M(a,d)=I M+c M(1Àda)D.Thus,we obtain a cost function for the Revlog System according to the percentage of end-of-life products that return to the system(a)and the percentage of these products that are ultimately remanufactured(d): TC RL¼I Mþc Mð1ÀadÞD½ þI BþD/BðaÞðÞþI Rþa D/RðdÞðÞþc Wð1ÀdÞa D½238S.Rubio,A.Corominas/Computers&Industrial Engineering55(2008)234–242Let Z be the difference between both costs:Z ¼TC FWD ÀTC RL ¼c M ad D ÀI B þD /B ða ÞðÞþI R þa D /R ðd ÞðÞþc W ð1Àd Þa D ½The introduction of a reverse-logistics system is appropriate,from an economic point of view,when Z >0and inappropriate when Z <0.To obtain the optimum value of Z ,Z *,one must solve the following optimisation problem:maximise 06a 61;06d 61Z ða ;d Þwhere Z is not a concave function.However,for any value ^a ð06^a 61Þ,Z ð^a ;d Þis a concave function of d ,so the optimisation problem can be solved as follows:1.d Z ð^a ;d Þd d ¼0(which,straightforwardly,implies f R (d )=c M +c W )is a sufficient condition for optimum.Therefore:1.1.If c M +c W 6f R (0),then d *=0(and a *=0and stop).1.2.If f R (0)<c M +c W <f R (1),then d üf À1R ðc M þc W Þif such d *exists.Otherwise (which may happenonly when f R is not a continuous function)d *must fulfil f R (d )<c M +c W "d <d *and f R (d )>c M +c W "d >d *.1.3.If f R (1)<c M +c W ,then d *=1.2.Replacing d with d *in Z (a ,d )yields a concave function of a ,Z (a ,d *)and d Z ða ;d ÃÞ¼0implies f B (a )=(c M +c W )d *À(c W +/R (d *)).Therefore:2.1.If (c M +c W )d *À(c W +/R (d *))6f B (0),then a *=0.2.2.If f B (0)<(c M +c W )d *À(c W +/R (d *))<f B (1)and a *exits,then a üf À1B ððc M þc W Þd ÃÀðc W þ/R ðd ÃÞÞÞ.Otherwise (f B is not a continuous function)a *must fulfil f B (a )<(c M +c W )d *À(c W +/R (d *)),"a <a *and f B (a )>(c M +c W )d *À(c W +/R (d *)),"a >a *.2.3.If f B (1)<(c M +c W )d *À(c W +/R (d *))then a *=1.Of course,a *=0means that the reverse-logistics system have not be implemented,although when a *>0the Revlog System has to be implemented only if Z *>0.We may conclude from our analysis that,in the assumed environment,the optimal approach may be a mixed strategy that combines manufacturing,partial recovery,disposal and remanufacturing.Therefore,the results of Richter (1996),Dobos and Richter (2003)and Dobos and Richter (2004)cannot be extended beyond the EOQ model and the scenarios they consider.Let us see an example in which we use quadratic functions for the costs of returning and remanufacturing.If we assume that /B (a )=10a 2and /R (d )=50d 2and that D =1000,I M =11000,I R =5000,I B =2000,c M =65and c W =25,we obtain the following optimal values (Fig.3):a ü77:50%;d ü90:00%;TC ÃRL ¼76;993:75;TC ÃFWD ¼76;000:00Therefore,the Revlog System performs worse than the Forward System in terms of cost and the introduc-tion of the reverse-logistics system is not a recommendable option under the cost criteria.3.3.Model with variable capacity costsIn this section,we relax our prior assumption that the capacity costs –of both the manufacturing process and the remanufacturing process –are constant,and we assume that the company incurs certain costs and savings by adjusting its manufacturing and/or remanufacturing capacity in accordance with the lean produc-tion model in question.We could use the next expressions to represent our model:S.Rubio,A.Corominas /Computers &Industrial Engineering 55(2008)234–2422393.4.Forward systemLet I M (ad )=C M +c M (ad )be the capacity cost of the manufacturing process.Then:TC CFWD ¼I M ð0Þþc M Dwhere I M (0)=C M +c M (0)represents the capacity cost function of the manufacturing process in the Forward System.3.5.Revlog SystemWe again consider a Manufacturing Line and a Remanufacturing Line for which we examine the cost func-tions generated in each process.TC CRL ¼U C M ða ;d ÞþðU C B ða ÞþU C R ða ;d ÞþU W ða ;d ÞÞU CM ða ;d Þ¼I M ðad Þþc M ð1Àad ÞD ;where I M ðad Þ¼C M þc M ðad ÞU CB ða Þ¼I B ða ÞþD /B ða Þ;whereI B ða Þ¼C B þc B ða ÞU CR ða ;d Þ¼I R ðad Þþa D /R ða ;d Þ;where I R ðad Þ¼C R þc R ðad ÞIn this scenario,the functions I M ,I B ,I R represent the capacity costs function of the corresponding pro-cesses:manufacturing,collecting and remanufacturing.Trying to choose specific functions for the variable capacity costs should certainly be a vain exercise because the nature of the capacity cost function depends on the type of adjustment that is considered (Van Mieghem,2003)and,hence,there are not reasons to suppose any particular shape for the c i (i =M ,B ,R )functions.Therefore,only by way of example,we will suppose that the capacity costs are linear functions of the corresponding variables.240S.Rubio,A.Corominas /Computers &Industrial Engineering 55(2008)234–242Let c M(ad)=k M(1Àad)D;c B(a)=k B a D;c R(ad)=k R ad D,then we have:TC CFWD¼I Mþc M D¼ðC Mþk M DÞþc M DU CBðaÞ¼I BðaÞþD/BðaÞ¼ðC Bþk B a DÞþD/BðaÞU CRða;dÞ¼I RðadÞþa D/RðdÞ¼ðC Rþk R ad DÞþa D/RðdÞU CMða;dÞ¼I MðadÞþc Mð1ÀadÞD¼ðC Mþk Mð1ÀadÞDÞþc Mð1ÀadÞDAnd taking into consideration the cost function for disposing of returned products U W(a,d),we determine the total-cost function of the Revlog System,thus:TC CRL ¼U CMða;dÞþðU CBðaÞþU CRða;dÞþU Wða;dÞÞUsing the same functions/B(a)and/R(d)that in the case of constant capacity costs and assuming that C M=1000,C B=450,C R=815,k M=10,k B=2and k R=6(increase one unit of capacity in manufacturing is more expensive than increase one unit of capacity in remanufacturing),we obtain:f RðdÞ¼ðc Mþc WÞþðk MÀk RÞf BðaÞ¼ððc Mþc WÞdÀðc Wþ/RðdÞÞÞþððk MÀk RÞdÀk BÞAnd,therefore:aü85:90%;dü94:00%;TCÃRL ¼69;886:19;TCÃFWD¼76;000:00In this scenario,the incorporation of linear capacity costs in the proposed cost structure leads us to con-sider introducing the Revlog System,which would be rejected if the effect of the variations of capacity on the costs would have not taken into account.In our example,this causes a‘‘shift”towards the remanufacturing process.Of course,the opposite may occur in other scenarios.4.Summary and conclusionsThis study proposes a model for analysing the decision to introduce a reverse-logistics system for reman-ufacturing used products.This model is considered in a lean production environment,unlike other models widely used in the literature that use approaches based on economic order quantity.We identified the decision variables(which include manufacturing and remanufacturing capacities,return rates,and use rates for end-of-life products)and determined the optimal policies.Our model allows us to examine the effects of modifying the capacity of the system by establishing a process of economic recovery of used products.By considering var-iable capacity costs,we can analyse the transfer of capacity between manufacturing and remanufacturing lines, which allows us to consider new production-management policy options.The analysis of these policies makes it clear that,in very general cases,they may be either pure or mixed. This conclusion is different from those of earlier studies,which start with assumptions that are more restrictive and probably unrealistic in many cases.Although there is a general agreement that remanufacturing is an effi-cient and profitable activity(Ferrer&Swaminathan,2006)unfortunately it is still a minority option for most Original Equipment Manufacturers(OEMs)that decide not adopt the remanufacturing option because of cost and internal cannibalization(Ferguson&Toktay,2006).Nevertheless,remanufacturing is an emerging market with many opportunities for OEMs.The results of this paper show that remanufacturing is compatible with lean production practices and the implementation of a mixed strategy that combines manufacturing,partial recovery,disposal and remanufacturing can generate economic advantages helping to companies to improve their competitiveness.AcknowledgementsThe authors thank one anonymous referee for her/his helpful suggestions.This research was developed while Sergio Rubio was at IOC in a postdoctoral visitfinanced by Junta de Extremadura and European Social Fund through the grant MOV05A06.Sergio Rubio thanks people of IOC for their hospitality.S.Rubio,A.Corominas/Computers&Industrial Engineering55(2008)234–242241242S.Rubio,A.Corominas/Computers&Industrial Engineering55(2008)234–242ReferencesBicheno,J.,Holweg,M.,&Niessmann,J.(2001).Constraint batch sizing in a lean environment.International Journal of Production Economics,73,41–49.De Brito,M.,&Dekker,R.(2003).Modelling products return in inventory control:Exploring the validity of general assumptions.International Journal of Production Economics,81-82,225–241.De Brito,M.,&Dekker,R.(2004).A framework for reverse-logistics.In R.Dekker,M.Fleischmann,K.Inderfurth,&L.N.Van Wassenhove(Eds.),Reverse-logistics.Quantitative models for closed-loop supply chains(pp.3–27).Berlin:Springer.Dobos,I.,&Richter,K.(2003).A production/recycling model with stationary demand and return rates.Central European Journal of Operations Research,11,35–46.Dobos,I.,&Richter,K.(2004).An extended production/recycling model with stationary demand and return rates.International Journal of Production Economics,90(3),311–323.Dobos,I.,&Richter,K.(2006).A production/recycling model with quality consideration.International Journal of Production Economics, 104,571–579.Dowlatshahi,S.(2005).A strategic framework for the design and implementation of remanufacturing operations in reverse-logistics.International Journal of Production Research,43(16),3455–3480.Ferguson,M.E.,&Toktay,L.B.(2006).The effect of competition on recovery strategies.Production and Operations Management,15(3), 351–368.Ferrer,G.,&Swaminathan,J.M.(2006).Managing news and remanufactured products.Management Science,52(1),15–26. Flapper,S.D.P.,Van Nunen,J.A.E.E.,&Van Wassenhove,L.N.(2005).Managing closed-loop supply chains.Berlin:Springer. Fleischmann,M.,Bloemhof-Ruwaard,J.M.,Dekker,R.,Van Der Laan,E.,Van Nunen,J.,&Van Wassenhove,L.N.(1997).Quantitative models for reverse-logistics:A review.European Journal of Operational Research,103(1),1–13.Fleischmann,M.,&Minner,S.(2004).Inventory management in closed loop supply chains.In H.Dyckhoff,ckes,&J.Reese(Eds.), Supply chain management and reverse-logistics(pp.115–138).Berlin:Springer.Harris,F.W.(1913).How many parts to make at once.Factory:The Magazine of Management,10,135–136,Reprinted in Operations Research,38(6),947–950.Hines,P.,Holweg,M.,&Rich,N.(2004).Learning to evolve.A review of contemporary lean thinking.International Journal of Operations and Production Management,24(10),994–1011.Holweg,M.(2007).The genealogy of lean production.Journal of Operations Management,25,420–437.Koh,S.G.,Hwang,H.,Sohn,K.I.,&Ko,C.S.(2002).An optimal ordering and recovery policy for reusable puters and Industrial Engineering,43(1-2),59–73.Mabini,M.C.,Pintelon,L.M.,&Gelders,L.F.(1992).EOQ type formulations for controlling repairable inventories.International Journal of Production Economics,28(1),21–33.Minner,S.(2003).Multiple-supplier inventory models in supply chain:A review.International Journal of Production Economics,81–82, 265–279.Nahmias,N.,&Rivera,H.(1979).A deterministic model for a repairable item inventory system with afinite repair rate.International Journal of Production Research,17,215–221.Porter,M.E.,&van der Linde,C.(1995).Toward a new conception of the environment–competitiveness relationship.Journal of Economic Perspectives,9(4),97–118.Prahinski,C.,&Kocabasoglu,C.(2006).Empirical research opportunities in reverse supply chains.Omega,34(6),519–532.Ravi,V.,Shankar,R.,&Tiwari,M.K.(2005).Analyzing alternatives in reverse-logistics for end-of-life computers:ANP and balanced scorecard puters and Industrial Engineering,48(2),327–356.Richter,K.(1996).The EOQ and waste disposal model with variable setups numbers.European Journal of Operational Research,95(2), 313–324.Rubio,S.,Chamorro,A.,&Miranda,F.J.(2008).Characteristics of the research on reverse-logistics.International Journal of Production Research,46(4),1099–1120.Savaskan,R.C.,Bhattacharya,S.,&Van Wassenhove,L.N.(2004).Closed-loop supply chain models with product remanufacturing.Management Science,50(2),239–252.Savaskan,R.C.,&Van Wassenhove,L.N.(2006).Reverse channel design:The case of competing retailers.Management Science,52(1), 1–14.Schrady,D.A.(1967).A deterministic inventory model for repairable items.Naval Research Logistics Quarterly,14(3),391–398. Shah,R.,&Ward,P.T.(2003).Lean manufacturing:Context,practice bundles and performance.Journal of Operations Management,21, 129–149.Teunter,R.H.(2001).A reverse-logistics valuation method for inventory control.International Journal of Production Research,39(9), 2023–2035.Teunter,R.H.(2004).Lot-sizing for inventory systems with product puters and Industrial Engineering,46(3),431–441. Thierry,M.C.,Salomon,M.,Van Nunen,J.A.E.E.,&Van Wassenhove,L.N.(1995).Strategic issues in product recovery management.California Management Review,37(2),114–135.Van Mieghem,J.A.(2003).Capacity management,investment,and hedging:Review and recent developments.Manufacturing and Service Operations Management,5(4),269–302.。

相关文档
最新文档