八年级数学下册 第5章 数据的频数分布 5.2 频数分布直方图(第1课时)教案 (新版)湘教版
湘教版八下数学频数直方图教学课件
4
170≤x<173
2
探究
从表中可以看出,身高在155≤x<158,158≤x< 161,161≤x<164三个组的人数最多,一共有41人,因 此可以从身高在155~164 cm(不含164 cm)的学生中 选队员.
探究
4.画频数散布直方图 为了更直观地反应一组数据的散布情况,可以以 频数散布表为基础, 绘制频数散布直方图(简称直方 图) . 在直角坐标系中, 以组距为宽, 频数为高作 小矩形,就可以得到下面的直方图:
个组,则是相邻两组组中值的平均数.
3.国家卫生部信息统计中心根据国务院新闻办公室发布的全国内地2003年5月
21日至5月25日非典型性肺炎发病情况,按年龄段进行统计,如图所示(每组
包括前一个边界值,不包括后
频数(人)
一个边界值)
40
38
(1)全国内地2003年5月 35
21日至5月25日共有108人 30
说明:在作频数散布直方图时,如果是等距离分组的话, 那么纵轴既可以就是该组的频数,也可以是频数与组距 之比,但一般习惯按前者画图.
练习
1.一个容量为80的样本最大值为141,最小值为50, 取组距为10,则可以分成( A ). A. 10组 B. 9组 C. 8组 D. 7组
练习
2. 一个样本的频数散布直方
探究
频数
(学生人数)
20
等距分组的频数散布直方图
15 10
5
0 149 152 155 158 161 164 167 170 173 身高/㎝
结论
在绘制频数直方图时, 应注意: 1.横轴和纵轴加上适当的刻度, 标明各轴所代表的名 称和单位. 2.各个小矩形之间无间隙. 3.小矩形的边界对应于各组的组界.
湘教版2018八年级(下册)数学第五章频率及其分布 全章课件
49.5~59.5
59.5~69.5
6
1
0.150
0.025
合计
40
1.000
(3)约占90%的学生平均每天参加课外体育活动时间都在哪个 范围内? 40×90%=36, 约占90%的学生平均每天参加课外体育活动时间都在29.5~ 59.5范围内
36名老人的血压,获得每位 老人的舒张压的频数分布表
36名老人的血压,获得每位老 人的舒张压的频数分布直方图
频数
1 2 12 18
频率
0.025 0.050 0.300 0.450
49.5~59.5
59.5~69.5
6
1
0.150
0.025
合计
40
1.000
(2)一周内平均每天参加课外体育活动不少于40分的学生的频 率; 0.450+0.150+0.025=0.625=62.5% 若该校八年级共有320名学生,请估计一周内平均每天参加课外 体育活动不少于40分的学生的人数. 320×62.5%=200(人)
组别(分) 9.5~19.5 19.5~29.5
频数 1
频率 0.025 0.050
29.5~39.5
39.5~49.5 49.5~59.5 59.5~69.5 合计
12
18 0.150
40 名八年级学生平均每天参加课外体育活动时间的频数分布表
组别(分) 9.5~19.5 19.5~29.5 29.5~39.5 39.5~49.5
例 小芳参加校射击队,在一次射击训练中,她先射击 了15次,教练对其射击方法作了一些指导后,又射击了 15次。她两次射击得分情况如下表所示: 前15次射击得分情况
次数 环数 7
湘教版八下数学课件第5章5.2频数直方图
请根据以上图表中提供的信息,解答下列问题: (1)本次调查的样本容量为 300 ; (2)在表中:m= 120 ,n= 0.3 ; (3)补全频数分布直方图; (4)如果比赛成绩 80 分以上(含 80 分)为优秀,那你估计该竞赛项目的优秀率 大约是 60% .
1.在样本的频数分布直方图中,共有 11 个小长方形,若中间一个小长方形
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·湘教版
第5章 频数及其分布
5.2 频数直方图
1.绘制频数直方图的步骤:(1) 分组;(2) 列频数分布表 ; (3) 绘制频数直方图 . 2.在制作频数分布表时,为了避免数据的重复和遗漏,我们采用“画记 ”
的方法;在绘制频数直方图时,应注意:(1)横坐标和纵坐标加上适当的 刻度 ,标明各轴所代表的 名称和单位 ;(2)各个小矩形之间 无空隙 ;(3)
的高等于其他 10 个小长方形高之和的14,且样本容量是 60,则中间一组的
频数为( A ) A.12
B.15
C.40
D.0.25
2.某次考试中,某班级的数学成绩统计图如下,下列说法错误的是( D )
A.得分在 70~80 分之间的人数最多 B.该班的总人数为 40 C.得分在 90~100 分之间的人数最少 D.及格(≥60 分)人数是 26
4∶3∶1,则第二小组的频数为( B )
A.4
B.12
C.9
D.8
7.为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取 40 名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成 如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根 据图中信息估计该校学生一周课外阅读时间不少于 4 小时的人数占全校人 数的百分数约等于( C )
湘教版八年级数学下册5.2频数直方图
频数直方图
复习
做一做
某中学为了了解全校1200学生平均每天课外体育 锻炼时间情况,随机抽查了一部分学生进行了解,并 按时间分成四组制成如下频数和频率表(每组时间包含 左边但不含右边):
平均每天锻炼时间 0~0.5时 0.5~1时 1~2时 2时以上 合计
频数 8
10
频率
0.4 0.25
完成下面问题: (1)把上面频数和频率统计表补充完整; (2)每天平均课外锻炼时间人数最多的在哪一组? (3)按照表格频率计算,平均每天课外体育锻炼 时间不少于1小时的学生,全校共有多少名?
如何更直观地了解这30户家庭6月份饮食消费的分布情况呢?
由于上述数据较多,且分布比较零散,我们 需要把这些数据进行必要的归纳和整理,先进行 适当分组,并借助表格将各组的频数进行统计整 理,以便分析这组数据的分布规律.
1 分组.
①确定最小值m和最大值M. 由表中可以看出,29号家庭月饮食消费最低,
我 还 能 看 出 这 30 户 家庭的月饮食消费水平 集中在哪一组.
解 (1)这30户家庭的饮食消费月支出集中在 800≤x<840这一组;
(2)月支出较低的家庭比月支出较高的家庭多; (3)从整体水平看,这30户家庭的月消费支出基 本处于较低水平和中等水平,以中等水平最多, 而处于较高水平的相对较少.
3号家庭月饮食消费最高, 故m=730, M=956. 最小值m和最大值M的差d= M- m称为极差.
编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 金额 804 844 956 830 780 820 900 830 820 784 820 804 824 740 824 编号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 金额 812 788 872 758 876 776 796 828 844 766 836 764 838 730 826
八年级数学下册5《数据的频数分布》小结与复习课件(新
表(部分未列出)如下:某校50名17岁男生身高的频
数分布表
请回答下列问题:
分组 1.565~1.595 1.595~1.625
频数 频率 2 0.04
4 0.08
(1)请将上述频数分布 表填写完整;
1.625~1.655 6 0.12 (2)估计这所学校17岁
1.655~1.685 11 0.22 男生中,身高不低于
8万名初中生的体育升 学考试成绩
,
(2)第四小组的频率为_0_._2,6 请补全频数分布直方图; (3)被抽取的样本的中位数落在第__3_小组内;
(4)若成绩在24分以上的为“优秀”,
请估计今年全市初中毕业生
的体育升学考试成绩为
130
130
“优秀”的人数.
80000×(0.26+0.02)=22400人
3.一个样本有100个数据,其中最大值是7.4,最小 值是4 ,若组距为0.3则这组数据为__1_2__组。
4.对某班同学的身高进行统计(单位:厘米),频数分布 表中165.5~170.5这一组学生人数是12,频率为0.25,则 该班共有___4_8__名同学.
5.将50个数据分成5组,其中第一,第二的频率之和 为0.11,第四,第五组的频率之和为0.27,则第三小 组的频数为 31 .
1.685~1.715 350×0.34=119(人)
(4)绘制频数分布直方图。
3.给定一组数据如下:14,14,14,16,16,17,17, 17,20,20,20,20,20,25.
(1)写出各数在 数组中出现的频 数和频率;
(2)用加权平均的
14 16 17 20 25
频数 3
2 3 51
频率 0.214 0.143 0.214 0.357 0.071
湘教版八年级数学下册第5章《数据的频数分布》教案
频率之和为 1,频数=数据总数×频率.
【类型二】 频率、频数与扇形统计图 为培养学生良好学习习惯,某学
校计划举行一次“整理错题集”的展示活动, 对该校部分学生“整理错题集”的情况进行 了一次抽样调查,根据收集的数据绘制了不
(2)非常好的频数是 200×0.21=42,一 般的频数是 200-42-70-36=52,较好的 频率是27000=0.35,一般的频率是25020=0.26,
解:(1)先将数据分成以下八组,并得到
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
相应各组的学生人数.
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
身高(cm)
学生数
身高(cm)
学生数
频数分布表:
140~144
2
160~164
20 分 组
湘教版八年级数学下册第 5 章《数据的频 数分布》教案
5.1 频数与频率
6 组的频数为 5.故选 D.
1.理解频率的概念,理解样本容量、频 数、频率之间的相互关系,会计算频率;(重 点,难点)
2.了解频数、频率的一些简单实际应用.
一、情境导入 某医院 2 月份出生的 20 名新生婴儿的 体重如下(单位:kg):4.7、2.9、3.2、3.5、 3.6、4.8、4.3、3.6、3.8、3.4、3.4、3.5、2.8、 3.3、4.0、4.5、3.6、3.5、3.7、3.7.已知这一 组数的平均数为 3.69,s2=0.2749,请说明这 组数据的平均数和方差能说明医院新生婴 儿体重在哪一个范围内人数最多,在哪一个 范围内人数最少?你能说出体重在 3.55~ 3.95kg 这一范围内的婴儿数是多少吗?用 什么方法? 二、合作探究 探究点一:频数
湘教版八年级数学下册 第5章 数据的频数分布 第1课时 频数与频率(课件)
(1)
次数 频数 频率 (2)
不达标
良
1
12
0.025
0.3
优 27 0.675
0.3+0.675=0.975 答:达标率是0.975.
一枚硬币有两面,我们称有国徽的一面为“正 面”,另一面为“反面”.掷一枚硬币,当硬币落 在桌面时,可能出现“正面朝上”,也可能出现 “反面朝上” .每次掷币,两种情形必然出现一种, 也只能出现一种.究竟出现哪种情形,在掷币之前 无法预测,只有掷币之后才能知道.
(20+30+40+10)÷(20+30+40++10)≈90.9%
2.某城市交警为检测刚建成通车的城市隧道的通行速度,观 测到某时段的来往车辆车速(单位:km/h)如下图所示:
(选自教材P154习题5.1)
(3)若要对该隧道的通行速度进行限制,你有什么好的建议?
车辆限速45~48km/h(答案不唯一,可根据实际情况确定).
8
11 9 12
0.2 0.275 0.225 0.3
(2)如果得票最高的候选人被选为班长,则四人中哪一位会 当选?
汤伟会当选.
2.某城市交警为检测刚建成通车的城市隧道的通行速度,观 测到某时段的来往车辆车速(单位:km/h)如下图所示:
(选自教材P154习题5.1)
(1)计算这些车的平均车速.
与同桌同学合作,掷10次硬币,并把10次试验结果记录下来:
(1)计算“正面朝上”和“反面朝上”的频数各是多少,它们之间有什么关系? (2)计算“正面朝上”和“反面朝上”的频率各是多少,它们之间有什么关系?
假设某同学掷10次的结果如下:
次数
1
2
湘教版八下数学5.2《频数直方图》教学设计
湘教版八下数学5.2《频数直方图》教学设计一. 教材分析湘教版八下数学5.2《频数直方图》是本学期的一节重要内容,主要目的是让学生了解频数直方图的定义、性质和作用。
通过本节课的学习,学生能理解频数直方图与频数分布表的关系,能通过频数直方图获取数据信息,提高学生数据分析的能力。
二. 学情分析八年级的学生已经学习了频数分布表,对统计学的基本概念有了一定的了解。
但是,学生对抽象的频数直方图的理解和绘制还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,从具体的数据出发,引导学生理解并掌握频数直方图的知识。
三. 教学目标1.知识与技能:理解频数直方图的定义,掌握频数直方图的绘制方法,能通过频数直方图获取数据信息。
2.过程与方法:通过实践活动,提高学生数据分析的能力,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生对统计学的兴趣,培养学生严谨的科学态度。
四. 教学重难点1.重点:频数直方图的定义、性质和作用。
2.难点:频数直方图的绘制方法。
五. 教学方法1.情境教学法:通过具体的数据实例,引导学生理解频数直方图的概念。
2.实践操作法:让学生亲自动手绘制频数直方图,提高学生的动手能力。
3.小组合作学习:引导学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.教学素材:准备一些具体的数据实例,用于引导学生绘制频数直方图。
2.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)通过一个具体的数据实例,引导学生思考如何更直观地表示数据的分布情况。
从而引出频数直方图的概念。
2.呈现(10分钟)讲解频数直方图的定义、性质和作用,让学生理解频数直方图与频数分布表的关系。
3.操练(10分钟)让学生动手绘制频数直方图,教师巡回指导,解答学生在绘制过程中遇到的问题。
4.巩固(10分钟)通过一些练习题,让学生巩固所学知识,提高学生运用频数直方图解决问题的能力。
5.拓展(10分钟)引导学生思考如何利用频数直方图进行数据分析,提高学生数据分析的能力。
湘教版初中数学八年级下册课程目录与教学计划表
湘教版初中数学八年级下册课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第1章直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
1.2 直角三角形的性质和判定(Ⅱ)
1.3 直角三角形全等的判定
1.4 角平分线的性质
小结与复习
第2章四边形
2.1 多边形
2.2 平行四边形
2.2.1 平行四边形的性质
2.2.2 平行四边形的判定
2.3 中心对称和中心对称图形
2.4 三角形的中位线
2.5 矩形
2.5.1 矩形的性质
2.5.2 矩形的判定
2.6 菱形
2.6.1 菱形的性质
2.6.2 菱形的判定
2.7 正方形
小结与复习
第3章图形与坐标
3.1 平面直角坐标系
3.2 简单图形的坐标表示
3.3 轴对称和平移的坐标表示
小结与复习
第4章一次函数
4.1 函数和它的表示法
4.2 一次函数
4.3 一次函数的图象
4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用
小结与复习
第5章数据的频数分布
5.1 频数与频率
5.2 频数直方图
小结与复习
总复习。
新湘教版八年级下册期末复习(五)数据的频数分布
期末复习(五) 数据的频数分布考点一频数与频率【例1】某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.32【分析】∵总人数为100人,在40~42(岁)组内有职工32名,∴这个小组的频率为32÷100=0.32.故选C.【解答】C【方法归纳】频率=频数÷总数.变式练习1.已知在一个样本中,40个数据分别落在4个组内,第一、二、四组数据个数分别为5、12、8,则第三组的频数为__________.2.一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有( )A.10人B.20人C.30人D.40人考点二频数分布表【例2】已知样本:8,6,10,13,10,8,7,10,11,12,10,8,9,11,9,12,10,12,11,9.在列频数分布表时,如果取组距为2,那么应分成__________组,9.5~11.5这一组的频率是__________.【分析】对于样本的数据,最大值为13,最小值为6,即极差是7,则组距=(13-6)÷2=3.5,即应分成4组,观察样本,知共有8个样本在9.5~11.5这一组中,故其频率为0.4.【解答】4,0.4【方法归纳】组距=(最大值-最小值)÷组数;频率的计算方法:频率=频数÷总数.3.对某班40名同学的一次数学成绩进行统计,在频数分布表中80.5~90.5这一组频数是0.20,那么成绩在80.5~90.5这个分数段的人数是( )A.8B.6C.10D.12考点三频数直方图【例3】从斜桥中学八年级参加数学竞赛学生中随机抽取了30名学生的成绩,分数如下(单位:分):90,85,84,86,87,98,79,85,90,93,68,95,85,71,78,61,94,88,77,100,70,97,85,99,88,68,85,92,93,97.(1)求出这组数据中最大值与最小值的差;(2)按组距7分将数据分组,列出频数分布表;(3)在同一个坐标系中画出频数分布直方图(补全横坐标).【分析】(1)在给出的数据中找出最大值与最小值作差即可;(2)已知组距为7分,∴可以由组数=(最大值-最小值)÷组距+1,得出组距,可由此得出分数段,再由题中所给的分数列出频数分布表;(3)由第二问中的频数分布表,可以画出频数分布直方图.【解答】(1)这组数据中最大值与最小值的差为100-61=39;(2)组数=39÷7+1≈6,所以可得分数段为:58.5~65.5,65.5~72.5,72.5~79.5,79.5~86.5,86.5~93.5,93.5~100.5,可列出频数分布表,如下表:(3)由第二问中的频数分布表,可以画出频数分布直方图,如上图.【方法归纳】本题考查了频数分布表和频数分布直方图的画法,在整理数据时要认真仔细.4.某校八年级学生参加一次数学竞赛的成绩如下(每组分数含最低分,不含最高分):60~70分的60人;70~80分的45人;80~90的25人;90~100分的20人.(1)制作频数分布表;(2)画出频数分布直方图.复习测试一、选择题(每小题3分,共30分)1.数据1,2,0,1,1,2中,数据“1”出现的频数是( )A.1B.2C.3D.42.某校对1 200名女生的身高进行了测量,身高在1.58~1.63(单位:m),这一小组的频率为0.25,则该组的人数为( )A.150人B.300人C.600人D.900人3.为了了解一批数据在各个范围内所占比例大小,将这批数据分组,落在各小组里的数据个数叫做( )A.频率B.样本容量C.频数D.频数累计4.下列说法正确的是( )A.频数越小,频率越大B.频数大,频率也一定大C.频数一定时,频率越小,总次数越大D.频数很大时,频率可能超过15.对八年级某班45名同学的一次数学单元测试成绩进行统计,如果频数分布直方图中80.5~90.5分这一组的频数是9,那么这个班的学生这次数学测试成绩在80.5~90.5分之间的频率是( )A.0.2B.0.25C.0.3D.0.46.已知数据35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34,在列频数分布表时,如果取组距为2,那么应分成的组数为( )A.4B.5C.6D.77.已知数据25,28,30,27,29,31,33,36,35,32,26,29,31,30,28,那么频率为0.2的范围是( )A.25~27B.28~30C.31~33D.34~368.为了考察某种大麦穗长的分布情况,在一块试验地里抽取了100个麦穗,量得它们的长度(单位:cm)之后,将所得数据以0.3 cm为组距,分成如下12个组:3.95~4.25,4.25~4.55,4.55~4.85,…,6.95~7.25,7.25~7.55,通过分析计算,最后画出的频数分布直方图如图,由图可知( )A.长度在5.45~5.75 cm范围内的麦穗所占的比例最大B.长度在5.15~5.45 cm范围内的麦穗所占的比例大于25%C.长度在5.75~6.05 cm范围内的麦穗所占的比例最大D.长度在5.45~5.75 cm范围内的麦穗比长度在6.35~6.65 cm范围内的麦穗少9.统计八年级部分同学的跳高测试成绩,得到如图的频数分布直方图,则跳高成绩在1.29 m以上的人数占总人数的( )A.61.5%B.24.1%C.85.2%D.54.8%10.一个样本分成5组,第一、二、三组共有190个数据,第三、四、五组共有230个数据,并且第三组的频率是0.20,则第三组的频数是( )A.50B.60C.70D.80二、填空题(每小题3分,共18分)11.一组数据的频数为14,频率为0.28,则数据总数为__________.12.对某校同龄的70名学生的身高进行测量,得到一组数据,其中最大值是175 cm,最小值是149 cm,对这组数据进行整理时,可知最大值与最小值的差为__________,如果确定它的组距为3 cm,则组数为__________.13.小明统计本班同学的年龄后,绘制如下频数分布直方图,这个班学生的平均年龄是__________岁.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是__________.15.如图所示的频率分布直方图中,从左至右各长方形高的比为2∶3∶4∶6∶4∶1,如果第三组的频数为12,则总数是__________.16.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.9,最后一组的频数是15,则此次抽样调查的人数为__________人.(注:横轴上每组数据包含最小值不包含最大值)三、解答题(共52分)17.(10分)如下表某中学八年级某班25名男生100 m跑成绩(精确到0.1秒)的频数分布表:分组频数频率312.55~13.55613.55~14.5514.55~15.585515.55~16.5516.55~17.535合计25(1)求各组频率,并填入上表;(2)求其中100 m跑的成绩不低于15.55秒的人数和所占的比例.18.(10分)某地区为了增强市民的法制观念,抽调了一部分市民进行一次知识竞赛,竞赛成绩(得分取整数)进行整理后分成五组并绘制成频数分布直方图,如图所示,请结合图提供的信息,解答下列问题:(1)抽取了多少人参加竞赛?(2)60.5~70.5这一分数段的频数、频率分别是多少?(3)这次竞赛成绩的中位数落在哪个分数段内?19.(10分)下图是某班学生一次数学考试成绩的频数分布直方图,其中纵坐标表示学生数,观察图形,回答下列问题:(1)全班有多少学生?(2)此次考试的平均成绩大概是多少?(3)不及格的人数有多少?占全班多大比例?(4)如果80分以上的成绩算优良,那么获优良成绩的学生占全班多大比例?20.(10分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?21.(12分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了__________名学生,a=__________%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为__________度;(4)若该校共有2 000名学生,请你估计该校D级学生有多少名?参考答案变式练习1.152.B3.A4.(1)频数分布表:(2)频数分布直方图:复习测试1.C2.B3.C4.C5.A6.B7.A8.C9.A 10.C11.50 12.26 cm 9 13.14.3 14.0.1 15.60 16.15017.(1)0.12 0.24 0.32 0.2 0.12 1(2)观察图表可得:有8人100 m跑的成绩不低于15.55秒,所占的比例为8÷25=0.32. 18.(1)48人.(2)12,0.25.(3)70.5~80.5.19.(1)观察直方图可知:成绩在29~39分间的学生有1人,39~49分间的有2人,…,因此,全班共有学生人数是1+2+3+8+10+14+6=44(人).(2)由于直方图只反映每个分数区间有多少学生,未反映这些学生每位成绩具体是多少,故不能由图算出平均数,但如果采用某种适当的方式则可算出近似平均数.下面我们采用每个区间左端点数加6.作为该区间每位学生的成绩计算:x=144(35×1+45×2+55×3+65×8+75×10+85×14+95×6)=144×3320≈75.5(分).(3)因60分以下为不及格,其中29~39间有1人,39~49间有2人,49~59间有3人,故不及格人数有1+2+3=6(人).占全班人数的比例是:6÷44≈13.6%.(4)获优良成绩的学生人数有:14+6=20(人),占全班比例是:20÷44≈45.5%.20.(1)200-(35+40+70+10)=45,补全频数分布直方图图略.(2)设抽了x人,则20040=40x,解得x=8.(3)依题意知获一等奖的人数为200×25%=50(人).则一等奖的分数线是80分.21.(1)∵24÷48%=50,a=1250×100%=24%,∴在这次调查中,一共抽取了50名学生,a=24%;(2)补全条形统计图略.(3)∵360°×(1050×100%)=72°,扇形统计图中C级对应的圆心角为72度;(4)∵2 000×(450×100%)=160(名).∴若该校共有2 000名学生,估计该校D级学生有160名.。
频数与频率优秀教案
频数与频率优秀教案篇1:频数与频率优秀教案频数与频率优秀教案教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的`,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.篇2:频数与频率-频数与频率(第二课时)湖北省丹江口市丹赵路中学设计:王世涛教学内容课题名称频数与频率学科数学总课时数1版本名称湖南教育出版社年级八年级册次上册单元章节名称第四章页码119面执教者陈毅学习目标:1、知识与技能(1)了解频数与频率的概念。
(2)会进行统计活动,并计算频率。
2、过程与方法(1)让学生从现实生活实例中抽象出频数与频率的概念。
(2)让学生经历统计活动的过程,理解整理数据的方法及必要性。
3、情感、态度与价值观通过实践操作、巩固学生对各种图表信息的识别与获取信息的能力,增强学生对生活中所见的统计图表进行数据处理和评判意识。
八年级数学下册 5.2 频数直方图 知识梳理 频数分布表
知识梳理:频数分布表与直方图1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。
如:1、八年级某班20名男生一次投掷标枪测试成绩如下(单位:m):25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28。
(1)将这20名男生的测试成绩按从小到大排列,统计出每种成绩的数值出现的频数,并制成统计表;(2)根据统计表回答:①成绩小于25米的同学有几人?占总人数的百分之几?②成绩大于28米的同学有几人?占总人数的百分之几?③这些同学的成绩大部分集中在哪个范围内,占总人数的百分比是多少?小结:利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况。
2、频数分布直方图为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。
(1)频数分布直方图简称直方图,它是条形统计图的一种。
(2)直方图的结构:直方图由横轴、纵轴、条形图的三部分组成。
(3)作直方图的步骤:①作两条互相垂直的轴:横轴和纵轴;②在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数。
如:为了了解某地区八年级学生的身高情况,现随机抽取了60名八年级男生,测得他们的身高(单位:cm)分别为156 162 163 172 160 141 152 173 180 174 157 174 145 16 153 165 156 167 161 172 178 156 166 155 140 157 167 156 168 150 164 163 155 162 160 168 147 161 157 162 165 160 166 164 154 161 158 164 151 169 169 162 158 163 159 164 162 148 170 161(1)将数据适当分组,并绘制相应的频数分布直方图;(2)如果身高在cm 155≤cm x 170≤的学生身高为正常,试求落在正常身高范围内学生的百分比。
2024八年级数学下册第5章数据的频数分布5.1频数与频率习题课件新版湘教版
“综合素质”等级作为样本进行数据处理,并作出了如下频
数分布表和如图所示的条形统计图(不完整).请根据图表中
的信息回答下列问题.
等级
频数
频率
A
a
0.2
B
1 600
b
C
1 400
0.35
D
200
0.05
(1)求频数分布表中a,b的值;
【解】由题易知被抽测的人数为200÷0.05=4 000,
不是质地均匀的;
②第2 000次试验的结果一定是“盖面朝上”;
③随着试验次数的增大,“盖面朝上”的频率接近0.53.
其中正确的是
①③
.
思维发散练2
利用频数、频率的关系补全统计图表
9. [2023·邵阳节选 新考法·图像信息法]某市对九年级学生进
行“综合素质”评价,评价的结果为A(优),B(良好),C(合
植的成活率,所统计的银杏树苗移植成活的相关数据如下
表所示:
300
600 1 000 7 000 15 000
移植的棵数a 100
成活的棵数b
成活的频率
84
279
505
847
0.84
0.93
0.842
0.847
6 337 13 581
0.905
0.905
根据表中的信息,估计银杏树苗在一定条件下移植成活的
知识点2
频率
3.[2022·牡丹江]王老师对本班40名学生的血型做了统计,列
出如下的统计表,则本班A型血的人数是( A )
组别
A型
B型
AB型
《频数直方图》第一课时教案
6.3频数直方图(1)教材分析:本节课通过生活中的实例,学习频数直方图的画法,以及频数直方图的解读.有些概念和统计图虽然是新的内容,但学生应该已经具备了较好的知识基础.为频数直方图的学习做好了很好的铺垫,对频数直方图具备了一定的感性认识,但对频数直方图的意义、特点和制作尚缺乏真正的理解.学情分析:本节知识对学生而言难度不大,且较为适合学生自主学习和合作学习,学生在以前学习中曾将一些统计数据进行了分类整理,这些为频数直方图的学习做好了基础.教学目标:知识与技能:1.理解频数直方图的概念.2.能根据原始的数据确定组距和分点,列出频数、频率分布表,画出频数直方图.3.能正确读取频数直方图中的有关信息.过程与方法:通过观察、思考等数学活动,提高合理的思维、推理能力.通过比较、概括,提高归纳总结能力.情感态度和价值观:培养学生运用直方图的能力以及运用数据说话的习惯.教学重难点:重点:频数直方图的意义及画法.难点:频数直方图的画法.课时安排:2课时教学过程:合作探究:频数直方图的画法阅读课本第78-80页,“观察与思考”完成以下问题:1.从给出的表中我们能直观地看出温度的分布情况吗?2.有没有更好的方法反映这些温度的分布情况呢?3.我们如何制作频数、频率分布表?制作频数、频率分布表的步骤:(1)确定所有数据中最大值与最小值,并计算二者的差.(2)确定组数、组距,并进行分组.(3)列出每组的范围,用划计法,计算频数.(4)由频数/总数=频率,计算出频率.根据频数的分布绘制的条形统计图叫做频数直方图频数直方图画法:1.先画出两条()的射线,并加上箭头.2.在水平射线上,根据()划分小组3.在纵轴上,确定单位长度的多少表示().4.以()为高,画出每个长方形.条形图与直方图的区别1.条形图各矩形间有空隙,直方图各矩形间无空隙.2.直方图的横轴数据是连续的小组的位置是固定的而条形图不是.【设计意图】先让学生读取简单的分析数据,让学生经历数据的整理和分析的过程.小组合作完成频数、频率分布表,通过制作分布表来完成频数直方图,让学生归纳总结,教师指导.例题讲解例1:时代中学为了了解全校学生参加课外锻炼的情况,抽样调查了50名学生一周内平均每天参加课外锻炼的时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:(1)将表中空格处的数据补全,完成上面的频数、频率分布表; (2)画出相应的频数直方图;(3)这50名学生中,平均每天参加课外锻炼时间不少于30min 的有多少人?如果该校有2000名学生,估计全校每天参加课外锻炼时间不少于30min 的人数. 【设计意图】先让学生独立思考,然后小组讨论,说出结果,教师指导、点评,这样可以让学生亲历思维过程,得出正确结论的印象更深刻. 当堂检测:1.某班一次数学测验成绩如下:63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77.大部分同学处于哪个分数段?成绩的整体分布情况怎样?先将成绩按10分的距离分段,统计每个分数段学生出现的频数,填入表2.抽查20名学生每分脉搏跳动次数,获得如下数据(单位:次):81,73,77,79,80,78,85,80,68,90,80,89,82,81,84,72,83,77,79,75.请制作表示上述数据的频数直方图.3.如下图为某单位职工年龄(取正整数)的频数分布直方图,根据图形提供的信息,回答下列问题: (1)该单位职工有多少?(2)不小于38岁但小于44的职工人数占职工总人数的百分比是多少? (3)如果42岁职工有4人,那么年龄42岁以上的职工有多少?表20.1.2课堂小结:通过本节学习,我们了解了频数分布的意义及获得一组数据的频数分布的一般步骤:(1)计算极差;(2)决定组距和组数;(3)决定分点;(4)列出频数分布表;(5)画出频数直方图作业:课本P.82第1题板书设计:6.3频数直方图(1)合作探究: 频数直方图的画法制作频数、频率分布表的步骤:频数直方图定义频数直方图画法例1教学反思:本课立足于学生已有知识,把教学重点和难点分解成了一系列探究性问题,在探究过程中学生经历了知识的发生、发展和形成的过程,让学生获得知识的过程中,体验成功的喜悦.。
初中数学 教学设计1:频数分布表和频数分布直方图
频数分布表和频数分布直方图一、教学目标:1、如何收集与处理数据,会绘制频数分布直方图与频数分布折线图。
2、了解频数分布的意义,会得出一组数据的频数分布。
3、通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识。
二、教学重、难点:重点:解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图。
难点:决定组距与组数,数据分布规律。
三、教学方法:引导探索法,讲练结合,探索交流。
四、教学过程:(一)创设情境,感悟新知八年级学生身高在什么范围内?整体分布情况如何?首先,抽样测量某中学八年级50名同学的身高,结果如下(单位:cm)150 148 159 156 157 163 156 164 156 159169 163 170 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 163 172 156 165 157 164152 156 153 164 165 162 167 151 161 162(二)探索活动,揭示新知这组数据的平均数,反映了这些学生的平均身高。
但是,有时只知道这一点还不够,还希望知道身高在哪个范围内的学生多,在哪个小范围内的学生少,也就是说,希望知道这50名学生的身高数据在各个小范围内所占的比的大小。
身高分组频数划记频数5源:] 7合计50整理数据时,可以按照下面的步骤进行:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)决定分点;(4)列频率分布表。
根据上表绘制频数分布直方图:频数分布直方图直观地给出了样本中学生身高处于各个组内的人数,由此可估计该年级学生身高的整体分布状况。
为了更好地刻画数据的总体规律,我们将每个小长方形上面一条边的中点顺次用折线连接起来,就得到频数分布折线图。
做一做调查你所在班级的同学的身高,将数据适当分组、列出频数分布表,并绘制相应的频数分布直方图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、重点:列频率分布表和作频率分布直方图
2、难点:确定组距与组数和决定分点
教学策略
观察、比较、合作、交流、探索
教学活动
课前、课中反思
复习提问
我们已经了解了已知一组数据即某总体的样本,列出样本的频率分布表,作频率分布直方图的方法.请叙述此类题目的解法.
新课
例为了考察某种大麦穗长的分布情况,在一块试验地里抽取了100个穗,量得它们的长度如下(单位:厘米):
6.56.46.75.85.95.95.24.05.44.6 5.85.56.06.55.16.55.35.95.55.8
6.25.45.05.06.86.05.05.76.05.5 6.86.06.35.55.06.35.26.07.06.4
6.45.85.95.76.86.66.06.45.77.4 6.05.46.56.06.85.86.36.06.35.6 5.36.45.76.76.25.66.06.76.76.0
频数分布直方图
教学目标
1.知识与技能:使学生深刻理解频率的概念,掌握样本频率分布的求法
2.过程与方法:会设计方案收集数据、分析处理数据、能用合适的方法表示数据;能根据数据处理的结果作出合理的判断和预测,从而解决实际问题,并在这过程中体会统计对决策的作用
3.情感态度与价值观:对学生进行由实践到理论,由理论到实践的认识规律的教育
(5)绘制频率直方图.
小结
作本课一类题目一定要将:
(1)计算最大值与最小值的差.
(2)决定组距与组数.
(3)决定分点.
(4)列频率分布表.
(5)画频率分布直方图.
五个步骤严格作好.
练习:选用课本练习.
作业:选用课本习题.
五、教学注意问题
要注意讲例题时,每一步骤都要请1~2名学生先作一下,这样会使学生加深印象.练习要在课堂上进行,让学生对改练习.
六、课后反思
让学生通过参与数据的收集、处理、并根据结果作出合理的判断和预测等活动,培养学生的交流与合作能力,感受成功的体验,激发学习数学的兴趣
课后反思
抽样检查某村小学学龄以上未入学人的年龄,统计出一组数据(共100个)如下(单位:岁):
67796156206883867527345837 64216987768060635425158086 67295489688583524233507660 51533757558452645767566759 48728455626875128669182635 2846404767646546776549721
5.56.26.15.36.26.86.64.75.75.7 5.85.37.06.06.05.95.46.05.26.0 55.66.36.05.86.3
列出样本的频率分布表,画出频率分布直方图.
教师可采用制作教学挂图(或小黑板或投影片)来讲解此题.
接下来再补讲例题.
补充例题
58636373497053638033662151
206258536654684979
试列出频率分布表,绘出频率分布直方图.
解:(1)计算最大值与最小值的差:
89-7=82(岁);
(2)决定组距与组数,取组距为10,由于
故按10岁的组距可分成9组;
(3)决定分点,把第一组的起点数字定为6.5;
(4)列频率分布表: