2015-2016年上海市闵行区七宝中学高一(下)期末数学试卷(解析版)

合集下载

2018-2019学年上海市闵行区七宝中学高一下学期期末数学试题(解析版)

2018-2019学年上海市闵行区七宝中学高一下学期期末数学试题(解析版)

2018-2019学年上海市闵行区七宝中学高一下学期期末数学试题一、单选题1.已知{}n a 、{}n b 都是公差不为0的等差数列,且lim 2nn na b →∞=,12n n S a a a =++⋯+,则22lim nn nS nb →∞的值为( ) A .2B .-1C .1D .不存在【答案】C【解析】首先根据lim 2n n n a b →∞=求出数列{}n a 、{}n b 公差之间的关系,再代入22lim nn nSnb →∞即可。

【详解】因为{}n a 和{}n b 都是公差不为零的等差数列,所以设()()11121?1n n b b n d a a n d =+-=+- 故()()11121limlim 21nn n n a n d a b b n d →∞→∞+-==+-,可得122d d =又因为()112112n n n d a a a na -+++=+和()21121n b b n d =+-代入则()()1112122122lim lim 21212n n n nn n d na S d nb nb n n d d →∞→∞⎛⎫-+ ⎪=⨯== ⎪+- ⎪ ⎪⎝⎭. 故选:C . 【点睛】本题主要考查了极限的问题以及等差数列的通项属于基础题。

2.设{}n a 是公比为()01q q <<的无穷等比数列,若{}n a 的前四项之和等于第五项起以后所有项之和,则数列21{}n a -是( ) A .公比为12的等比数列B .公比为2的等比数列C .公比为2或2-的等比数列D的等比数列【答案】B【解析】根据题意可得42n S S =,带入等比数列前n 和即可解决。

【详解】根据题意,若{}n a 的前四项之和等于第五项起以后所有项之和, 则42n S S =,又由{}n a 是公比为()01q q <<的无穷等比数列,则()4111211a q a q q-=--,变形可得412q =,则q =,数列{}21n a -为{}n a 的奇数项组成的数列,则数列{}21n a -为公比为2q =列; 故选:B . 【点睛】本题主要考查了利用等比数列前n 项和计算公比,属于基础题。

2015-2016年上海中学高一(下)期末数学试卷(解析版)

2015-2016年上海中学高一(下)期末数学试卷(解析版)

2015-2016学年上海中学高一(下)期末数学试卷一、填空题1.(3分)arcsin(﹣)+arccos(﹣)+arctan(﹣)=.2.(3分)=.3.(3分)若数列{a n}为等差数列.且满足a2+a4+a7+a11=44,则a3+a5+a10=.4.(3分)设数列{a n}满足:a1=,a n+1=(n≥1),则a2016=.5.(3分)已知数列{a n}满足:a n=n•3n(n∈N*),则此数列前n项和为S n=.6.(3分)已知数列{a n}满足:a1=3,a n+1=9•(n≥1),则a n=.7.(3分)等差数列{a n},{b n}的前n项和分别为S n,T n,若=,则=.8.(3分)等比数列{a n},a1=3﹣5,前8项的几何平均为9,则a3=.9.(3分)定义在R上的函数f(x)=,S n=f()+f()+…+f(),n=2,3,…,则S n=.10.(3分)设x1,x2是方程x2﹣x sin+cos=0的两个根,则arctan x1+arctan x2的值为.11.(3分)已知数列{a n}的前n项和为S n,a n=,则S2016=.12.(3分)设正数数列{a n}的前n项和为b n,数列{b n}的前n项之积为c n,且b n+c n=1,则数列{}的前n项和S n中大于2016的最小项为第项.二、选择题.13.(3分)用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n﹣1),从k到k+1,左边需要增乘的代数式为()A.2k+1B.2(2k+1)C.D.14.(3分)一个三角形的三边成等比数列,则公比q的范围是()A.q>B.q<C.<q<D.q<或q>15.(3分)等差数列{a n}中,a5<0,且a6>0,且a6>|a5|,S n是其前n项和,则下列判断正确的是()A.S1,S2,S3均小于0,S4,S5,S6,…均大于0B.S1,S2,…,S5均小于0,S6,S7,…均大于0C.S1,S2,…S9均小于0,S10,S11,…均大于0D.S1,S2,…,S11均小于0,S12,S13,…均大于016.(3分)若数列{a n}的通项公式是a n=,n=1,2,…,则(a 1+a2+…+a n)等于()A.B.C.D.17.(3分)已知=1,那么(sinθ+2)2(cosθ+1)的值为()A.9B.8C.12D.不确定18.(3分)已知f(n)=(2n+7)•3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为()A.30B.26C.36D.6三、解答题.19.用数学归纳法证明:12+22+32+…+(n﹣1)2+n2+(n﹣1)2+…+32+22+12=n(2n2+1)20.已知数列{a n}满足a1=1,其前n项和是S n对任意正整数n,S n=n2a n,求此数列的通项公式.21.已知方程cos2x+sin2x=k+1.(1)k为何值时,方程在区间[0,]内有两个相异的解α,β;(2)当方程在区间[0,]内有两个相异的解α,β时,求α+β的值.22.设数列{a n}满足a1=2,a2=6,a n+2=2a n+1﹣a n+2(n∈N*).(1)证明:数列{a n+1﹣a n}是等差数列;(2)求:++…+.23.数列{a n},{b n}满足,且a1=2,b1=4.(1)证明:{a n+1﹣2a n}为等比数列;(2)求{a n},{b n}的通项.24.已知数列{a n}是等比数列,且a2=4,a5=32,数列{b n}满足:对于任意n∈N*,有a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2.(1)求数列{a n}的通项公式;(2)若数列{d n}满足:d1=6,d n•d n+1=6a•(﹣)(a>0),设T n=d1d2d3…d n(n∈N*),当且仅当n=8时,T n取得最大值,求a的取值范围.2015-2016学年上海中学高一(下)期末数学试卷参考答案与试题解析一、填空题1.(3分)arcsin(﹣)+arccos(﹣)+arctan(﹣)=.【解答】解:arcsin(﹣)+arccos(﹣)+arctan(﹣)=﹣arcsin()+π﹣arccos ﹣arctan=﹣+(π﹣)﹣=,故答案为:.2.(3分)=5.【解答】解:====5.故答案为:5.3.(3分)若数列{a n}为等差数列.且满足a2+a4+a7+a11=44,则a3+a5+a10=33.【解答】解:设等差数列{a n}的公差为d,∵a2+a4+a7+a11=44=4a1+20d,∴a1+5d=11.则a3+a5+a10=3a1+15d=3(a1+5d)=33.故答案为:33.4.(3分)设数列{a n}满足:a1=,a n+1=(n≥1),则a2016=﹣.【解答】解:依题意,a1=,a2===3,a3===﹣2,a4===,a5===,∴数列{a n}是以4为周期的周期数列,又∵2016=504×4,∴a2016=a4=﹣,故答案为:﹣.5.(3分)已知数列{a n}满足:a n=n•3n(n∈N*),则此数列前n项和为S n=•3n+1+.【解答】解:∵a n=n•3n,则此数列的前n项和S n=3+2×32+3×33+…+n•3n,∴3S n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2S n=3+32+33+…+3n﹣n•3n+1=﹣n•3n+1=(﹣n)3n+1﹣,∴S n=•3n+1+.故答案为:•3n+1+.6.(3分)已知数列{a n}满足:a1=3,a n+1=9•(n≥1),则a n=27.【解答】解:由a n+1=9•(n≥1),得,即,令b n=lga n,则,∴,则数列{b n﹣3lg3}是以b1﹣3lg3=lga1﹣3lg3=﹣2lg3为首项,以为公比的等比数列,∴,即,∴,则a n==103lg3=10lg27=27.故答案为:27.7.(3分)等差数列{a n},{b n}的前n项和分别为S n,T n,若=,则=.【解答】解:∵{a n},{b n}为等差数列,且其前n项和满足若=,∴设S n=kn×2n,T n=kn(3n+1)(k≠0),则当n≥2时,a n=S n﹣S n﹣1=4kn﹣2k;当n≥2时,b n=T n﹣T n﹣1=6kn﹣2k.∴==,故答案为:.8.(3分)等比数列{a n},a1=3﹣5,前8项的几何平均为9,则a3=.【解答】解:设等比数列{a n}的公比为q,由题意,,即,∴,得,∵a1=3﹣5,∴,则q=9,∴.故答案为:.9.(3分)定义在R上的函数f(x)=,S n=f()+f()+…+f(),n=2,3,…,则S n=2n﹣2.【解答】解:∵f(x)=,∴f(1﹣x)===,∴f(x)+f(1﹣x)=4,∴S n=f()+f()+…+f()=4×=2n﹣2.故答案为:2n﹣2.10.(3分)设x1,x2是方程x2﹣x sin+cos=0的两个根,则arctan x1+arctan x2的值为.【解答】解:由x1、x2是方程x2﹣x sin+cos=0的两根,可得x1+x2 =sin,x1•x2=cos,故x1、x2均大于零,故arctan x1+arctan x2∈(0,π),且tan(arctan x1+arctan x2)===cotπ=tan(﹣π),∴arctan x1+arctan x2=.故答案为:.11.(3分)已知数列{a n}的前n项和为S n,a n=,则S2016=.【解答】解:a n===(﹣).∴S2016=(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣+﹣+﹣+…+﹣)=(1﹣)=[1﹣()]==.故答案为:.12.(3分)设正数数列{a n}的前n项和为b n,数列{b n}的前n项之积为c n,且b n+c n=1,则数列{}的前n项和S n中大于2016的最小项为第63项.【解答】解:由题意可得:a1+a2+…+a n+a1•(a1+a2)•…•(a1+a2+…+a n)=1,n=1时,a1+a1=1,解得a1=.n=2时,a1+a2+a1•(a1+a2)=1,解得a2=.…,猜想:a n=.验证:a1+a2+…+a n=++…+==.∴a1•(a1+a2)•…•(a1+a2+…+a n)=××…×=.∴a1+a2+…+a n+a1•(a1+a2)•…•(a1+a2+…+a n)=+=1.∴n<=<n+1,∴<S n<,∴2016<S63<2080,∴数列{}的前n项和S n中大于2016的最小项为第63项.故答案为:63.二、选择题.13.(3分)用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n﹣1),从k到k+1,左边需要增乘的代数式为()A.2k+1B.2(2k+1)C.D.【解答】解:当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),故选:B.14.(3分)一个三角形的三边成等比数列,则公比q的范围是()A.q>B.q<C.<q<D.q<或q>【解答】解:设三边分别为:,a,aq,(a,q>0).则q≥1时,+a>aq,解得:.0<q<1时,<a+aq,解得:<q<1.综上可得:公比q的范围是.故选:C.15.(3分)等差数列{a n}中,a5<0,且a6>0,且a6>|a5|,S n是其前n项和,则下列判断正确的是()A.S1,S2,S3均小于0,S4,S5,S6,…均大于0B.S1,S2,…,S5均小于0,S6,S7,…均大于0C.S1,S2,…S9均小于0,S10,S11,…均大于0D.S1,S2,…,S11均小于0,S12,S13,…均大于0【解答】解:∵a5<0,a6>0且a6>|a5|∴d=a6﹣a5>0∴数列的前5项都为负数∵a5+a6>0,2a5<0,2a6>0由等差数列的性质及求和公式可得,S9==9a5<0S10=5(a1+a10)=5(a5+a6)>0由公差d>0可知,S1,S2,S3…S9均小于0,S10,S11…都大于0.故选:C.16.(3分)若数列{a n}的通项公式是a n=,n=1,2,…,则(a 1+a2+…+a n)等于()A.B.C.D.【解答】解:a n=即a n=∴a1+a2+…+a n=(2﹣1+2﹣3+2﹣5+)+(3﹣2+3﹣4+3﹣6+).∴(a 1+a2+…+a n)=+=.,故选:C.17.(3分)已知=1,那么(sinθ+2)2(cosθ+1)的值为()A.9B.8C.12D.不确定【解答】解:将=1,变形得:sinθ+1=cot2016θ+2,整理得sinθ=1+cot2016θ≤1,即cot2016θ≤0,又∵cot2016θ≥0所以cot2016θ=0,所以cosθ=0,sinθ=1,所以(sinθ+2)2(cosθ+1)=(1+2)2=9;故选:A.18.(3分)已知f(n)=(2n+7)•3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为()A.30B.26C.36D.6【解答】解:由f(n)=(2n+7)•3n+9,得f(1)=36,f(2)=3×36,f(3)=10×36,f(4)=34×36,由此猜想m=36.下面用数学归纳法证明:(1)当n=1时,显然成立.(2)假设n=k时,f(k)能被36整除,即f(k)=(2k+7)•3k+9能被36整除;当n =k +1时,[2(k +1)+7]•3k +1+9 =3[(2k +7)•3k+9]﹣18+2×3k +1 =3[(2k +7)•3k +9]+18(3k ﹣1﹣1), ∵3k ﹣1﹣1是2的倍数,∴18(3k ﹣1﹣1)能被36整除,∴当n =k +1时,f (n )也能被36整除.由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)•3n +9能被36整除,m 的最大值为36.三、解答题.19.用数学归纳法证明:12+22+32+…+(n ﹣1)2+n 2+(n ﹣1)2+…+32+22+12=n (2n 2+1)【解答】证明:利用数学归纳法证明:(1)当n =1时,左边=1=右边,此时等式成立;(2)假设当n =k ∈N *时,12+22+32+…+(k ﹣1)2+k 2+(k ﹣1)2+…+32+22+12 =k (2k 2+1)(k ∈N *)成立.则当n =k +1时,左边=12+22+32+…+k 2+(k +1)2+k 2+…+22+12 =k (2k 2+1)+(k +1)2+k 2=(k +1)[2(k +1)2+1]=右边,∴当n =k +1时,等式成立.根据(1)和(2),可知对n ∈N *等式成立.20.已知数列{a n }满足a 1=1,其前n 项和是S n 对任意正整数n ,S n =n 2a n ,求此数列的通项公式.【解答】解:∵S n =n 2a n ,∴n ≥2时,a n =S n ﹣S n ﹣1=n 2a n ﹣(n ﹣1)2a n ﹣1,化为:=.∴a n =••…••a 1=••…•××1 =,n =1时也成立.∴a n=.21.已知方程cos2x+sin2x=k+1.(1)k为何值时,方程在区间[0,]内有两个相异的解α,β;(2)当方程在区间[0,]内有两个相异的解α,β时,求α+β的值.【解答】解:(1)令f(x)=cos2x+sin2x=2sin(2x+),作出f(x)在[0,]上的函数图象如图所示:由图象可知当1≤k+1<2即0≤k<1时,f(x)=k+1有两个相异的解.(2)令2x+=+kπ,解得x=+,∴f(x)在[0,上的对称轴为x=,∴α+β=.22.设数列{a n}满足a1=2,a2=6,a n+2=2a n+1﹣a n+2(n∈N*).(1)证明:数列{a n+1﹣a n}是等差数列;(2)求:++…+.【解答】(1)证明:∵a n+2=2a n+1﹣a n+2,∴(a n+2﹣a n+1)﹣(a n+1﹣a n)=2,a2﹣a1=4,∴数列{a n+1﹣a n}是等差数列,首项为4,公差为2.(2)解:由(1)可得:a n+1﹣a n=4+2(n﹣1)=2n+2.∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2n+2(n﹣1)+…+2×2+2==n2+n.∴==.∴++…+=++…+=1﹣=.23.数列{a n},{b n}满足,且a1=2,b1=4.(1)证明:{a n+1﹣2a n}为等比数列;(2)求{a n},{b n}的通项.【解答】(1)证明:由a n+1=﹣a n﹣2b n,可得:b n=,∴b n+1=﹣,代入b n+1=6a n+6b n,可得:﹣=6a n+6×(),化为:a n+2﹣2a n+1=3(a n+1﹣2a n).a2=﹣2﹣2×4=﹣10,a2﹣2a1=﹣14,∴{a n+1﹣2a n}为等比数列,首项为﹣14,公比为3.(2)解:由(1)可得:a n+1﹣2a n=﹣14×3n﹣1.化为:a n+1+14×3n=2,∴数列是等比数列,首项为16,公比为2.∴a n+14×3n﹣1=16×2n﹣1,可得a n=2n+3﹣14×3n﹣1.∴b n=﹣=28×3n﹣1﹣3×2n+2.24.已知数列{a n}是等比数列,且a2=4,a5=32,数列{b n}满足:对于任意n∈N*,有a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2.(1)求数列{a n}的通项公式;(2)若数列{d n}满足:d1=6,d n•d n+1=6a•(﹣)(a>0),设T n=d1d2d3…d n(n∈N*),当且仅当n=8时,T n取得最大值,求a的取值范围.【解答】解:(1)∵a2=4,a5=32,由等比数列性质可知:a5=a2•q3=32,∴q3=8,q=2,∴a1=2,∴由等比数列通项公式可知:a n=2×2n﹣1=2n,数列{a n}的通项公式a n=2n;(2)∵a1b1+a2b2+…+a n b n=(n﹣1)•2n+1+2,∴当n≥2时,a1b1+a2b2+…+a n﹣1b n﹣1=(n﹣2)•2n+2,两式相减得:a n b n=(n﹣1)•2n+1+2﹣[(n﹣2)•2n+2]=n•2n,即b n==n(n≥2),又∵a1b1=2,即b1=1满足上式,∴b n=n;令∁n=d n•d n+1=6a•(﹣)n(a>0),T n=d1d2d3…d n=,由当且仅当n=8时,T n取得最大值,∴|T2|<|T4|<|T6|<|T8|>|T10|>…,|T1|<|T3|<|T5|<|T7|>…>|T11|>….当n≤7时,|∁n|>1,当n≥8时,|∁n|<1,∴6a>27,即a>,6a<28,即a<,∴a的取值范围(,).。

2015-2016学年上海市闵行区七宝中学高一(下)学期期末数学试卷 (解析版)

2015-2016学年上海市闵行区七宝中学高一(下)学期期末数学试卷 (解析版)

2015-2016学年上海市闵行区七宝中学高一第二学期期末数学试卷一、填空题1.方程cos x =sin π6的解为x = .2.设{a n }为等差数列,若a 1+a 5+a 9=π,则a 2+a 8= . 3.求值:sin[arccos(−23)]= .4.函数y =arccos (sin x ),x ∈(−π3,2π3)的值域是 .5.设数列{a n }的前n 项和S n ,若a 1=﹣1,S n −12a n+1=0(n ∈N *),则{a n }的通项公式为 .6.利用数学归纳法证明不等式“1+12+13+⋯+12n −1>n2(n ≥2,n ∈N *)”的过程中,由“n =k ”变到“n =k +1”时,左边增加了 项.7.若f (x )=2sin x ﹣1在区间[a ,b ](a ,b ∈R 且a <b )上至少含有30个零点,则b ﹣a 的最小值为 .8.设数列{a n }的通项公式为a n ={n ,1≤n ≤3(−12)n,n >3,则lim n→∞(a 1+a 2+…+a n )= . 9.已知数列{a n }中,其前n 项和为S n ,a n ={2n−1,n 为正奇数2n −1,n 为正偶数,则S 9= .10.对于正项数列{a n },定义H n =na 1+2a 2+3a 3+⋯+na n 为{a n }的“光阴”值,现知某数列的“光阴”值为H n =2n+2,则数列{a n }的通项公式为 .11.△ABC 中,sin 2A ≤sin 2B +sin 2C ﹣sin B sin C ,则A 的取值范围为 .12.关于x 的方程x 2﹣4 arctan (cos x )+π•a 2=0只有一个实数根,则实数a = . 13.等差数列{a n }前n 项和为S n ,已知(a 2﹣2)3+2013(a 2﹣2)=sin2014π3,(a 2013﹣2)3+2013(a 2013﹣2)=cos2015π6,则S 2014= .14.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律排列:12,13,23,14,24,34,15,25,35,45⋯,1n,2n,…,n−1n,…有如下运算和结论:①a 24=38;②数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列;③数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n 4;④若存在正整数k ,使S k <10,S k +1≥10,则a k =57.其中正确的结论是 .(将你认为正确的结论序号都填上) 二、选择题15.已知{a n }、{b n }都是公差不为0的等差数列,且lim n→∞anb n=2,S n =a 1+a 2+…+a n ,则lim n→∞2S nnb2n的值为( ) A .2B .﹣1C .1D .不存在16.设{a n }是公比为q (0<|q |<1)的无穷等比数列,若{a n }的前四项之和等于第五项起以后所有项之和,则数列{a 2n ﹣1}是( ) A .公比为12的等比数列B .公比为√22的等比数列C .公比为√22或−√22的等比数列D .公比为√24或1√24的等比数列17.函数y =sin(2x +φ)(0<φ<π2)图象的一条对称轴在(π6,π3)内,则满足此条件的一个φ值为( ) A .π12B .π6C .π3D .5π618.若数列{a n }的前n 项和为S n ,则下列命题:(1)若数列{a n }是递增数列,则数列{S n }也是递增数列; (2)数列{S n }是递增数列的充要条件是数列{a n }的各项均为正数;(3)若{a n }是等差数列(公差d ≠0),则S 1•S 2…S k =0的充要条件是a 1•a 2…a k =0. (4)若{a n }是等比数列,则S 1•S 2…S k =0(k ≥2,k ∈N )的充要条件是a n +a n +1=0. 其中,正确命题的个数是( ) A .0个 B .1个C .2个D .3个三、解答题19.已知函数f (x )=x 2+(2﹣n )x ﹣2n 的图象与x 轴正半轴的交点为A (a n ,0),n =1,2,3,….(1)求数列{a n }的通项公式;(2)令b n =3a n +(−1)n−1⋅λ⋅2a n (n 为正整数),问是否存在非零整数λ,使得对任意正整数n ,都有b n +1>b n ?若存在,求出λ的值,若不存在,请说明理由. 20.已知函数f (x )=2√3sin x cos x +3sin 2x +cos 2x ﹣2,x ∈R ; (1)求函数f (x )在(0,π)上的单调递增区间;(2)在△ABC 中,内角A 、B 、C 所对边的长分别是a ,b ,c ,若f (A )=2,C =π4.,c =2,求△ABC 的面积S △ABC 的值;21.已知函数f (x )=2sin (ωx ),其中常数ω>0.(Ⅰ)令ω=1,判断函数F(x)=f(x)+f(x +π2)的奇偶性,并说明理由.(Ⅱ) 令ω=2,将函数y =f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象.对任意a ∈R ,求y =g (x )在区间[a ,a +10π]上的零点个数的所有可能.22.已知数列{a n }满足:a 1=1,a n +1={0.5a n +n ,n 为正奇数a n −2n ,n 为正偶数,b n =a 2n ﹣2;(1)求a 2、a 3、a 4;(2)求证:数列{b n }为等比数列,并求其通项公式; (3)求和T n =a 2+a 4+…+a 2n ;23.已知{a n },{b n }为两非零有理数列(即对任意的i ∈N *,a i ,b i 均为有理数),{d n }为一无理数列(即对任意的i ∈N *,d i 为无理数).(1)已知b n =﹣2a n ,并且(a n +b n d n ﹣a n d n 2)(1+d n 2)=0对任意的n ∈N *恒成立,试求{d n }的通项公式.(2)若{d n 3}为有理数列,试证明:对任意的n ∈N *,(a n +b n d n ﹣a n d n 2)(1+d n 2)=1恒成立的充要条件为{a n =11+d n6b n =d n31+d n 6. (3)已知sin2θ=2425(0<θ<π2),d n =√tan(n ⋅π2+(−1)n θ)3,试计算b n .2015-2016学年上海市闵行区七宝中学高一第二学期期末数学试卷参考答案一、填空题1.方程cos x =sin π6的解为x = 2k π±π3(k ∈Z ) .【分析】由诱导公式可得cos x =sinπ6=cosπ3=cos (−π3),由余弦函数的周期性可得:x =2k π±π3(k ∈z ). 解:因为方程cos x =sinπ6=cosπ3=cos (−π3),所以x =2k π±π3(k ∈z ), 故答案为:2k π±π3(k ∈z ).2.设{a n }为等差数列,若a 1+a 5+a 9=π,则a 2+a 8= 2π3.【分析】根据等差数列的性质即可求出. 解:∵a 1+a 5+a 9=π=3a 5, ∴a 5=π3,∴a 2+a 8=2a 5=2π3,故答案为:2π33.求值:sin[arccos(−23)]= √53.【分析】利用反三角函数的定义、同角三角函数的基本关系求得sin[arccos (−23)]的值.解:由题意,sin[arccos (−23)]=√1−cos 2[arccos(−23)]=√53.故答案为:√53. 4.函数y =arccos (sin x ),x ∈(−π3,2π3)的值域是 [0,5π6) .【分析】先将sin x 看作整体求出其取值范围,再利用反余弦函数的性质求解.解:当−π3<x <2π3时,−√32<sin x ≤1,由于反余弦函数是定义域[﹣1,1]上的减函数,且arccos (−√32)=5π6,arccos1=0,所以值域为 [0,5π6)故答案为:[0,5π6).5.设数列{a n }的前n 项和S n ,若a 1=﹣1,S n −12a n+1=0(n ∈N *),则{a n }的通项公式为a n ={−1,n =1−2⋅3n−2,n ≥2.【分析】n ≥2时,a n =S n ﹣S n ﹣1,化为:a n +1=3a n .n =1时,﹣1=a 1=12a 2,解得a 2=﹣2.不满足上式.利用等比数列的通项公式即可得出. 解:n ≥2时,a n =S n ﹣S n ﹣1=12a n +1−12a n ,化为:a n +1=3a n . n =1时,﹣1=a 1=12a 2,解得a 2=﹣2.不满足上式.∴数列{a n }在n ≥2时成等比数列.∴n ≥2时,a n =﹣2×3n ﹣2.∴a n ={−1,n =1−2×3n−2,n ≥2.故答案为:a n ={−1,n =1−2×3n−2,n ≥2.6.利用数学归纳法证明不等式“1+12+13+⋯+12n −1>n2(n ≥2,n ∈N *)”的过程中,由“n =k ”变到“n =k +1”时,左边增加了 2k 项. 【分析】,最后一项为12−1,n =k +1时,最后一项为12−1,由此可得由n =k 变到n =k +1时,左边增加的项数. 解:由题意,n =k 时,最后一项为12−1,n =k +1时,最后一项为12−1,∴由n =k 变到n =k +1时,左边增加了2k +1﹣(2k +1)+1=2k , 故答案为:2k .7.若f (x )=2sin x ﹣1在区间[a ,b ](a ,b ∈R 且a <b )上至少含有30个零点,则b ﹣a 的最小值为86π3.【分析】再据函数的零点的定义求得函数f (x )的零点,从而得出结论.解:根据f (x )=2sin x ﹣1=0,即sin x =12,故x =2k π+π6,或x =2k π+5π6, ∵f (x )=2sin x ﹣1在区间[a ,b ](a ,b ∈R 且a <b )上至少含有30个零点, ∴不妨假设a =π6(此时,k =0),则此时b 的最小值为28π+5π6,(此时,k =14), ∴b ﹣a 的最小值为28π+5π6−π6=86π3,故答案为:863π8.设数列{a n }的通项公式为a n ={n ,1≤n ≤3(−12)n,n >3,则lim n→∞(a 1+a 2+…+a n )= 14524 . 【分析】利用数列的通项公式,求解数列的和,然后求解数列的极限. 解:数列{a n }的通项公式为a n ={n ,1≤n ≤3(−12)n ,n >3, 则a 1+a 2+…+a n =1+2+3+116(1−(−12)n−3)1+12=6+124(1+(−12)n−3),则lim n→∞(a 1+a 2+…+a n )=lim n→∞[6+124(1+(−12)n−3)]=14524. 故答案为:14524.9.已知数列{a n }中,其前n 项和为S n ,a n ={2n−1,n 为正奇数2n −1,n 为正偶数,则S 9= 377 .【分析】由数列的通项可先求出数列的前9项,然后结合等差数列与等比数列的求和公式可求解:∵a n ={2n−1(n 为正奇数)2n −1(n 为正偶数),∴数列的前9项分别为20,3,22,7,24,11,26,15,28 S 9=(20+22+24+26+28)+(3+7+11+15)=1−451−4+36=377 故答案为37710.对于正项数列{a n },定义H n =na 1+2a 2+3a 3+⋯+na n 为{a n }的“光阴”值,现知某数列的“光阴”值为H n =2n+2,则数列{a n }的通项公式为 a n =2n+12n.【分析】根据“光阴”值的定义,及H n=2n+2,可得a1+2a2+…+na n=n(n+2)2,再写一式,两式相减,即可得到结论.解:∵H n=na1+2a2+3a3+⋯+na n∴a1+2a2+…+na n=n H n∵H n=2n+2∴a1+2a2+…+na n=n(n+2)2①∴a1+2a2+…+(n﹣1)a n﹣1=(n−1)(n+1)2②①﹣②得na n=n(n+2)2−(n−1)(n+1)2=2n+12∴a n=2n+12n故答案为:a n=2n+12n11.△ABC中,sin2A≤sin2B+sin2C﹣sin B sin C,则A的取值范围为(0,60°].【分析】利用正弦定理化简已知的不等式,再利用余弦定理表示出cos A,将得出的不等式变形后代入表示出的cos A中,得出cos A的范围,由A为三角形的内角,根据余弦函数的图象与性质即可求出A的取值范围.解:利用正弦定理化简sin2A≤sin2B+sin2C﹣sin B sin C得:a2≤b2+c2﹣bc,变形得:b2+c2﹣a2≥bc,∴cos A=b 2+c2−a22bc≥bc2bc=12,又A为三角形的内角,则A的取值范围是(0,60°].故答案为:(0,60°]12.关于x的方程x2﹣4 arctan(cos x)+π•a2=0只有一个实数根,则实数a=±1.【分析】设f(x)=x2﹣4arctan(cos x)+π•a2,则可判断出f(x)为偶函数,又f(x)只有一个零点,故只能是x=0,将x=0代入原方程解得a=±1.解:设f(x)=x2﹣4arctan(cos x)+π•a2,则f(﹣x)=(﹣x)2﹣4arctan(cos(﹣x))+π•a2=x2﹣4arctan(cos x)+π•a2=f(x)∴f(x)为偶函数,其图象关于y轴对称,又依题意f (x )只有一个零点,故此零点只能是x =0, 所以0﹣4arctan (cos0)+π•a 2=0, ∴﹣4arctan1+π•a 2=0, ∴﹣4×π4+π•a 2=0, ∴a 2=1,∴a =±1, 故答案为:±113.等差数列{a n }前n 项和为S n ,已知(a 2﹣2)3+2013(a 2﹣2)=sin2014π3,(a 2013﹣2)3+2013(a 2013﹣2)=cos2015π6,则S 2014= 4028 .【分析】将两个等式相加,利用立方和公式将得到的等式因式分解,提取公因式得到a 2+a 2013的值,利用等差数列的性质及数列的前n 项和公式求出n 项和. 解:(a 2﹣2)3+2013(a 2﹣2)=sin2014π3=√32,① (a 2013﹣2)3+2013(a 2013﹣2)=cos 2015π6=−√32,② ①+②得,(a 2﹣2)3+2013(a 2﹣2)+(a 2013﹣2)3+2013(a 2013﹣2)=0,即(a 2﹣2+a 2013﹣2)[(a 2﹣2)2﹣(a 2﹣2)(a 2013﹣2)+(a 2013﹣2)2]+2013(a 2﹣2+a 2013﹣2)=0, ∴a 2﹣2+a 2013﹣2=0, 即a 2+a 2013=4, ∴S 2014=(a 1+a 2014)×20142=1007×(a 2+a 2013)=4028, 故答案为:4028.14.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律排列:12,13,23,14,24,34,15,25,35,45⋯,1n,2n,…,n−1n,…有如下运算和结论:①a 24=38;②数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列;③数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n 4;④若存在正整数k ,使S k <10,S k +1≥10,则a k =57.其中正确的结论是 ①③④ .(将你认为正确的结论序号都填上)【分析】①前24项构成的数列是:12,13,23,14,24,34,15,25,35,45,16,26,…,18,28,38,故a 24=38;②数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是12,1,64,2,⋯n−12,由等差数列定义知:数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等差数列;③数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等差数列,所以由等差数列前n 项和公式可知:Tn =n 2+n 4;④由③知S k <10,S k +1≥10,即:n 2+n 4<10,(n+1)2+(n+1)4≥10,故a k =57.解:①前24项构成的数列是:12,13,23,14,24,34,15,25,35,45,16,26,…,18,28,38,∴a 24=38,故①正确;②数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是12,1,64,2,⋯n−12,由等差数列定义n−12−n−22=12(常数)所以数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等差数列,故②不正确. ③∵数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等差数列,所以由等差数列前n 项和公式可知:Tn =n 2+n 4,故③正确;④由③知S k <10,S k +1≥10, 即:n 2+n 4<10,(n+1)2+(n+1)4≥10,∴k =7,a k =57.故④正确.故答案为:①③④. 二、选择题15.已知{a n }、{b n }都是公差不为0的等差数列,且lim n→∞anb n=2,S n =a 1+a 2+…+a n ,则lim n→∞2S nnb2n的值为( ) A .2B .﹣1C .1D .不存在【分析】首先{a n }和{b n }都是公差不为零的等差数列,可根据等差数列的性质列出等量关系式代入lim n→∞anb n=2,得到关系式,再求解.解:因为{a n }和{b n }都是公差不为零的等差数列,所以设b n =b 1+(n ﹣1)d 1a n =a 1+(n ﹣1)d 2 故 lim n→∞an b n =lim n→∞a 1+(n−1)d1b 1+(n−1)d 2=2,可得d 1=2d 2 又因为a 1+a 2+…+a n =na 1+n(n−1)d 12和b 2n =b 1+(2n ﹣1)d 1代入 则lim n→∞2S n nb 2n =lim n→∞(2×na 1+n(n−1)d 12nb 1+n(2n−1)d2)=d 12d 2=1. 故选:C .16.设{a n }是公比为q (0<|q |<1)的无穷等比数列,若{a n }的前四项之和等于第五项起以后所有项之和,则数列{a 2n ﹣1}是( ) A .公比为12的等比数列B .公比为√22的等比数列C .公比为√22或−√22的等比数列D .公比为√24或24的等比数列【分析】根据题意,分析可得S n =2S 4,结合等比数列的前n 项和公式可得a 11−q=2a 1(1−q 4)1−q,解可得q =±√24,又由数列{a 2n ﹣1}为{a n }的奇数项组成的数列,结合等比数列的性质分析可得答案.解:根据题意,若{a n }的前四项之和等于第五项起以后所有项之和, 则S n =2S 4,又由{a n }是公比为q (0<|q |<1)的无穷等比数列,则a 11−q=2a 1(1−q 4)1−q,变形可得q 4=12,则q =±√24,数列{a 2n ﹣1}为{a n }的奇数项组成的数列,则数列{a 2n ﹣1}为公比为q 2=√22的等比数列;故选:B .17.函数y =sin(2x +φ)(0<φ<π2)图象的一条对称轴在(π6,π3)内,则满足此条件的一个φ值为( ) A .π12B .π6C .π3D .5π6【分析】求出函数的对称轴方程,使得满足在(π6,π3)内,解不等式即可求出满足此条件的一个φ值.解:函数y =sin(2x +φ)(0<φ<π2)图象的对称轴方程为:x =kπ2+π4−φ2k ∈Z , 函数y =sin(2x +φ)(0<φ<π2)图象的一条对称轴在(π6,π3)内, 所以π6<kπ2+π4−φ2<π3当 k =0 时π12>φ2>−π12,φ=π12故选:A .18.若数列{a n }的前n 项和为S n ,则下列命题:(1)若数列{a n }是递增数列,则数列{S n }也是递增数列; (2)数列{S n }是递增数列的充要条件是数列{a n }的各项均为正数;(3)若{a n }是等差数列(公差d ≠0),则S 1•S 2…S k =0的充要条件是a 1•a 2…a k =0. (4)若{a n }是等比数列,则S 1•S 2…S k =0(k ≥2,k ∈N )的充要条件是a n +a n +1=0. 其中,正确命题的个数是( ) A .0个B .1个C .2个D .3个【分析】利用等差数列、等比数列的定义和性质,数列的前n 项和的意义,通过举反例可得(1)、(2)、(3)不正确.经过检验,只有(4)正确,从而得出结论. 解:数列{a n }的前n 项和为S n ,故 S n =a 1+a 2+a 3+…+a n ,若数列{a n }是递增数列,则数列{S n }不一定是递增数列,如当a n <0 时,数列{S n }是递减数列,故(1)不正确.由数列{S n }是递增数列,不能推出数列{a n }的各项均为正数,如数列:0,1,2,3,…, 满足{S n }是递增数列,但不满足数列{a n }的各项均为正数,故(2)不正确.若{a n }是等差数列(公差d ≠0),则由S 1•S 2…S k =0不能推出a 1•a 2…a k =0,例如数列:﹣3,﹣1,1,3,满足S 4=0,但 a 1•a 2•a 3•a 4≠0,故(3)不正确.若{a n }是等比数列,则由S 1•S 2…S k =0(k ≥2,k ∈N )可得数列的{a n }公比为﹣1,故有a n +a n +1=0.由a n +a n +1=0可得数列的{a n }公比为﹣1,可得S 1•S 2…S k =0(k ≥2,k ∈N ),故(4)正确. 故选:B . 三、解答题19.已知函数f (x )=x 2+(2﹣n )x ﹣2n 的图象与x 轴正半轴的交点为A (a n ,0),n =1,2,3,….(1)求数列{a n }的通项公式;(2)令b n=3a n+(−1)n−1⋅λ⋅2a n(n为正整数),问是否存在非零整数λ,使得对任意正整数n,都有b n+1>b n?若存在,求出λ的值,若不存在,请说明理由.【分析】(1)函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点横坐标只需令y =0求出x即为数列{a n}的通项公式;(2)若存在λ≠0,满足b n+1>b n恒成立,然后讨论n的奇偶将λ进行分离,利用恒成立的方法求出λ的范围即可.解:(1)设f(x)=0,x2+(2﹣n)x﹣2n=0得x1=﹣2,x2=n.所以a n=n(2)b n=3n+(﹣1)n﹣1•λ•2n,若存在λ≠0,满足b n+1>b n恒成立即:3n+1+(﹣1)n•λ•2n+1>3n+(﹣1)n﹣1•λ•2n,(32)n−1>(−1)n−1⋅λ恒成立当n为奇数时,(32)n−1>λ⇒λ<1当n为偶数时,(32)n−1>−λ⇒λ>−32所以−32<λ<1,故:λ=﹣120.已知函数f(x)=2√3sin x cos x+3sin2x+cos2x﹣2,x∈R;(1)求函数f(x)在(0,π)上的单调递增区间;(2)在△ABC中,内角A、B、C所对边的长分别是a,b,c,若f(A)=2,C=π4.,c=2,求△ABC的面积S△ABC的值;【分析】(1)用二倍角的正弦和余弦公式化简f(x)为f(x)=2sin(2x−π6),然后根据正弦函数的递增区间[−π2+2kπ,π2+2kπ](k∈Z),可得f(x)的递增区间[−π6+kπ,π3+kπ],k∈Z,所得结果与(0,π)取交集即可得到结果;(2)由f(A)=2,可得A=π3,则可得B=5π12,由正弦定理可得a边,再由面积公式S△ABC=12acsinB可求得.解:(1)因为f(x)=2√3sin x cos x+3sin2x+cos2x﹣2 =√3sin2x+2sin2x﹣1=√3sin2x﹣cos2x=2sin (2x −π6),由−π2+2k π≤2x −π6≤π2+2k π,k ∈Z , 得−π6+k π≤x ≤π3+k π,k ∈Z , 又x ∈(0,π),所以0<x ≤π3或5π6≤x <π,所以函数f (x )在(0,π)上的递增区间为:(0,π3],[5π6,π),(2)因为f (A )=2,∴2sin (2A −π6)=2,∴sin (2A −π6)=1, ∴2A −π6=π2+2k π,k ∈Z ,∴A =π3+k π,k ∈Z , ∵0<A <π,∴A =π3.∴B =π12,在三角形ABC 中由正弦定理得a sinA =csinC,∴a =csinA sinC =2×√3222=√6, S △ABC =12ac sin B =12×√6×2×sin5π12=3+√32. 21.已知函数f (x )=2sin (ωx ),其中常数ω>0.(Ⅰ)令ω=1,判断函数F(x)=f(x)+f(x +π2)的奇偶性,并说明理由.(Ⅱ) 令ω=2,将函数y =f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象.对任意a ∈R ,求y =g (x )在区间[a ,a +10π]上的零点个数的所有可能.【分析】(1)特值法:ω=1时,写出f (x )、F (x ),求出F (π4)、F (−π4),结合函数奇偶性的定义可作出正确判断;(2)根据图象平移变换求出g (x ),令g (x )=0可得g (x )可能的零点,而[a ,a +10π]恰含10个周期,分a 是零点,a 不是零点两种情况讨论,结合图象可得g (x )在[a ,a +10π]上零点个数的所有可能值; 解:(1)f (x )=2sin x ,F (x )=f (x )+f (x +π2)=2sin x +2sin (x +π2)=2(sin x +cos x ), F (π4)=2√2,F (−π4)=0,F (−π4)≠F (π4),F (−π4)≠﹣F (π4),所以,F (x )既不是奇函数,也不是偶函数.(2)f (x )=2sin2x ,将y =f (x )的图象向左平移π6个单位,再向上平移1个单位后得到y =2sin2(x +π6)+1的图象,所以g (x )=2sin2(x +π6)+1. 令g (x )=0,得x =k π+512π或x =k π+34π(k ∈z ), 因为[a ,a +10π]恰含10个周期,所以,当a 是零点时,在[a ,a +10π]上零点个数21, 当a 不是零点时,a +k π(k ∈z )也都不是零点,区间[a +k π,a +(k +1)π]上恰有两个零点,故在[a ,a +10π]上有20个零点.综上,y =g (x )在[a ,a +10π]上零点个数的所有可能值为21或20. 22.已知数列{a n }满足:a 1=1,a n +1={0.5a n +n ,n 为正奇数a n −2n ,n 为正偶数,b n =a 2n ﹣2;(1)求a 2、a 3、a 4;(2)求证:数列{b n }为等比数列,并求其通项公式; (3)求和T n =a 2+a 4+…+a 2n ;【分析】(1)由数列的递推式,可令n =1,n =2,n =3计算可得所求值;(2)由数列的递推式,变形整理,结合等比数列的定义和通项公式,即可得到所求; (3)求得a 2n =2﹣(12)n ,由数列的分组求和,结合等比数列的求和公式,计算可得所求和.解:(1)a 1=1,a n +1={0.5a n +n ,n 为正奇数a n −2n ,n 为正偶数,可得a 2=1+12a 1=1+12=32; a 3=a 2﹣4=−52,a 4=3+12a 3=74;(2)证明:b n =a 2n ﹣2=12a 2n ﹣1+2n ﹣1﹣2=12(a 2n ﹣2﹣4n +4)+2n ﹣1﹣2 =12(a 2n ﹣2﹣2)=12b n ﹣1,可得数列{b n }为公比为12,首项为−12等比数列,即b n =﹣(12)n ;(3)由(2)可得a 2n =2﹣(12)n ,T n =a 2+a 4+…+a 2n =2n ﹣(12+14+⋯+12n)=2n −12(1−12n )1−12=2n ﹣1+(12)n .23.已知{a n },{b n }为两非零有理数列(即对任意的i ∈N *,a i ,b i 均为有理数),{d n }为一无理数列(即对任意的i ∈N *,d i 为无理数).(1)已知b n =﹣2a n ,并且(a n +b n d n ﹣a n d n 2)(1+d n 2)=0对任意的n ∈N *恒成立,试求{d n }的通项公式.(2)若{d n 3}为有理数列,试证明:对任意的n ∈N *,(a n +b n d n ﹣a n d n 2)(1+d n 2)=1恒成立的充要条件为{a n =11+d n6b n =d n 31+d n 6.(3)已知sin2θ=2425(0<θ<π2),d n =√tan(n ⋅π2+(−1)n θ)3,试计算b n .【分析】(1)由d n 2+1≠0,可得a n d n 2−b n d n −a n =0,由a n ≠0,可得d n 2+2d n −1=0,解出即可得出.(2)由(a n +b n d n −a n d n 2)(1+d n 2)=1,可得a n +b n d n 3+d n (b n −a n d n 3)=1,利用{d n 3}为有理数列,即可证明.(3)由体积可得25tan θ=12+12tan 2θ.分类讨论,利用{a n },{b n },{d n 3}为有理数列,{d n }为无理数列,即可得出.解:(1)∵d n 2+1≠0,∴a n +b n d n −a n d n 2=0,即a n d n 2−b n d n −a n =0, ∴a n d n 2+2a n d n −a n =0,∵a n ≠0,∴d n 2+2d n −1=0,∴d n =−1±√2.(2)∵(a n +b n d n −a n d n 2)(1+d n 2)=1,∴a n d n 2+a n +b n d n 3+b n d n −a n d n 4−a n d n 2=1,∴a n +b n d n 3+d n (b n −a n d n 3)=1,∵{a n },{b n },{d n 3}为有理数列,{d n }为无理数列, ∴{a n +b n d n 3=1b n −a n d n 3=0,∴{a n =11+d n 6b n =d n31+d n 6,以上每一步可逆. (3)sin2θ=2tanθ1+tan 2θ=2425,∴25tan θ=12+12tan 2θ.∵d n =√tan(n ⋅π2+(−1)n θ)3,∴d n 3=tan(n ⋅π2+(−1)n θ), 当n =2k (k ∈N *)时,∴d n 3=tan(2k ⋅π2+θ)=tanθ当n =2k ﹣1(k ∈N *)时,∴d n 3=tan((2k −1)⋅π2−θ)=cotθ,∴{d n 3}为有理数列,∵(a n +b n d n −a n d n 2)(1+d n 2)=1,∴a n d n 2+a n +b n d n 3+b n d n −a n d n 4−a n d n 2=1, ∴a n +b n d n 3+d n (b n −a n d n 3)=1,∵{a n },{b n },{d n 3}为有理数列,{d n }为无理数列,∴{a n +b n d n 3=1b n −a n d n 3=0,∴b n =d n 31+d n6, ∴b n =d n31+d n6=tan(n⋅π2+(−1)nθ)1+tan 2(n⋅π2+(−1)nθ)=12sin(n ⋅π+2(−1)n θ)当n =2k (k ∈N *)时,∴b n =12sin(2k ⋅π+2θ)=12sin2θ=1225当n =2k ﹣1(k ∈N *)时,∴b n =12sin((2k −1)⋅π−2θ)=12sin2θ=1225,∴b n =1225.。

上海市上海中学2015-2016学年高一下学期期末数学试题

上海市上海中学2015-2016学年高一下学期期末数学试题

绝密★启用前上海市上海中学2015-2016学年高一下学期期末数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.用数学归纳法证明“()()()()12213...21nn n n n n ++⋅⋅⋅+=⋅⋅⋅⋅-”,从“k 到1k +”左端需增乘的代数式为( )A .21k +B .()221k +C .211k k ++ D .231k k ++ 2.一个三角形的三边成等比数列,则公比q 的范围是( ) A .12q >B .12q <C .1122q <<D .12q <或12q +> 3.等差数列{}n a 中,50a <,60a >,65a a >,n S 是前n 项和,则下列结论中正确的是( )A .1S ,2S ,3S 均小于零,4S ,5S ,…大于零B .1S ,2S ,…,5S 均小于零,6S ,7S ,…大于零C .1S ,2S ,…,9S 均小于零,10S ,11S ,…大于零D .1S ,2S ,…,10S 均小于零,11S ,12S ,…大于零4.若()()321322nn n n nn a n ----*++--=∈N ,则()12lim n n a a a →∞++⋅⋅⋅+等于( )A.1124B.1724C.1924D.25245.已知2016cot21sin1θθ+=+,那么()()2sin2cos1θθ++的值为( )A.9 B.8 C.12 D.不确定6.已知()()2739nf n n=+⋅+,存在自然数m,使得对任意*n N∈,都能使m整除()f n,则最大的m的值为( )A.30 B.9 C.36 D.6第II卷(非选择题)请点击修改第II卷的文字说明二、填空题7.(1arcsin arccos arctan2⎛⎛⎫-++=⎪⎝⎭⎝⎭______.8.()()252lim31nnn n→∞-=-+______.9.若数列{}n a为等差数列,且满足2471144a a a a+++=,则3510a a a++=______. 10.设数列{}n a满足:112a=,()1111nnnaa na++=≥-,则2016a=______. 11.已知数列{}n a满足:()*3nna n n N=⋅∈,则此数列前n项和为nS=______.12.已知数列{}n a满足)113,1na a n+==≥.则lim nna→∞=________. 13.等差数列{}n a、{}n b的前n项和分别为n S、n T,若231nnS nT n=+,则56ab=______.14.等比数列{}n a,513a-=,前8项的几何平均为9,则3a=______.15.定义在R上的函数()442xxf x=+,121nnS f f fn n n-⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2,3,n=⋅⋅⋅,则nS=______.16.设1x,2x是方程233sin cos055x xππ-+=的两解,则12arctan arctanx x+=______.17.已知数列{}n a的前n 项和为n S ,n a =,则2016S=______.18.设正数数列{}n a 的前n 项之和为n b ,数列{}n b 的前n 项之积为n c ,且1n nb c +=,则数列的前n 项和n S 中大于2016的最小项为第______项.三、解答题19.用数学归纳法证明:()()22222222212311321n n n ++++-++-++++L L ()21213n n =+. 20.已知数列{}n a 满足11a =,其前n 项和是n S ,对任意正整数n ,2n n S n a =,求此数列的通项公式.21.已知方程cos 221x x k +=+. (1)k 为何值时,方程在区间0,2π⎡⎤⎢⎥⎣⎦内有两个相异的解α,β; (2)当方程在区间0,2π⎡⎤⎢⎥⎣⎦内有两个相异的解α,β时,求αβ+的值.22.设数列{}n a 满足12a =,26a =,()*2122n n n a a a n N ++=-+∈.(1)证明:数列{}1n n a a +-是等差数列;(2)求122016111a a a ++⋅⋅⋅+. 23.数列{}n a ,{}n b 满足11266n n nn n n a a b b a b ++=--⎧⎨=+⎩,且12a =,14b =.(1)证明:{}12n n a a +-为等比数列; (2)求{}n a ,{}n b 的通项.24.已知数列{}n a 是等比数列,且24a =,532a =,数列{}n b 满足:对于任意*n N ∈,有()11122122n n n a b a b a b n +++⋅⋅⋅+=-⋅+.(1)求数列{}n a 的通项公式;(2)若数列{}n d 满足:16d =,()11620nbn n d d a a +⎛⎫⋅⋅- ⎪⎝⎭>=,设()*123n n T d d d d n N =∈L ,当且仅当8n =时,n T 取得最大值,求a 的取值范围.参考答案1.B 【解析】 【分析】分别求出n k =时左端的表达式,和1n k =+时左端的表达式,比较可得“n 从k 到1k +”左端需增乘的代数式. 【详解】由题意知,当n k =时,有(1)(2)()213(21)kk k k k k +++=⋅⋅-L L , 当1n k =+时,等式的左边为(2)(3)(2)(21)(22)k k k k k ++++L , 所以左边要增乘的代数式为(21)(22)1k k k +++2(21)k =+.故选:B . 【点睛】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从k 到1k +,考查学生仔细观察的能力,是中档题. 2.C 【解析】 【分析】 设三边分别为:,,,(,0)a a aq a q q >,分类讨论:1q …时,a a aq q+>,01q <<时,aa aq q<+,分别解出即可得出. 【详解】 设三边分别为:,,,(,0)aa aq a q q>,则1q …时,aa aq q +>解得:1q <„当01q <<时,aa aq q <+1q <<,综上可得:公比q 的范围是11,22⎛⎫⎪ ⎪⎝⎭.故选::C . 【点睛】本题主要考查的是等比数列,同时要注意三边要构成三角形,要满足任意两边之和大于的三边,考查学生的分析问题解决问题的能力,是中档题. 3.C 【解析】 【分析】由50a <,60a >且65a a >可得650d a a =->,56560,20,20a a a a +><>,结合等差数列的求和公式及性质可判断. 【详解】50a <Q ,60a >且65a a >,650d a a ∴=->∴数列的前5项都为负数,56560,20,20a a a a +><>Q 由等差数列的性质及求和公式可得,()19959902a a S a +==<,()()1011056550S a a a a =+=+>,由公差0d >可知,1239,,S S S S ⋯均小于10110,,S S ⋯都大于0. 故选:C . 【点睛】本题主要考查的是等差数列的前n 项和,考查等差数列的性质,考查学生对等差数列知识的掌握情况,是基础题. 4.B 【解析】 【分析】分别在n 为奇数和偶数时求得n a ,得到()()135246lim 333222n ------→∞⎡⎤+++⋅⋅⋅++++⋅⋅⋅⎣⎦,根据等比数列求和公式可求得极限值. 【详解】当n 为奇数时,()322332n n n n n na -----+--==当n 为偶数时,()322322n n n n n na -----++-==()()()13524612lim lim 333222n n n a a a ------→∞→∞⎡⎤∴++⋅⋅⋅+=+++⋅⋅⋅++++⋅⋅⋅⎣⎦ 122232311713128324----=+=+=-- 故选:B 【点睛】本题考查无穷等比数列的极限的求解,关键是能够通过分类讨论将数列化为两个等比数列求和的形式. 5.A 【解析】 【分析】首先将已知等式变形化简得到2016sin 1cot θ=+,利用正弦函数的有界限得cos 0,sin 1θθ==,可求得结果.【详解】将2016cot 21sin 1θθ+=+,变形得2016sin 1cot 2θθ+=+,整理得2016sin 1cot 1θθ=+≤, 即2016cot 0θ≤, 又2016cot 0θ≥Q , 所以2016cot 0θ=, 所以cos 0,sin 1θθ==,所以22(sin 2)(cos 1)(12)9θθ++=+=. 故选:A . 【点睛】本题考查了三角函数的化简求值,关键是由已知结合正弦函数的有界性得到sin x 的值,考查学生的理解能力,是中档题. 6.C 【解析】 【分析】依题意,可求得(1)f 、(2)f 、(3)f 、(4)f 的值,从而可猜得最大的m 的值为36,再利用数学归纳法证明即可. 【详解】由()(27)39nf n n =+⋅+,得(1)36f =,(2)336f =⨯,(3)1036f =⨯, (4)3436f =⨯,由此猜想36m =.下面用数学归纳法证明: (1)当1n =时,显然成立。

2016-2017学年上海市七宝中学高一(下)学期期中数学试卷 (解析版)

2016-2017学年上海市七宝中学高一(下)学期期中数学试卷 (解析版)

2016-2017学年上海市七宝中学高一第二学期期中数学试卷一、填空题:(本题一共12小题,前6小题4分,后6小题5分,共计54分) 1.已知−2π3≤θ≤π6,求sin θ的范围. 2.方程log 2(x +4)+log 2(x +2)=3+log 2(x +6)的解是 . 3.满足等式sin x +cos x =1,x ∈[0,2π]的x 的集合是 . 4.已知sin x =−13,且−π2<x <π2,则tan (π2+x )= . 5.满足tan x <√3且x ∈(0,π)的x 的集合为 .6.已知函数y =cos x +2|cos x |,x ∈[0,2π]与函数y =k 的图象有四个交点,则k ∈ . 7.若α的终边在第一、三象限的角平分线上,则√1−sin 2α+√1−cos 2αcosα= .8.已知π2<α<π,﹣π<β<0,tan α=−13,tan β=−17,则2α+β= . 9.锐角△ABC 中,ba +a b=6cosC ,则tanCtanA+tanC tanB= .10.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是 .11.已知0<θ<π2,若cos 2θ+2m sin θ﹣2m ﹣2<0对任意实数θ恒成立,则实数m 应满足的条件是 .12.已知α,β∈(0,π2),sin α=35,cos (α+β)=−1213,则sin β= . 二、选择题(每小题5分,共计20分)13.已知θ∈(0,2π),且sin θ<tan θ<cot θ,那么θ的取值范围是( ) A .(π4,π2)B .(π,5π4)C .(5π4,3π2)D .(π2,3π4)14.角α终边上一点P (2sin5,﹣2cos5),α∈(0,2π),则α=( ) A .5−π2B .3π﹣5C .5D .5+π215.在锐角△ABC 中,A =2B ,则a b的取值范围是( ) A .(0,√2)B .(√2,√3)C .(√3,2)D .(√2,2)16.已知0<α<π2<β<π,cosα=35,sin(α+β)=−35,则cos β的值为( )A .﹣1B .﹣1或−725C .−2425D .±2425三、解答题:(本题共5小题,共计76分)17.已知f (α)=sin(π−α)cos(2π−α)tan(−α+3π2)cos(−π−α) (1)求f (−31π3)(2)若2f (π+α)=f (π2+α),求sinα+cosαsinα−cosα+cos 2α(3)若f (α)=35,求sin α,cos α18.一缉私艇发现在北偏东45°方向,距离12nmile 的海面上有一走私船正以10nmile /h 的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile /h ,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.19.(16分)已知函数f (x )=log 2(4x +1)﹣ax . (1)若函数f (x )是R 上的偶函数,求实数a 的值; (2)若a =4,求函数f (x )的零点.20.(16分)就实数a 的取值范围,讨论关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴的交点个数.21.(16分)如图1所示,一条直角走廊宽为am ,(a >0)(1)若位于水平地面上的一根铁棒在此直角走廊内,且∠PEF =θ,试求铁棒的长l ; (2)若一根铁棒能水平地通过此直角走廊,求此铁棒的最大长度;(3)现有一辆转动灵活的平板车,其平板面是矩形,它的宽AD 为bm (0<b <a )如图2.平板车若想顺利通过直角走廊,其长度l 不能超过多少米?2016-2017学年上海市七宝中学高一第二学期期中数学试卷参考答案一、填空题:(本题一共12小题,前6小题4分,后6小题5分,共计54分) 1.已知−2π3≤θ≤π6,求sin θ的范围.【分析】画出图象得出单调区间即可求解最大值,最小值. 【解答】解:y =sin x 的图象,得出在区间[−2π3−π2]上单调递减,[−π2,π6]单调递增;最小值为f (−π2)=﹣1,f (π6)=12,f (−2π3)=−√32,故:﹣1≤sin θ≤12【点评】本题考察了三角函数的图象和性质,运用单调性求解即可,关键判断出单调区间. 2.方程log 2(x +4)+log 2(x +2)=3+log 2(x +6)的解是 1+√41 . 【分析】根据对数运算性质列方程解出.解:由对数的运算性质可得:log 2[(x +4)(x +2)]=log 2[8(x +6)], ∴(x +4)(x +2)=8(x +6),解得x =1±√41.由方程有意义得{x +4>0x +2>0x +6>0,∴x >﹣2.∴x =1+√41. 故答案为:1+√41.【点评】本题考查了对数的运算性质,属于基础题.3.满足等式sin x +cos x =1,x ∈[0,2π]的x 的集合是 {2π,π2,0} .【分析】sin x +cos x =1,可得sin 2x +cos 2x +2sin x cos x =1,sin x cos x =0,可得sin x =0或cos x =0,利用x ∈[0,2π],即可得出. 解:∵sin x +cos x =1, ∴sin 2x +cos 2x +2sin x cos x =1, ∴sin x cos x =0, ∴sin x =0或cos x =0, ∵x ∈[0,2π], ∴x =2π或π2或0.故答案为:{2π,π2,0}.【点评】本题考查了同角三角函数的关系式、正弦函数与余弦函数的单调性,属于基础题. 4.已知sin x =−13,且−π2<x <π2,则tan (π2+x )= 2√2 .【分析】由已知求得cos x ,再由诱导公式及同角三角函数基本关系式求得tan (π2+x ).解:∵sin x =−13,且−π2<x <π2,∴cos x =√1−sin 2x =√1−(−13)2=2√23.则tan (π2+x )=﹣cot x =−cosxsinx =−2√23−13=2√2. 故答案为:2√2.【点评】本题考查三角函数的化简求值,考查了同角三角函数基本关系式的应用,是基础的计算题.5.满足tan x <√3且x ∈(0,π)的x 的集合为 {x |0<x <π3,或π2<x <π} .【分析】作出单位圆,给出满足tan x <√3且x ∈(0,π)的范围,写成集合形式,可得答案. 解:满足tan x <√3且x ∈(0,π)x 范围,如下图所示:由图可得:满足tan x <√3且x ∈(0,π)的x 集合为:{x |0<x <π3,或π2<x <π},故答案为:{x |0<x <π3,或π2<x <π}【点评】本题考查的知识点是三角函数线,三角函数不等式的解法,难度中档.6.已知函数y =cos x +2|cos x |,x ∈[0,2π]与函数y =k 的图象有四个交点,则k ∈ (0,1) . 【分析】画出函数f (x )在x ∈[0,2π]以及直线y =k 的图象,数形结合可得k 的取值范围. 解:画出函数y =cos x +2|cos x | ={3cosx ,x ∈[0,π2]∪[3π2,2π]−cosx ,x ∈(π2,3π2)以及直线y =k 的图象,如图所示;由f (x )的图象与直线y =k 有且仅有四个不同的交点,可得0<k <1. 故答案为:(0,1).【点评】本题主要考查余弦函数的图象,体现了数形结合的数学思想,属于基础题. 7.若α的终边在第一、三象限的角平分线上,则√1−sin 2α+√1−cos 2αcosα= ±2tan α .【分析】利用同角三角函数基本关系式化简,再对角α分类讨论得答案.解:√1−sin 2α+√1−cos 2αcosα=√cos 2α+√sin 2αcosα=sinα|cosα|+|sinα|cosα.若α为第一象限角,则sin α>0,cos α>0,sinα|cosα|+|sinα|cosα=sinαcosα+sinαcosα=2tanα; 若α为第三象限角,则sin α<0,cos α<0,sinα|cosα|+|sinα|cosα=−sinαcosα−sinαcosα=−2tanα.故答案为:±2tan α.【点评】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题. 8.已知π2<α<π,﹣π<β<0,tan α=−13,tan β=−17,则2α+β=7π4.【分析】由已知利用二倍角的正切函数公式可求tan2α,利用两角和的正切函数公式可求tan (2α+β),结合2α+β的范围,由正切函数的图象和性质即可得解2α+β的值. 解:∵tan α=−13,tan β=−17,π2<α<π,﹣π<β<0,∴tan2α=2tanα1−tan 2α=−34,tan (2α+β)=tan2α+tanβ1−tan2αtanβ=(−34)+(−17)1−(−34)×(−17)=−1, 又∵3π2<2α<2π,−π2<β<0,可得:2α+β∈(π,2π),∴2α+β=7π4. 故答案为:7π4.【点评】本题主要考查了二倍角的正切函数公式,两角和的正切函数公式,正切函数的图象和性质在三角函数化简求值中的应用,考查了转化思想,求出tan2α的值的关键.注意角的范围.属于基础题. 9.锐角△ABC 中,ba +a b=6cosC ,则tanCtanA+tanC tanB= 4 .【分析】已知等式左边通分并利用同分母分式的加法法则计算,再利用余弦定理列出关系式,两者联立得到4ab cos C =c 2,原式提取tan C ,利用同角三角函数间的基本关系变形,再利用两角和与差的正弦函数公式化简,再利用正弦定理变形,将4ab cos C =c 2代入即可求出值. 解:∵ba +a b=a 2+b 2ab=6cos C ,由余弦定理得:a 2+b 2﹣2ab cos C =c 2, ∴4ab •cos C =c 2, 则原式=tan C •sinBcosA+sinAcosBsinAsinB=tan C •sin(A+B)sinAsinB=sin 2C sinAsinBcosC,由正弦定理得:sin 2CsinAsinB=c 2ab,∴上式=c 2abcosC =4abcosC abcosC=4.故答案为:4【点评】此题考查了正弦、余弦定理,以及同角三角间的基本关系,熟练掌握定理是解本题的关键.10.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是 (0,π6] .【分析】利用正弦定理求得sin C =12sin A ∈(0,12],再根据AB 不是最大边,可得C 为锐角,从而求得C 的范围. 解:△ABC 中,由正弦定理可得AB sinC=BC sinA,即1sinC=2sinA,解得 sin C =12sin A ∈(0,12].再由AB 不是最大边,可得C 为锐角,故C ∈(0,π6], 故答案为:(0,π6].【点评】本题主要考查正弦定理的应用,得到sin C =12sin A ∈(0,12],是解题的关键,属于中档题.11.已知0<θ<π2,若cos 2θ+2m sin θ﹣2m ﹣2<0对任意实数θ恒成立,则实数m 应满足的条件是 (−12,+∞) .【分析】构造函数f (θ)=cos 2θ+2m sin θ﹣2m ﹣2,利用同角三角形函数关系,可将函数的解析式化为f (θ)=﹣(sin θ﹣m )2+m 2﹣2m ﹣1的形式,分0≤m <1,m ≥1,m <0三种情况,讨论函数的最大值,最后汇总讨论结果,即可得到答案. 解:设f (θ)=cos 2θ+2m sin θ﹣2m ﹣2,要使f (θ)<0对任意的θ总成立,当且仅当函数y =f (θ)的最大值小于零. f (θ)=cos 2θ+2m sin θ﹣2m ﹣2=1﹣sin 2θ+2m sin θ﹣2m ﹣2=﹣(sin θ﹣m )2+m 2﹣2m ﹣1 ∴当0≤m <1时,0<θ<π2,函数的最大值为:m 2﹣2m ﹣1<0,解得0≤m <1; 当m ≥1时,函数的最大值小于f (π2)=﹣2<0,∴m ≥1时均成立;当m <0时,函数的最大值小于f (0)=﹣2m ﹣1<0,m >−12,解得−12<m <0.综上得m 的取值范围是:(−12,+∞).【点评】本题考查的知识点是三角函数的最值,其中构造函数f (θ)=cos 2θ+2m sin θ﹣2m ﹣2,将问题转化为函数恒成立问题是解答本题的关键. 12.已知α,β∈(0,π2),sin α=35,cos (α+β)=−1213,则sin β=5665.【分析】由同角三角函数基本关系可得cos α和sin (α+β),整体代入sin β=sin[(α+β)﹣α]=sin (α+β)cos α﹣cos (α+β)sin α计算可得. 解:∵α,β∈(0,π2),sin α=35,cos (α+β)=−1213, ∴cos α=√1−sin 2α=45,sin (α+β)=√1−cos 2(α+β)=513∴sin β=sin[(α+β)﹣α]=sin (α+β)cos α﹣cos (α+β)sin α =513×45−(−1213)×35=5665 故答案为:5665【点评】本题考查两角和与差的三角函数公式,涉及同角三角函数基本关系,属基础题. 二、选择题(每小题5分,共计20分)13.已知θ∈(0,2π),且sin θ<tan θ<cot θ,那么θ的取值范围是( ) A .(π4,π2)B .(π,5π4)C .(5π4,3π2)D .(π2,3π4)【分析】先利用θ∈(0,2π),sin θ<tan θ,确定θ的范围;再根据tan θ<cot θ,确定θ的范围,综合可得θ的范围. 解:∵θ∈(0,2π),sin θ<tan θ, ∴θ∈(0,π2)∪(π,3π2).∵tan θ<cot θ,∴θ∈(0,π4)∪(π,5π4),综上可得,θ∈(5π4,3π2),故选:C .【点评】本题考查三角函数的性质,考查学生分析解决问题的能力,属于中档题. 14.角α终边上一点P (2sin5,﹣2cos5),α∈(0,2π),则α=( ) A .5−π2B .3π﹣5C .5D .5+π2【分析】由三角函数的定义可得sin α=﹣cos5,cos α=sin5,再根据诱导公式即可求出 解:r 2=(2sin5)2+(﹣2cos5)2=4, ∴sin α=yr =−cos5,cos α=sin5, ∵α∈(0,2π), ∴α=5−π2, 故选:A .【点评】本题考查了三角函数的定义和诱导公式,属于基础题 15.在锐角△ABC 中,A =2B ,则ab 的取值范围是( )A .(0,√2)B .(√2,√3)C .(√3,2)D .(√2,2)【分析】利用正弦定理列出关系式,将A =2B 代入,利用二倍角的正弦函数公式化简,约分得到结果为2cos B ,根据三角形的内角和定理及三角形ABC 为锐角三角形,求出B 的范围,进而确定出cos B 的范围,即可得出所求式子的范围. 解:∵A =2B , ∴根据正弦定理a sinA=b sinB得:a b=sinA sinB=sin2B sinB=2sinBcosB sinB=2cos B ,∵A +B +C =180°,∴3B +C =180°,即C =180°﹣3B , ∵C 为锐角, ∴30°<B <60°, 又0<A =2B <90°, ∴30°<B <45°,∴√22<cos B <√32,即√2<2cos B <√3,则a b的取值范围是(√2,√3). 故选:B .【点评】此题考查了正弦定理,余弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.16.已知0<α<π2<β<π,cosα=35,sin(α+β)=−35,则cos β的值为( )A .﹣1B .﹣1或−725C .−2425D .±2425【分析】先求出sinα=45,cos(α+β)=−45,再利用cos β=cos[(α+β)﹣α],即可得出结论.解:∵0<α<π2<β<π,cosα=35,sin(α+β)=−35,∴sinα=45,cos(α+β)=−45∴cos β=cos[(α+β)﹣α]=−45⋅35+(−35)⋅45=−2425故选:C .【点评】本题考查三角函数的求值,考查角的变换,考查学生的计算能力,属于中档题. 三、解答题:(本题共5小题,共计76分)17.已知f (α)=sin(π−α)cos(2π−α)tan(−α+3π2)cos(−π−α) (1)求f (−31π3)(2)若2f (π+α)=f (π2+α),求sinα+cosαsinα−cosα+cos 2α(3)若f (α)=35,求sin α,cos α 【分析】(1)将f (α)进行化简,将x =−31π3带入计算即可; (2)2f (π+α)=f (π2+α),建立等式关系,化简,利用弦化切的思想,即可求出sinα+cosαsinα−cosα+cos 2α的值.(3)f (α)=35,建立等式关系,化简,根据同角三角函数关系式计算即可.解:由f (α)=sin(π−α)cos(2π−α)tan(−α+3π2)cos(−π−α)=sinα⋅cosα×1tanα−cosα=cos 2α−cosα=−cosα.(1)当x =−31π3时,即f (−31π3)=﹣cos (31π3)=﹣cos (10π+π3)=−12. (2)2f (π+α)=f (π2+α),即﹣2cos (π+α)=﹣cos (π2+α), 可得:2cos α=sin α, ∴tan α=2. 那么:sinα+cosαsinα−cosα+cos 2α=tanα+1tanα−1+cos 2αsin 2α+cos 2a =2+12−1+11+tan 2α=165. (3)∵f (α)=35,即﹣cos α=35, ∴cos α=−35.那么:sinα=2α=±45.【点评】本题主要考查三角函数的化简计算能力.属于基础题.18.一缉私艇发现在北偏东45°方向,距离12nmile的海面上有一走私船正以10nmile/h的速度沿东偏南15°方向逃窜.缉私艇的速度为14nmile/h,若要在最短的时间内追上该走私船,缉私艇应沿北偏东45°+α的方向去追,求追击所需的时间和α角的正弦值.【分析】由图A,C分别表示缉私艇,走私船的位置,设经过x小时后在B处追上,则有AB =14x,BC=10x,∠ACB=120°从而在△ABC中利用余弦定理可求追击所需的时间,进一步可求α角的正弦值.解:设A,C分别表示缉私艇,走私船的位置,设经过x小时后在B处追上,…则有AB=14x,BC=10x,∠ACB=120°.∴(14x)2=122+(10x)2﹣240x cos120°…∴x=2,AB=28,BC=20,…∴sinα=BCsin120°AB =20sin120°28=5√314.所以所需时间2小时,sinα=5√314.…【点评】本题考查正余弦定理在实际问题中的运用,关键是构建三角形,寻找边角关系,属于基础题.19.(16分)已知函数f(x)=log2(4x+1)﹣ax.(1)若函数f(x)是R上的偶函数,求实数a的值;(2)若a=4,求函数f(x)的零点.【分析】(1)根据偶函数的定义建立恒等式f(﹣x)=f(x)在R上恒成立,从而求出a 的值即可;(2)将a=4代入,令f(x)=0然后解对数方程,先求出4x的值,然后利用对数表示出x 的值即可.解:(1)∵f (x )是R 上的偶函数 ∴f (﹣x )=f (x )即f (﹣x )﹣f (x )=0∴[log 2(4﹣x +1)﹣a (﹣x )]﹣[log 2(4x +1)﹣ax ]=0log 24−x +14x +1+2ax =0log 214x+2ax =0 ﹣2x +2ax =0 即a =1(2)若a =4,f (x )=log 2(4x +1)﹣4x令f (x )=0,log 2(4x +1)=4x 4x +1=24x (4x )2﹣4x ﹣1=0 4x =1+√52或1−√52(舍) ∴x =log 41+√52【点评】本题主要考查了偶函数的性质,以及函数的零点,同时考查了对数方程的求解,属于中档题.20.(16分)就实数a 的取值范围,讨论关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴的交点个数.【分析】利用倍角公式化余弦为正弦,令t =sin x 换元后化为关于t 的一元二次函数,结合一元二次方程根的分别分类讨论得答案. 解:y =cos2x +2sin x +2a ﹣3=﹣2sin 2x +2sin x +2a ﹣2, 令t =sin x (﹣1≤t ≤1),则函数化为f (t )=﹣2t 2+2t +2a ﹣2. 对称轴方程为t =12.若△=4+8(2a ﹣2)<0,即a <34,函数f (t )无零点,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴无交点; 若△=4+8(2a ﹣2)=0,即a =34, 函数f (t )=−2t 2+2t −12,零点为12.由sin x =12,可得x =π6,或x =5π6,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有两个交点;若△=4+8(2a ﹣2)>0,且f (0)=2a ﹣2<0,即34<a <1,函数f (t )有两个大于0小于1的零点,即sin x 有两个不等正根,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有四个交点;若△=4+8(2a ﹣2)>0,且f (0)=2a ﹣2=0,即a =1,函数f (t )的两个零点为0,1. 由sin x =0,sin x =1,可得关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有三个交点;若f (0)=2a ﹣2>0,且f (﹣1)=2a ﹣6<0,即1<a <3,f (t )有一零点为负数,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有两个交点;若f (﹣1)=0,即a =3,f (t )有一零点﹣1,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有一个交点;若f (﹣1)>0,即a >3,f (t )在[﹣1,1]内无零点,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴无交点.综上,当a <34或a >3时,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴无交点; 当a =3时,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有一个交点;当a =34或1<a <3时,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有两个交点; 当a =1时,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有三个交点; 当34<a <1时,关于x 的函数y =cos2x +2sin x +2a ﹣3,x ∈[0,2π]与x 轴有四个交点.【点评】本题考查函数零点判定定理,考查分类讨论的数学思想方法,训练了一元二次方程根的分别及其应用,是中档题.21.(16分)如图1所示,一条直角走廊宽为am ,(a >0)(1)若位于水平地面上的一根铁棒在此直角走廊内,且∠PEF =θ,试求铁棒的长l ; (2)若一根铁棒能水平地通过此直角走廊,求此铁棒的最大长度;(3)现有一辆转动灵活的平板车,其平板面是矩形,它的宽AD 为bm (0<b <a )如图2.平板车若想顺利通过直角走廊,其长度l 不能超过多少米?【分析】(1)由图形可得:l =a sinθ+acosθ米,(a >0).(2)令t =sin θ+cos θ=√2sin(θ+π4),又θ∈(0,π2),可得t ∈(1,√2],sin θcos θ=t 2−12.l =a •sinθ+cosθsinθcosθ=2at t 2−1=f (t ),利用导数研究其单调性即可得出.(3)AB =f (t )=l −btanθ−b tan θ=a •sinθ+cosθsinθcosθ−b sinθcosθ=2at−2b t −1=2a t+1+2a−2b t −1(0<b <a ),利用单调性即可得出.解:(1)由图形可得:l =a sinθ+acosθ米,(a >0). (2)令t =sin θ+cos θ=√2sin(θ+π4),又∵θ∈(0,π2), ∴t ∈(1,√2].则sin θcos θ=t 2−12.则l =a •sinθ+cosθsinθcosθ=2at t 2−1=f (t ),f ′(t )=−2(1+t 2)(t 2−1)2<0,∴函数f (t )在 t ∈(1,√2]上单调递减. ∴t =√2时,f (t )取得最小值,f (√2)=2√2a (√2)2−1=2√2a ,故当t =√2,即θ=π4时,l 取得最小值,即能够通过这个直角走廊的铁棒的长度的最大值为2√2a 米.(3)AB =f (t )=l −btanθ−b tan θ=a •sinθ+cosθsinθcosθ−b sinθcosθ=2at−2b t −1=2a t+1+2a−2b t −1(0<b <a ),则f (t )在t ∈(1,√2]上单调递减. ∴AB 的最小值=2+12a ﹣2b =2√2a ﹣2b .故平板车的长度不能超过2√2a﹣2b米.【点评】本题考查了三角函数的单调性与求值、利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于难题.。

2015-2016学年上海市闵行区七宝中学高一(上)期中数学试卷(解析版)

2015-2016学年上海市闵行区七宝中学高一(上)期中数学试卷(解析版)

2015-2016学年上海市闵行区七宝中学高一(上)期中数学试卷一、填空题(本大题共12题,每题4分,满分48分)1.(4分)若集合A={(x,y)|x+y=5},集合B={(x,y)|x﹣y=1},用列举法表示:A∩B=.2.(4分)设全集U=R,若集合,则∁U A=.3.(4分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M 的非空真子集的个数为.4.(4分)命题“若x>2且y>3,则x+y>5”的否命题是命题.(填入“真”或“假”)5.(4分)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=.6.(4分)已知集合,则M∩N=.7.(4分)函数y=的定义域是.8.(4分)已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+x+1,则f (x)的解析式为.9.(4分)已知函数y=(a2﹣1)x2+(a﹣1)x+3(x∈R),写出y>0的充要条件.10.(4分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是.11.(4分)定义:关于x的不等式|x﹣A|<B的解集叫A的B邻域.若a+b﹣2的a+b邻域为区间(﹣2,2),则a2+b2的最小值是.12.(4分)设[x]表示不超过x的最大整数,用数组组成集合A的元素的个数是.二、选择题(本大趣共4题,每题4分,满分16分)13.(4分)若关于x的不等式|x﹣4|+|x+3|<a有实数解,则实数a的取值范围是()A.a>7 B.a>1 C.a≥1 D.1<a<714.(4分)判断函数f(x)=的奇偶性()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数15.(4分)设a、b是正实数,以下不等式:①>;②a>|a﹣b|﹣b;③a2+b2>4ab﹣3b2;④ab+>2恒成立的序号为()A.①③B.①④C.②③D.②④16.(4分)用C(A)表示非空集合A中元素的个数,定义若A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值构成集合S,则C(S)=()A.4 B.3 C.2 D.1三、解答题(本大题共5题,满分56分10'+10'+10'+12'+14'=56')17.(10分)已知集合A={x|},实数a使得集合B={x|(x﹣a)(x﹣5)>0}满足A⊆B,求a的取值范围.18.(10分)(1)试用比较法证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)(2)已知x2+y2=2,且|x|≠|y|,求的最小值.19.(10分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=﹣48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?20.(12分)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.21.(14分)已知集合A={x|x=m2﹣n2,m、n∈Z}(1)判断8,9,10是否属于集合A;(2)已知集合B={x|x=2k+1,k∈Z},证明:“x∈A”的充分非必要条件是“x∈B”;(3)写出所有满足集合A的偶数.2015-2016学年上海市闵行区七宝中学高一(上)期中数学试卷参考答案与试题解析一、填空题(本大题共12题,每题4分,满分48分)1.(4分)若集合A={(x,y)|x+y=5},集合B={(x,y)|x﹣y=1},用列举法表示:A∩B={(3,2)} .【解答】解:解方程组:,可得:∴集合A∩B=.故答案为:{(3,2)}2.(4分)设全集U=R,若集合,则∁U A={x|x≤0或x>1} .【解答】解:∵全集U=R.={x|0<x≤1},∴∁U A={x|x≤0或x>1}.故答案为:{x|x≤0或x>1}.3.(4分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M 的非空真子集的个数为14.【解答】解:∵集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},∴M={5,6,7,8},∴M的非空真子集的个数为:24﹣2=14.故答案为:14.4.(4分)命题“若x>2且y>3,则x+y>5”的否命题是假命题.(填入“真”或“假”)【解答】解:若x>2且y>3,则x+y>5”的逆命题为:若x+y>5,则x>2且y >3,此命题为假命题,原因:若x=4,y=1,此时x+y>5,但是x>2且y>3不成立而命题的逆命题与否命题的真假相同可知原命题的否命题为假命题故答案为:假5.(4分)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)={7,9} .【解答】解:∵集合A={0,1,3,5,8},集合B={2,4,5,6,8},∴∁U A={2,4,6,7,9},∁U B={0,1,3,7,9},则(∁U A)∩(∁U B)={7.9},故答案为:{7,9}6.(4分)已知集合,则M∩N={z|z≥﹣1} .【解答】解:集合,可得M={y|y≥﹣2},N={x|x≥﹣1},则M∩N={z|z≥﹣1}.故答案为:{z|z≥﹣1}.7.(4分)函数y=的定义域是{x|x<0,且x≠﹣1} .【解答】解:若使函数y=的解析式有意义,自变量x须满足解得x<0且x≠﹣1故函数的定义域为{x|x<0,且x≠﹣1}故答案为:{x|x<0,且x≠﹣1}8.(4分)已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+x+1,则f (x)的解析式为f(x)=.【解答】解:f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+x+1,所以f(0)=0,则x>0时,﹣x<0,所以f(x)=﹣f(﹣x)=﹣[(﹣x)2+(﹣x)+1]=﹣x2+x﹣1.f(x)=,故答案为:f(x)=.9.(4分)已知函数y=(a2﹣1)x2+(a﹣1)x+3(x∈R),写出y>0的充要条件a≥1或a<﹣.【解答】解:若y=(a2﹣1)x2+(a﹣1)x+3>0,则当a2﹣1=0,即a=1或a=﹣1,当a=1时,不等式等价为3>0,满足条件.当a=﹣1时,不等式等价为﹣2x+3>0,x<,不满足条件.当a≠±1时,要使y>0,则,即,得,,得a>1或a<﹣,综上a≥1或a<﹣,反之也成立,故答案为:a≥1或a<﹣10.(4分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是5.【解答】解:∵x+3y=5xy,x>0,y>0∴∴3x+4y=(3x+4y)()=×3=5当且仅当即x=2y=1时取等号故答案为:511.(4分)定义:关于x的不等式|x﹣A|<B的解集叫A的B邻域.若a+b﹣2的a+b邻域为区间(﹣2,2),则a2+b2的最小值是2.【解答】解:由题意得:|x﹣(a+b﹣2)|<a+b的解集为区间(﹣2,2),∵|x﹣(a+b﹣2)|<a+b⇔(﹣2,2(a+b)﹣2),∴2(a+b)﹣2=2,⇒a+b=2,∴a2+b2≥(a+b)2=2,当且仅当a=b时取等号,则a2+b2的最小值是2.故答案为:2.12.(4分)设[x]表示不超过x的最大整数,用数组组成集合A的元素的个数是76.【解答】解:根据题意,令A n=,显然0≤A n≤100,若A n=0,即0≤<1,解可得:n=1、2、3、…9,若A n=1,即1≤<2,解可得:n=10、11、…14,若A n=2,即2≤<3,解可得:n=15、16、17,若A n=3,即3≤<4,解可得:n=18、19,若A n=4,即4≤<5,解可得:n=20、21、22,若A n=5,即5≤<6,解可得:n=23、24,若A n=6,即6≤<7,解可得:n=25、26,若A n=7,即7≤<8,解可得:n=27、28,若A n=8,即8≤<9,解可得:n=29,若A n=9,即9≤<10,解可得:n=30、31,若A n=10,即10≤<11,解可得:n=32、33,若A n=11,即11≤<12,解可得:n=34,若A n=12,即12≤<13,解可得:n=35、36,若A n=13,即13≤<14,解可得:n=37,若A n=14,即14≤<15,解可得:n=38,若A n=15,即15≤<16,解可得:n=39,若A n=16,即16≤<17,解可得:n=40、41,若A n=17,即17≤<18,解可得:n=42,若A n=18,即18≤<19,解可得:n=43,若A n=19,即19≤<20,解可得:n=44,若A n=20,即20≤<21,解可得:n=45,若A n=21,即21≤<22,解可得:n=46若A n=22,即22≤<23,解可得:n=47,若A n=23,即23≤<24,解可得:n=48,若A n=24,即24≤<25,解可得:n=49,当n≥50时,(n+1)2﹣n2=2n+1>100,即当n≥50时,每一个n对应一个[]的值,故一共有25+51=76个不同的数值,即组成集合A的元素的个数是76;故答案为:76.二、选择题(本大趣共4题,每题4分,满分16分)13.(4分)若关于x的不等式|x﹣4|+|x+3|<a有实数解,则实数a的取值范围是()A.a>7 B.a>1 C.a≥1 D.1<a<7【解答】解:由于|x﹣4|+|x+3|表示数轴上的x对应点到4和﹣3对应点的距离之和,其最小值为7,再由关于x的不等式|x﹣4|+|x+3|<a有实数解,可得a>7,故选:A.14.(4分)判断函数f(x)=的奇偶性()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数【解答】解:∵函数,∴f(﹣x)+f(x)=+==0,∴f(﹣x)=﹣f(x),∴函数是奇函数,故选:A.15.(4分)设a、b是正实数,以下不等式:①>;②a>|a﹣b|﹣b;③a2+b2>4ab﹣3b2;④ab+>2恒成立的序号为()A.①③B.①④C.②③D.②④【解答】解:∵a、b是正实数,∴①a+b≥2⇒1≥⇒≥.当且仅当a=b时取等号,∴①不恒成立;②a+b>|a﹣b|⇒a>|a﹣b|﹣b恒成立;③a2+b2﹣4ab+3b2=(a﹣2b)2≥0,当a=2b时,取等号,例如:a=2,b=1时,左边=5,右边=4×1×2﹣3×22=﹣4∴③不恒成立;④ab+≥2=2>2恒成立.故选:D.16.(4分)用C(A)表示非空集合A中元素的个数,定义若A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值构成集合S,则C(S)=()A.4 B.3 C.2 D.1【解答】解:由于(x2+ax)(x2+ax+2)=0等价于x2+ax=0 ①或x2+ax+2=0 ②,又由A={1,2},且A*B=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∴C(S)=3.故选:B.三、解答题(本大题共5题,满分56分10'+10'+10'+12'+14'=56')17.(10分)已知集合A={x|},实数a使得集合B={x|(x﹣a)(x﹣5)>0}满足A⊆B,求a的取值范围.【解答】解:A=(3,4)…..(2分)a≥5时,B=(a,+∞)∪(﹣∞,5),满足A⊆B;…..(6分)a<5时,B=(5,+∞)∪(﹣∞,a),由A⊆B,得a≥4,故4≤a<5,…..(10分)综上,得实数a的取值范围为a≥4.…..(12分)18.(10分)(1)试用比较法证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)(2)已知x2+y2=2,且|x|≠|y|,求的最小值.【解答】(1)证明:左边=a2x2+a2y2+b2x2+b2y2,右边=a2x2+2abxy+b2y2,左边﹣右边=a2y2+b2x2﹣2abxy=(ay﹣bx)2≥0,…(2分)∴左边≥右边,命题得证.…(3分)(2)解:∵x2+y2=2,∴由柯西不等式得:(x2+y2)()≥,…(5分)∴的最小值为.…(7分)19.(10分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=﹣48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?【解答】解:(1)设每吨的平均成本为W(万元/T),则(0<x≤210),(4分)当且仅当,x=200(T)时每吨平均成本最低,且最低成本为32万元.(6分)(2)设年利润为u(万元),则=.(11分)所以当年产量为210吨时,最大年利润1660万元.(12分)20.(12分)已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[﹣,]都成立.故﹣≥a﹣2,解得a≤,故a的取值范围为(﹣1,].21.(14分)已知集合A={x|x=m2﹣n2,m、n∈Z}(1)判断8,9,10是否属于集合A;(2)已知集合B={x|x=2k+1,k∈Z},证明:“x∈A”的充分非必要条件是“x∈B”;(3)写出所有满足集合A的偶数.【解答】解:(1)∵8=32﹣1,9=52﹣42,∴8∈A,9∈A,假设10=m2﹣n2,m,n∈Z,则(|m|+|n|)(|m|﹣|n|)=10,且|m|+|n|>|m|﹣|n|>0,∵10=1×10=2×5,∴或,显然均无整数解,∴10∉M,∴8∈A,9∈A,10∉A,(2)∵集合B={x|x=2k+1,k∈Z},则恒有2k+1=(k+1)2﹣k2,∴2k+1∈A,∴即一切奇数都属于A,又∵8∈A,∴x∈A”的充分非必要条件是“x∈B”,(3)集合A={x|x=m2﹣n2,m、n∈Z},m2﹣n2=(m+n)(m﹣n)成立,①当m,n同奇或同偶时,m﹣n,m+n均为偶数,(m﹣n)(m+n)为4的倍数,②当m,n一奇,一偶时,m﹣n,m+n均为奇数,∴(m﹣n)(m+n)为奇数,综上所有满足集合A的偶数为4k,k∈Z.。

上海市闵行区七宝中学2015年高一考试卷

上海市闵行区七宝中学2015年高一考试卷

高一基础综合提升训练题2016年3月II. Grammar (15%)Section A (8%)Directions:After reading the sentences, fill in the blanks to make the sentences coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.21. Helping others is a habit, ________ you can learn even at an early age.22. Medicine shouldn’t be kept __________ it is accessible to children.23. Tropical rainforests _________ (cut) down and burned at such a speed that they will disappearfrom the earth in the near future.24. Is there any possibility _______ you could pick me up at the airport?25. It is imagination _________ makes the world colorful, full of vigor and vitality.26. _________ (face) with so much trouble, we failed to complete the task as scheduled.27. The traffic rule says young children under the age of four and _________(weigh) less than 40pounds must be in a child safety seat.28. Our maths teacher has a gift for creating an atmosphere for her students _______ allows them tocommunicate freely with each other.Section B (7%)Directions: After reading the passages below, fill in the blanks to make the passages coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.Poor readers may lack the ability to vary their manner of reading according to the type of reading matter and to their intentions in reading it. A good reader can move 29)________ great speed through the text of a novel or similar light reading matter. He may be able to skim a page, picking up a word or two here and there, and gain a general idea of the text 30)________ really reading it. In reading 31)________(hard) materials, with the intention of taking in the whole of it, he will proceed more slowly, but even then he will vary his pace, 32) _______(concentrate) on the key words and passages, perhaps re-reading them several times, and pass more quickly over 33)________ remains.A type of reading 34)_________ makes careful attention to detail necessary is proofreading, in which the reader, in order to find printing mistakes in a sample print, has to notice not so much the meaning of what he reads as the exact letters and words in the text. This is extremely difficult for most people since they are accustomed to 35)__________(overlook) such details.III. Vocabulary (15%) (请注意按照题号填涂答题卡!)Directions: complete the passage with the words in the box. Each word can only be used once. Note there is one more word than you need.(A)every old stories, myths and legends from hundreds or even thousands of years ago. Why is that? And why are magical worlds of swords and sorcery so popular with young people today?Perhaps it’s because we live in such a 37)____________, scientific age. It seems that everything we experience has a 38)____________ explanation. Our scientists can invent things that would have seemed fantastic 1000 years ago, but somehow, for us, since we’re 39)________ to science as part of our lives, we often respond with: “so what?” Fantasy 40)__________ a sense of wonder to our lives, which can seem a bit 41)___________. Yes, it is the sheer excitement that makes such a novels 42)___________ off bookstore tables and shelves like witches.(B)a tablet or a smartphone. This may simply be another 43)___________ of the digital era’s big social changes. But it has led to a new 44)____________ in the news world, which can best be seen in mobile news 45)____________.These apps help users to play a more active role in finding interesting stories, pictures, videos and other news materials. They can even integrate this 46)____________ with their social networks. With print magazines and 47)____________ news websites you were only the reader. Now, you can be reporter, too. For instance, Zite can help you create a 48)___________ for your friends and family. When you begin using Zite you grant it 49)___________ to your favourite popular microblogs, news websites and blogs. From there Zite provides you with a 50)___________ news experience.IV. Reading Comprehension(30%)Section A: Cloze Test (A)Created in 2007 by a Bangladeshi-American educator, Salman Khan, Kehan Academy offers courses for students ___51___ college level. In order to provide “a free world-class education to anyone, anywhere”, Khan ___52___ more than 4200 free micro lectures at . They usually last for just 1- to 15 minutes, starting from basic knowledge and ___53___ building in complexity. The classes ___54___ fields including mathematics, biology, chemistry and finance. The classes can also help those who are planning to take the SAT, and exam often ___55___ for students who wish to enter a college in the US.So how can you start your learning journey at Khan Academy?First of all, sign in with a personal e-mail account. This allows you to ___56___ your own progress and earn points and badges. The more you challenge yourself, the more bragging ___57___ you will get.The learning dashboard is your personal homepage at Khan Academy. It has a bunch of really cool ___58___ designed to help you learn math. You can take a pre-test first to see you level. The academy then ___59___ exercises at the right level for you. It also allows you to watch videos and improve yourself ___60___ you reach level 5 --- mastery level.51. A. above B. beyond C. within D. below52. A. designed B. suggested C. established D. supplied53. A. gradually B. eventually C. permanently D. generally54. A. occur B. cover C. appear D. teach55. A. tested B. provided C. required D. settled56. A. register B. protect C. improve D. track57. A. rights B. accounts C. courses D. exams58. A. websites B. instructors C. suggestions D. features59. A. prints B. recommends C. illustrates D. predicts60. A. until B. as C. for D. since(B)Manufacturers choose different ways to present their goods for sale. The three main ways of selling goods are direct sales, retail sales, and wholesaling.Direct sales take place away from a store. Direct sales usually take place in the customer’s home, although sometimes it’s in a business ___61___. Direct sales include the activities of ___62___ salespeople and real estate agents. Other ___63___ are catalog shopping, telemarketing, and at-home Internet shopping.The second type of sales—retail sales—take place in ___64___. Department stores, discount chains, supermarkets, hardware stores, car dealerships, drugstores, convenience stores—all of these are retail stores, where consumers ___65___ purchase small quantities of goods. Most manufacturers ___66___ to sell their products through retail stores because they’re a convenient way for consumers to buy. Consumers can ___67___ products and take their purchases with them. They can ___68___ or return things easily. They can ask sales clerks for advice about products, or about how something works.The third type of sales is wholesaling—where goods are sold ___69___ the retail or direct-sale price. That’s because customers are buying in large ___70___ or in a low overhead setting. Wholesalers ___71___ in a variety of ways. Some have their own outlet stores where they sell directly to consumers. Others send sales ___72___ to retail stores that buy goods at wholesale prices and then mark them up for resale. Because it’s difficult for a manufacturer to contact every buyer directly, wholesaling is the most practical method for the widespread distribution of goods.61. A. setting B. school C. community D. deal62. A. face-to-face B. heart-to-heart C. round-the-clock D. door-to-door63. A. models B. samples C. examples D. guides64. A. markets B. offices C. stores D. homes65. A. immediately B. constantly C. directly D. willingly66. A. choose B. refuse C. guarantee D. happen67. A. survey B. inspect C. estimate D. assess68. A. replace B. restore C. substitute D. exchange69. A. above B. below C. at D. from70. A. debt B. quantities C. spaces D. budgets71. A. operate B. function C. expand D. boom72. A. representatives B. goods C. demonstrations D. chequesSection B: Reading(A)A nine-year-old kid was sitting at his desk when suddenly there was a puddle between his feet and the front of his trousers was wet.He thought his heart was going to stop because he couldn'tpossibly imagine how this had happened.It had never happened before, and he knew that when the boys found out he would never hear the end of it. When the girls found out, they would never speak to him again as long as he lived.He prayed this prayer, "Dear God, I need help now! Five minutes from now I'm dead meat!" He looked up from his prayer and here came the teacher with a look in her eyes that said he had been discovered.As the teacher was walking toward him, a classmate named Susie was carrying a goldfish bowl full of water.Susie tripped in front of the teacher and dumped the bowl of water in the boy's lap.The boy pretended to be angry, but all the while was saying to himself, "Thank you.Lord!"Now all of a sudden, instead of being the object of ridicule, the boy was the object of sympathy.The teacher rushed him downstairs and gave him gym shorts to put on while his trousers dried out.All the other children were on their hands and knees cleaning up around his desk.The sympathy was wonderful.But as life would have it, the ridicule that should have been his had been transferred to someone else—Susie.She tried to help, but they told her to get out.When school was over, the boy walked over to Susie and whispered, "You did that on purpose, didn't you?" Susie whispered back, "I wet my trousers once, too!"73.The underlined sentence in Paragraph 1 means ____ .A. the boys would never play with himB.the boys would treat him as usualC. he would hardly hear any praise from the boysD. he would be laughed at by the boys endlessly74.After Susie dumped water in his lap, the boy was in a state of ___ _.A.excitementB.reliefC.anxietyD.anger75.What did the other kids do after the incident?A.They offered him dry clothes.B.They laughed at the boy rudely,C.They helped the boy do the cleaning.D.They urged the boy to get out angrily,(B)A. buy a ticketB. apply in advanceC. make a reservationD. contact the call-down service77. According to the passage, Enzo Monfre will _______.A. show the children around a zooB. tell stories to children over sevenC. be present at the science show in personD. lead the children to the Ellen DeGenerse Show78. We can learn from the passage that children _______.A. can attend all the activities with their parentsB. have access to some relevant books for the activitiesC. can participate in the activities from 8:00 a.m. to 4:00 p.m.D. may choose only one of the activities according to their interest(C)Once upon a time it was boarding school adventures and mysteries solved by tweed-wearing detectives that fired young readers’ imaginations. Now, it seems, it is the promise of tales of blood sucking vampires, unstoppable zombies, howling werewolves and terrifying beasts that inspires young audiences to pick up a book.Teen horror is a genre that seems to be going from strength to strength, with titles like The Demonata and The Saga of Larten Crepsey by Irish born writer, Darren Shan, topping the charts. Indeed Darren Shan’s success has earned him the title of “Master of Children’s Horror” and his books, which also include The Thin Executioner and the vampire series The Saga of Darren Shan, have sold more than 20 million copies worldwide. But what is it about horror fiction that so appeals to young readers, and just how scary do they like it?“I think horror allows teenagers to focus on real-life issues in a fantastical way, helping them analyse and make sense of the world as they are coming to a grea ter understanding of it,” says Darren. “In my book, Lord Loss, the main character’s parents and sister are slaughtered by demons. While that’s obviously not going to happen to anyone in the real world, many children will lose people they love during their formative years, whether it’s grandparents dying of old age, or friends or relatives in accidents. A book like this can hopefully help them prepare for when death strikes at them in real life. Good horror is always about helping us prepare for the darker aspects of life – and since we can’t avoid them, we might as well turn them into entertainment!”Darren tours frequently, attending events in schools and libraries, and talking to young readers helps him gauge what they can and can’t take in terms of frightening content. He explains: “When I’m writing an especially terrible scene, I imagine myself reading it out in a live environment, and ask myself if I would feel comfortable doing so. If not, I’ll go back and tweak the scene. I have no set formula for deciding what is suitable and what is not. I simply go with my gut instinct.”79. What is the point of the article?A. To recommend some popular horror books.B. To analyze why horror fiction fascinates young people.C. To explore how horror fiction benefits young readers.D. To introduce how Darren creates horror books.80. The underlined phrase “going from strength to strength” in Paragraph 2 is closest in meaning to______.A. failing to attract attentionB. improving imaginationC. getting darker and scarierD. becoming increasingly successful81. Darren Shan thinks that his books interest young people because ______.A. they are exciting and inspiringB. they are about the darker aspects of lifeC. they deal with real-life issues in a fanciful wayD. they teach people how to deal with real-life problems82. What can we conclude from the last paragraph?A. Teenagers feel comfortable with Darren’s imagination.B. The more frightening a book is, the better it sells.C. Darren visits schools from time to time to promote his books.D. Darren sometimes changes his stories to make them less scary.(D)It’s 10 p.m. You may not know where your child is, but the chip does.The chip will also know if your child has fallen and needs immediate help. Once doctors arrive, the chip will also be able to tell them which drugs are not suitable for little Jonny or Janie. At the hospital, the chip will tell doctors his or her complete medical history. And of course, when you arrive to pick up your child, setting the hospital bill with your health insurance policy will be a simple matter of waving your own chip ___ the one embedded(植入) in your hand.To some, this may sound unbelievable. But the technology for such chips is no longer the stuff of science fiction. And it may soon offer many other benefits besides locating lost children or elderly patients. It could be used as credit cards and people won’t have to carry wallets anymore.On the other hand, some are already wondering what this sort of technology may do to the sense of personal privacy and liberty.“Any technology of this kind could result in abuse of personal privacy,” says Lee Tien, senior staff lawyer for the Electronic Frontier Foundation. “If a kid can be tracked, do you want other people to be able to tr ack your kid? It’s a double-edged sword.”Applied Digital Solutions, Inc. in Palm Beach, Florida, says it has recently applied to the Food and Drug Admission for permission to begin testing its device in humans. About the size of a grain of rice, the microchip can be coded with bits of information and embedded in humans under a layer of skin. When scanned by a nearby reader, the embedded chip gives the data.Most embedded chip designs are so-called passive chips, which give information only when scanned by a nearby reader. But active chips ___ such as the proposed Digital Angel of the future ___ will give out information all the time. And that means designers will have to develop some sort of power source that can provide a continuous source of energy, yet be small enough to be embedded with the chips.In addition to technical problems, many suspect that all sorts of legal and privacy issues would have to be cleared as well.83. By using the example in the first two paragraphs, the author wants to tell us that _______.A. chips are usually used to locate lost childrenB. chips are more convenient than credit cardsC. chips will soon be useful in many aspects of daily livesD. chips will bring out the issue of abuse of personal privacy84. What is the attitude of Lee Tien towards the chips?A. NegativeB. PositiveC. IndifferentD. Concerned85. It is indicated in the passage that chip producers have to consider the following issues EXCEPT_______.A. financial problemsB. technical problemsC. legal problemsD. privacy problemV. Translation (15%)1. 这位作家去年出的一本书很畅销,使他一举成名。

上海市闵行区七宝中学2020-2021学年高一下学期期末数学试题答案和解析

上海市闵行区七宝中学2020-2021学年高一下学期期末数学试题答案和解析

上海市闵行区七宝中学【最新】高一下学期期末数学试题学校:姓名:班级:考号:一、填空题1 .方程cosx = sin*的解集为O2 .设{%}为等差数列,若41 +% +〃9 =),则生+/= 5 .设数列{叫的前〃项和S“,若%= —1, 5”一0(〃 tN) 则{%}的通项 公式为. 6 .利用数学归纳法证明不等式“1 + ! + : +...+J 二的过程中, 2 32“-1 2、 7由“n = k"变到"〃 =% + 1”时,左边增加了 项.7.若/(工)=25吊工-1在区间[4可(〃,〃£1<且。

</?)上至少含有30个零点,则/?一。

的最小值为.38.设数列{“〃}的通项公式为% =01丫卜 J 〃>310.对于正项数列{4}‘定义"〃=--——J ------------------- 为{4}的“光阴”值,6 +2/+3% + ♦♦・ + ”%则 lim (% +%+・•・ + q J =9.已知数列{4}中,其前〃项和为S”,为2飞〃为正奇数则与 2〃-1, 〃为正偶数34的值域是112 114 .数列{/}的前〃项和为S 〃,若数列{册}的各项按如下规律排列::,一,一,—, 2 3 3 4u — 1 3…,—■,…有如下运算和结论:n 8②数列% , % +4,〃4+〃5+4,% +4 +% +/o ,…是等比数列:③数列4,4 +%,2%+% + 4,%+/+"9+60,…的前〃项和为[=汇三:④若存在正整数k ,使 演<10, 5A +I >10,则4 =?.其中正确的结论是 ________________________________________________ .(将你认为正确的结论序号 都填上) 二、单选题15 .已知伍”}、鱼}都是公差不为0的等差数歹ij,且也户 2 , S“ = q +的+…+ a”, n2S则lim —的值为()nb 2/iA. 2B. -1C. 1D.不存在16.设伍”}是公比为4(0<卜|<1)的无穷等比数列,若{"”}的前四项之和等于第五项起以后所有项之和,则数列{%“-J 是()A.公比为!的等比数列2 B.公比为立的等比数列2 C.公比为它或-它的等比数列2 211D.公比为正或一正的等比数列17.函数y = sin (2x + 0(O<8<1)图象的一条对称轴在(。

2014-2015学年上海市闵行区七宝中学高一(下)学期期中数学试卷 (解析版)

2014-2015学年上海市闵行区七宝中学高一(下)学期期中数学试卷 (解析版)

2014-2015学年上海市闵行区七宝中学高一第二学期期中数学试卷一、填空题(本大题满分30分)本大题共有10题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.已知点M (tan α,cos α)在第二象限,则角α的终边在第 象限. 2.sin(π−α)cos(4π−α)tan(−α+5π2)cos(−α−π)sin(−α−π)的值为.3.化简sinacosa cos a−sin a−tana 1−tan a= .4.设tan (α+β)=25,tan (β−π4)=14,则tan (α+π4)= .5.三角形的三条高的长度分别为113,110,15,则此三角形的形状是 .6.设函数f (x )=sin3x ,若y =f (x +t )是偶函数,则t 的一个可能值是 . 7.已知f(n)=cosnπ4(n ∈N ∗),则f (1)+f (2)+…+f (2015)的值为 . 8.若函数f(x)=√3sin2x +acos2x 的图象关于直线x =−π8对称,则实数a = . 9.如图,长为2,宽为1的矩形木块,在桌面上作无滑动翻滚,翻滚到第三面后被一小木块挡住,使木块底与桌面成30°角,则点A 走过的路程是 .10.函数y =3cos (x +10°)+5sin (x +40°)的最大值是 .二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得4分,否则一律得零分. 11.k ∈Z ,下列各组角的表示中,终边相同的角是( ) A .kπ2与kπ±π2B .2k π+π与4k π±πC .kπ+π6与2kπ±π6D .kπ3与kπ+π312.方程cos x =lg |x |的实数根的个数是( ) A .2个B .4个C .6个D .7个13.在下列四个命题中,①函数y =tan(x +π4)的定义域是{x|x ≠kπ+π4,k ∈Z}; ②已知sinα=12,且α∈[0,2π],则α的取值集合是{π6};③函数y =sin(2x +π3)+sin(2x −π3)的最小正周期是π; ④△ABC 中,若cos A >cos B ,则A <B . 其中真命题的个数是( ) A .1个B .2个C .3个D .4个14.已知函数y =2sin x 的定义域为[a ,b ],值域为[﹣2,1],则b ﹣a 的值不可能是( ) A .5π6B .πC .7π6D .3π2三、解答题(本大题满分54分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.15.已知−π2<x <0,sinx +cosx =15.(1)求sin x ﹣cos x 的值; (2)求tan2x 的值.16.为了废物利用,准备把半径为2,圆心角为π3的扇形铁片余料剪成如图所示的内接矩形ABCD .试用图中α表出内接矩形ABCD 的面积S .17.如图,已知△ABC ,a 、b 分别为角A 、B 的对边,设A (b cos α,b sin α),∠AOB =β,D 为线段AB 的中点.定义:M (x 1,y 1),N (x 2,y 2)的中点坐标为(x 1+x 22,y 1+y 22). 若a =2,b =1,且点D 在单位圆上,求cos β的值.18.已知△ABC 中,A <B <C ,a =cos B ,b =cos A ,c =sin C (1)求△ABC 的外接圆半径和角C 的值; (2)求a +b +c 的取值范围.19.已知函数f(x)=2sin 2(π4+x)−√3cos2x .(1)求函数f (x )的单调递减区间;(2)若关于x 的方程f (x )=a 在x ∈[π4,π2]上时有两个相异实数解,求这两实数解的和; (3)若不等式|f (x )﹣m |<2在x ∈[π4,π2]上恒成立,求实数m 的取值范围. 第二卷20.填空题:方程√x 3|sinπx|=x −3√x 3的解的个数为 个.21.已知a =cos40°cos37°﹣cos50°sin37°,b =√22(sin56°−cos56°),c =1−tan 239°1+tan 239°,d =12(cos80°−2cos 250°+1),则a ,b ,c ,d 的大小关系是( ) A .a >b >d >cB .b >a >d >cC .a >c >b >dD .c >a >b >d22.解答题:x ,y ∈[−π4,π4],a ∈R ,且{x 5+sinx −4a =08y 5+14sin2y +a =0,求cos(x +2y +π4)的值.2014-2015学年上海市闵行区七宝中学高一第二学期期中数学试卷参考答案一、填空题(本大题满分30分)本大题共有10题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.已知点M (tan α,cos α)在第二象限,则角α的终边在第 四 象限. 【分析】由点M (tan α,cos α)在第二象限,可得{tanα<0cosα>0,即可得出.解:∵点M (tan α,cos α)在第二象限, ∴{tanα<0cosα>0 ∴α在第四象限. 故答案为:四【点评】本题考查了角所在象限的符号、点在各个象限的坐标符号,属于基础题. 2.sin(π−α)cos(4π−α)tan(−α+5π2)cos(−α−π)sin(−α−π)的值为−1tanα. 【分析】利用诱导公式化简所给的式子,可得结果. 解:sin(π−α)cos(4π−α)tan(−α+5π2)cos(−α−π)sin(−α−π)=sina⋅cosa⋅1tana−cosa⋅sina=−1tanα,故答案为:−1tanα.【点评】本题主要考查诱导公式的应用,属于基础题. 3.化简sinacosa cos a−sin a−tana 1−tan a= 0 .【分析】把被减式的分子利用二倍角的正弦函数公式变形,分母利用二倍角的余弦函数变形,再利用同角三角函数间的基本关系弦化切,减式利用二倍角的正切函数公式变形,相减即可得到最简结果. 解:sinacosa cos 2a−sin 2a−tana 1−tan 2a=12×2sinacosa cos 2a−sin 2a −12×2tana 1−tan 2a=12sin2αcos2α−12tan2α=12tan2α−12tan2α =0. 故答案为:0【点评】此题考查了三角函数的化简求值,涉及的知识有二倍角的正弦、余弦、正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键. 4.设tan (α+β)=25,tan (β−π4)=14,则tan (α+π4)=322.【分析】由条件利用两角差的正切公式求得tan (α+π4)的值.解:∵tan (α+β)=25,tan (β−π4)=14,∴tan (α+π4)=tan(α+β)−tan(β−π4)1+tan(α+β)⋅tan(β−π4)=25−141+25×14=322, 【点评】本题主要考查两角差的正切公式的应用,属于基础题. 5.三角形的三条高的长度分别为113,110,15,则此三角形的形状是 钝角三角形 .【分析】根据题意,设三条高线对应的边长分别为13t ,10t ,5t ,最大边对应的角为 θ,由余弦定理计算可得cos θ<0,由(0,π)上余弦值的符号,分析可得答案. 解:根据题意,设三条高线对应的边长分别为13t ,10t ,5t ,最大边对应的角为θ, 由余弦定理可得cos θ=(10t)2+(5t)2−(13t)22×(10t)×(5t)=−1125<0,则θ 为钝角,故三角形为钝角三角形, 故答案为:钝角三角形.【点评】本题考查余弦定理的应用,在(0,π)上余弦值的符号,设出边长分别为13t ,10t ,5t ,是解题的关键.6.设函数f (x )=sin3x ,若y =f (x +t )是偶函数,则t 的一个可能值是π6.【分析】由函数的解析式求出f (x +t )的解析式,根据题意和余弦函数的奇偶性,利用诱导公式求出t 的所有取值的集合,再求出其中一个值即可. 解:∵f (x )=sin3x ,∴f (x +t )=sin3(x +t )=sin (3x +3t ),∵f (x +t )是偶函数,∴3t =π2+k π,(k ∈z ),即t =π6+k3π,(k ∈z ),则t 的一个可能值是π6.故答案为:π6.【点评】本题考查了余弦函数的奇偶性的应用,先由根据题意对函数解析式进行化简后,再诱导公式和函数的奇偶性求出解集,在解集中任取一个值即可,本题是一个开放性的题目只要答案符合题意就可以.7.已知f(n)=cos nπ4(n ∈N ∗),则f (1)+f (2)+…+f (2015)的值为 ﹣1 . 【分析】利用余弦函数的周期性,求得f (1)+f (2)+…+f (2015)的值. 解:∵已知f(n)=cos nπ4(n ∈N ∗) 的周期为2ππ4=8,f (1)+f (2)+…+f (8)=√22+0−√22−1−√22+0+√22+1=0,f (1)+f (2)+…+f (2015)=251•[f (1)+f (2)+…+f (8)]+f (1)+f (2)+…+f (7) =0+(﹣1)=﹣1, 故答案为:﹣1.【点评】本题主要考查余弦函数的周期性,属于基础题.8.若函数f(x)=√3sin2x +acos2x 的图象关于直线x =−π8对称,则实数a = −√3 . 【分析】由题意可得f (−π4)=f (0),由此求得实数a 的值. 解:∵函数f(x)=√3sin2x +acos2x 的图象关于直线x =−π8对称, ∴f (−π4)=f (0), 即−√3+0=0+a ,∴a =−√3, 故答案为:−√3.【点评】本题主要考查三角函数的图象的对称性,属于基础题.9.如图,长为2,宽为1的矩形木块,在桌面上作无滑动翻滚,翻滚到第三面后被一小木块挡住,使木块底与桌面成30°角,则点A 走过的路程是6π+√52π .【分析】由弧长公式计算各段弧长,相加可得答案.解:第一次是以B 为旋转中心,以BA =√22+1=√5为半径旋转90°,此次点A 走过的路径是π2×√5=√52π. 第二次是以C 为旋转中心, 以CA 1=1为半径旋转90°, 此次点A 走过的路径是π2×1=π2.第三次是以D 为旋转中心, 以DA 2=2为半径旋转60°, 此次点A 走过的路径是π3×2=23π,∴点A 三次共走过的路径是√5π2+π2+2π3=76π+√52π. 故答案为:76π+√52π.【点评】本题考查弧长公式,求出各段弧长的圆心角和半径是解决问题的关键,属基础题. 10.函数y =3cos (x +10°)+5sin (x +40°)的最大值是 7 .【分析】将x +40°化成x +10°+30°,使用差角公式展开,合并再用辅助角公式化简,得出最值即可.解:y =3cos (x +10°)+5sin (x +40°)=3cos (x +10°)+5sin[(x +10°)+30°] =3cos (x +10°)+5[sin (x +10°)cos30°+cos (x +10°)sin30°]=3cos (x +10°)+5√32sin (x +10°)+52cos (x +10°)=112cos(x +10°)+5√32sin(x +10°)=7cos (x +10°+θ).∴函数y =3cos (x +10°)+5sin (x +40°)的最大值是7. 故答案为:7.【点评】本题考查了三角函数恒等变换及求值,发现两个角的特殊关系是关键,是中档题. 二、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得4分,否则一律得零分.11.k ∈Z ,下列各组角的表示中,终边相同的角是( ) A .kπ2与kπ±π2B .2k π+π与4k π±πC .kπ+π6与2kπ±π6D .kπ3与kπ+π3【分析】直接由终边相同角的概念逐一核对四个选项得答案. 解:kπ2,k ∈Z 表示终边在坐标轴上的角的集合,k π±π2表示终边在y 轴上的角的集合,两组角终边不同;(2k +1)π与(4k ±π)(k ∈Z )都表示终边在x 轴负半轴上的角,两组角终边相同; k π+π6表示终边与π6和7π6终边相同的角的集合,2k π±π6表示终边与π6与−π6终边相同的角的集合,两组角终边不同; k π±π3不含0,而kπ3含有0,两组角终边不同.故选:B .【点评】本题考查了终边相同角的概念,是基础题. 12.方程cos x =lg |x |的实数根的个数是( ) A .2个B .4个C .6个D .7个【分析】作出y =cos x 和y =lg |x |的函数图象,根据函数的对称性和交点个数得出方程解的个数.解:做出y =cos x 和y =lgx 的函数图象如图所示:由图象可知y =cos x 和y =lgx 的图象有3个交点, ∵y =cos x 和y =lg |x |都是偶函数, ∴y =cos x 和y =|lgx |的图象有6个交点, ∴方程cos x =lg |x |有6个根.故选:C .【点评】本题考查了方程的根与函数图象的关系,属于中档题. 13.在下列四个命题中,①函数y =tan(x +π4)的定义域是{x|x ≠kπ+π4,k ∈Z}; ②已知sinα=12,且α∈[0,2π],则α的取值集合是{π6};③函数y =sin(2x +π3)+sin(2x −π3)的最小正周期是π; ④△ABC 中,若cos A >cos B ,则A <B . 其中真命题的个数是( ) A .1个B .2个C .3个D .4个【分析】根据正切函数的定义域求出y 的定义域即可判断①正确; 求出sinα=12在α∈[0,2π]内的取值集合即可判断②错误;化函数y 为正弦型函数,求出它的最小正周期,判断③正确; 根据△ABC 中A 、B ∈(0,π),结合余弦函数的单调性判断④正确. 解:对于①,令x +π4≠k π+π2,k ∈Z ,解得x ≠k π+π4,k ∈Z , ∴函数y =tan(x +π4)的定义域是{x|x ≠kπ+π4,k ∈Z},①正确; 对于②,已知sinα=12,且α∈[0,2π], 则α的取值集合是{π6,5π6},∴②错误;对于③,函数y =sin(2x +π3)+sin(2x −π3)=(12sin2x +√32cos2x )+(12sin2x −√32cos2x )=sin2x ,它的最小正周期是π,③正确; 对于④,△ABC 中,A 、B ∈(0,π),根据余弦函数的单调性知,若cos A >cos B ,则A <B ,④正确. 以上真命题是①③④,共3个. 故选:C .【点评】本题考查了三角函数的图象与性质的应用问题,也考查了命题真假的判断问题,是综合题.14.已知函数y =2sin x 的定义域为[a ,b ],值域为[﹣2,1],则b ﹣a 的值不可能是( ) A .5π6B .πC .7π6D .3π2【分析】由题意得,x ∈[a ,b ]时,﹣1≤sin x ≤12,定义域的区间长度b ﹣a 最小为2π3,最大为4π3,由此选出符合条件的选项.解:函数y =2sin x 的定义域为[a ,b ],值域为[﹣2,1],∴x ∈[a ,b ]时,﹣1≤sin x ≤12, 故sin x 能取到最小值﹣1,最大值只能取到12,例如当a =−π2,b =π6时,区间长度b ﹣a 最小为2π3;当a =−7π6,b =π6时,区间长度b ﹣a 取得最大为4π3,即2π3≤b ﹣a ≤4π3, 故b ﹣a 一定取不到3π2,故选:D .【点评】本题考查正弦函数的定义域和值域,判断定义域的区间长度b ﹣a 最小为2π3,最大为4π3,是解题的关键,属于中档题.三、解答题(本大题满分54分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.15.已知−π2<x <0,sinx +cosx =15.(1)求sin x ﹣cos x 的值; (2)求tan2x 的值.【分析】(1)通过方程平方,求出sin x cos x ,然后求sin x ﹣cos x 的平方,结合角的范围求解即可;(2)利用二倍角公式化简tan2x ,结合(1)的解答,求出所求tan2x 的值.解:(1)(sinx +cosx)2=1+2sinxcosx =125,∴(sinx −cosx)2=1−2sinxcosx =4925. ∵−π2<x <0,∴sinx −cosx =−75.(2)tan2x =2tanx 1−tan 2x =2sinxcosx cos 2x−sin 2x =2sinxcosx (cosx+sinx)(cosx−sinx)=−247 【点评】本题是中档题,考查三角函数的化简求值,注意角的范围,考查计算能力.16.为了废物利用,准备把半径为2,圆心角为π3的扇形铁片余料剪成如图所示的内接矩形ABCD .试用图中α表出内接矩形ABCD 的面积S .【分析】先用所给的角表示AB ,BC ,即可将矩形的面积表示出来,建立三角函数模型. 解:如图,在Rt △OBC 中,OB =2cos α,BC =2sin α,在Rt △OAD 中,OA =√33DA =2√33sin α.所以AB =OB ﹣OA =2cos α−2√33sin α.设矩形ABCD 的面积为S ,则S =AB •BC =(2cos α−2√33sin α)•2sin α=4sin αcos α−4√33sin 2α=2sin2α+2√33cos2α−2√33=4√33(√32sin2α+12cos2α)−2√33=4√33sin (2α+π6)−2√33(0<α<π3).【点评】本题考查在实际问题中建立三角函数模型,求解问题的关键是根据图形建立起三角模型,将三角模型用所学的恒等式变换公式进行化简.17.如图,已知△ABC ,a 、b 分别为角A 、B 的对边,设A (b cos α,b sin α),∠AOB =β,D 为线段AB 的中点.定义:M (x 1,y 1),N (x 2,y 2)的中点坐标为(x 1+x 22,y 1+y 22). 若a =2,b =1,且点D 在单位圆上,求cos β的值.【分析】利用平行四边形对角线的平方和等于四条边的平方和,求出AB ,利用余弦定理,求cos β的值.解:由题意,(2OD )2+AB 2=2(12+22),∴AB =√6, ∴cos β=4+1−62×2×1=−14. 【点评】本题考查三角函数值的计算,考查余弦定理,考查学生的计算能力,利用平行四边形对角线的平方和等于四条边的平方和,求出AB 是关键. 18.已知△ABC 中,A <B <C ,a =cos B ,b =cos A ,c =sin C (1)求△ABC 的外接圆半径和角C 的值; (2)求a +b +c 的取值范围.【分析】(1)由正弦定理求得外接圆半径R .再由a =cos B ,b =cos A ,可得cosB sinA=cosA sinB,化简得sin2A =sin2B .再由A <B <C ,可得2A +2B =π,由此可得C 的值.(2)由于a +b +c =cos B +cos A +sin C =√2sin (A +π4)+1.再由O <A <π4,利用正弦函数的定义域和值域求得sin (A +π4)+1<√2+1的范围,即可求得a +b +c 的取值范围. 解:(1)由正弦定理c sinC=2R =1,∴R =12.再由a =cos B ,b =cos A ,可得cosB sinA=cosA sinB,故有sin A cos A =sin B cos B ,即sin2A =sin2B .再由A <B <C ,可得2A +2B =π,∴C =π2.(2)由于a +b +c =cos B +cos A +sin C =sin A +cos A +1=√2sin (A +π4)+1. 再由O <A <π4,可得π4<A +π4<π2,∴√22<sin (A +π4)<1, ∴2<√2sin (A +π4)+1<√2+1, 即a +b +c 的取值范围为(2,√2+1).【点评】本题主要考查正弦定理的应用,正弦函数的定义域和值域,属于中档题. 19.已知函数f(x)=2sin 2(π4+x)−√3cos2x . (1)求函数f (x )的单调递减区间;(2)若关于x 的方程f (x )=a 在x ∈[π4,π2]上时有两个相异实数解,求这两实数解的和;(3)若不等式|f (x )﹣m |<2在x ∈[π4,π2]上恒成立,求实数m 的取值范围. 【分析】(1)先化简函数,再由正弦函数的性质可求出函数f (x )的单调递减区间; (2)x ∈[π4,π2],2x −π3∈[π6,2π3],即可求这两实数解的和;(3)结合x 的范围求出表达式相位的范围,确定表达式的范围,求出最值,利用不等式恒成立确定m 的范围即可.解:(1)f(x)=2sin 2(π4+x)−√3cos2x =sin2x −√3cos2x +1=2sin (2x −π3)+1,由2k π+π2≤2x −π3≤2k π+3π2,可得k π+512π≤x ≤k π+11π12,∴函数f (x )的单调递减区间是[k π+512π,k π+11π12](k ∈Z ); (2)x ∈[π4,π2],2x −π3∈[π6,2π3],∵关于x 的方程f (x )=a 在x ∈[π4,π2]上时有两个相异实数解, ∴两根关于2x −π3=π2对称, ∴这两实数解的和为56π;(3)由条件可知m >f (x )max ﹣2且m <f (x )min +2 又当x ∈[π4,π2]上时,f (x )max =3,f (x )min =2 ∴1<m <4,即:m 的取值范围是(1,4).【点评】本题考查三角函数恒成立问题,着重考查正弦函数的定义域和值域,考查三角函数的化简求值与辅助角公式的应用,属于中档题. 第二卷20.填空题:方程√x 3|sinπx|=x −3√x 3的解的个数为 11 个.【分析】x =0时,方程成立,当x ≠0时,做出y =|sin πx |和y =√x 23−3的函数图象,根据函数图象交点个数判断解的个数.解:显然x =0是方程√x 3|sinπx|=x −3√x 3的解,当x ≠0时,由√x 3|sinπx|=x −3√x 3得|sin πx |=x−3√x 3√x3=√x 23−3,做出y =|sin πx |和y =√x 23−3在(0,+∞)上的函数图象如图所示:由图象可知两函数图象在(0,+∞)上有5个交点, 又y =|sin πx |和y =√x 23−3都是偶函数, ∴两函数图象在(﹣∞,0)上也有5个交点,综上,方程√x 3|sinπx|=x −3√x 3共有11个解.故答案为:11.【点评】本题考查了方程的根的个数与函数图象的关系,属于中档题.21.已知a =cos40°cos37°﹣cos50°sin37°,b =√22(sin56°−cos56°),c =1−tan 239°1+tan 239°,d =12(cos80°−2cos 250°+1),则a ,b ,c ,d 的大小关系是( )A .a >b >d >cB .b >a >d >cC .a >c >b >dD .c >a >b >d【分析】利用两角和公式和倍角公式对a ,b ,c ,d 分别化简,利用诱导公式再转化成单调区间的正弦函数,最后利用正弦函数的单调性求得答案.解:a =cos40°cos37°﹣cos50°sin37°=sin50°cos37°﹣cos50°sin37°=sin13°,b =√22(sin56°−cos56°)=sin56°cos45°﹣cos56°sin45°=sin11°,c =1−tan 239°1+tan 239°=cos78°=sin12°, d =12cos80°−12cos100°=12cos80°+12cos80°=cos80°=sin10°∵sin10°<sin11°<sin12°<sin13, ∴d <b <c <a . 故选:C .【点评】本题主要考查了两角和公式,二倍角角公式,诱导公式的应用,正弦函数的单调性.为了便于比较,应把每一项转化成同名函数,且在一个单调区间.22.解答题:x ,y ∈[−π4,π4],a ∈R ,且{x 5+sinx −4a =08y 5+14sin2y +a =0,求cos(x +2y +π4)的值. 【分析】设f (u )=u 5+sin u .根据题设等式可知f (x )=4a ,f (2y )=﹣4a ,进而根据函数的奇偶性,求得f (x )=﹣f (2y )=f (﹣2y ).进而推断出x +2y =0.进而求得cos (x +2y +π4)的值. 解:设f (u )=u 5+sin u .∵{x 5+sinx −4a =08y 5+14sin2y +a =0,由①式得f (x )=2a ,由②式得f (2y )=﹣2a .因为f (u )在区间[−π2,π2]上是单调增函数,并且是奇函数,∴f (x )=﹣f (2y )=f (﹣2y ). ∴x =﹣2y ,即x +2y =0.∴cos (x +2y +π4)=√22故答案为:√22.【点评】本题主要考查了利用函数思想解决实际问题.考查了学生运用函数的思想,转化和化归的思想.属于中档题。

2015-2016学年上海市闵行区七年级(下)期末数学试卷(含答案)

2015-2016学年上海市闵行区七年级(下)期末数学试卷(含答案)

2015-2016学年上海市闵行区七年级(下)期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)1.下列计算正确的是()A.﹣ =﹣3 B.(﹣)2=64 C. =±25 D. =32.下列数据中准确数是()A.上海科技馆的建筑面积约98000平方米B.“小巨人”姚明身高2.26米C.我国的神州十号飞船有3个舱D.截止去年年底中国国内生产总值(GDP)676708亿元3.如图,已知直线a、b被直线c所截,那么∠1的同旁内角是()A.∠3 B.∠4 C.∠5 D.∠64.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或125.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90° B.120°C.150°D.180°6.象棋在中国有着三千多年的历史,是趣味性很强的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(﹣2,﹣1)和(3,1),那么表示棋子“将”的点的坐标为()A.(1,2) B.(1,0) C.(0,1) D.(2,2)二、填空题:(本大题共12题,每题2分,满分24分)7.计算: = .8.(﹣8)2的六次方根为.9.在π(圆周率)、﹣1.5、、、0.五个数中,无理数是.10.计算:(﹣)×÷2= (结果保留三个有效数字).11.在数轴上,实数2﹣对应的点在原点的侧.(填“左”、“右”)12.已知点P(﹣1,a)与点Q(b,4)关于x轴对称,那么a+b= .13.已知点M在第二象限,它到x轴、y轴的距离分别为2个单位和3个单位,那么点M的坐标是.14.如图,已知直线a∥b,将一块三角板的直角顶点放在直线a上,如果∠1=42°,那么∠2= 度.15.如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为.16.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是.17.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的角平分线,过点O作OE∥AB,OF∥AC,交边BC于点E、F,如果BC=10,那么C△OEF等于.18.如图,在△ABC中,∠CAB=65°,把△ABC绕着点A逆时针旋转到△AB'C',联结CC',并且使CC'∥AB,那么旋转角的度数为度.三、计算题,写出计算过程(本大题共4题,每题6分,满分24分)19.计算:+﹣.20.计算:(﹣)2﹣(+)2.21.计算:﹣3÷()(结果表示为含幂的形式).22.解方程:()3=﹣512.四、解答题(本大题共5题,满分40分,其中第23、24每题6分,第25、26每题8分,第27题12分)23.阅读并填空:如图,在△ABC中,点D、P、E分别在边AB、BC、AC上,且DP∥AC,PE∥AB.试说明∠DPE=∠BAC的理由.解:因为DP∥AC(已知),所以∠=∠().因为PE∥AB(已知),所以∠=∠()所以∠DPE=∠BAC(等量代换).24.如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26°方向,从B处测得灯塔C在北偏西52°方向,求B处到达塔C的距离.25.如图,在平面直角坐标系内,已知点A的位置;点B与点(﹣3,﹣1)关于原点O对称;将点A向下平移5个单位到达点C.(1)写出A,B,C三点的坐标,并画出△ABC;(2)判断△ABC的形状,并求出它的面积;(3)过点B作直线BD平行于y轴,并且B、D两点的距离为3个单位,描出点D,并写出点D的坐标.26.如图,已知AB=AD,∠ABC=∠ADC.试判断AC与BD的位置关系,并说明理由.27.(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.试说明∠D=90°+∠A的理由.解:因为BD平分∠ABC(已知),所以∠1= (角平分线定义).同理:∠2= .因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,(),所以(等式性质).即:∠D=90°+∠A.(2)探究,请直接写出结果,无需说理过程:(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.(3)如图④,△ABC中,∠A=90°,BF、CF分别平分∠ABC、∠ACB,CD是△ABC的外角∠ACE的平分线.试说明DC=CF的理由.2015-2016学年上海市闵行区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题2分,满分12分)1.下列计算正确的是()A.﹣ =﹣3 B.(﹣)2=64 C. =±25 D. =3【考点】二次根式的乘除法;二次根式的性质与化简.【专题】计算题;实数.【分析】原式各项利用二次根式性质及乘除法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣|﹣3|=﹣3,正确;B、原式=8,错误;C、原式=|﹣25|=25,错误;D、原式==,错误,故选A【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.2.下列数据中准确数是()A.上海科技馆的建筑面积约98000平方米B.“小巨人”姚明身高2.26米C.我国的神州十号飞船有3个舱D.截止去年年底中国国内生产总值(GDP)676708亿元【考点】近似数和有效数字.【分析】根据精确数与近似数的定义对各选项进行判断.【解答】解:A、上海科技馆的建筑面积约98000平方米,98000为近似数,所以A选项错误;B、“小巨人”姚明身高2.26米,2.26为近似数,所以B选项错误;C、我国的神州十号飞船有3个舱,3为准确数,所以C选项正确;D、截止去年年底中国国内生产总值(GDP)676708亿元,676708为近似数,所以D选项错误.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.3.如图,已知直线a、b被直线c所截,那么∠1的同旁内角是()A.∠3 B.∠4 C.∠5 D.∠6【考点】同位角、内错角、同旁内角.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【解答】解:∵直线a、b被直线c所截,∴∠1的同旁内角是∠4.故选(B)【点评】本题主要考查了同旁内角的概念,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.4.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.5.如图,△ABC、△DEF和△GMN都是等边三角形,且点E、M在线段AC上,点G在线段EF上,那么∠1+∠2+∠3等于()A.90° B.120°C.150°D.180°【考点】等边三角形的性质.【分析】由等边三角形的性质和平角的定义以及三角形内角和定理即可得出结果.【解答】解:∵△ABC、△DEF和△GMN都是等边三角形,∴∠GMN=∠MGN=∠DEF=60°,∵∠1+∠GMN+∠GME=180°,∠2+∠MGN+∠EGM=180°,∠3+∠DEF+∠MEG=180°,∴∠1+∠GMN+∠GME+∠2+∠MGN+∠EGM+∠3+∠DEF+∠MEG=3×180°,∵∠GME+∠EGM+∠MEG=180°,∴∠1+∠2+∠3=3×180°﹣180°﹣3×60°=180°;故选:D.【点评】本题考查了等边三角形的性质、三角形内角和定理、平角的定义;熟练掌握等边三角形的性质和三角形内角和定理是解决问题的关键.6.象棋在中国有着三千多年的历史,是趣味性很强的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(﹣2,﹣1)和(3,1),那么表示棋子“将”的点的坐标为()A.(1,2) B.(1,0) C.(0,1) D.(2,2)【考点】坐标确定位置.【分析】直接利用已知点的坐标确定原点的位置,进而得出棋子“将”的点的坐标.【解答】解:如图所示:由题意可得,“帅”的位置为原点位置,则棋子“将”的点的坐标为:(1,0).故选:B.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.二、填空题:(本大题共12题,每题2分,满分24分)7.计算: = 3 .【考点】分数指数幂.【专题】计算题.【分析】利用=(a≥0)进行计算即可.【解答】解: ==3,故答案是3.【点评】本题考查了分数指数幂.解题的关键是知道开方和分数指数幂之间的关系.8.(﹣8)2的六次方根为±2 .【考点】分数指数幂.【分析】根据分数指数幂,即可解答.【解答】解:± =±=±2,故答案为:±2.【点评】本题考查了分数指数幂,解决本题的关键是熟记分数指数幂.9.在π(圆周率)、﹣1.5、、、0.五个数中,无理数是π、.【考点】无理数.【分析】无理数常见的三种类型(1)开不尽的方根(2)特定结构的无限不循环小数(3)含有π的绝大部分数,如2π.【解答】解:在π(圆周率)是无理数,﹣1.5是有理数,是分数,是有理数,是无理数,0.无限循环小数是有理数.故答案为:π、.【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.10.计算:(﹣)×÷2= ﹣0.242 (结果保留三个有效数字).【考点】二次根式的乘除法;近似数和有效数字.【专题】计算题;实数.【分析】原式利用二次根式的乘除法则计算,取其近似值即可.【解答】解:原式=﹣××=﹣≈﹣0.242,故答案为:﹣0.242【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.11.在数轴上,实数2﹣对应的点在原点的左侧.(填“左”、“右”)【考点】实数与数轴.【分析】根据2<<3,可知2﹣<0,所以2﹣在原点的左侧.【解答】解:根据题意可知:2﹣<0,∴2﹣对应的点在原点的左侧.故填:左【点评】本题考查实数与数轴上点的对应关系,掌握了实数与数轴上的点的一一对应关系,很容易得出正确答案.12.已知点P(﹣1,a)与点Q(b,4)关于x轴对称,那么a+b= ﹣5 .【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点横坐标相同,纵坐标互为相反数即可得出结果.【解答】解:∵点P(﹣1,a)与点Q(b,4)关于x轴对称,∴b=﹣1,a=﹣4,∴a+b=﹣1+(﹣4)=﹣5,故答案为:﹣5.【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,解决本题的关键是熟记关于x轴对称的点横坐标相同,纵坐标互为相反数.13.已知点M在第二象限,它到x轴、y轴的距离分别为2个单位和3个单位,那么点M的坐标是(﹣3,2).【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点M在第二象限,到x轴、y轴的距离分别为2个单位和3个单位,∴点M的横坐标是﹣3,纵坐标是2,∴点M的坐标是(﹣3,2).故答案为:(﹣3,2).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.14.如图,已知直线a∥b,将一块三角板的直角顶点放在直线a上,如果∠1=42°,那么∠2= 48 度.【考点】平行线的性质.【分析】由平行可得∠2=∠3,又结合直角定义可得出∠3+∠1=90°,可求得答案.【解答】解:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣∠1=48°,∴∠2=48°,故答案为:48;【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.15.如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为29°.【考点】平行线的性质;三角形的外角性质.【分析】根据AB∥CD,求出∠DFE=56°,再根据三角形外角的定义性质求出∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠A=56°,又∵∠C=27°,∴∠E=56°﹣27°=29°,故答案为29°.【点评】本题考查了平行线的性质、三角形的外角的性质,找到相应的平行线是解题的关键.16.如图,在△ABC和△DEF中,已知CB=DF,∠C=∠D,要使△ABC≌△EFD,还需添加一个条件,那么这个条件可以是AC=ED或∠A=∠FED或∠ABC=∠F .【考点】全等三角形的判定.【分析】要使△ABC≌△EFD,已知CB=DF,∠C=∠D,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:要使△ABC≌△EFD,已知CB=DF,∠C=∠D,则可以添加AC=ED,运用SAS来判定其全等;也可添加一组角∠A=∠FED或∠ABC=∠F运用AAS来判定其全等.故答案为:AC=ED或∠A=∠FED或∠ABC=∠F.【点评】本题主要考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.17.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的角平分线,过点O作OE∥AB,OF∥AC,交边BC于点E、F,如果BC=10,那么C△OEF等于10 .【考点】等腰三角形的判定与性质;平行线的性质.【分析】由OB,OC分别是△ABC的∠ABC和∠ACB的平分线,OE∥AB、OF∥AC,可推出BE=EO,OF=FC,显然△OEF的周长即为BC的长度.【解答】解:OB,OC分别是∠ABC和∠ACB的平分线∴∠ABO=∠OBF,∠ACO=∠OCF∵OE∥AB,OF∥AC∴∠ABO=∠BOE,∠ACO=∠COF∴△BOE和△OCF为等腰三角形∴BE=EO,OF=FC∴△OEF的周长=OE+EF+OF=BE+EF+FC=BC=10.故答案为:10【点评】此题主要考查了平行线性质、角平分线性质以及等腰三角形的性质,难度中等.解题的关键是判定△BOE与△COF是等腰三角形.18.如图,在△ABC中,∠CAB=65°,把△ABC绕着点A逆时针旋转到△AB'C',联结CC',并且使CC'∥AB,那么旋转角的度数为50 度.【考点】旋转的性质.【专题】计算题.【分析】先画出几何图形,再根据旋转的性质得旋转角等于∠CAC′,AC=AC′,接着根据平行线的性质得∠ACC′=∠CAB=65°,然后根据等腰三角形的性质和三角形内角和可计算出∠CAC′的度数.【解答】解:如图,∵△ABC绕着点A逆时针旋转到△AB'C',∴旋转角等于∠CAC′,AC=AC′,∴∠ACC′=∠AC′C,∵CC'∥AB,∴∠ACC′=∠CAB=65°,∴∠CAC′=180°﹣65°﹣65°=50°.故答案为50.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是画出几何图形和判断△ACC′为等腰三角形.三、计算题,写出计算过程(本大题共4题,每题6分,满分24分)19.计算:+﹣.【考点】二次根式的加减法.【分析】依据二次根据加减法则计算即可.【解答】解:原式=(+﹣)×=.【点评】本题主要考查的是二次根式的加减,掌握二次根式的加减法则是解题的关键.20.计算:(﹣)2﹣(+)2.【考点】二次根式的混合运算.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3﹣2+2﹣3﹣2﹣2=﹣4.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.21.计算:﹣3÷()(结果表示为含幂的形式).【考点】分数指数幂.【分析】先算幂的乘方,再根据分数指数幂的乘法法则计算即可求解.【解答】解:﹣÷()=﹣÷=﹣÷32=﹣=﹣.【点评】考查了分数指数幂,关键是熟练掌握计算法则正确进行计算.22.解方程:()3=﹣512.【考点】立方根.【分析】利用立方根定义求出解即可.【解答】解:()3=﹣512,=﹣8,x=﹣32.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.四、解答题(本大题共5题,满分40分,其中第23、24每题6分,第25、26每题8分,第27题12分)23.阅读并填空:如图,在△ABC中,点D、P、E分别在边AB、BC、AC上,且DP∥AC,PE∥AB.试说明∠DPE=∠BAC的理由.解:因为DP∥AC(已知),所以∠BDP =∠BAC (两直线平行,同位角相等).因为PE∥AB(已知),所以∠DPE =∠BDP (两直线平行,内错角相等)所以∠DPE=∠BAC(等量代换).【考点】平行线的性质.【分析】先根据DP∥AC得出∠BDP=∠BAC,再由PE∥AB得出∠DPE=∠BDP,利用等量代换即可得出结论.【解答】解:因为DP∥AC(已知),所以∠BDP=∠BAC(两直线平行,同位角相等).因为PE∥AB(已知),所以∠DPE=∠BDP(两直线平行,内错角相等),所以∠DPE=∠BAC(等量代换).故答案为:BDP,BAC,两直线平行,同位角相等;DPE,BDP,两直线平行,内错角相等.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等.24.如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26°方向,从B处测得灯塔C在北偏西52°方向,求B处到达塔C的距离.【考点】等腰三角形的判定与性质;方向角.【专题】应用题.【分析】根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.【解答】解:据题意得,∠A=26°,∠DBC=52°,∵∠DBC=∠A+∠C,∴∠A=∠C=26°,∴AB=BC,∵AB=20×=35,∴BC=35(海里).∴B处到达塔C的距离是35海里.【点评】本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.25.如图,在平面直角坐标系内,已知点A的位置;点B与点(﹣3,﹣1)关于原点O对称;将点A向下平移5个单位到达点C.(1)写出A,B,C三点的坐标,并画出△ABC;(2)判断△ABC的形状,并求出它的面积;(3)过点B作直线BD平行于y轴,并且B、D两点的距离为3个单位,描出点D,并写出点D的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据题意分别得出B,C点坐标,即可得出△ABC;(2)利用已知图形得出△ABC的形状以及三角形面积;(3)利用B点坐标以及BD的长即可得出符合题意的图形.【解答】解:(1)A(﹣2,1),B(3,1),C(﹣2,﹣4),所以△ABC即为所求作的三角形.(2)由题意可得:AB=|3﹣(﹣2)|=5,AC=|1﹣(﹣4)|=5,∵AB=AC=5,且∠A=90°,∴△ABC为等腰直角三角形,因此S△ABC=•AB•AC=×5×5=;(3)如图,点D的坐标为:(3,4)或(3,﹣2).【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平面内线段长是解题关键.26.如图,已知AB=AD,∠ABC=∠ADC.试判断AC与BD的位置关系,并说明理由.【考点】全等三角形的判定与性质.【专题】计算题;证明题;图形的全等.【分析】AC与BD垂直,理由为:由AB=AD,利用等边对等角得到一对角相等,利用等式性质得到∠BDC=∠DBC,利用等角对等边得到DC=BC,利用SSS得到三角形ABC与三角形ADC全等,利用全等三角形对应角相等得到∠DAC=∠BAC,再利用三线合一即可得证.【解答】解:AC⊥BD,理由为:∵AB=AD(已知),∴∠ADB=∠ABD(等边对等角),∵∠ABC=∠ADC(已知),∴∠ABC﹣∠ABD=∠ADC﹣∠ADB(等式性质),即∠BDC=∠DBC,∴DC=BC(等角对等边),在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠DAC=∠BAC(全等三角形的对应角相等),又∵AB=AD,∴AC⊥BD(等腰三角形三线合一).【点评】此题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.27.(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.试说明∠D=90°+∠A的理由.解:因为BD平分∠ABC(已知),所以∠1= ∠ABC (角平分线定义).同理:∠2= ∠ACB .因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,(三角形的内角和等于180°),所以∠D=180°﹣(∠ABC+∠ACB)(等式性质).即:∠D=90°+∠A.(2)探究,请直接写出结果,无需说理过程:(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是∠D=90°﹣∠A .(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是∠D=∠A .(3)如图④,△ABC中,∠A=90°,BF、CF分别平分∠ABC、∠ACB,CD是△ABC的外角∠ACE的平分线.试说明DC=CF的理由.【考点】三角形的外角性质;三角形内角和定理.【专题】推理填空题.【分析】(1)、(2)、(3)关键“三角形的一个内角等于和它不相邻的两个外角的和”、“三角形的内角和等于180°”及等式的性质分析求解.(4)利用前三个小题的结论,证明∠D=∠DFC即可.【解答】(1)解:因为BD平分∠ABC(已知),所以∠1=∠ABC (角平分线定义).同理:∠2=∠ACB.因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°(三角形的内角和等于180°),所以∠D=180°﹣(∠1+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A(等式性质).即:∠D=90°+∠A.(2)解:(i)∠D与∠A之间的等量关系是:∠D=90°﹣∠A.理由:∵BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线,∴∠EBD=∠DBC,∠BCD=∠DCF,∴∠DBC+∠DCB+∠D=180°,∴∠A+∠ABC+∠ACB=180°,而∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,∴∠A+180°﹣2∠DBC+180°﹣2∠DCB=180°,∴∠A﹣2(∠DBC+∠DCB)=﹣180°,∴∠A﹣2(180°﹣∠D)=﹣180°,∴∠A﹣2∠D=180°,∴∠D=90°﹣(ii)∠D与∠A之间的等量关系是:∠D=∠A.理由:∵BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线,∴∠DCE=∠DBC+∠D,∵∠A+2∠DBC=2∠DCE∴∠A+2∠DBC=2∠DBC+2∠D∴∠A=2∠D即:∠D=(3)解:因为 BD平分∠ABC(已知),所以∠DBC=∠ABC(角平分线定义).同理:∠ACF=∠ACB,∠DCA=∠DCE=∠ACE.∵∠ACE=∠ABC+∠A,∠DCE=∠DBC+∠D(三角形的一个外角等于两个不相邻的内角和),∴∠D=∠DCE﹣∠DBC=(∠ACE﹣∠ABC)=∠A.又∵∠A=90°(已知),∴∠D=45°(等式性质).∵∠ACB+∠ACE=180°(平角的定义),∴∠FCD=∠FCA+∠ACD=(∠BCA+∠ACE)=90°.∵∠D+∠DFC+∠FCD=180°(三角形的内角和等于180°),∴∠DFC=45°(等式性质).∴∠D=∠DFC(等量代换).∴DC=FC.(等角对等边).【点评】本题考查了三角形的外角性质的应用,能熟记三角形外角性质定理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.。

上海市七宝中学2018-2019学年高一下学期期末考试数学试卷 含解析

上海市七宝中学2018-2019学年高一下学期期末考试数学试卷 含解析
11. 中, ,则A的取值范围为______.
【答案】
【解析】
【分析】
由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为 ,然后用余弦定理推论可求 ,进而根据余弦函数的图像性质可求得角A的取值范围。
【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以 ,即 。
所以 ,
【详解】设 ,则
∴ 为偶函数,其图象关于 轴对称,
又依题意 只有一个零点,故此零点只能是 ,
所以 ,
∴ ,
∴ ,
∴ ,∴ ,
故答案为:
【点睛】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。
13.等差数列 前 项和为 ,已知 , ,则 _____.
【答案】4028
当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.
综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.
考点:函数y=Asin(ωx+φ)的图象变换;函数奇偶性的判断;根的存在性及根的个数判断
点评:本题考查函数y=Asin(ωx+φ)的图象变换、函数的奇偶性、根的存在性及根的个数的判断,考查数形结合思想,结合图象分析是解决(2)问的关键
【解析】
【分析】
首先根据 、 即可求出 和 ,从而求出 。
【详解】 ,①
,②
① ②得,

即 ,
∴ ,
即 ,
∴ ,
故答案为:4028.
【点睛】本题主要考查了解方程,以及等差数列的性质和前 项和。其中等差数列的性质:若 则 比较常考,需理解掌握。

七宝中学高一期末(2016.06)

七宝中学高一期末(2016.06)

七宝中学高一期末数学试卷2016.06一. 填空题 1. 方程cos sin6x π=的解为x =2. 设{}n a 为等差数列,若159a a a π++=,则28a a +=3. 求值:2sin[arccos()]3-= 4. 函数arccos(sin )y x =在2(,)33x ππ∈-上的值域为5. 设数列{}n a 的前n 项和n S ,若11a =-,1102n n S a +-=(*n N ∈),则{}n a 的通项公 式为6. 利用数学归纳法证明不等式“111123212n n+++⋅⋅⋅+>-(2n ≥,*n N ∈)”的过程中, 由“n k =”变到“1n k =+”时,左边增加了 项7. 若()2sin 1f x x =-在区间[,]a b (,a b R ∈且a b <)上至少含有30个零点,则b a -的 最小值为8. 设数列{}n a 的通项公式为131()32n n n n a n ≤≤⎧⎪=⎨->⎪⎩,则12lim()n n a a a →∞++⋅⋅⋅+=9. 已知数列{}n a 中,其前n 项和为n S ,12,21,n n a n -⎧=⎨-⎩ n n 为正奇数为正偶数,则9S =10. 对于正项数列{}n a ,定义12323n n nH a a a na =+++⋅⋅⋅+为{}n a 的“光阴”值,已知数列{}n a 的“光阴”值为22n H n =+,则其通项公式为11. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是 12. 关于x 的方程224arctan(cos )0x x a π-+⋅=只有一个实数根,则实数a = 13. 已知等差数列{}n a 前n 项和为n S ,已知3222014(2)2013(2)sin3a a π-+-=, 3201320132015(2)2013(2)cos6a a π-+-=,则2014S = 14. 数列{}n a 的前n 项和为n S ,若数列{}n a 的各项按如下规律排列:12、13、23、14、24、34、15、25、35、45、⋅⋅⋅、1n 、2n 、⋅⋅⋅、1n n-、⋅⋅⋅有如下运算结论: ① 2438a =; ② 数列1a 、23a a +、456a a a ++、78910a a a a +++、⋅⋅⋅是等比数列;③ 数列1a 、23a a +、456a a a ++、78910a a a a +++、⋅⋅⋅的前n 项和为24n n nT +=;④ 若存在正整数k ,使10k S <,110k S +≥,则57k a =;其中正确的结论是 (将你认为正确的结论序号都填上)二. 选择题15. 已知{}n a 、{}n b 都是公差不为0的等差数列,且lim 2nn na b →∞=,12n n S a a a =++⋅⋅⋅+,则22limnn nS nb →∞的值为( )A. 2B. 1-C. 1D. 不存在16. 设{}n a 是公比为q (0||1)q <<的无穷等比数列,若{}n a 的前四项之和等于第五项起 以后所有项之和,则数列21{}n a -是( ) A. 公比为12的等比数列 B.公比为2的等比数列C.或-的等比数列 D.或17. 函数sin(2)y x ϕ=+(0)2πϕ<<图像的一条对称轴在(,)63ππ内,则满足此条件的一个 ϕ值为( )A.56π B. 6π C. 3πD. 12π 18. 若数列{}n a 的前n 项和为n S ,则下列命题:(1)若数列{}n a 是递增数列,则数列{}n S 也是递增数列; (2)数列{}n S 是递增数列的充要条件是数列{}n a 的各项均为正数;(3)若{}n a 是等差数列(0)d ≠,则120k S S S ⋅⋅⋅⋅⋅⋅=的充要条件是120k a a a ⋅⋅⋅⋅⋅⋅=; (4)若{}n a 是等比数列,则120k S S S ⋅⋅⋅⋅⋅⋅=的充要条件是10k k a a ++=; 其中,正确命题的个数是( )A. 0个B. 1个C. 2个D. 3个三. 解答题19. 已知函数2()(2)2f x x n x n =+--图像与x 轴正半轴的交点为(,0)n A a ,n 为正整数; (1)求数列{}n a 的通项公式;(2)令13(1)2n n aan n b λ-=+-⋅⋅(n 为正整数),问是否存在非零整数λ,使得对任意正整数n ,都有1n n b b +>,若存在,求出λ的值,若不存在,请说明理由;20. 已知函数22()cos 3sin cos 2f x x x x x =⋅++-,x R ∈;(1)求函数()f x 在(0,)π上的单调递增区间;(2)在ABC ∆中,内角A 、B 、C 所对边的长分别是a 、b 、c ,若()2f A =,4C π=,2c =,求ABC ∆的面积ABC S ∆的值;21. 已知函数()2sin()f x x ω=,其中常数0ω>; (1)令1ω=,判定函数()()()2F x f x f x π=++的奇偶性,并说明理由;(2)令2ω=,将函数()y f x =图像向右平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,对任意a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值;22. 已知数列{}n a 满足:11a =,10.5,2,n n na n a a n ++⎧=⎨-⎩ n n 为正奇数为正偶数,22n n b a =-;(1)求2a 、3a 、4a ;(2)求证:数列{}n b 为等比数列,并求其通项公式; (3)求和242n n T a a a =++⋅⋅⋅+;23. 已知{}n a 、{}n b 为两非零有理数列(即对任意的*i N ∈,i a 、i b 均为有理数),{}n d 为 一无理数列(即对任意的*i N ∈,i d 为无理数);(1)若2n n b a =-,并且22()(1+)0n n n n n n a b d a d d +-=对任意的*n N ∈恒成立,试求{}n d的通项公式;(2)若3{}n d 为有理数列,试证明:对任意的*n N ∈,22()(1+)1n n n n n n a b d a d d +-=恒成立的充要条件为611n n a d =+且361nn nd b d =+; (3)已知24sin 225θ=(02)πθ<<,n d =n d ;参考答案一. 填空题1. 23k ππ±()k Z ∈ 2.23π 3. 3 4. 5[0,)6π5. 21,123,2n n n a n --=⎧=⎨-⋅≥⎩ 6. 2k7. 863π 8. 14524 9. 377 10. 212n n+ 11. (0,]3π 12. 1± 13. 4028 14. ①③④二. 选择题15. C 16. B 17. D 18. B三. 解答题19.(1)n a n =;(2)当n 为奇数,13()2n λ-<,当n 为偶数,13()2n λ->-,∴ 1.51λ-<<,∵0λ≠,∴1λ=-;20.(1)()2sin(2)6f x x π=-,(0,]3π和5[,)6ππ;(2)3A π=,32S +=; 21.(1)非奇非偶;(2)()2sin(2)13g x x π=-+,零点个数可能值集合为{20,21};22.(1)232a =,352a =-,474a =;(2)1()2n n b =-;(3)121()2nn T n =-+;23.(1)1n d =或1;(2)证明略;(3)4tan 3θ=或34,n d =n d =。

上海市七宝中学高一下学期Exercie6 含答案

上海市七宝中学高一下学期Exercie6 含答案

I. Grammar(A)My elder brother Steve, in the absence of my father who died when I was six, gave me important lessons in values and but for his guidance, I [1]__________ (become) another punk in the neighbourhood.For instance, Steve taught me to face the results of my behavior. Once when I returned in tears from a Saturday baseball game, it was Steve [2]__________ took the time to ask me what happened. When I explained that my baseball [3]__________ [fly] through Mrs. Holt’s basement window, [4]__________ (break) the glass with a crash, Steve encouraged me to confess to her. After all, I should have been playing in the park down Fifth Street and not in the path between buildings. Although my knees knocked as I explained to Mrs. Holt, I offered to pay for the window[5]__________ my pocket money if she would return my ball.I also learned from Steve that personal property is a sacred thing. After I found a shiny silver pen in my fifth-grade classroom, I wanted to keep it, but Steve explained that it might be important to someone else [6]_________ _________ _________ the fact that it had little value. He reminded me of how much I’d hate to lose to someone else the small dog my father carved from a piece of cheap wood. I returned the pen to my teacher, Mrs. David, and still remembered the smell of her perfume as she patted me on my shoulder.Yet of all the instructions Steve gave me, his respect for life is [7]__________ (vivid) in my mind. When I was twelve, I killed an old brown sparrow in the yard with a BB gun. [8]__________ (excite) with my accuracy, I screamed to Steve to come from the house to take a look. I shall never forget the way [9]_________ __________ he stood for a long moment and stared at the bird on the ground. Then in a dead, quiet voice, he as ked, “Did it hurt you first, Mark?” I didn’t know what to answer. He continued with his eyes firm, “The only time you should even think of hurting a living thing is if it hurts you first. And then you think a long, long time. “I really felt terrible then, but that moment stands out [10]________ the most important lesson my brother taught me.(B)As children approach adulthood, school education has a greater effect on the developmentof them and how to deal with the relationship between teachers and students is quite important.Generation gap is natural between parents and children. So it is [11]__________ teachers and students. In fact, it can [12]__________ (narrow) through mutual understanding and respect. Good teachers are regarded as the students' friends and they will cope with the students' problems fairly and equally which will command students’ trust. Besides, students rely on teachers and they hope to turn to teachers when [13]__________ (face) with difficulties, so a good teacher should have a clear idea of what the students are thinking and caring for and should communicate with them more [14]__________ __________ there will be some misunderstandings in between. Last but not least, students and teachers should respect each other and often think about the things from the other's perspective [15]__________ __________ there will be a harmonious atmosphere. And I think [16]__________ ___________ __________ the teachers bear in mind that with understanding and experienced guidance comes a win-win situation, the generation gap actually will also promote the school education positively.II. Reading ComprehensionIt’s no surprise that Jennifer Senior’s insightful, provocative magazine cover story, “I love My Children, I Hate My Life,”is arousing much chatter –nothing gets people talking like the suggestion that child rearing is anything less than a completely fulfilling, life-enriching experience. Rather than concluding that children make parents either happy or miserable, Senior suggests we need to redefine happiness: instead of thinking of it as something that can be measured by moment-to-moment joy, we should consider being happy as a past-tense condition. Even though the day-to-day experience of raising kids can be soul-crushingly hard, Senior writes that “the very things that in the moment dampen our moods can later be sources of intense gratification and delight.”The magazine cover showing an attractive mother holding a cute baby is hardly the only Madonna-and-child image on newsstands this week. There are also stories about newly adoptive –and newly single –mom Sandra Bullock, as well as the usual “Jennifer Aniston is pregnant”news. Practically every week features at least one celebrity mom, or mom-to-be, smiling on the newsstands.In a society that so persistently celebrates procreation, is it any wonder that admitting youregret having children is equivalent to admitting you support kitten-killing ? It doesn’t seem quite fair, then, to compare the regrets of parents to the regrets of the children. Unhappy parents rarely are provoked to wonder if they shouldn’t have had kids, but unhappy childless folks are bothered with the message that children are the single most important thing in the world: obviously their misery must be a direct result of the gaping baby-size holes in their lives.Of course, the image of parenthood that celebrity magazines like Us Weekly and People present is hugely unrealistic, especially when the parents are single mothers like Bullock. According to several studies concluding that parents are less happy than childless couples, single parents are the least happy of all. No shock there, considering how much work it is to raise a kid without a partner to lean on; yet to hear Sandra and Britney tell it, raising a kid on their “own” (read: with round-the-clock help) is a piece of cake.It’s hard to imagine that many people are dumb enough to want children just because Reese and Angelina make it look so glamorous: most adults understand that a baby is not a haircut. But it’s intere sting to wonder if the images we see every week of stress-free, happiness-enhancing parenthood aren’t in some small, subconscious way contributing to our own dissatisfactions with the actual experience, in the same way that a small part of us hoped getting “the Rachel” might make us look just a little bit like Jennifer Aniston.17. Jennifer Senior suggests in her article that raising a child can bring ______________.[A]temporary delight [B]enjoyment in progress[C]happiness in retrospect [D]lasting reward18. We learn from Paragraph 2 that ______________________.[A]celebrity moms are a permanent source for gossip.[B]single mothers with babies deserve greater attention.[C]news about pregnant celebrities is entertaining.[D]having children is highly valued by the public.19. It is suggested in Paragraph 3 that childless folks _____________________.[A]are constantly exposed to criticism. [B]are largely ignored by the media.[C]fail to fulfill their social responsibilities. [D]are less likely to be satisfied with their life.20. According to Paragraph 4, the message conveyed by celebrity magazines is _____________.[A]comforting. [B]ambiguous. [C]compensatory. [D]misleading.21. Which of the following can be inferred from the last paragraph?[A]Having children contributes little to the glamour of celebrity moms.[B]Celebrity moms have influenced our attitude towards child rearing.[C]Having children intensifies our dissatisfaction with life.[D]We sometimes neglect the happiness from child rearing.III. Translation1.只有当一名士兵穿上防弹背心的时候,他才可能在战争中幸存下来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年上海市闵行区七宝中学高一(下)期末数学试卷一、填空题1.(3分)方程cos x=sin的解为x=.2.(3分)设{a n}为等差数列,若a1+a5+a9=π,则a2+a8=.3.(3分)求值:=.4.(3分)函数y=arccos(sin x),的值域是.5.(3分)设数列{a n}的前n项和S n,若a1=﹣1,S n=0(n∈N*),则{a n}的通项公式为.6.(3分)利用数学归纳法证明不等式“1+++…+(n≥2,n∈N*)”的过程中,由“n=k”变到“n=k+1”时,左边增加了项.7.(3分)若f(x)=2sin x﹣1在区间[a,b](a,b∈R且a<b)上至少含有30个零点,则b﹣a的最小值为.8.(3分)设数列{a n}的通项公式为a n=,则(a1+a2+…+a n)=.9.(3分)已知数列{a n}中,其前n项和为S n,a n=,则S9=.10.(3分)对于正项数列{a n},定义为{a n}的“光阴”值,现知某数列的“光阴”值为,则数列{a n}的通项公式为.11.(3分)△ABC中,sin2A≤sin2B+sin2C﹣sin B sin C,则A的取值范围为.12.(3分)关于x的方程x2﹣4 arctan(cos x)+π•a2=0只有一个实数根,则实数a=.13.(3分)等差数列{a n}前n项和为S n,已知(a2﹣2)3+2013(a2﹣2)=sin,(a2013﹣2)3+2013(a2013﹣2)=cos,则S2014=.14.(3分)数列{a n}的前n项和为S n,若数列{a n}的各项按如下规律排列:,,,,,,,,,…,,,…,,…有如下运算和结论:①a24=;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为T n=;④若存在正整数k,使S k<10,S k+1≥10,则a k=.其中正确的结论是.(将你认为正确的结论序号都填上)二、选择题15.(3分)已知{a n}、{b n}都是公差不为0的等差数列,且=2,S n=a1+a2+…+a n,则的值为()A.2B.﹣1C.1D.不存在16.(3分)设{a n}是公比为q(0<|q|<1)的无穷等比数列,若{a n}的前四项之和等于第五项起以后所有项之和,则数列{a2n﹣1}是()A.公比为的等比数列B.公比为的等比数列C.公比为或﹣的等比数列D.公比为或﹣的等比数列17.(3分)函数图象的一条对称轴在内,则满足此条件的一个φ值为()A.B.C.D.18.(3分)若数列{a n}的前n项和为S n,则下列命题:(1)若数列{a n}是递增数列,则数列{S n}也是递增数列;(2)数列{S n}是递增数列的充要条件是数列{a n}的各项均为正数;(3)若{a n}是等差数列(公差d≠0),则S1•S2…S k=0的充要条件是a1•a2…a k=0.(4)若{a n}是等比数列,则S1•S2…S k=0(k≥2,k∈N)的充要条件是a n+a n+1=0.其中,正确命题的个数是()A.0个B.1个C.2个D.3个三、解答题19.已知函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点为A(a n,0),n=1,2,3,….(1)求数列{a n}的通项公式;(2)令为正整数),问是否存在非零整数λ,使得对任意正整数n,都有b n+1>b n?若存在,求出λ的值,若不存在,请说明理由.20.已知函数f(x)=2sin x cos x+3sin2x+cos2x﹣2,x∈R;(1)求函数f(x)在(0,π)上的单调递增区间;(2)在△ABC中,内角A、B、C所对边的长分别是a,b,c,若f(A)=2,C=.,c =2,求△ABC的面积S△ABC的值;21.已知函数f(x)=2sin(ωx),其中常数ω>0.(Ⅰ)令ω=1,判断函数的奇偶性,并说明理由.(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.对任意a∈R,求y=g(x)在区间[a,a+10π]上的零点个数的所有可能.22.已知数列{a n}满足:a1=1,a n+1=,b n=a2n﹣2;(1)求a2、a3、a4;(2)求证:数列{b n}为等比数列,并求其通项公式;(3)求和T n=a2+a4+…+a2n;23.已知{a n},{b n}为两非零有理数列(即对任意的i∈N*,a i,b i均为有理数),{d n}为一无理数列(即对任意的i∈N*,d i为无理数).(1)已知b n=﹣2a n,并且(a n+b n d n﹣a n d n2)(1+d n2)=0对任意的n∈N*恒成立,试求{d n}的通项公式.(2)若{d n3}为有理数列,试证明:对任意的n∈N*,(a n+b n d n﹣a n d n2)(1+d n2)=1恒成立的充要条件为.(3)已知sin2θ=(0<θ<),d n=,试计算b n.2015-2016学年上海市闵行区七宝中学高一(下)期末数学试卷参考答案与试题解析一、填空题1.(3分)方程cos x=sin的解为x=2k(k∈Z).【考点】&5:三角方程.【解答】解:因为方程cos x=sin=cos=cos(﹣),所以x=2kπ±(k∈z),故答案为:2kπ±(k∈z).2.(3分)设{a n}为等差数列,若a1+a5+a9=π,则a2+a8=.【考点】84:等差数列的通项公式.【解答】解:∵a1+a5+a9=π=3a5,∴a5=,∴a2+a8=2a5=,故答案为:3.(3分)求值:=.【考点】HV:反三角函数.【解答】解:由题意,sin[arccos(﹣)]==.故答案为:.4.(3分)函数y=arccos(sin x),的值域是.【考点】HV:反三角函数.【解答】解:当时,<sin x≤1,由于反余弦函数是定义域[﹣1,1]上的减函数,且arccos(﹣)=,arccos1=0,所以值域为故答案为:.5.(3分)设数列{a n}的前n项和S n,若a1=﹣1,S n=0(n∈N*),则{a n}的通项公式为a n=.【考点】8H:数列递推式.【解答】解:n≥2时,a n=S n﹣S n﹣1=a n+1﹣,化为:a n+1=3a n.n=1时,﹣1=a1=a2,解得a2=﹣2.不满足上式.∴数列{a n}在n≥2时成等比数列.∴n≥2时,a n=﹣2×3n﹣2.∴a n=.故答案为:a n=.6.(3分)利用数学归纳法证明不等式“1+++…+(n≥2,n∈N*)”的过程中,由“n=k”变到“n=k+1”时,左边增加了2k项.【考点】RG:数学归纳法.【解答】解:由题意,n=k时,最后一项为,n=k+1时,最后一项为,∴由n=k变到n=k+1时,左边增加了2k+1﹣(2k+1)+1=2k,故答案为:2k.7.(3分)若f(x)=2sin x﹣1在区间[a,b](a,b∈R且a<b)上至少含有30个零点,则b﹣a的最小值为.【考点】H1:三角函数的周期性.【解答】解:根据f(x)=2sin x﹣1=0,即sin x=,故x=2kπ+,或x=2kπ+,∵f(x)=2sin x﹣1在区间[a,b](a,b∈R且a<b)上至少含有30个零点,∴不妨假设a=(此时,k=0),则此时b的最小值为28π+,(此时,k=14),∴b﹣a的最小值为28π+﹣=,故答案为:π8.(3分)设数列{an}的通项公式为a n=,则(a1+a2+…+a n)=.【考点】8J:数列的极限.【解答】解:数列{a n}的通项公式为a n=,则a1+a2+…+a n=1+2+3+=6+,则(a 1+a2+…+a n)=[6+]=.故答案为:.9.(3分)已知数列{a n}中,其前n项和为S n,a n=,则S9=377.【考点】8E:数列的求和.【解答】解:∵,∴数列的前9项分别为20,3,22,7,24,11,26,15,28+(3+7+11+15)==377故答案为37710.(3分)对于正项数列{a n},定义为{a n}的“光阴”值,现知某数列的“光阴”值为,则数列{a n}的通项公式为.【考点】8H:数列递推式.【解答】解:∵∴a1+2a2+…+na n=∵∴a1+2a2+…+na n=①∴a1+2a2+…+(n﹣1)a n﹣1=②①﹣②得﹣=∴故答案为:11.(3分)△ABC中,sin2A≤sin2B+sin2C﹣sin B sin C,则A的取值范围为(0,60°].【考点】HP:正弦定理;HR:余弦定理.【解答】解:利用正弦定理化简sin2A≤sin2B+sin2C﹣sin B sin C得:a2≤b2+c2﹣bc,变形得:b2+c2﹣a2≥bc,∴cos A=≥=,又A为三角形的内角,则A的取值范围是(0,60°].故答案为:(0,60°]12.(3分)关于x的方程x2﹣4 arctan(cos x)+π•a2=0只有一个实数根,则实数a=±1.【考点】HV:反三角函数.【解答】解:设f(x)=x2﹣4arctan(cos x)+π•a2,则f(﹣x)=(﹣x)2﹣4arctan(cos (﹣x))+π•a2=x2﹣4arctan(cos x)+π•a2=f(x)∴f(x)为偶函数,其图象关于y轴对称,又依题意f(x)只有一个零点,故此零点只能是x=0,所以0﹣4arctan(cos0)+π•a2=0,∴﹣4arctan1+π•a2=0,∴﹣4×+π•a2=0,∴a2=1,∴a=±1,故答案为:±113.(3分)等差数列{a n}前n项和为S n,已知(a2﹣2)3+2013(a2﹣2)=sin,(a2013﹣2)3+2013(a2013﹣2)=cos,则S2014=4028.【考点】83:等差数列的性质.【解答】解:(a2﹣2)3+2013(a2﹣2)=sin=,①(a2013﹣2)3+2013(a2013﹣2)=cos=﹣,②①+②得,(a2﹣2)3+2013(a2﹣2)+(a2013﹣2)3+2013(a2013﹣2)=0,即(a2﹣2+a2013﹣2)[(a2﹣2)2﹣(a2﹣2)(a2013﹣2)+(a2013﹣2)2]+2013(a2﹣2+a2013﹣2)=0,∴a2﹣2+a2013﹣2=0,即a2+a2013=4,∴S2014==1007×(a2+a2013)=4028,故答案为:4028.14.(3分)数列{a n}的前n项和为S n,若数列{a n}的各项按如下规律排列:,,,,,,,,,…,,,…,,…有如下运算和结论:①a24=;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为T n=;④若存在正整数k,使S k<10,S k+1≥10,则a k=.其中正确的结论是①③④.(将你认为正确的结论序号都填上)【考点】2K:命题的真假判断与应用;87:等比数列的性质;8E:数列的求和;8K:数列与不等式的综合.【解答】解:①前24项构成的数列是:,,,,,,,,,,,,…,,,,∴a24=,故①正确;②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是,1,,2,…,由等差数列定义=(常数)所以数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差数列,故②不正确.③∵数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差数列,所以由等差数列前n项和公式可知:Tn=,故③正确;④由③知S k<10,S k+1≥10,即:,,∴k=7,a k=.故④正确.故答案为:①③④.二、选择题15.(3分)已知{a n}、{b n}都是公差不为0的等差数列,且=2,S n=a1+a2+…+a n,则的值为()A.2B.﹣1C.1D.不存在【考点】8J:数列的极限.【解答】解:因为{a n}和{b n}都是公差不为零的等差数列,所以设b n=b1+(n﹣1)d1a n=a1+(n﹣1)d2故==2,可得d1=2d2又因为a1+a2+…+a n=na1+和b2n=b1+(2n﹣1)d1代入则=(2×)==1.故选:C.16.(3分)设{a n}是公比为q(0<|q|<1)的无穷等比数列,若{a n}的前四项之和等于第五项起以后所有项之和,则数列{a2n﹣1}是()A.公比为的等比数列B.公比为的等比数列C.公比为或﹣的等比数列D.公比为或﹣的等比数列【考点】89:等比数列的前n项和.【解答】解:根据题意,若{a n}的前四项之和等于第五项起以后所有项之和,则S n=2S4,又由{a n}是公比为q(0<|q|<1)的无穷等比数列,则=2,变形可得q4=,则q=±,数列{a2n﹣1}为{a n}的奇数项组成的数列,则数列{a2n﹣1}为公比为q2=的等比数列;故选:B.17.(3分)函数图象的一条对称轴在内,则满足此条件的一个φ值为()A.B.C.D.【考点】H6:正弦函数的奇偶性和对称性.【解答】解:函数图象的对称轴方程为:x=k∈Z,函数图象的一条对称轴在内,所以当k=0 时,φ=故选:A.18.(3分)若数列{a n}的前n项和为S n,则下列命题:(1)若数列{a n}是递增数列,则数列{S n}也是递增数列;(2)数列{S n}是递增数列的充要条件是数列{a n}的各项均为正数;(3)若{a n}是等差数列(公差d≠0),则S1•S2…S k=0的充要条件是a1•a2…a k=0.(4)若{a n}是等比数列,则S1•S2…S k=0(k≥2,k∈N)的充要条件是a n+a n+1=0.其中,正确命题的个数是()A.0个B.1个C.2个D.3个【考点】83:等差数列的性质;87:等比数列的性质.【解答】解:数列{a n}的前n项和为S n,故S n=a1+a2+a3+…+a n,若数列{a n}是递增数列,则数列{S n}不一定是递增数列,如当a n<0 时,数列{S n}是递减数列,故(1)不正确.由数列{S n}是递增数列,不能推出数列{a n}的各项均为正数,如数列:0,1,2,3,…,满足{S n}是递增数列,但不满足数列{a n}的各项均为正数,故(2)不正确.若{a n}是等差数列(公差d≠0),则由S1•S2…S k=0不能推出a1•a2…a k=0,例如数列:﹣3,﹣1,1,3,满足S4=0,但a1•a2•a3•a4≠0,故(3)不正确.若{a n}是等比数列,则由S1•S2…S k=0(k≥2,k∈N)可得数列的{a n}公比为﹣1,故有a n+a n+1=0.由a n+a n+1=0可得数列的{a n}公比为﹣1,可得S1•S2…S k=0(k≥2,k∈N),故(4)正确.故选:B.三、解答题19.已知函数f(x)=x2+(2﹣n)x﹣2n的图象与x轴正半轴的交点为A(a n,0),n=1,2,3,….(1)求数列{a n}的通项公式;(2)令为正整数),问是否存在非零整数λ,使得对任意正整数n,都有b n+1>b n?若存在,求出λ的值,若不存在,请说明理由.【考点】84:等差数列的通项公式;8K:数列与不等式的综合.【解答】解:(1)设f(x)=0,x2+(2﹣n)x﹣2n=0得x1=﹣2,x2=n.所以a n=n(4分)(2)b n=3n+(﹣1)n﹣1•λ•2n,若存在λ≠0,满足b n+1>b n恒成立即:3n+1+(﹣1)n•λ•2n+1>3n+(﹣1)n﹣1•λ•2n,(6分)恒成立(8分)当n为奇数时,⇒λ<1(10分)当n为偶数时,⇒(12分)所以(13分),故:λ=﹣1(14分)20.已知函数f(x)=2sin x cos x+3sin2x+cos2x﹣2,x∈R;(1)求函数f(x)在(0,π)上的单调递增区间;(2)在△ABC中,内角A、B、C所对边的长分别是a,b,c,若f(A)=2,C=.,c =2,求△ABC的面积S△ABC的值;【考点】HR:余弦定理.【解答】解:(1)因为f(x)=2sin x cos x+3sin2x+cos2x﹣2=sin2x+2sin2x﹣1=sin2x﹣cos2x=2sin(2x﹣),由﹣+2kπ≤+2kπ,k∈Z,得﹣+kπ≤x≤+kπ,k∈Z,又x∈(0,π),所以0<x≤或≤x<π,所以函数f(x)在(0,π)上的递增区间为:(0,],[,π),(2)因为f(A)=2,∴2sin(2A﹣)=2,∴sin(2A﹣)=1,∴2A﹣=+2kπ,k∈Z,∴A=+kπ,k∈Z,∵0<A<π,∴A=.∴B=,在三角形ABC中由正弦定理得=,∴a===,S△ABC=ac sin B=×2×sin=.21.已知函数f(x)=2sin(ωx),其中常数ω>0.(Ⅰ)令ω=1,判断函数的奇偶性,并说明理由.(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.对任意a∈R,求y=g(x)在区间[a,a+10π]上的零点个数的所有可能.【考点】3K:函数奇偶性的性质与判断;53:函数的零点与方程根的关系;HJ:函数y=Asin(ωx+φ)的图象变换.【解答】解:(1)f(x)=2sin x,F(x)=f(x)+f(x+)=2sin x+2sin(x+)=2(sin x+cos x),F()=2,F(﹣)=0,F(﹣)≠F(),F(﹣)≠﹣F(),所以,F(x)既不是奇函数,也不是偶函数.(2)f(x)=2sin2x,将y=f(x)的图象向左平移个单位,再向上平移1个单位后得到y=2sin2(x+)+1的图象,所以g(x)=2sin2(x+)+1.令g(x)=0,得x=kπ+或x=kπ+(k∈z),因为[a,a+10π]恰含10个周期,所以,当a是零点时,在[a,a+10π]上零点个数21,当a不是零点时,a+kπ(k∈z)也都不是零点,区间[a+kπ,a+(k+1)π]上恰有两个零点,故在[a,a+10π]上有20个零点.综上,y=g(x)在[a,a+10π]上零点个数的所有可能值为21或20.22.已知数列{a n}满足:a1=1,a n+1=,b n=a2n﹣2;(1)求a2、a3、a4;(2)求证:数列{b n}为等比数列,并求其通项公式;(3)求和T n=a2+a4+…+a2n;【考点】8E:数列的求和.【解答】解:(1)a1=1,a n+1=,可得a2=1+a1=1+=;a3=a2﹣4=﹣,a4=3+a3=;(2)证明:b n=a2n﹣2=a2n﹣1+2n﹣1﹣2=(a2n﹣2﹣4n+4)+2n﹣1﹣2=(a2n﹣2﹣2)=b n﹣1,可得数列{b n}为公比为,首项为﹣等比数列,即b n=﹣()n;(3)由(2)可得a2n=2﹣()n,T n=a2+a4+…+a2n=2n﹣(++…+)=2n﹣=2n﹣1+()n.23.已知{a n},{b n}为两非零有理数列(即对任意的i∈N*,a i,b i均为有理数),{d n}为一无理数列(即对任意的i∈N*,d i为无理数).(1)已知b n=﹣2a n,并且(a n+b n d n﹣a n d n2)(1+d n2)=0对任意的n∈N*恒成立,试求{d n}的通项公式.(2)若{d n3}为有理数列,试证明:对任意的n∈N*,(a n+b n d n﹣a n d n2)(1+d n2)=1恒成立的充要条件为.(3)已知sin2θ=(0<θ<),d n=,试计算b n.【考点】8B:数列的应用;8H:数列递推式.【解答】解:(1)∵,∴,即,∴,∵a n≠0,∴,∴.(2)∵,∴,∴,∵{a n},{b n},为有理数列,{d n}为无理数列,∴,∴,以上每一步可逆.(3),∴25tanθ=12+12tan2θ.∵,∴,当n=2k(k∈N*)时,∴当n=2k﹣1(k∈N*)时,∴,∴为有理数列,∵,∴,∴,∵{a n},{b n},为有理数列,{d n}为无理数列,∴,∴,∴当n=2k(k∈N*)时,∴当n=2k﹣1(k∈N*)时,∴,∴.。

相关文档
最新文档