2016上海市初三一模数学压轴题汇编

合集下载

2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案

2016年上海中考数学一模试卷和答案含奉贤,浦东,青浦,静安,闸北,嘉定,宝山,虹口,黄浦9区试卷和答案

2016年奉贤区调研测试九年级数学2016.01(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲) A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍; C .△ABC 放大后,周长是原来的4倍; D .△ABC 放大后,面积是原来的16倍2.抛物线()212y x =-+的对称轴是(▲)A .直线2x =;B .直线2x =-;C .直线1x =;D .直线1x =-.3.抛物线223y x x =--与x 轴的交点个数是(▲) A . 0个 ; B .1个; C . 2个 ; D . 3个.4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,BC =18,那么DE 的值为(▲)A .3 ;B .6 ;C .9 ;D .12. 5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲) A .3sin 5B =; B . 3cos 4B = ; C .4tan 3B =; D .3cot 4B =6.下列关于圆的说法,正确的是(▲) A .相等的圆心角所对的弦相等;B .过圆心且平分弦的直线一定垂直于该弦;C .经过半径的端点且垂直于该半径的直线是圆的切线;D .相交两圆的连心线一定垂直且平分公共弦.二.填空题:(本大题共12题,每题4分,满分48分) 7.已知3x =2y ,那么xy=▲; . 8.二次函数342+=x y 的顶点坐标为▲;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲; 12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 与y 轴正半轴的夹角为α,那么角α的余弦值为▲;13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲; 14.线段AB 长10cm ,点P 在线段AB 上,且满足BP APAP AB=,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD的长为▲;18.如图,已知平行四边形ABCD 中,AB=AD =6,cotB =21,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么 sin ∠CAB ’=▲. 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒--︒+︒60sin 260tan 2130cos 45sin 422.第13题图BA DC E第17题图B ADC第18题图B20.(本题满分10分,每小题5分)如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=. (1)=BD (用a 来表示);(2)求作向量AE 在AB 、BF 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,每小题5分)为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin 36°=0.6,cos 36°=22.(本题满分10分,每小题5分)如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =AE =5. (1)求⊙O 半径r 的值;(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.E AB F第20题图CD第21题图F E ABOCD23.(本题满分12分,第(1)小题6分,第(2)小题6分) 已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;(2)联结EC,若2CD AD BC =⋅,求证:∠DCE =∠ADB .24.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 与抛物线交于点B , 且∠BAO =45°.(1)求二次函数解析式及其顶点C 的坐标; (2)在直线AB 上是否存在点D ,使得△BCD为直角三角形.若存在,求出点D 的坐标, 若不存在,说明理由.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=41△时,求tan ∠BCE 的值.EA B第20题图CDAE第25题备用图A2016学年九年级第一学期期末测试参考答案与评分标准 2016.01一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.23; 8.(0,3);9.2k <-; 10.1 11.35°; 12.10103; 13.4; 14.5; 15.1或3; 16.-9; 17.72; 18.1010或2.三、解答题:(本大题共7题,满分78分)19.(1)原式=2+24222⎛⨯ ⎝⎭...................................(4分)=(13+244-+(4分) = -1 .......................(2分) 20.解:(1)13a …………………………………………………(5分)(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG.图形准确……………………………………………(3分) 结论正确……………………………………………(2分)21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG∵点D 是AB 的中点 ∴BD =AD =12AB =30................................................(1分) ∵DF//AC 交BC 、HG 分别于点F 、M , ∴∠BDF =∠A=30°,∠BFE =∠C=90° 在Rt △BFD 中,∠BFD =90°,cos BDF DF BD ∠=,30DF =, 25.5DF =≈............(1分) sin BF BDF BD∠=1230BF =. 15BF =…………………………(1分)在Rt △BFE 中,∠BFE =90°,tan BEF BFEF ∠=,0.715EF =,EF =21.4………(1分) ∴DE=DF-EF =25.5-21.4=4.1≈4(米)答:平台DE 的长约为4米. ………………………………………………………(1分)(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N在Rt △DNA 中,∠DNA =90°cos DAC AN AD ∠=30AN =AN =(1分)sin DN DAN AD∠= 1230DN = 15DN =...................(1分)∴27DM NG AN AG ==+=……………………………………(1分)在Rt △HMD 中,∠HMD =90° tan HDM HMDM ∠=15HM =+453930153915≈+=++=+=MG HM HG 米…(1分)答:主楼GH 的高约为45米………………………………………………………(1分) 22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =12CD =…(2分)∴222ODED OE =+ ∴()()2225-5r r =+ 解得 r =3…………(3分)(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分) 又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴EF CEED OE=…………………………(2分)= 得52EF =……………………………………………………(1分)∴ 52AF AE EF =-=……………………………………………………………(1分) 23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分) ∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分) ∴△ADE ∽△DBC ……………………………………………………………(2分) (2) ∵△ADE ∽△DBC∴AD DBDE BC =∴AD BC DB DE ⋅=⋅…………………………………………(1分) ∵2CD AD BC =⋅ ∴2CD DB DE =⋅∴CD DEDB CD =………………………………………………………………………(1分) ∵∠CDB =∠CDE∴△CDE ∽△BDC ………………………………………………………………(2分) ∴ ∠DCE =∠DBC ………………………………………………………………(1分) ∵∠ADB =∠DBC∴∠DCE =∠ADB ………………………………………………………………(1分)24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中0042cb c=⎧⎨=++⎩ 解得20b c =-⎧⎨=⎩ 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1(2)过点B 作BG ⊥x 轴,垂足为点G ∵∠BGA =90°,∠A =45° ∴∠GBA=45° 设点A (x ,22x x -) 则22x x -=2-x ∴点B (-1,3设直线AB : 0y kx b k =+≠() 将点A (2,0)、B (-1,3)代入203k b k b +=⎧⎨-+=⎩解得12k b =-⎧⎨=⎩ 直线AB :y =设点D (x ,2x -+)则BC =CD =BD 若△BCD 为直角三角形①∠BCD =90° ∴222BC CD BD += 即(222+= 解得73x =∴7133D ⎛⎫⎪⎝⎭点,-……………………………………………(2分)② ∠BDC =90°∴222BDCD BC += 即(222+=解得 1221x x ==-,(舍去) ∴点D (2,0)…………………(2分)综上所述:()712,033D ⎛⎫ ⎪⎝⎭点,-或25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90︒∵∠EDC =∠A ∴△EDC ∽△BAC ∴EC BCDC AC=……………(2分) ∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)∵ECBCDC AC = ∴△BCE ∽△ACD ………………………………(1分)∴BCACBEAD= 即AC BE BC AD ⋅=⋅………………………………………(1分) (2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴4AC ,∠ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)∴DE ==∵BC AC BE AD =,34BE x = ∴ 3=4BE x ()2113153==52248BDE x x S BD BE x x ∆-⋅-⋅=……………………………………(1分) ∵ △CDE ∽△CAB ∴22121165CDE ABC S DE x x S AB ∆∆⎛⎫==-+ ⎪⎝⎭ ∵11==43=622ABC S BC AC ∆⋅⨯⨯ ∴2312=685CDE S x x ∆-+……………………(1分) 即()21=S 60540BDE CDE S S x x ∆∆+=-<<……………………………(2分) (3)11==43=622ABC S BC AC ∆⋅⨯⨯ 由14ABC S S ∆=得 21531684x x -=⨯ ∴2540x x -+=1214x x ==,…………………………(1分)过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AFBC AB AC == 当x =1时,3455DF AF ==,,165CF AC AF =-=………………………………(1分) 在Rt △DFC 中,∠DFC =90° t a n 3DF DCF ==∠∵∠BCE=∠DCA ∴3an 16t BCE =∠当x =4时,得121655DF AF ==, CF =3tan DCF DFCF∠==,即tan ∠∴综上所述:6an 331t BCE =∠或.2016浦东一模一. 选择题1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 在Rt △ABC 中,90C ︒∠=,若5AB =,4BC =,则sin A 的值为( )A.34; B. 35; C. 45; D. 43; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =; C. ::AD DB AE EC =; D. ::AE AC AD DB =;4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;5. 如图,Rt △ABC 中,90ACB ︒∠=,CD AB ⊥于点D ,下列结论中错误的是( )A. 2AC AD AB =⋅;B. 2CD CA CB =⋅; C. 2CD AD DB =⋅; D. 2BC BD BA =⋅; 6. 下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知13x y =,那么x x y =+ ; 8. 计算:123()3a ab -+=;9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图 上距离约 厘米;10. 某滑雪运动员沿着坡比为100米,则运动员下降的垂直高度为 米;11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ; 12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的 一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ;13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a = ,那么用向量a表示向量AG为 ;14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠, 那么CD 的长是 ;15. 如图,直线1AA ∥1BB ∥1CC ,如果13AB BC =,12AA =,16CC =,那么线段1BB 的 长是 ;16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处 水平放置一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的 顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;17. 若抛物线2y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称 △ABC 为“抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc > 时,称△ABC 为“倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分 别满足条件 ;18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的 一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;三. 解答题19. 456tan302cos30︒︒︒+-;20. 二次函数2y ax bx c =++的变量x 与变量y 的部分对应值如下表:(1)求此二次函数的解析式; (2)写出抛物线顶点坐标和对称轴;21. 如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,联结BE 并延长交CD 的延 长线于点F ,交AC 于点G ;(1)若2FD =,13ED BC =,求线段DC 的长; (2)求证:EF GB BF GE ⋅=⋅;22. 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上 由西向东匀速行驶,依次经过点A 、B 、C ,P 是一个观测点,PC l ⊥,PC =60米,4tan 3APC ∠=,45BPC ︒∠=,测得该车从点A 行驶到点B 所用时间为1秒; (1)求A 、B 两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,AD AC =,EC 交AD 于点F ;(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;24. 如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ; 问是否存在点P ,使得以点O 、C 、P 为顶点的 三角形与△ABC 相似?若存在,求出P 点坐标; 若不存在,请说明理由;25. 如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),45EBM ︒∠=,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M ;(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)联结EG ,如图2,设AE x =,EG y =,求y 关于x 的函数解析式,并写出定义域; (3)当M 为边DC 的三等分点时,求EGF S 的面积;21、22、23、24、25、2016青浦、静安一模一. 选择题 1.的相反数是( )A.B. C.2; D. 2-; 2. 下列方程中,有实数解的是( )A. 210x x -+=; B. 1x =-;C.210x x x -=-; D. 211xx x-=-; 3. 化简11(1)x ---的结果是( ) A.1x x -; B. 1xx -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2y x =上,将此抛物线向右平移3个单位后,点A 同时平移到 点A ',那么A '坐标为( )A. (2,1);B. (2,7);C. (5,4);D. (1,4)-;5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( )A. tan cos m αα⋅⋅;B. cot cos m αα⋅⋅;C.tan cos m αα⋅; D. tan sin m αα⋅;6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满 足下列条件中的( )A. AC AB AD AE =;B. AC BC AD DE =;C. AC AB AD DE =;D. AC BCAD AE=;二. 填空题7. 计算:23(2)a -= ; 8. 函数3()2x f x x -=+的定义域为 ;9. 1x =-的根为 ;10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围为 ;11. 二次函数261y x x =-+的图像的顶点坐标是 ;12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称点坐标是 ;13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相交于点F ,如果1AE =,2CE =,那么:EF BF 等于 ;14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1sin 3A =,2BC =,那么GC 的长 等于 ;15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a = ,BC b = ,那么CD =(用向量a 、b的式子表示);16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,4AC =,如果四边形DBCE 的周长为10,那么AD 的长等于 ;17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,4sin 5B =,那么tan CDE ∠= ; 18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;三. 解答题19. 化简:222266942x x x x x x x---++--,并求当123x =时的值;20. 用配方法解方程:22330x x --=;21. 如图,直线43y x =与反比例函数的图像交于点(3,)A a ,第一象限内的点B 在这个反比 例函数图像上,OB 与x 轴正半轴的夹角为α,且1tan 3α=:(1)求点B 的坐标;(2)求OAB ∆的面积;22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向 前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电 线杆PQ 的高度(结果精确到1米);(备用数据:sin 26.60.45︒=,cos 26.60.89︒=,tan 26.60.50︒=,cot 26.6 2.00︒=,sin 33.70.55︒=,cos33.70.83︒=,tan 33.70.67︒=,cot 33.7 1.50︒=)23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =⋅; (1)求证:ADC DCE EAF ∠=∠+∠;(2)求证:AF AD AB EF ⋅=⋅;2124. 如图,直线112y x =+与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相 交于点C ,与直线112y x =+相交于点A 、D ,CD ∥x 轴,CDA OCA ∠=∠;(1)求点C 的坐标;(2)求这个二次函数的解析式;25. 已知:在梯形ABCD 中,AD ∥BC ,10AC BC ==,4cos 5ACB ∠=,点E 在对角 线AC 上,且CE AD =,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G ,设AD x =,△AEF 的面积为y ;(1)求证:DCA EBC ∠=∠;(2)如图,当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积;22静安区2015学年第一学期期末教学质量调研 九年级数学试卷参考答案及评分说明2016.1一、选择题:1.D ; 2.D ; 3.A ; 4.C ; 5.C ; 6.C . 二、填空题:7.68a -; 8.2-≠x ; 9.4=x ; 10.31<<m ; 11.(3, -8); 12.(2, 5); 13.31; 14.2; 15.b a 21--; 16.2; 17.21; 18.135. 三、解答题:19.解:原式= )2()3()2)(2()3)(2(2--÷-+-+x x x x x x x ············································································ (4分) =)3()2()2)(2()3)(2(--⋅-+-+x x x x x x x ··············································································· (1分) =3-x x. ········································································································ (2分) 当3321==x时,原式=231311333+-=-=-. ································· (3分) 20.解:023232=--x x , ····································································································· (1分) 23232=-x x , ············································································································ (1分) 16923)43(2322+=+-x x , ······················································································· (2分) 1633)43(2=-x , ·········································································································· (2分) 43343±=-x , ········································································································· (2分)433231+=x ,433232-=x . ·············································································· (2分)2321.解:(1)∵直线x y 34=与反比例函数的图像交于点A (3,a ), ∴334⨯=a =4,∴点的坐标A (3,4). ······························································ (1分) 设反比例函数解析式为xky =, ············································································· (1分)∴12,34==k k ,∴反比例函数解析式为xy 12=. ··········································· (1分)过点B 作BH ⊥x 轴,垂足为H , 由31tan ==OB BH α,设BH =m ,则OB =m 3,∴B (m 3,m ) ························ (1分) ∴mm 312=,2±=m (负值舍去), ······································································ (1分) ∴点B 的坐标为(6,2). ······················································································ (1分)(1) ····································· 过点A 作AE ⊥x 轴,垂足为E ,OBH AEHB OAE OAB S S S S ∆∆∆-+=梯形············································································ (1分) =BH OH EH BH AE OE AE ⋅-⋅++⋅21)(2121 ··············································· (1分) ==⨯⨯-⨯++⨯⨯26213)24(2143219. ······················································ (2分)22.解:延长PQ 交直线AB 于点H ,由题意得.由题意,得PH ⊥AB ,AB =30,∠PAH =26 .6°,∠PBH =45°,∠Q BH =33.7°, 在Rt △QBH 中,50.1cot ==∠QHBHQBH ,设QH =x ,BH =x 5.1, ···················· (2分) 在Rt △PBH 中,∵∠PBH =45°,∴PH = BH =x 5.1,··············································· (2分) 在Rt △PAH 中,00.2cot ==∠PHAHPAH ,AH =2PH =x 3, ··································· (2分) ∵AH –BH =AB ,∴305.13=-x x ,20=x . ························································· (2分) ∴PQ =PH –QH =105.05.1==-x x x . ····································································· (1分) 答:该电线杆PQ 的高度为10米. ················································································· (1分)2423.证明:(1)∵EC EF AE ⋅=2,∴AEECEF AE =. ·························································· (1分) 又∵∠AEF =∠CEA ,∴△AEF ∽△CEA . ······················································· (2分) ∴∠EAF =∠ECA , ··························································································· (1分) ∵AD =AC ,∴∠ADC =∠ACD , ······································································· (1分) ∵∠ACD =∠DCE +∠ECA =∠DCE +∠EAF . ····················································· (1分)(2)∵△AEF ∽△CEA ,∴∠AEC =∠ACB . ······························································· (1分)∵DA =DB ,∴∠EAF =∠B . ················································································ (1分) ∴△EAF ∽△CBA . ····························································································· (1分)∴ACEFBA AF =. ··································································································· (1分) ∵AC =AD ,∴ADEFBA AF =. ················································································ (1分) ∴EF AB AD AF ⋅=⋅. ···················································································· (1分)24.解:(1)∵直线121+=x y 与x 轴、y 轴分别相交于点A 、B , ∴A (–2,0)、B (0,1).∴OA =2,OB =1. ······················································ (2分) ∵CD //x 轴,∴∠OAB =∠CDA ,∵∠CDA =∠OCA ,∴∠OAB =∠OCA . ············· (1分) ∴tan ∠OAB =tan ∠OCA , ························································································· (1分) ∴OCOA OA OB =,∴OC 221=, ·················································································· (1分) ∴4=OC ,∴点C 的坐标为(0,4). ································································ (1分) (2)∵CD //x 轴,∴BOBCAO CD =. ················································································· (1分) ∵BC =OC –OB=4–1=3,∴132=CD ,∴CD =6,∴点D (6,4). ························ (1分) 设二次函数的解析式为42++=bx ax y , ···························································· (1分)⎩⎨⎧++=+-=,46364,4240b a b a ………………(1分) ⎪⎩⎪⎨⎧=-=.23,41b a ········································· (1分) ∴这个二次函数的解析式是423412++-=x x y . ················································· (1分)25.解:(1)∵AD ∥BC ,∴∠DAC =∠ECB . ········································································ (1分)又∵AD =CE ,AC =CB ,∴△DAC ≌△ECB . ······························································ (2分) ∴∠DCA =∠EBC . ··································································································· (1分) (2)过点E 作EH ⊥BC ,垂足为H .AE =AC –CE =x -10.。

2016一模数学24.25题

2016一模数学24.25题

1 1 AP CO = (m 1) 4 =2m+2. 2 2 CM BP BP S CM .又因为 △CPM ,所以 S△CPM = (2m 2) . CA BA BA S△CPA CA
由 PM//BC,得
①如图 2,当点 P 在 AB 上时,BP=3-m. 解方程
3 m (2m 2) =2,得 m=1.此时 P(1, 0). 4 m3 (2m 2) =2,得 m 1 2 2 .此时 P (1 2 2,0) . 4
BC EC . AC DC
AC BC .因此 AC·BE =BC·AD . AD BE
图2
图3
(2)在 Rt△ ABC 中,AB= 5,BC=3,所以 AC=4.所以 S△ABC=6. 如图 3,由于△ABC 与△ADC 是同高三角形,所以 S△ADC∶S△ABC=AD∶AB=x∶5. 所以 S△ADC=
动感体验
请打开几何画板文件名“16 崇明一模 24” ,拖动点 P 在 x 轴的正半轴上运动,可以体验 到,有两个时刻,△ CPM 的面积为 2.
满分解答
(1)由C(0, 4),OC=4OA ,得OA=1,A(- 1, 0). 设抛物线的解析式为 y=a(x+1)(x-3),代入点 C(0, 4),得 4=-3a.
图1
备用图
动感体验
请打开几何画板文件名 “16 奉贤一模 25” , 拖动点 E 在 AD 边上运动, 可以体验到, △ABC 与△DEC 保持相似,△ACD 与△BCE 保持相似,△BDE 是直角三角形.
满分解答
(1)如图 2,在 Rt△BAC 和 Rt△EDC 中,由 tan∠A=tan∠EDC,得 如图 3,已知∠ACB=∠DCE=90 °,所以∠1=∠2 . 所以△ACD ∽△BCE .所以

2016年上海各区数学一模18题汇编(含解析)(1)

2016年上海各区数学一模18题汇编(含解析)(1)

2016年上海各区县一模数学第18题汇编(含分析)例2016年上海市崇明县中考一模第18题如图I.等边•二角形中,。

是8r边上的一点,E BD : DC= 1 :3.把AdBr折都使点d落在6C边上的点D处,那么_ 的佗为如图2,因为/A/Z>C=/B+/l=6(r +/1, NA/DC=/A/PN+/2=6(r +/2, 所以Nl = /2.又因为NE = NC=6(r ,所以△MBD S ADCN.由3 DM 413/向周长TB + BD所以 --- = -------------- = ----------ND △ZXW的周长JC+DC如图3,设等边三角形ABC的边长为4, "1BD :。

「=1 :3时,—=—AM ND 4 + 3 7图图例 2016年上海市奉贤区中考一模第18题如图1.已知平行四边形,45。

[)中,.48:2/,,3=6.8由='.将边绕点」旋*)转,使得点B 落在平行四边形ABCD 的边上,其对应点为F (点£不与点S 瓯合),那么 sin ZC-fB r = .如图2.在Rtzk/HE 中,由T5=2,7, covB- 1 .可得2E=3 .正=4.在RlA/fCE 中,由.dE=4. CE=BC-BE=6-2-4.可得/C= 4应.乙4CE75 .①如图3,当点用在灰:,边上时,B 任=BE=2.在等腰直角—.用形中,B fC=2.所以8H=CH=J 三. 管1△ABH R'H= JI, AH=AC-CH = 372 .所以-虫?'=26.此时向“用=型=£=巫. AB' 2V5 10②如图4.当点?在HD 边上时,ZCJ5r=45 .此时sin/CH3=^. ?图12016年上海市虹口区中考一模第18题如图1,在矩形JBCD中,.48=6,初=10,点E是SC的中点,联结HE.若将&4的沿HE翻折,点8落在点广处,联结FC.贝iJco$NECF= __________ .B E图I如图2.由EB=EC=EF.可知N3尸C=90 .又因为.在戊直平分BF.所以NRO£=90° .所以如O/JE所以NECF=N8E4.在R【ZLd%?I。

上海初三数学各区一模压轴题汇总套全

上海初三数学各区一模压轴题汇总套全

上海初三数学各区一模压轴题汇总套全TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理 廖老师宝山区一模压轴题18(宝山)如图,D 为直角ABC 的斜边AB 上一点,DE AB 交AC 于E ,如果AED 沿着DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果8AC ,1tan 2A ,那么:___________.CF DF24(宝山)如图,二次函数232(0)2y ax x a 的图像与x 轴交于A B 、两点,与y 轴交于点,C 已知点(4,0)A .(1)求抛物线与直线AC 的函数解析式;(2)若点(,)D m n 是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A C E F 、、、为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E 的坐标.25(宝山)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P Q 、同时从点B 出发,点P 以1/cm s 的速度沿着折线BE ED DC 运动到点C 时停止,点Q 以2/cm s 的速度沿着BC 运动到点C 时停止。

设P Q 、同时出发t 秒时,BPQ 的面积为2ycm ,已知y 与t 的函数关系图像如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求05t 时,BPQ 的面积y 关于t 的函数解析式;(2)求出线段BC BE ED 、、的长度;(3)当t 为多少秒时,以B P Q 、、为顶点的三角形和ABE 相似;(4)如图(3)过点E 作EF BC 于F ,BEF 绕点B 按顺时针方向旋转一定角度,如果BEF 中E F 、的对应点H I 、恰好和射线BE CD 、的交点G 在一条直线,求此时C I 、两点之间的距离.崇明县一模压轴题18(崇明)如图,已知 ABC ∆中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;24(崇明)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD = ,联结AD 、将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求cot EDF ∠的值;(3)点G 在直线l 上,且45EDG ︒∠=,求点G 的坐标.25(崇明)在ABC ∆中,90ACB ︒∠=,3cot 2A =,AC =,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F ,联结BD .(1)求证:PC CE CD BC =; (2)若PE x =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是__ ____.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线2y x bx c =-++与x 轴相交于点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。

【精品】2016上海普陀区初三一模数学试题及答案

【精品】2016上海普陀区初三一模数学试题及答案

2
原传送带 AB的长为 4 2 米,那么新传送带 AC的长为(
)米 .
18、 已知 A(3,2) 是平面直角坐标中的一点,点 B 是 x 轴负半轴上一动点,联接 AB,并以 AB为边在 x 轴上方作矩形 ABCD,且满足 BC:AB=1:2, 设点 C的横坐标
是 a,如果用含 a 的代数式表示点 D的坐标,那么点 D的坐标为(
)
10、已知点 P 把线段分割成 AP和 PB(AP>PB)两段,如果 AP是 AB 和 PB的比
例中项,那么 AP:AB=(

11、在函数 1. y
ax2
bx c ,2. y
( x 1) 2
x2 ,3. y
5x 2
5 x2 ,4. y
x2 2
中, y 关于 x 的二次函数是(
)(填序号)
12、二次函数 y x2 2x 3 的图像有(
6
2016 上海普陀区初三数学一模卷答案
7
8
9
3
20(本题满分 10 分) 将抛物线 y 1 x2 先向上平移 2 个单位,再向左平移 m( m> 0)个单位,所得抛 2
物线经过点( -1 ,4),求新抛物线的表达式以及新抛物线与 y 轴交点的坐标 .
21(本题满分 10 分) 如图 7,已知 AD是圆 O的直径,AB、AC是圆 O的弦,AD⊥BC,垂足是点 E,BC=8,
)(填“最高点”或“最低
点”) 13、如果抛物线 y 2 x2 mx n 的顶点坐标为( 1, 3),那么 m+n 的值等于


14、如图 3,点 G是△ ABC的重心, DE经过点 G,DE∥ AC,EF∥AB,如果 DE的长
度为 4,那么 CF的长为(

2016年上海各区县初三一模较难题(18.23.24.25)汇编

2016年上海各区县初三一模较难题(18.23.24.25)汇编

(闵行)将一副三角尺如图摆放,其中 Rt△ABC 中, ACB=90°, B=60°,在 Rt△EDF 中, EDF=90°, E=45°,点 D 为边 AB 的中点,DE 交 AC 于点 P,DF 经过点 C, 将△EDF 绕点 D 顺时针旋转角α(0°<α<60°)后得△E’DF’,DE’交 AC 于点 M,DF’ 交 BC 于点 N,那么

12
Tel: 15000295778
(虹口) 在平面直角坐标系中, 抛物线 y ax bx 3 与 X 轴分别交于点 A (2,0) 、 点B (点
2
B 在点 A 的右侧) ,与 y 轴交于点 C, tan CBA (1)求该抛物线的解析式;
1 2
(2)设该抛物线的顶点为 D,求四边形 ABCD 的面积; (3)设抛物线上的点 E 在第一象限,△BCE 是以 BC 为一条直角边的直角三角形,请直接写 出点 E 的坐标。
AD EF x。 AB AF
AG 的值; AB
S△GDH y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围; S△ EBA
(3)当 DH=3HC 时,求 x 的值。
15
Tel: 15000295778
(普陀)25. 如图,已知锐角 MBN 的正切值等于 3,△ PBD 中, BDP 90 ,点 D 在
(长宁)如图, ABCD 为正方形, E 为 BC 上一点,将正方形折叠,使 A 点与 E 点重合, 折痕为 MN ,如果 tan AEN
1 , DC CE 10 ,那么△ ANE 的面为 3

1
Tel: 15000295778
旋转:
1 ,将边 AB 2 绕点 A 旋转,使得点 B 落在平行四边形 ABCD 的边上,其对应点为 B (点 B 不与点 B 重 合) ,那么 sin CAB ;

上海市各区县中考数学一模压轴题图文解析第2425题

上海市各区县中考数学一模压轴题图文解析第2425题

2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题/ 22016年上海市奉贤区中考数学一模第24、25题/ 52016年上海市虹口区中考数学一模第24、25题/ 82016年上海市黄浦区中考数学一模第24、25题/ 112016年上海市嘉定区中考数学一模第24、25题/ 142016年上海市静安区青浦区中考数学一模第24、25题/ 172016年上海市闵行区中考数学一模第24、25题/ 202016年上海市浦东新区中考数学一模第24、25题/ 242016年上海市普陀区中考数学一模第24、25题/ 282016年上海市松江区中考数学一模第24、25题/ 312016年上海市徐汇区中考数学一模第24、25题/ 342016年上海市杨浦区中考数学一模第24、25题/ 382016年上海市闸北区中考数学一模第24、25题/ 412016年上海市长宁区金山区中考数学一模第24、25题/ 452016年上海市宝山区中考数学一模第25、26题/ 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16(1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CP A=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得122m=±.此时P(122,0)+.图2 图3如图1,已知矩形ABCD中,AB=6,BC=8,点E是BC边上一点(不与B、C重合),过点E作EF⊥AE交AC、CD于点M、F,过点B作BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABH∽△ECM;(2)设BE=x,EHEM=y,求y关于x的函数解析式,并写出定义域;(3)当△BHE为等腰三角形时,求BE的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E在BC上运动,可以体验到,有三个时刻,△BHE可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC的余角,所以∠1=∠2.又因为∠BAH和∠CEM都是∠AEB的余角,所以∠BAH=∠CEM.所以△ABH∽△ECM.图2 图3(2)如图3,延长BG交AD于N.在Rt△ABC中,AB=6,BC=8,所以AC=10.在Rt△ABN中,AB=6,所以AN=AB tan∠1=34AB=92,BN=152.如图2,由AD//BC,得92 AH ANEH BE x==.由△ABH∽△ECM,得68AH ABEM EC x==-.所以y=EHEM=AH AHEM EH÷=6982x x÷-=12729xx-.定义域是0<x<8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D是斜边AB上任意一点,联结DC,过点C作CE⊥CD,联结DE,使得∠EDC=∠A,联结BE.(1)求证:AC·BE=BC·AD;(2)设AD=x,四边形BDCE的面积为S,求S与x之间的函数关系式,并写出定义域;(3)当S△BDE=14S△ABC时,求tan∠BCE的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E在AD边上运动,可以体验到,△ABC 与△DEC保持相似,△ACD与△BCE保持相似,△BDE是直角三角形.满分解答(1)如图2,在Rt△BAC和Rt△EDC中,由tan∠A=tan∠EDC,得BC EC AC DC=.如图3,已知∠ACB=∠DCE=90°,所以∠1=∠2.所以△ACD∽△BCE.所以AC BCAD BE=.因此AC·BE=BC·AD.图2 图3(2)在Rt△ABC中,AB=5,BC=3,所以AC=4.所以S△ABC=6.如图3,由于△ABC与△ADC是同高三角形,所以S△ADC∶S△ABC=AD∶AB=x∶5.所以S△ADC=65x.所以S△BDC=665x-.由△ADC∽△BEC,得S△ADC∶S△BEC=AC2∶BC2=16∶9.所以S△BEC=916S△ADC=96165x⨯=2740x.所以S=S四边形BDCE=S△BDC+S△BEC=6276540x x-+=21640x-+.定义域是0<x<5.(3)如图3,由△ACD∽△BCE,得AC BCAD BE=,∠A=∠CBE.由43x BE=,得BE=34x.由∠A=∠CBE,∠A与∠ABC互余,得∠ABE=90°(如图4).所以S△BDE=1133(5)(5) 2248BD BE x x x x⋅=-⨯=--.当S△BDE=14S△ABC=13642⨯=时,解方程33(5)82x x--=,得x=1,或x=4.图4 图5 图6 作DH⊥AC于H.①如图5,当x=AD=1时,在Rt△ADH中,DH=35AD=35,AH=45AD=45.在Rt△CDH中,CH=AC-AH=416455-=,所以tan∠HCD=DHCH=316.②如图6,当x=AD=4时,在Rt△ADH中,DH=35AD=125,AH=45AD=165.在Rt△CDH中,CH=AC-AH=164455-=,所以tan∠HCD=DHCH=3.综合①、②,当S△BDE=14S△ABC时,tan∠BCE的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12. (1)求该抛物线的表达式; (2)设该抛物线的顶点为D ,求四边形ACBD 的面积;(3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1 动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3.由tan ∠CBA =OC OB =12,得OB =6,B (6, 0). 将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩ 解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1). S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+. 当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BO BF CO ==.所以EF =2BF . 解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8). 当∠BCE =90°时,EF =2CF . 解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H.设AD EF x AB AF ==. (1)当x=1时,求AG ∶AB 的值;(2)设GDH EBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点.因为AD //CB ,所以AG =BE =12BC =12AD =12AB . 所以AG ∶AB =1∶2. (2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm . 由AD //BC ,得BE EF x AG AF==. 所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4如图4,延长AE 交DC 的延长线于M .因为GH //AE ,所以△GDH ∽△ADM .因为DM //AB ,所以△EBA ∽△ADM .所以△GDH ∽△EBA .所以y =GDH EBA S S △△=2()DG BE=2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC . DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE ⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC 相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24”,拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55. ②如图4,当∠OBC =∠EDB 时,OD =OB =4. 根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON的面积为332,求AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时,AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN边上的高为3.当S△DON=332时,DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4, 0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值;(3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =42,BC =25,AB =6,CO =4. 作BH ⊥AC 于H . 由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==42=32. 因此sin ∠ACB =BH BC =3225=310.(3)点P 的坐标可以表示为21(,4)2m m m --. 由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==. 所以QP =2QO .解方程212(4)2m m m =--,得341m ±=. 图2 所以点P 的横坐标m =341+.如图1,已知△ABC中,∠ABC=90°,tan∠BAC=1 2.点D在AC边的延长线上,且DB2=DC·DA.(1)求DCCA的值;(2)如果点E在线段BC的延长线上,联结AE,过点B作AC的垂线,交AC于点F,交AE于点G.①如图2,当CE=3BC时,求BFFG的值;②如图3,当CE=BC时,求BCDBEGSS△△的值.图1动感体验请打开几何画板文件名“16嘉定一模25”,拖动点E运动,可以体验到,当CE=3BC 时,BD//AE,BG是直角三角形ABE斜边上的中线.当CE=BC时,△ABF≌△BEH,AF =2EH=4CF.满分解答(1)如图1,由DB2=DC·DA,得DB DADC DB=.又因为∠D是公共角,所以△DBC∽△DAB.所以DB BC CDDA AB BD==.又因为tan∠BAC=BCAB=12,所以12CD BD=,12BD DA=.所以14CD DA=.所以13DCCA=.(2)①如图4,由△DBC∽△DAB,得∠1=∠2.当BF⊥CA时,∠1=∠3,所以∠2=∠3.因为13DCCA=,当CE=3BC时,得DC BCCA CE=.所以BD//AE.所以13BDEA=,∠2=∠E.所以∠3=∠E.所以GB=GE.于是可得G B是Rt△ABE斜边上的中线.所以23BDGA=.所以23BF BDFG GA==.②如图5,作EH⊥BG,垂足为H.当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA . (1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA . 由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=. 解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2 解方程1142x +=,得x =6.所以D (6, 4). 所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a . 解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB=45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H . 在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x . 所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x . 因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x ≤555-. 定义域中x =555-的几何意义如图4,D 、F 重合,根据AD AECB CE=,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD=90°,那么在Rt△BCG和Rt△BEH中,tan∠GBC=335104504xGC HE x GB HBx x===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于A、B两点,点B的坐标为(3, 0),与y轴交于点C(0,-3),点P是直线BC下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C 为菱形,求点P的坐标;(3)如果点P在运动过程中,使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.图1动感体验请打开几何画板文件名“16闵行一模24”,拖动点P在直线BC下方的抛物线上运动,可以体验到,当四边形POP′C为菱形时,PP′垂直平分OC.还可以体验到,当点P与抛物线的顶点重合时,或者点P落在以BC为直径的圆上时,△PCB是直角三角形.满分解答(1)将B(3, 0)、C(0,-3)分别代入y=x2+bx+c,得930,3.b cc++=⎧⎨=-⎩.解得b=-2,c=-3.所以二次函数的解析式为y=x2-2x-3.(2)如图2,如果四边形POP′C为菱形,那么PP′垂直平分OC,所以y P=32 -.解方程23 232x x--=-,得2102x±=.所以点P的坐标为2103(,)22+-.图2 图3 图4 (3)由y=x2-2x-3=(x+1)(x-3)=(x-1)2-4,得A(-1, 0),顶点M(1,-4).在Rt△AOC中,OA∶OC=1∶3.分两种情况讨论△PCB与△AOC相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD中,AB//CD,∠ABC=90°,对角线AC、BD交于点G,已知AB=BC=3,tan∠BDC=12,点E是射线BC上任意一点,过点B作BF⊥DE,垂足为F,交射线AC于点M,交射线DC于点H.(1)当点F是线段BH的中点时,求线段CH的长;(2)当点E在线段BC上时(点E不与B、C重合),设BE=x,CM=y,求y关于x 的函数解析式,并指出x的取值范围;(3)联结GF,如果线段GF与直角梯形ABCD中的一条边(AD除外)垂直时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E在射线BC上运动,可以体验到,点G是BD的一个三等分点,CH始终都有CE的一半.还可以体验到,GF可以与BC垂直,也可以与DC垂直.满分解答(1)在Rt△BCD中,BC=3,tan∠BDC=BCDC=12,所以DC=6,DB=35.如图2,当点F是线段BH的中点时,DF垂直平分BH,所以DH=DB=35.此时CH=DB-DC=356.图2 图3(2)如图3,因为∠CBH与∠CDE都是∠BHD的余角,所以∠CBH=∠CDE.由tan∠CBH=tan∠CDE,得CH CECB CD=,即336CH x-=.又因为CH//AB,所以CH MCAB MA=,即332CHy=+.因此3632xy-=+.整理,得32(3)3xyx-=+.x的取值范围是0<x<3.(3)如图4,不论点E在BC上,还是在BC的延长线上,都有12BG ABGD DC==,12CH CE=.①如图5,如果GF⊥BC于P,那么AB//GF//DH.所以13BP PF BGBC CH BD===.所以BP=1,111(3)366PF CH CE x===-.由PF//DC,得PF PEDC CE=,即12(3)(3)363xxx---=-.整理,得242450x x-+=.解得21611x=±.此时21611BE=-.②如图6,如果GF⊥DC于Q,那么GF//BE.所以23QF DQ DGCE DC DB===.所以DQ=4,2(3)3QF x=-.由QF//BC,得QF QHBC CH=,即21(3)2(3)3213(3)2x xx---=-.整理,得223450x x--=.解得3341x±=.此时3341BE+=.图4 图5 图6如图1,抛物线y=ax2+2ax+c(a>0)与x轴交于A(-3,0)、B两点(A在B的左侧),与y轴交于点C(0,-3),抛物线的顶点为M.(1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上的一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24”,拖动点P在线段AC上运动,可以体验到,△COP与△ABC相似存在两种情况.满分解答(1)将A(-3,0)、C(0,-3)分别代入y=ax2+2ax+c,得960,3.a a cc-+=⎧⎨=-⎩解得a=1,c=-3.(2)由y=x2+2x-3=(x+1)2-4,得顶点M的坐标为(-1,-4).如图2,作MN⊥y轴于N.由A(-3,0)、C(0,-3)、M(-1,-4),可得OA=OC=3,NC=NM=1.所以∠ACO=∠MCN=45°,AC=32,MC=2.所以∠ACM=90°.因此tan∠MAC=MCAC=13.(3)由y=x2+2x-3=(x+3)(x-1),得B(1, 0).所以AB=4.如图3,在△COP与△ABC中,∠OCP=∠BAC=45°,分两种情况讨论它们相似:当CP ABCO AC=时,332CP=.解得22CP=.此时点P的坐标为(-2,-1).当CP ACCO AB=时,323CP=.解得924CP=.此时点P的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DE CG 的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25”,拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形. 满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2.又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB . 因此2DE DB CG CB==.图3 图4(2)如图3,由△DEB ∽△CGB ,得EB DB GB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4).所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE 236x +所以y =EG =22BE 22362x +2272x +. 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EF S EB =△△, 所以2364EGF EF x S EB +=⨯△. 由(1)知,DE=2CG ,所以 x =AE =AD -DE =62CG -.①如图6,当13CM CD =时,13CG CM AG AB ==. 所以113622442CG CA ==⨯=. 此时x =AE =62CG -=3.所以3162EF AE BF CB ===.所以13EF EB =. 所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==. 所以2212622555CG CA ==⨯=. 此时x =AE =62CG -=65.所以61655EF AE BF CB ==÷=.所以16EF EB =. 所以2364EGF EF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG :如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形.一方面22GB CB EB DB ==,另一方面2cos 452HB GB =︒=,所以GB HB EB GB=. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形.如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y :在Rt △AEN 中,AE =x ,所以AN =EN 2x . 又因为CG 22)x -,所以GN =AC -AN -CG =32所以y =EG =22EN GN +=222()(32)2x +=2272x +. 如图10,第(2)题如果构造Rt △EGQ 和Rt △CGP ,也可以求斜边EG =y :由于CG =2DE =2(6)x -,所以CP =GP =2CG =1(6)2x -=132x -. 所以GQ =PD =16(3)2x --=132x +,EQ =16(3)2x x ---=132x -. 所以y =EG =22GQ EQ +=2211(3)(3)22x x ++-=2272x +.图8 图9 图10如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值;(2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P的坐标. 图1 动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩ 解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=. (2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0). 因此cot ∠ADO =OD OA =248=3. (3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠P AQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN 内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CA x CP=. (1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25”,拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答 (1)如图2,作AH ⊥BC 于H ,那么PD //AH . 因此2AH CA x PD CP ===. 所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CA x PD CP==,得AH =xPD =3x . 又因为tan ∠MBN =AH BH=3,所以BH =x . 设BC =m .由CH CA x CD CP ==,得9m x x m -=-. 整理,得81x m x =-. 所以y =S △ABC =12BC AH ⋅=18321x x x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC中,BA=10x,cos∠ABC=10,BC=81xx-.①如图4,当BA=BC时,解方程8101xxx=-,得41105x=+.②如图5,当AB=AC时,BC=2BH.解方程821xxx=-,得x=5.③如图6,当CA=CB时,由cos∠ABC=10,得1102AB BC=.解方程11081021xxx⨯=⨯-,得135x=.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠P AB =∠CAB ,求点P 的坐标;(3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)). 由tan ∠P AB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+. 解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =32,∠ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似: 如图3,当CD BACB BC=时,CD =BA =4.此时D (0, 1). 如图4,当CD BC CB BA =时,32432=.解得92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD中,AD//BC,∠B=∠BCD=45°,AD=3,BC=9,点P是对角线AC上的一个动点,且∠APE=∠B,PE分别交射线AD和射线CD于点E和点G.(1)如图1,当点E、D重合时,求AP的长;(2)如图2,当点E在AD的延长线上时,设AP=x,DE=y,求y关于x的函数解析式,并写出它的定义域;(3)当线段DG=2时,求AE的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P在AC上运动,可以体验到,DG=2存在两种情况,对应的DE也存在两种情况.满分解答(1)如图3,作AM⊥BC,DN⊥BC,垂足分别为M、N,那么MN=AD=3.在Rt△ABM中,BM=3,∠B=45°,所以AM=3,AB=32.在Rt△AMC中,AM=3,MC=6,所以CA=35.如图4,由AD//BC,得∠1=∠2.又因为∠APE=∠B,当E、D重合时,△APD∽△CBA.所以AP CBAD CA=.因此335AP=.解得此时AP=95.(2)如图5,设(1)中E、D重合时点P的对应点为F.因为∠AFD=∠APE=45°,所以FD//PE.所以AF ADAP AE=,即95353x y=+.因此53y x=-.定义域是95<x≤35.图3 图4 图5(3)如图6,因为35CA =,95AF =,所以65FC =. 由DF //PE ,得21332FP DG FC DC ===.所以25FP =. 由DF //PE ,95259552AD AF DE FP ==÷=.所以2293DE AD ==. ①如图6,当P 在AF 的延长线上时,233AE AD DE =+=. ②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB =22,抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标; (2)求抛物线235y x bx c =++的对称轴; (3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24”,拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°.又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB =22B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO =2,BA =BC 10BD =32如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MA BE BN NE==. 设点E 的坐标为(x , y )101322x y==+-.图2 图3当点E在射线BA上时,∠EBO=∠DBC.分两种情况讨论相似:①当BE BCBO BD=时,102232=.解得2103BE=.此时1013222103x y==+-.解得x=43-,y=0.所以E4(,0)3-(如图4).②当BE BDBO BC=时,322210=.解得6105BE=.此时1013622105x y==+-.解得x=45-,y=85-.所以E48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD中,∠C=60°,AB=AD=5,CB=CD=8,点P、Q分别是边AD、BC上的动点,AQ与BP交于点E,且∠BEQ=90°-12∠BAD.设A、P两点间的距离为x.(1)求∠BEQ的正切值;(2)设AEPE=y,求y关于x的函数解析式及定义域;(3)当△AEP是等腰三角形时,求B、Q两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P在AD边上运动,可以体验到,∠AEP=∠BEQ=∠ABH=∠ADH,△ABF∽△BEF∽△BDP,△AEP∽△ADF.满分解答(1)如图2,联结BD、AC交于点H.因为AB=AD,CB=CD,所以A、C在BD的垂直平分线上.所以AC垂直平分BD.因此∠BAH=12∠BAD.因为∠BEQ=90°-12∠BAD,所以∠BEQ=90°-∠BAH=∠ABH.在Rt△ABH中,AB=5,BH=4,所以AH=3.所以tan∠BEQ=tan∠ABH=34.图2(2)如图3,由于∠BEQ=∠ABH,∠BEQ=∠AEP,∠ABH=∠ADH,所以∠AEP=∠BEQ=∠ABH=∠ADH.图3 图4 图5如图3,因为∠BF A是公共角,所以△BEF∽△ABF.如图4,因为∠DBP是公共角,所以△BEF∽△BDP.所以△ABF∽△BDP.所以AB BDBF DP=.因此585BF x=-.所以5(5)8BF x=-.所以518(5)(539)88FD BD BF x x=-=--=+.如图5,因为∠DAF是公共角,所以△AEP∽△ADF.所以5401539(539)8AE ADyPE FD xx====++.定义域是0≤x≤5.(3)分三种情况讨论等腰△AEP:①当EP=EA时,由于△AEP∽△ADF,所以DF=DA=5(如图6).此时BF=3,HF=1.作QM⊥BD于M.在Rt△BMQ中,∠QBM=60°,设BQ=m,那么12BM m=,3QM m=.在Rt△FMQ中,132FM m=-,tan∠MFQ=tan∠HF A=3,所以QM=3FM.解方程313(3)2m m=-,得BQ=m=933-.②如图7,当AE=AP时,E与B重合,P与D重合,此时Q与B重合,BQ=0.③不存在PE=P A的情况,因为∠P AE>∠P AH>∠AEP.图6 图7如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线y =x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4). 将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩ 解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+. (2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称. 因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-. (3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =42,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似: ①当CM AB CO AC =时,442CM =.解得32CM =.此时M (-3, 1)(如图3). ②当CM AC CO AB =时,4246CM =.解得823CM =.此时M 84(,)33-(如图4).图2 图3 图4如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25”,拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC . 所以MC MBME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y . 在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++. 整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB . 所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标;(3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24”,梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a . 解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+. 顶点D 的坐标为8(1,)3. (2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++. 作FH ⊥x 轴于H ,那么∠FEH =∠DAE . 由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =. 解方程22442(1)333x x x -++=-,得5x =±.所以F 454(5,)-.图2 图3 图4。

2016上海市各区一模分类整理(第25题压轴题)

2016上海市各区一模分类整理(第25题压轴题)

2016年初三一模知识点分类整理——压轴题压轴题1. (宝山)如图,点C在以AB为直径的半圆的圆周上,若AB= 4,∠ABC=30°,D为边AB上一动点,点E和D关于AC对称,当D与A重合时,F为EC的延长线上满足CF=EC的点,当D与A不重合时,F为EC的延长线与过D且垂直于DE的直线的交点,(1)当D与A不重合时,CF=EC的结论是否成立?试证明你的判定。

,(2)设AD=x,EF=y,求y关于x的函数及其定义域;(3)如存在E或F恰好落在弧AC或弧BC上时,求出此时AD的值;如不存在,则请说明理由.(4)请直接写出当D从A运动到B时,线段EF扫过的面积.2. (崇明) 如图,已知矩形ABCD 中,6AB =,8BC =,E 是BC 边上一点(不与B 、C 重合),过点E 作EF AE ⊥交AC 、CD 于点M 、F ,过点B 作BG AC ⊥,垂足为G ,BG 交AE 于H ; (1)求证:△ABH ∽△ECM ; (2)设BE x =,EHy EM=,求y 关于x 的函数解析式,并写出定义域; (3)当△BHE 为等腰三角形时,求BE 的长;3. (奉贤)已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=41△时,求tan ∠BCE 的值.第25题图AE第25题备用图A4. (虹口)如图,在平行四边形ABCD 中,E 为边BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H ,设AD EFx AB AF==; (1)当1x =时,求:AG AB 的值; (2)设GDHEBAS y S ∆∆=,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当3DH HC =时,求x 的值;5. (黄浦)A 是1l 上的点,B 、C 是2l 上的点,AC ⊥BC ,∠ABC =60°,AB =4,O 是AB 的中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合 (1)如图12,当点'D 落在直线1l 上时,求DB 的长; (2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N .① 如图13,当点E 在线段AM 上时,设x AE =,y DN =,求y 关于x 的函数解析式及其定义域;② 若DON ∆的面积为323时,求AE 的长. B CD 'D O1l 2l A图12A BCD 'D O1l 2l MNE图136. (嘉定)已知:△ABC ,90ABC ∠=︒,1tan 2BAC ∠=,点D 在边AC 上的延长线上, 且2DB DC DA =⋅(如图); (1)求DCCA的值; (2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G ; ① 如图1,当3CE BC =时,求BFFG的值;② 如图2,当CE BC =时,求BCD BEG S S ∆∆的值;7. (闵行)如图,在直角梯形ABCD 中,AB ∥CD ,90ABC ∠=︒,对角线AC 、BD 交于点G ,已知3AB BC ==,1tan 2BDC ∠=,点E 是射线BC 上任意一点,过点B 作BF DE ⊥,垂足 为点P ,交射线AC 于点M ,射线DC 于点H ; (1)当点F 是线段BH 中点时,求线段CH 的长;(2)当点E 在线段BC 上时(点E 不与B 、C 重合),设BE x =,CM y =,求y 关于x 的函数解析式,并指出x 的取值范围;(3)联结GF ,如果线段GF 与直角梯形ABCD 中的一条边(AD 除外)垂直时,求x 的值;MEM E8. (浦东)如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D不重合),45,EBM BE ∠=︒交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点.M (1) 如图1,联结BD ,求证:DEBCGB ∆∆,并写出DECG的值; (2) 联结EG ,如图2,若设,,AE x EG y ==求y 关于x 的函数解析式,并写出函数的定义域; (3) 当M 为边CD 的三等分点时,求EGF S ∆的面积。

2016上海市初三一模数学压轴题汇编

2016上海市初三一模数学压轴题汇编

2016年黄浦区一模18、如图6,在梯形ABCD 中,AD//BC ,45=∠B ,点E 是AB 的中点,DE=DC ,90=∠EDC 若AB=2,则AD 的长是_____24、在平面直角坐标系中,抛物线c ax ax y +-=32与x 轴交于A (-1,0)、B 两点(A 在B 点左侧),与y 轴交于点C (0,2)(1)求抛物线的对称轴及B 点坐标 (2)求证:BCO CAO ∠=∠(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作OD BF ⊥,垂足为BOD ∆外一点E ,若BDE ∆与ABC ∆相似,求点D 的坐标25、已知直线1l 、2l ,1l //2l ,点A 是1l 上的点,B 、C 是2l 上的点BC AC ⊥,60=∠ABC ,AB=4,O 是AB 中点,D 是CB 延长线上的点,将DOC ∆沿直线CO 翻折,点D 与'D 重合(1)如图12,当点'D 落在直线1l 上时,求DB 的长(2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N①如图13,当点E 在线段AM 上时,设AE=x,DN=y ,求y 关于x 的函数解析式及其定义域 ②若DON ∆的面积为323时,求AE 的长2016年杨浦区一模18、如图,已知将ABC ∆沿角平分线BE 所在的直线翻折,点A 恰好落在边BC 的中点M 处,且AM=BE ,那么EBC ∠的正切值为_____24、在平面直角坐标系中,抛物线c bx x y ++-=221与x 轴交于A 、B 两点,与y 轴交于点C ,直线4+=x y 经过A,C 两点(1)求抛物线的表达式(2)如果点P 、Q 在抛物线上(P 点在对称轴的左边),且PQ//AO,PQ=2AO,求点P 、Q 的坐标 (3)动点M 在直线4+=x y 上,且ABC ∆与COM ∆相似,求点M 的坐标25、已知菱形ABCD 的边长为5,对角线AC 的长为6,(如图1),点E 为边AB 上的动点,点F 在射线AD 上,且B ECF ∠=∠,直线CF 交直线AB 于点M,的余弦值(1)求B(2)当点E与点A重合时,试画出符合题意的图形,并求BM的长(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式并写出定义域2016年徐汇区一模18、如图8,在Rt△ABC中,∠BAC=90°,AB=3,cosB=,将△ABC绕着点A旋转得△ADE,点B的对应点D落在边BC上,联结CE,那么CE的长是________.24、如图12,在Rt△AOB中,∠AOB=90°,已知点A(-1,-1),点B在第二象限,OB=,抛物线经过点A和点B.(1)求点B的坐标;(2)求抛物线的对称轴;(3)如果该抛物线的对称轴分别和边AO、BO的延长线交于点C、D,设点E在直线AB上,当△BOE和△BCD相似时,直接写出点E的坐标。

(word完整版)2016年上海市各区县中考数学一模压轴题图文解析第24、25题

(word完整版)2016年上海市各区县中考数学一模压轴题图文解析第24、25题

2016年上海市各区县中考数学一模压轴题图文解析目录第一部分第24、25题图文解析2016年上海市崇明县中考数学一模第24、25题 / 22016年上海市奉贤区中考数学一模第24、25题 / 52016年上海市虹口区中考数学一模第24、25题 / 82016年上海市黄浦区中考数学一模第24、25题 / 112016年上海市嘉定区中考数学一模第24、25题 / 142016年上海市静安区青浦区中考数学一模第24、25题 / 172016年上海市闵行区中考数学一模第24、25题 / 202016年上海市浦东新区中考数学一模第24、25题 / 242016年上海市普陀区中考数学一模第24、25题 / 282016年上海市松江区中考数学一模第24、25题 / 312016年上海市徐汇区中考数学一模第24、25题 / 342016年上海市杨浦区中考数学一模第24、25题 / 382016年上海市闸北区中考数学一模第24、25题 / 412016年上海市长宁区金山区中考数学一模第24、25题 / 452016年上海市宝山区中考数学一模第25、26题 / 48如图1,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于点C,其中B(3, 0),C(0, 4),点A在x轴的负半轴上,OC=4OA.(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上的一个动点,过点P作PM//BC交射线AC于M,联结CP,若△CPM的面积为2,则请求出点P的坐标.图1动感体验请打开几何画板文件名“16崇明一模24”,拖动点P在x轴的正半轴上运动,可以体验到,有两个时刻,△CPM的面积为2.满分解答(1)由C(0, 4),OC=4OA,得OA=1,A(-1, 0).设抛物线的解析式为y=a(x+1)(x-3),代入点C(0, 4),得4=-3a.解得43a=-.所以244(1)(3)(23)33y x x x x=-+-=---2416(1)33x=--+.顶点坐标为16 (1)3,.(2)如图2,设P(m, 0),那么AP=m+1.所以S△CPA=12AP CO⋅=1(1)42m+⨯=2m+2.由PM//BC,得CM BPCA BA=.又因为CPMCPAS CMS CA=△△,所以S△CPM =(22)BPmBA+.①如图2,当点P在AB上时,BP=3-m.解方程3(22)4mm-+=2,得m=1.此时P(1, 0).②如图3,当点P在AB的延长线上时,BP=m-3.解方程3(22)4mm-+=2,得122m=±.此时P(122,0)+.图2 图3如图1,已知矩形ABCD中,AB=6,BC=8,点E是BC边上一点(不与B、C重合),过点E作EF⊥AE交AC、CD于点M、F,过点B作BG⊥AC,垂足为G,BG交AE于点H.(1)求证:△ABH∽△ECM;(2)设BE=x,EHEM=y,求y关于x的函数解析式,并写出定义域;(3)当△BHE为等腰三角形时,求BE的长.图1 备用图动感体验请打开几何画板文件名“16崇明一模25”,拖动点E在BC上运动,可以体验到,有三个时刻,△BHE可以成为为等腰三角形.满分解答(1)如图2,因为∠1和∠2都是∠BAC的余角,所以∠1=∠2.又因为∠BAH和∠CEM都是∠AEB的余角,所以∠BAH=∠CEM.所以△ABH∽△ECM.图2 图3(2)如图3,延长BG交AD于N.在Rt△ABC中,AB=6,BC=8,所以AC=10.在Rt△ABN中,AB=6,所以AN=AB tan∠1=34AB=92,BN=152.如图2,由AD//BC,得92AH ANEH BE x==.由△ABH∽△ECM,得68AH ABEM EC x==-.所以y=EHEM=AH AHEM EH÷=6982x x÷-=12729xx-.定义域是0<x<8.(3)如图2,由AD//BC,得92NH ANBH BE x==.所以292BN xBH x+=.所以215292xBHx=⨯+=1529xx+.在△BHE中,BE=x,cos∠HBE=35,1529xBHx=+.分三种情况讨论等腰三角形BHE:①如图4,当BE=BH时,解方程1529xxx=+,得x=3.②如图5,当HB=HE时,1cos2BE BH B=⋅∠.解方程11532295xxx=⨯+,得92x=.③如图6,当EB=EH时,1cos2BH BE B=⋅∠.解方程11532295xxx⨯=+,得74x=.图4 图5 图6如图1,二次函数y=x2+bx+c的图像经过原点和点A(2, 0),直线AB与抛物线交于点B,且∠BAO=45°.(1)求二次函数的解析式及顶点C的坐标;(2)在直线AB上是否存在点D,使得△BCD为直角三角形,若存在,求出点D的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16奉贤一模24”,可以体验到,以BC为直径的圆恰好经过点A,直角三角形BCD 存在两种情况.满分解答(1)因为抛物线y=x2+bx+c与x轴交于O、A(2, 0)两点,所以y=x(x-2)=(x-1)2-1.顶点C的坐标为(1,-1).(2)如图2,作BH⊥x轴于H.设B(x, x2-2x).由于∠BAH=45°,所以BH=AH.解方程x2-2x=2-x,得x=-1,或x=2.所以点B的坐标为(-1, 3).图2①∠BDC=90°.如图3,由A(2, 0)、C(1,-1),可得∠CAO=45°.因此∠BAC=90°.所以当点D与点A(2, 0)重合时,△BCD是直角三角形.②∠BCD=90°.由A(2, 0)、B(-1, 3),可得直线AB的解析式为y=-x+2.【解法一】如图4,过点C作BC的垂线与直线AB交于点D.设D(m,-m+2 ).由BD2=BC2+CD2,得(m+1)2+(-m-1)2=22+42+(m-1)2+(-m+3)2.解得73m=.此时点D的坐标为71(,)33-.【解法二】构造△BMC∽△CND,由BM CNMC ND=,得4123mm-=-+.解得73m=.图2 图3 图4如图1,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D是斜边AB上任意一点,联结DC,过点C作CE ⊥CD,联结DE,使得∠EDC=∠A,联结BE.(1)求证:AC·BE=BC·AD;(2)设AD=x,四边形BDCE的面积为S,求S与x之间的函数关系式,并写出定义域;(3)当S△BDE=14S△ABC时,求tan∠BCE的值.图1 备用图动感体验请打开几何画板文件名“16奉贤一模25”,拖动点E在AD边上运动,可以体验到,△ABC与△DEC保持相似,△ACD与△BCE保持相似,△BDE是直角三角形.满分解答(1)如图2,在Rt△BAC和Rt△EDC中,由tan∠A=tan∠EDC,得BC EC AC DC=.如图3,已知∠ACB=∠DCE=90°,所以∠1=∠2.所以△ACD∽△BCE.所以AC BCAD BE=.因此AC·BE=BC·AD.图2 图3(2)在Rt△ABC中,AB=5,BC=3,所以AC=4.所以S△ABC=6.如图3,由于△ABC与△ADC是同高三角形,所以S△ADC∶S△ABC=AD∶AB=x∶5.所以S△ADC=65x.所以S△BDC=665x-.由△ADC∽△BEC,得S△ADC∶S△BEC=AC2∶BC2=16∶9.所以S△BEC=916S△ADC=96165x⨯=2740x.所以S=S四边形BDCE=S△BDC+S△BEC=6276540x x-+=21640x-+.定义域是0<x<5.(3)如图3,由△ACD∽△BCE,得AC BCAD BE=,∠A=∠CBE.由43x BE=,得BE=34x.由∠A=∠CBE,∠A与∠ABC互余,得∠ABE=90°(如图4).所以S△BDE=1133(5)(5) 2248BD BE x x x x⋅=-⨯=--.当S△BDE=14S△ABC=13642⨯=时,解方程33(5)82x x--=,得x=1,或x=4.图4 图5 图6作DH⊥AC于H.①如图5,当x=AD=1时,在Rt△ADH中,DH=35AD=35,AH=45AD=45.在Rt△CDH中,CH=AC-AH=416455-=,所以tan∠HCD=DHCH=316.②如图6,当x=AD=4时,在Rt△ADH中,DH=35AD=125,AH=45AD=165.在Rt△CDH中,CH=AC-AH=164455-=,所以tan∠HCD=DHCH=3.综合①、②,当S△BDE=14S△ABC时, tan∠BCE的值为316或3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴分别交于点A (2, 0)、点B (点B 在点A 的右侧),与y 轴交于点C ,tan ∠CBA =12.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D ,求四边形ACBD 的面积;(3)设抛物线上的点E 在第一象限,△BCE 是以BC 为一条直角边的直角三角形,请直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16虹口一模24”,可以体验到,以BC 为直角边的直角三角形BCE 有2个.满分解答(1)由y =ax 2+bx +3,得C (0, 3),OC =3.由tan ∠CBA =OC OB =12,得OB =6,B (6, 0).将A (2, 0)、B (6, 0)分别代入y =ax 2+bx +3,得4230,36630.a b a b ++=⎧⎨++=⎩解得14a =,b =-2.所以221123(4)144y x x x =-+=--. (2)如图2,顶点D 的坐标为(4,-1).S 四边形ACBD =S △ABC +S △ABD =1123+2122⨯⨯⨯⨯=4.(3)如图3,点E 的坐标为(10, 8)或(16, 35).思路如下:设E 21(,23)4x x x -+.当∠CBE =90°时,过点E 作EF ⊥x 轴于F ,那么2EF BOBF CO==.所以EF =2BF .解方程21232(4)4x x x -+=-,得x =10,或x =4.此时E (10, 8).当∠BCE =90°时,EF =2CF .解方程21224x x x -=,得x =16,或x =0.此时E (16, 35).图2 图3如图1,在平行四边形ABCD 中,E 为BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H .设AD EFx AB AF==.(1)当x =1时,求AG ∶AB 的值;(2)设GDHEBAS S △△=y ,求y 关于x 的函数关系式,并写出x 的取值范围; (3)当DH =3HC 时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16虹口一模25”,拖动点B 可以改变平行四边形的邻边比,可以体验到,当菱形ABCD 时,G 是AD 的中点,△GDH 与△EBA 保持相似.还可以体验到,DH =3HC 存在两种情况.满分解答(1)如图2,当x =1时,AD =AB ,F 是AE 的中点.因为AD //CB ,所以AG =BE =12BC =12AD =12AB .所以AG ∶AB =1∶2.(2)如图3,已知AD EF x AB AF ==,设AB =m ,那么AD =xm ,BE =12xm .由AD //BC ,得BE EFx AG AF ==.所以12BE AG m x ==.所以DG =12xm m -.图2 图3 图4 如图4,延长AE 交DC 的延长线于M . 因为GH //AE ,所以△GDH ∽△ADM . 因为DM //AB ,所以△EBA ∽△ADM . 所以△GDH ∽△EBA .所以y =GDH EBAS S △△=2()DG BE =2211()()22xm m xm -÷=22(21)x x -. (3)如图5,因为GH //AM ,所以11()2122DH DG xm m m x HM GA ==-÷=-. 因为DM //AB ,E 是BC 的中点,所以MC =AB =DC .DH =3HC 存在两种情况:如图5,当H 在DC 上时,35DH HM =.解方程3215x -=,得45x =. 如图6,当H 在DC 的延长线上时,3DH HM =.解方程213x -=,得45x =.图5 图6如图1,在平面直角坐标系中,抛物线y =ax 2-3ax +c 与x 轴交于A (-1, 0)、B 两点(点A 在点B 左侧),与y 轴交于点C (0, 2).(1)求抛物线的对称轴及点B 的坐标; (2)求证:∠CAO =∠BCO ;(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作BE⊥OD ,垂足为△BOD 外一点E ,若△BDE 与△ABC相似,求点D 的坐标.图1动感体验请打开几何画板文件名“16黄浦一模24",拖动点D 在射线BC 上运动,可以体验到,当点E 在△BOD 外时,有两个时刻,Rt △BDE 的两条直角边的比为1∶2.满分解答(1)由y =ax 2-3ax +c ,得抛物线的对称轴为直线32x =. 因此点A (-1, 0)关于直线32x =的对称点B 的坐标为(4, 0). (2)如图2,因为tan ∠CAO =2CO AO =,tan ∠BCO =2BOCO=,所以∠CAO =∠BCO .(3)由B (4, 0)、C (0, 2),得直线BC 的解析式为122y x =-+.设D 1(,2)2x x -+.以∠ABC (∠OBC )为分类标准,分两种情况讨论:①如图3,当∠OBC =∠DBE 时,由于∠OBC 与∠OCB 互余,∠DBE 与∠ODC 互余,所以∠OCB =∠ODC .此时OD =OC =2.根据OD 2=4,列方程221+(2)42x x -+=.解得x =0,或85x =.此时D 86(,)55.②如图4,当∠OBC =∠EDB 时,OD =OB =4.根据OD 2=16,列方程221+(2)162x x -+=.解得x =4,或125x =-.此时D 1216(,)55-.图2 图3 图4如图1,已知直线l1//l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O是AB的中点,D是CB的延长线上的点,将△DOC沿直线CO翻折,点D与点D′重合.(1)如图1,当点D落在直线l1上时,求DB的长;(2)延长DO交直线l1于点E,直线OD′分别交直线l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的解析式及定义域;②若△DON的面积为332,求AE的长.图1 图2动感体验请打开几何画板文件名“16黄浦一模25”,拖动点D在CB的延长线上运动,可以体验到,CD′与AB保持平行,△BON与△BDO保持相似.还可以体验到,有两个时刻DN=3.满分解答(1)如图3,在Rt△ABC中,∠ABC=60°,AB=4,O是AB的中点,所以△OBC是边长为2的等边三角形.又因为△DOC与△D′OC关于CO对称,所以∠BCD′=120°,CD′=CD.所以AB//D′C.当点D′ 落在直线l1上时, AD′//BC.所以四边形ABCD′是平行四边形.所以CD′=BA=4.此时BD=CD-CB=CD′-CB=4-2=2.图3(2)①如图4,由于AE//BD,O是AB的中点,所以AE=BD=x.因为AB//D′C,所以∠AOM=∠2.又因为∠AOM=∠BON,∠2=∠1,所以∠BON=∠1.又因为∠OBN=∠DBO,所以△BON∽△BDO.所以BO BDBN BO=.因此22xx y=+.于是得到24xyx-=.定义域是0<x≤2.②在△DON中,DN边上的高为3.当S△DON=332时,DN=3.有两种情形:情形1,如图4,当D在BN上时,DN=24xyx-==3,解得x=1,或x=-4.此时AE=1.情形2,如图5,当D在BN的延长线上时,由BO BDBN BO=,得22xx y=-.于是得到24xyx-=.当DN=24xyx-==3时,解得x=4,或x=-1.此时AE=4.图4 图5如图1,在平面直角坐标系中,抛物线212y x bx c =++经过点A (4,0)、点C (0,-4),点B 与点A 关于这条抛物线的对称轴对称.(1)用配方法求这条抛物线的顶点坐标; (2)联结AC 、BC ,求∠ACB 的正弦值; (3)点P 是这条抛物线上的一个动点,设点P 的横坐标为m (m >0),过点P 作y 轴的垂线PQ ,垂足为Q ,如果∠QPO =∠BCO ,求m 的值.图1动感体验请打开几何画板文件名“16嘉定一模24”,可以体验到,QO ∶QP =OB ∶OC .满分解答(1)将A (4, 0)、C (0,-4)分别代入212y x bx c =++,得840,4.b c c ++=⎧⎨=-⎩ 解得b =-1,c =-4.所以2142y x x =--=1(2)(4)2x x +-=219(1)22x --. 点B 的坐标是(-2, 0),顶点坐标是9(1,)2-.(2)由A (4, 0)、B (-2, 0)、C (0,-4),得AC =42,BC =25,AB =6,CO =4. 作BH ⊥AC 于H .由S △ABC =12AB CO ⋅=12AC BH ⋅.得AB CO BH AC ⋅==2442=32.因此sin ∠ACB =BH BC =3225=31010. (3)点P 的坐标可以表示为21(,4)2m m m --.由tan ∠QPO =tan ∠BCO ,得12QO OB QP OC ==.所以QP =2QO .解方程212(4)2m m m =--,得3412m ±=. 图2所以点P 的横坐标m =3412+.如图1,已知△ABC 中,∠ABC =90°,tan ∠BAC =12.点D 在AC 边的延长线上,且DB 2=DC ·DA .(1)求DCCA的值;(2)如果点E 在线段BC 的延长线上,联结AE ,过点B 作AC 的垂线,交AC 于点F ,交AE 于点G .①如图2,当CE =3BC 时,求BFFG的值;②如图3,当CE =BC 时,求BCDBEGS S △△的值.图1动感体验请打开几何画板文件名“16嘉定一模25",拖动点E 运动,可以体验到,当CE =3BC 时,BD //AE ,BG 是直角三角形ABE 斜边上的中线.当CE =BC 时,△ABF ≌△BEH ,AF =2EH =4CF .满分解答(1)如图1,由DB 2=DC ·DA ,得DB DADC DB=. 又因为∠D 是公共角,所以△DBC ∽△DAB .所以DB BC CDDA AB BD==. 又因为tan ∠BAC =BC AB =12,所以12CD BD =,12BD DA =.所以14CD DA =.所以13DC CA =.(2)①如图4,由△DBC ∽△DAB ,得∠1=∠2.当BF ⊥CA 时,∠1=∠3,所以∠2=∠3. 因为13DC CA =,当CE =3BC 时,得DC BC CA CE =.所以BD //AE . 所以13BD EA =,∠2=∠E .所以∠3=∠E .所以GB =GE .于是可得G B 是Rt △ABE 斜边上的中线.所以23BD GA =.所以23BF BD FG GA ==.②如图5,作EH ⊥BG ,垂足为H .当CE=BC时,CF是△BEH的中位线,BF=FH.设CF=m.由tan∠1=tan∠3=12,得BF=2m,AF=4m.所以FH=2m,EH=2m,DC=1533CA m=.因此422FG AF mHG EH m===.所以2433FG FH m==.所以103BG m=.于是5121321102323BCDBEGm mDC BFSS BG EH m m⨯⋅===⋅⨯△△.图4 图5如图1,直线121+=x y 与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相交于点C ,与直线121+=x y 相交于点A 、D ,CD //x 轴,∠CDA =∠OCA .(1)求点C 的坐标;(2)求这个二次函数的解析式.图1动感体验请打开几何画板文件名“16静安青浦一模24”,可以体验到,△AOB 与△COA 相似.满分解答(1)由121+=x y ,得A (-2, 0),B (0, 1).所以OA =2,OB =1. 由于CD //x 轴,所以∠CDA =∠1.又已知∠CDA =∠OCA ,所以∠1=∠OCA .由tan ∠1=tan ∠OCA ,得OB OAOA OC=. 所以122OC=.解得OC =4.所以C (0, 4).(2)因为CD //x 轴,所以y D =y C =4. 图2解方程1142x +=,得x =6.所以D (6, 4).所以抛物线的对称轴为直线x =3.因此点A (-2, 0)关于直线x =3的对称点为(8, 0). 设抛物线的解析式为y =a (x +2)(x -8).代入点C (0, 4),得4=-16a .解得14a =-.所以2113(2)(8)4442y x x x x =-+-=-++.如图1,在梯形ABCD 中,AD //BC ,AC =BC =10,cos ∠ACB =45,点E 在对角线AC 上,且CE =AD ,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G .设AD =x ,△AEF 的面积为y .(1)求证:∠DCA =∠EBC ;(2)当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积.图1动感体验请打开几何画板文件名“16静安青浦一模25”,拖动点D 运动,可以体验到,直角三角形DFG 存在两种情况.满分解答(1)如图2,因为AD //BC ,所以∠DAC =∠ECB .又因为AC =CB ,AD =CE ,所以△ADC ≌△CEB .所以∠DCA =∠EBC . (2)如图3,作EH ⊥BC 于H .在Rt △EHC 中,CE =x ,cos ∠ECB =45,所以CH =45x ,EH =35x .所以S △CEB =12BC EH ⋅=131025x ⨯⨯=3x .因为AD //BC ,所以△AEF ∽△CEB .所以2()AEF CEB S AE S CE=△△. 所以22103(10)()3AEF x x y S x x x--==⨯=△.定义域是0<x ≤555-. 定义域中x =555-的几何意义如图4,D 、F 重合,根据AD AE CB CE =,列方程1010x xx-=.图2 图3 图4(3)①如图5,如果∠FGD =90°,那么在Rt △BCG 和Rt △BEH 中,tan∠GBC=335104504xGC HE xGB HB x x ===--.由(1)得∠ACD=∠CBE.由cos∠ACD=cos∠CBE,得GC GBCE BC=.所以10GC CE xGB BC==.因此350410x xx=-.解得x=5.此时S△AEF=23(10)15xyx-==.②如图6,如果∠FDG=90°,那么在Rt△ADC中,AD=AC cos∠CAD=4105⨯=8.此时S△AEF=23(10)32xyx-==.图5 图6例 2016年上海市闵行区中考一模第24题如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于A、B两点,点B的坐标为(3, 0),与y轴交于点C(0,-3),点P是直线BC下方的抛物线上的任意一点.(1)求这个二次函数的解析式;(2)联结PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标;(3)如果点P在运动过程中,使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.图1动感体验请打开几何画板文件名“16闵行一模24",拖动点P在直线BC下方的抛物线上运动,可以体验到,当四边形POP′C为菱形时,PP′垂直平分OC.还可以体验到,当点P与抛物线的顶点重合时,或者点P落在以BC 为直径的圆上时,△PCB是直角三角形.满分解答(1)将B(3, 0)、C(0,-3)分别代入y=x2+bx+c,得930,3.b cc++=⎧⎨=-⎩.解得b=-2,c=-3.所以二次函数的解析式为y=x2-2x-3.(2)如图2,如果四边形POP′C为菱形,那么PP′垂直平分OC,所以y P=32 -.解方程23 232x x--=-,得2102x±=.所以点P的坐标为2103(,)22+-.图2 图3 图4(3)由y=x2-2x-3=(x+1)(x-3)=(x-1)2-4,得A(-1, 0),顶点M(1,-4).在Rt△AOC中,OA∶OC=1∶3.分两种情况讨论△PCB与△AOC相似:①如图3,作MN⊥y轴于N.由B(3, 0)、C(0,-3),M(1,-4),可得∠BOC=∠MCN=45°,所以∠BCM=90°.又因为CM∶CB=1∶3,所以当点P与点M(1,-4)重合时,△PCB∽△AOC.②如图4,当∠BPC=90°时,构造△AEP∽△PFB,那么CE PF EP FB=.设P(x, x2-2x-3),那么22(3)(23)3(23)x x xx x x-----=---.化简,得1(2)1xx--=+.解得x=.此时点P的横坐标为x=.而2(23)32CB NB x xxCP MP x x---===-++是个无理数,所以当∠BPC=90°时,△PCB与△AOC不相似.例 2016年上海市闵行区中考一模第25题如图1,在直角梯形ABCD中,AB//CD,∠ABC=90°,对角线AC、BD交于点G,已知AB=BC=3,tan∠BDC=12,点E是射线BC上任意一点,过点B作BF⊥DE,垂足为F,交射线AC于点M,交射线DC于点H.(1)当点F是线段BH的中点时,求线段CH的长;(2)当点E在线段BC上时(点E不与B、C重合),设BE=x,CM=y,求y关于x的函数解析式,并指出x的取值范围;(3)联结GF,如果线段GF与直角梯形ABCD中的一条边(AD除外)垂直时,求x的值.图1 备用图动感体验请打开几何画板文件名“16闵行一模25”,拖动点E在射线BC上运动,可以体验到,点G是BD的一个三等分点,CH始终都有CE的一半.还可以体验到,GF可以与BC垂直,也可以与DC垂直.满分解答(1)在Rt△BCD中,BC=3,tan∠BDC=BCDC=12,所以DC=6,DB=35.如图2,当点F是线段BH的中点时,DF垂直平分BH,所以DH=DB=35.此时CH=DB-DC=356.图2 图3(2)如图3,因为∠CBH与∠CDE都是∠BHD的余角,所以∠CBH=∠CDE.由tan ∠CBH =tan ∠CDE ,得CH CE CB CD =,即336CH x-=. 又因为CH //AB ,所以CH MC AB MA =,即332CH y y =+. 因此3632x yy -=+.整理,得32(3)3x y x -=+.x 的取值范围是0<x <3. (3)如图4,不论点E 在BC 上,还是在BC 的延长线上,都有12BG AB GD DC ==, 12CH CE =. ①如图5,如果GF ⊥BC 于P ,那么AB //GF //DH .所以13BP PF BG BC CH BD ===.所以BP =1,111(3)366PF CH CE x ===-.由PF //DC ,得PF PE DC CE =,即12(3)(3)363x x x ---=-. 整理,得242450x x -+=.解得21611x =±.此时21611BE =-. ②如图6,如果GF ⊥DC 于Q ,那么GF //BE .所以23QF DQ DG CE DC DB ===.所以DQ =4,2(3)3QF x =-.由QF //BC ,得QF QH BC CH =,即21(3)2(3)3213(3)2x x x ---=-. 整理,得223450x x --=.解得33414x ±=.此时33414BE +=.图4 图5 图6如图1,抛物线y=ax2+2ax+c(a>0)与x轴交于A(-3,0)、B两点(A在B的左侧),与y轴交于点C(0,-3),抛物线的顶点为M.(1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上的一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“16浦东一模24",拖动点P在线段AC上运动,可以体验到,△COP与△ABC相似存在两种情况.满分解答(1)将A(-3,0)、C(0,-3)分别代入y=ax2+2ax+c,得960,3.a a cc-+=⎧⎨=-⎩解得a=1,c=-3.(2)由y=x2+2x-3=(x+1)2-4,得顶点M的坐标为(-1,-4).如图2,作MN⊥y轴于N.由A(-3,0)、C(0,-3)、M(-1,-4),可得OA=OC=3,NC=NM=1.所以∠ACO=∠MCN=45°,AC=32,MC=2.所以∠ACM=90°.因此tan∠MAC=MCAC=13.(3)由y=x2+2x-3=(x+3)(x-1),得B(1, 0).所以AB=4.如图3,在△COP与△ABC中,∠OCP=∠BAC=45°,分两种情况讨论它们相似:当CP ABCO AC=时,4332CP=.解得22CP=.此时点P的坐标为(-2,-1).当CP ACCO AB=时,3234CP=.解得924CP=.此时点P的坐标为93(,)44--.图2 图3如图1,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与A 、D 不重合),∠EBM =45°,BE 交对角线AC 于点F ,BM 交对角线于点G ,交CD 于点M .(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)如图2,联结EG ,设AE =x ,EG =y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当M 为边DC 的三等分点时,求S △EGF 的面积.图1 图2动感体验请打开几何画板文件名“16浦东一模25",拖动点E 在AD 边上运动,可以体验到, △EBD 与△GBC 保持相似,△EBG 保持等腰直角三角形.满分解答(1)如图3,因为∠EBM =∠DBC =45°,所以∠1=∠2. 又因为∠EDB =∠GCB =45°,所以△DEB ∽△CGB .因此2DE DB CG CB==.图3 图4 (2)如图3,由△DEB ∽△CGB ,得EB DBGB CB=. 又因为∠EBM =∠DBC =45°,所以△EBG ∽△DBC (如图4). 所以△EBG 是等腰直角三角形.如图4,在Rt △ABE 中,AB =6,AE =x ,所以BE 236x +所以y =EG 222362x +2272x + 定义域是0<x <6.(3)如图5,由于S △EGB =12EG 2=2364x +,EGF EGB S EFS EB=△△,所以2364EGFEF x S EB +=⨯△. 由(1)知,DE =2CG ,所以 x =AE =AD -DE =62CG -.①如图6,当13CM CD =时,13CG CM AG AB ==. 所以113622442CG CA ==⨯=.此时x =AE =62CG -=3.所以3162EF AE BF CB ===.所以13EF EB =.所以2364EGF EF x S EB +=⨯△=2133634+⨯=154. ②如图7,当23CM CD =时,23CG CM AG AB ==.所以2212622555CG CA ==⨯=.此时x =AE =62CG -=65.所以61655EF AE BF CB ==÷=.所以16EF EB =.所以2364EGFEF x S EB +=⨯△=26()361564+⨯=3925.图5 图6 图7第(2)题也可以这样证明等腰直角三角形EBG : 如图8,作GH ⊥EB 于H ,那么△GBH 是等腰直角三角形. 一方面22GB CB EB DB ==,另一方面2cos 452HB GB =︒=GB HB EB GB =. 于是可得△EBG ∽△GBH .所以△EBG 是等腰直角三角形. 如图9,第(2)题也可以构造Rt △EGN 来求斜边EG =y : 在Rt △AEN 中,AE =x ,所以AN =EN =22x . 又因为CG 2=2(6)2x -,所以GN =AC -AN -CG =32所以y =EG =22EN GN +=222()(32)2x +=22722x +. 如图10,第(2)题如果构造Rt △EGQ 和Rt △CGP ,也可以求斜边EG =y : 由于CG =22DE =2(6)2x -,所以CP =GP =22CG =1(6)2x -=132x -.所以GQ =PD =16(3)2x --=132x +,EQ =16(3)2x x ---=132x -.所以y =EG =22GQ EQ +=2211(3)(3)22x x ++-=22722x +.图8 图9 图10例 2016年上海市普陀区中考一模第24题如图1,已知二次函数273y ax x c =-+的图像经过A (0, 8)、B (6, 2)、C (9, m )三点,延长AC 交x 轴于点D .(1)求这个二次函数的解析式及m 的值; (2)求∠ADO 的余切值;(3)过点B 的直线分别与y 轴的正半轴、x 轴、线段AD 交于点P (点A 的上方)、M 、Q ,使以点P 、A 、Q 为顶点的三角形与△MDQ 相似,求此时点P 的坐标. 图1动感体验请打开几何画板文件名“16普陀一模24”,拖动点Q 在线段AD 上运动,可以体验到,△APQ 与△MDQ 相似只存在一种情况.满分解答(1)将A (0, 8)、B (6, 2)分别代入273y ax x c =-+,得8,3614 2.c a c =⎧⎨-+=⎩解得29a =,c =8.所以二次函数的解析式为227893y x x =-+. 所以227(9)818218593m f x x ==-+=-+=.(2)由A (0, 8)、C (9, 5),可得直线AC 的解析式为183y x =-+.所以D (24, 0).因此cot ∠ADO =OD OA =248=3.(3)如图2,如果△APQ 与△MDQ 相似,由于∠AQP =∠MQD ,∠PAQ 与∠DMQ 是钝角,因此只存在一种情况,△APQ ∽△MDQ .因此∠APQ =∠D .作BN ⊥y 轴于N ,那么∠BPN =∠D .因此cot ∠BPN =cot ∠D =3.所以PN =3BN =18.此时点P 的坐标为(0, 20).图2例 2016年上海市普陀区中考一模第25题如图1,已知锐角∠MBN 的正切值等于3,△PBD 中,∠BDP =90°,点D 在∠MBN 的边BN 上,点P 在∠MBN内,PD =3,BD =9.直线l 经过点P ,并绕点P 旋转,交射线BM 于点A ,交射线DN 于点C ,设CAx CP=.(1)求x =2时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值.图1 备用图动感体验请打开几何画板文件名“16普陀一模25",拖动点C 运动,可以体验到,AH 与BH 的比值=tan ∠B =3为定值,AH 与PD 的比值=CA ∶CP =x .满分解答(1)如图2,作AH ⊥BC 于H ,那么PD //AH .因此2AH CA x PD CP===.所以AH =2PD =6,即点A 到BN 的距离为6.图2 图3(2)如图3,由AH CAx PD CP==,得AH =xPD =3x . 又因为tan ∠MBN =AHBH =3,所以BH =x .设BC =m .由CH CA x CD CP ==,得9m xx m -=-.整理,得81xm x =-.所以y =S △ABC =12BC AH ⋅=18321x x x ⨯⨯-=2121x x -. 定义域是0<x ≤9.x =9的几何意义是点C 与点H 重合,此时CA =27,CP =3.(3)在△ABC中,BA=10x,cos∠ABC=1010,BC=81xx-.①如图4,当BA=BC时,解方程8101xxx=-,得41105x=+.②如图5,当AB=AC时,BC=2BH.解方程821xxx=-,得x=5.③如图6,当CA=CB时,由cos∠ABC=1010,得110210AB BC=.解方程1108102101xxx⨯=⨯-,得135x=.图4 图5 图6如图1,已知抛物线y =ax 2+bx -3与x 轴交于A 、B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3, 0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点P 在x 轴上方的抛物线上,且∠PAB =∠CAB ,求点P 的坐标; (3)点D 是y 轴上的一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.图1动感体验请打开几何画板文件名“16松江一模24”,拖动点D 在y 轴正半轴上运动,可以体验到,△BCD 与△ABC 相似存在两种情况.满分解答(1)由y =ax 2+bx -3,得C (0,-3),OC =3. 由tan ∠OAC =3,得OA =1,A (-1, 0).因为抛物线与x 轴交于A (-1, 0)、B (3, 0)两点,设y =a (x +1)(x -3). 代入点C (0,-3),得a =1.所以y =(x +1)(x -3)=x 2-2x -3. (2)如图2,作PH ⊥x 轴于H .设P (x , (x +1)(x -3)).由tan ∠PAB =tan ∠CAB ,得3PH CO AH AO ==.所以(1)(3)31x x x +-=+.解得x =6.所以点P 的坐标为(6, 21).(3)由A (-1, 0)、B (3, 0)、C (0,-3),得BA =4,BC =32,∠ABC =∠BCO =45°. 当点D 在点C 上方时,∠ABC =∠BCD =45°.分两种情况讨论△BCD 与△ABC 相似:如图3,当CD BACB BC =时,CD =BA =4.此时D (0, 1). 如图4,当CD BC CB BA =时,32432CD =.解得92CD =.此时D 3(0,)2.图2 图3 图4已知等腰梯形ABCD中,AD//BC,∠B=∠BCD=45°,AD=3,BC=9,点P是对角线AC上的一个动点,且∠APE=∠B,PE分别交射线AD和射线CD于点E和点G.(1)如图1,当点E、D重合时,求AP的长;(2)如图2,当点E在AD的延长线上时,设AP=x,DE=y,求y关于x的函数解析式,并写出它的定义域;(3)当线段DG=2时,求AE的长.图1 图2动感体验请打开几何画板文件名“16松江一模25”,拖动点P在AC上运动,可以体验到,DG=2存在两种情况,对应的DE也存在两种情况.满分解答(1)如图3,作AM⊥BC,DN⊥BC,垂足分别为M、N,那么MN=AD=3.在Rt△ABM中,BM=3,∠B=45°,所以AM=3,AB=32.在Rt△AMC中,AM=3,MC=6,所以CA=35.如图4,由AD//BC,得∠1=∠2.又因为∠APE=∠B,当E、D重合时,△APD∽△CBA.所以AP CBAD CA=.因此9335AP=.解得此时AP=955.(2)如图5,设(1)中E、D重合时点P的对应点为F.因为∠AFD=∠APE=45°,所以FD//PE.所以AF ADAP AE=,即95353x y=+.因此533y x=-.定义域是955<x≤35.图3 图4 图5(3)如图6,因为35CA =,955AF =,所以655FC =. 由DF //PE ,得21332FP DG FC DC ===.所以255FP =. 由DF //PE ,95259552AD AF DE FP ==÷=.所以2293DE AD ==.①如图6,当P 在AF 的延长线上时,233AE AD DE =+=.②如图7,当P 在AF 上时,123AE AD DE =-=.图6 图7例 2016年上海市徐汇区中考一模第24题如图1,在Rt △AOB 中,∠AOB =90°,已知点A (-1,-1),点B 在第二象限,OB =22,抛物线235y x bx c =++经过点A 和B . (1)求点B 的坐标;(2)求抛物线235y x bx c =++的对称轴;(3)如果该抛物线的对称轴分别和边AO 、BO 的延长线交于点C 、D ,设点E 在直线AB 上,当△BOE 和△BCD 相似时,直接写出点E 的坐标.图1动感体验请打开几何画板文件名“16徐汇一模24",拖动点E 在射线BA 上运动,可以体验到,△BOE 和△BCD 相似存在两种情况.满分解答(1)由A (-1,-1),得OA 与x 轴负半轴的夹角为45°. 又因为∠AOB =90°,所以OB 与x 轴负半轴的夹角也为45°. 当OB =22,点B 到x 轴、y 轴的距离都为2. 所以点B 的坐标为(-2,2).(2)将A (-1,-1)、B (-2,2)分别代入235y x bx c =++,得31,5122 2.5b c b c ⎧-+=-⎪⎪⎨⎪-+=⎪⎩解得65b =-,145c =-.所以23614555y x x =--.抛物线的对称轴是直线x =1.(3)如图2,由A (-1,-1)、B (-2,2)、C (1, 1)、D (1,-1),以及∠AOB =90°,可得BO 垂直平分AC ,BO =2BA =BC 10BD =32如图3,过点A 、E 作y 轴的平行线,过点B 作y 轴的垂线,构造Rt △ABM 和Rt △EBN ,那么BA BM MABE BN NE==. 设点E 的坐标为(x , y )101322x y==+-.图2 图3当点E 在射线BA 上时,∠EBO =∠DBC .分两种情况讨论相似: ①当BE BC BO BD =时,102232BE =.解得2103BE =. 此时1013222103x y==+-.解得x =43-,y =0.所以E 4(,0)3-(如图4). ②当BE BD BO BC =时,322210BE =.解得6105BE =. 此时1013622105x y==+-.解得x =45-,y =85-.所以E 48(,)55--(如图5).图4 图5例 2016年上海市徐汇区中考一模第25题如图1,四边形ABCD中,∠C=60°,AB=AD=5,CB=CD=8,点P、Q分别是边AD、BC上的动点,AQ与BP交于点E,且∠BEQ=90°-12∠BAD.设A、P两点间的距离为x.(1)求∠BEQ的正切值;(2)设AEPE=y,求y关于x的函数解析式及定义域;(3)当△AEP是等腰三角形时,求B、Q两点间的距离.图1动感体验请打开几何画板文件名“16徐汇一模25”,拖动点P在AD边上运动,可以体验到,∠AEP=∠BEQ=∠ABH=∠ADH,△ABF∽△BEF∽△BDP,△AEP∽△ADF.满分解答(1)如图2,联结BD、AC交于点H.因为AB=AD,CB=CD,所以A、C在BD的垂直平分线上.所以AC垂直平分BD.因此∠BAH=12∠BAD.因为∠BEQ=90°-12∠BAD,所以∠BEQ=90°-∠BAH=∠ABH.在Rt△ABH中,AB=5,BH=4,所以AH=3.所以tan∠BEQ=tan∠ABH=34.图2(2)如图3,由于∠BEQ=∠ABH,∠BEQ=∠AEP,∠ABH=∠ADH,所以∠AEP=∠BEQ=∠ABH=∠ADH.图3 图4 图5如图3,因为∠BFA 是公共角,所以△BEF ∽△ABF .如图4,因为∠DBP 是公共角,所以△BEF ∽△BDP .所以△ABF ∽△BDP .所以AB BD BF DP =.因此585BF x=-. 所以5(5)8BF x =-.所以518(5)(539)88FD BD BF x x =-=--=+.如图5,因为∠DAF 是公共角,所以△AEP ∽△ADF .所以5401539(539)8AE AD y PE FD x x ====++.定义域是0≤x ≤5.(3)分三种情况讨论等腰△AEP :①当EP =EA 时,由于△AEP ∽△ADF ,所以DF =DA =5(如图6). 此时BF =3,HF =1. 作QM ⊥BD 于M .在Rt △BMQ 中,∠QBM =60°,设BQ =m ,那么12BM m =,32QM m =. 在Rt △FMQ 中,132FM m =-,tan ∠MFQ =tan ∠HFA =3,所以QM =3FM .解方程313(3)22m m =-,得BQ =m =933-. ②如图7,当AE =AP 时,E 与B 重合,P 与D 重合,此时Q 与B 重合,BQ =0. ③不存在PE =PA 的情况,因为∠PAE >∠PAH >∠AEP .图6 图7例 2016年上海市杨浦区中考一模第24题如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,直线y=x +4经过A 、C 两点.(1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(点P 在对称轴左边),且PQ //AO ,PQ =2AO ,求点P 、Q 的坐标;(3)动点M 在直线y =x +4上,且△ABC 与△COM相似,求点M 的坐标. 图1动感体验请打开几何画板文件名“16杨浦一模24”,拖动点M 在射线CA 上运动,可以体验到,△ABC 与△COM 相似存在两种情况.满分解答(1)由y =x +4,得A (-4, 0),C (0, 4).将A (-4, 0)、C (0, 4)分别代入212y x bx c =-++,得840,4.b c c --+=⎧⎨=⎩解得b =-1,c =4.所以抛物线的表达式为2142y x x =--+.(2)如图2,因为PQ //AO ,所以P 、Q 关于抛物线的对称轴对称.因为抛物线的对称轴是直线x =-1,PQ =2AO =8,所以x P =-5,x Q =3.当x =3时,2142y x x =--+=72-.所以P 7(5,)2--,Q 7(3,)2-.(3)由2114(4)(2)22y x x x x =--+=-+-,得B (2, 0).由A (-4, 0)、B (2, 0)、C (0, 4),得AB =6,AC =42,CO =4.当点M 在射线CA 上时,由于∠MCO =∠BAC =45°,所以分两种情况讨论相似:①当CM AB CO AC =时,6442CM =.解得32CM =.此时M (-3, 1)(如图3). ②当CM AC CO AB =时,4246CM =.解得823CM =.此时M 84(,)33-(如图4).图2 图3 图4例 2016年上海市杨浦区中考一模第25题如图1,已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图,并求BM的长;(3)当点M在AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.图1 备用图动感体验请打开几何画板文件名“16杨浦一模25",拖动点E在AB上慢慢运动,可以体验到,∠1=∠2=∠3,△MCE与△MBC保持相似.满分解答(1)如图2,作AN⊥BC于N,联结BD交AC于O,那么BO垂直平分AC.在Rt△ABO中,AB=5,AO=3,所以BO=4.因为S菱形ABCD=12AC BD⋅=BC AN⋅,所以64=5AN⨯⨯.解得AN=245.在Rt△ABN中,AB=5,AN=245,所以BN=75.因此cos∠B=BNAB=725.(2)如图3,当点E与点A重合时,由于∠ECF=∠B,∠FEC=∠1,所以△ECF∽△ABC.所以EF ACEC AB=,即665EF=.解得365EF=.由BC//AF,得AM AFBM BC=,即53625BMBM+=.解得12511BM=.图2 图3(3)如图4,因为∠ECF =∠ABC ,根据等角的邻补角相等,得∠MCE =∠MBC . 如图5,因为∠M 是公共角,所以△MCE ∽△MBC .所以MC MB ME MC=.因此22()MC MB ME y x y xy y =⋅=+=+. 作MH ⊥BC ,垂足为H .在Rt △MBH 中,MB =y ,cos ∠MBH =725,所以BH =725y ,MH =2425y .在Rt △MCH 中,根据勾股定理,得MC 2=MH 2+CH 2.因此222247()(5)2525xy y y y +=++.整理,得125514y x =-.定义域是145<x ≤5.定义域中x =145的几何意义如图6所示,此时D 、F 重合,AB //CF .由CF =CE ,CF =CB ,得CE =CB .所以1cos 2BE BC B =⋅.解得BE =72525⨯⨯=145.图4 图5 图6例 2016年上海市闸北区中考一模第24题如图1,在平面直角坐标系中,已知抛物线与x 轴交于点A (-1,0)和点B ,与y 轴交于点C (0, 2),对称轴为直线x =1,对称轴交x 轴于点E .(1)求该抛物线的表达式,并写出顶点D 的坐标;(2)设点F 在抛物线上,如果四边形AEFD 是梯形,求点F 的坐标; (3)联结BD ,设点P 在线段BD 上,若△EBP 与△ABD 相似,求点P 的坐标.图1动感体验请打开几何画板文件名“16闸北一模24",梯形AEFD 只存在一种情况.拖动点P 在BD 边上运动,可以体验到,△EBP 与△ABD 相似存在两种情况.满分解答(1)点A (-1,0)关于直线x =1的对称点B 的坐标为(3, 0).设抛物线的解析式为y =a (x +1)(x -3),代入点C (0, 2),得2=-3a .解得23a =-.所以2222428(1)(3)2(1)33333y x x x x x =-+-=-++=--+.顶点D 的坐标为8(1,)3.(2)过△ADE 的三个顶点分别画对边的平行线,只有经过点E 的直线与抛物线有另外的交点,在第一象限内的交点就是梯形AEFD 的顶点F .设F 224(,2)33x x x -++.作FH ⊥x 轴于H ,那么∠FEH =∠DAE .由tan ∠FEH =tan ∠DAE ,得43FH DE EH AE ==.所以43FH EH =.解方程22442(1)333x x x -++=-,得5x =±.所以F 454(5,)3-.。

上海沪教版数学2016年初三一模1-18题

上海沪教版数学2016年初三一模1-18题

2016年初三一模1-18题【普陀区】 一. 选择题1. 如图,BD 、CE 相交于点A ,下列条件中,能推出DE ∥BC 的条件是( ) A. ::AE EC AD DB =; B. ::AD AB DE BC =;C. ::AD DE AB BC =;D. ::BD AB AC EC =;2. 在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE ∥BC ,如果△ADE 的面积等于3, 那么△ABC 的面积等于( )A. 6;B. 9;C. 12;D. 15;3. 如图,在Rt △ABC 中,90C ︒∠=,CD 是斜边AB 上的高,下列线段的比值不等于cos A 的值的 是( ) A.AD AC ; B. AC AB ; C. BD BC ; D. CDBC; 4. 如果a 、b 同号,那么二次函数21y ax bx =++的大致图像是( )A. B. C. D.5. 下列命题中,正确的是( )A. 圆心角相等,所对的弦的弦心距相等;B. 三点确定一个圆;C. 平分弦的直径垂直于弦,并且平分弦所对的弧;D. 弦的垂直平分线必经过圆心;6. 已知在平行四边形ABCD 中,点M 、N 分别是边BC 、CD 的中点,如果AB a =,AD b =,那么 向量MN 关于a 、b 的分解式是( )A.1122a b -; B. 1122a b -+; C. 1122a b +; D. 1122a b --; 二. 填空题7. 如果:2:5x y =,那么y xx y-=+ ; 8. 计算:2()()a b a b ++-= ; 9. 计算:2sin 45cot 30tan 60︒︒︒+⋅= ;10. 已知点P 把线段AB 分割成AP 和PB ()AP PB >两段,如果AP 是AB 和PB 的比例中项,那么:AP PB 的值等于 ;11. 下列函数:①2y ax bx c =++;②22(1)y x x =--;③2255y x x=-;④22y x =-+; y 关于x 的二次函数是 ;(填写序号)12. 二次函数223y x x =+-的图像有最 点;(填“高”或“低”) 13. 如果抛物线22y x mx n =++的顶点坐标为(1,3),那么m n +的值等于 ;14. 如图,点G 为△ABC 的重心,DE 经过点G ,DE ∥AC ,EF ∥AB ,如果DE 的长是4,那么CF 的长是 ;15. 如图,半圆形纸片的半径长是1cm ,用如图所示的方法将纸片对折,使对折后半圆的中点M 与圆心O 重合,那么折痕CD 的长是 cm ;16. 已知在Rt △ABC 中,90C ︒∠=,点P 、Q 分别在边AB 、AC 上,4AC =,3BC AQ ==,如果△APQ 与△ABC 相似,那么AP 的长等于 ;17. 某货站用传送带传送货物,为了提高传送过程中的安全性,工人师傅将原坡角为45︒的传送带AB , 调整为坡度1:3i =的新传送带AC (如图所示),已知原传送带AB 的长是42米,那么新传送带AC 的长是 米;18. 已知(3,2)A 是平面直角坐标中的一点,点B 是x 轴负半轴上一动点,联结AB ,并以AB 为边 在x 轴上方作矩形ABCD ,且满足:1:2BC AB =,设点C 的横坐标是a ,如果用含a 的代数式表示 点D 的坐标,那么点D 的坐标是 ; 答案:1. A 2. C 3. C 4. D 5. D 6. B 7.37 8. 3a b + 9. 72 10. 512- 11. ④ 12. 低13. 1 14. 2 15. 3 16. 125或154 17. 8 18. 6(2,)2a- 【浦东新区】 一. 选择题1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 在Rt △ABC 中,90C ︒∠=,若5AB =,4BC =,则sin A 的值为( ) A.34; B. 35; C. 45; D. 43; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =;C. ::AD DB AE EC =;D. ::AE AC AD DB =;4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;5. 如图,Rt △ABC 中,90ACB ︒∠=,CD AB ⊥于点D ,下列结论中错误的是( ) A. 2AC AD AB =⋅; B. 2CD CA CB =⋅;C. 2CD AD DB =⋅; D. 2BC BD BA =⋅; 6. 下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似; 二. 填空题7. 已知13x y =,那么xx y=+ ; 8. 计算:123()3a a b -+= ;9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图上距离约厘米;10. 某滑雪运动员沿着坡比为1:3的斜坡向下滑行了100米,则运动员下降的垂直高度为 米; 11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ;12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的一个交点 为(6,0),则抛物线与x 轴的另一个交点坐标是 ;13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a =,那么用向量a 表示向量AG 为 ;14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠,那么CD 的长是 ;15. 如图,直线1AA ∥1BB ∥1CC ,如果13AB BC =,12AA =,16CC =,那么线段1BB 的长是 ;16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处水平放置 一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;17. 若抛物线2y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称△ABC 为 “抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc >时,称△ABC 为 “倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分别满足条件 ;18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;答案:1. B2. C3. C4. A5. B6. D7. 148. 3a b - 9. 4 10. 50 11. 221y x x =+- 12. (2,0)- 13. 23a 14. 415. 3 16. 24 17. 0,0a c >< 18. 3625或2或258【闵行区】 一. 选择题1. 在△ABC 中,点D 、E 分别在边AB 、AC 上,下列条件中不能判定DE ∥BC 的是( ) A.AD AE DB EC =; B. AD AE AB AC =; C. DB AB EC AC =; D. AD DE DB BC=; 2. 将二次函数21y x =-的图像向右平移1个单位,向下平移2个单位得到( ) A. 2(1)1y x =-+; B. 2(1)1y x =++;C. 2(1)3y x =--;D. 2(1)3y x =++; 3. 已知α为锐角,且5sin 13α=,那么α的余弦值为( ) A.512; B. 125; C. 513; D. 1213; 4. 抛物线2y ax bx c =++的图像经过原点和第一、二、三象限,那么下列结论成立的是( ) A. 0a >,0b >,0c =; B. 0a >,0b <,0c =; C. 0a <,0b >,0c =; D. 0a <,0b <,0c =;5. 在比例尺为1:10000的地图上,一块面积为22cm 的区域表示的实际面积约为( ) A. 20000002cm ; B. 200002m ; C. 40000002m ; D. 400002m ;6. 如图,在矩形ABCD 中,3AB =,6BC =,点1O 为矩形对角线的交点,○2O 的半径为1,12OO AB ⊥,垂足为点P ,126O O =,如果○2O 绕点P 按顺时针方向旋转360°,在旋转过程中,○2O 与矩形的边只有一个公共点的情况一共出现( ) A. 3次; B. 4次; C. 5次; D. 6次; 二. 填空题 7. 如果35x y =,那么x yy+= ; 8. 如果两个相似三角形周长的比是2:3,那么它们的相似比是 ;9. 已知线段AB 长为2厘米,点P 是线段AB 的黄金分割点(AP BP <),那么BP 的长是 厘米; 10. 如图,在△ABC 中,90ACB ∠=︒,点F 在边AC 延长线上,且FD AB ⊥, 垂足为点D ,如果6AD =,10AB =,2ED =,那么FD = ; 11. 在Rt △ABC 中,90C ∠=︒,1cos 3A =,2AC =,那么BC = ; 12. 已知一条斜坡,向上前进5米,水平高度升高了4米,那么坡比为 ; 13. 过△ABC 的重心作DE ∥BC ,分别交AB 于点D ,AC 于点E ,如果AB a =,AC b =,那么DE = ;14. 方程20ax bx c ++=(0a ≠)的两根为-3和1,那么抛物线2y ax bx c =++(0a ≠)的对称轴 是直线 ;15. 在Rt △ABC 中,90C ∠=︒,12AC =,5BC =,以点A 为圆心作○A ,要使B 、C 两点中的 一点在圆外,另一点在圆内,那么○A 的半径长r 的取值范围为 ;16. 已知○1O 与○2O 内切,○1O 的半径长是3厘米,圆心距122O O =厘米,那么○2O 的半径长等于 厘米;17. 闵行体育公园的圆形喷水池的水柱(如图①),如果曲线APB 表示落点B 离点O 最远的一条水流 (如图②),其上的水珠的高度y (米)关于水平距离x (米)的函数解析式为2944y x x =-++, 那么圆形水池的半径至少为 米时,才能使喷出的水流不落在水池外;18. 将一副三角尺如图摆放,其中在Rt △ABC 中,90ACB ∠=︒,60B ∠=︒,在Rt △EDF 中,90EDF ∠=︒,45E ∠=︒,点D 为边AB 的中点,DE 交AC 于点P ,DF 经过点C ,将△EDF 绕点D 顺时针方向旋转角α(060α︒<<︒)后得到△E DF '',DE '交AC 于点M ,DF '交BC 于点N , 那么PMCN的值为 ; 答案:1、D 2、C 3、D 4、A 5、B 6、B 7、588、2:3 9、1-5 10、12 11、24 12、1:0.75 13、a 32-b 32 14、x=-1 15、12<r<13 16、5或1 17、29 18、33【闸北区】 一. 选择题1. 在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B. C. D. 2. 抛物线223y x =-+的顶点在( )A. x 轴上;B. y 轴上;C. 第一象限;D. 第四象限; 3. 如图,已知点D 、E 分别在△ABC 的边BA 、CA 的延长线上, 下列给出的条件中,不能判定DE ∥BC 的是( )A. ::BD AB CE AC =;B. E ::D BC AB AD =;C. ::AB AC AD AE =;D. ::AD DB AE EC =;4. 已知点P 是线段AB 的黄金分割点(AP PB >),4AB =,那么AP 的长是( ) A. 252-; B. 25-; C. 251-; D. 52-;5. 如图,在Rt △ABC 中,90C ∠=︒,12AC =,5BC =,CD AB ⊥于点D , 则cot BCD ∠的值为( ) A.513; B. 512; C. 125; D. 1213; 6. 已知,二次函数2y ax bx c =++(0a ≠)的图像如图所示,则以下说法不正确的是( )A. 根据图像可得该函数y 有最小值;B. 当2x =-时,函数y 的值小于0;C. 根据图像可得0a >,0b <;D. 当1x <-时,函数值y 随着x 的增大而减小;二. 填空题 7. 已知13a cb d ==,则ac bd ++的值是 ;8. 如图,在△ABC 中,DE ∥BC ,当△ADE 与△ABC 的周长比为1:3时,那么:DE BC = ; 9. 如图,已知在梯形ABCD 中,AB ∥CD ,点E 和点F 分别在AD 和BC 上,EF 是梯形ABCD 的 中位线,若EF a =,DC b =,则用a 、b 表示AB = ;10. 计算:sin 60tan 30︒-︒= ;11. 汽车沿着坡度为1:7的斜坡向上行驶了50米,则汽车升高了 米;12. 已知抛物线2(1)4y m x =-+的顶点是此抛物线的最高点,那么m 的取值范围是 ; 13. 如图某矩形的周长为16,那么它的面积y 与它的一条边长x 之间的函数关系式为y = (不需要写出定义域);14. 在直角坐标系中,已知点P 在第一象限内,点P 与原点O 的距离2OP =,点P 与原点O 的连线与x 轴的正半轴的夹角为60°,则点P 的坐标是 ;15. 如图,正方形CDEF 内接于Rt △ABC ,点D 、E 、F 分别在边AC 、AB 和BC 上,当2AD =,3BF =时,正方形CDEF 的面积是 ;16. 如图,在梯形ABCD 中,AD ∥BC ,AC 平分BCD ∠,BAC D ∠=∠,若4AD =,10BC =, 则AC = ;17. 如图,△ABC 的两条中线AD 和BE 相交于点G ,过点E 作EF ∥BC 交AD 于点F ,那么FGAG= ; 18. 如图,将一张矩形纸片ABCD 沿着过点A 的折痕翻折,使点B 落在边AD 上的点F ,折痕交BC 于 点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于 点G ,则:CG GD 的值为 ; 答案:答案:1、D 2、B 3、B 4、A 5、C 6、C 7、31 8、1:3 9、b -2a 10、63 11、2512、m<1 13、x x y 82+-= 14、),(31 15、6 16、102 17、41 18、22 【宝山区】一. 选择题1. 如图,在直角△ABC 中,90C ∠=︒,1BC =,1tan 2A =,下列判断正确的是( ) A. 30A ∠=︒; B. 12AC =; C. 2AB =; D. 2AC =;2. 抛物线245y x =-+的开口方向( )A. 向上;B. 向下;C. 向左;D. 向右;3. 如图,D 、E 在△ABC 的边上,如果ED ∥BC ,:1:2AE BE =,6BC =,那么DE 的模为( ) A. -2; B. -3; C. 2; D. 3;4. 已知○O 是以坐标原点O 为圆心,5为半径的圆,点M 的坐标为(3,4)-,则点M 与○O 的位置关系 为( )A. M 在○O 上;B. M 在○O 内;C. M 在○O 外;D. M 在○O 右上方;5. 如图,在Rt △ABC 中,90C ∠=︒,26A ∠=︒,以点C 为圆心,BC 为半径的圆分别交AB 、AC 于 点D 、点E ,则弧BD 的度数为( )A. 26°;B. 64°;C. 52°;D. 128°;6. 已知二次函数2y ax bx c =++(0a ≠)的图像如图所示,则下列结论中正确的是( )A. 0ac >;B. 当1x >-时,0y <;C. 2b a =;D. 930a b c ++=; 二. 填空题 7. 已知32a b =,那么a b b-= ; 8. 两个相似比为1:4的相似三角形的一组对应边上的中线比为 ;9. 如图,D 、E 分别为△ABC 的边AB 、AC 上的点,当 时(填一个条件),△DEA 与△ABC相似;10. 如图△ABC 中,90C ∠=︒,若CD AB ⊥于D ,且4BD =,9AD =,则CD = ;11. 计算:2(34)5a b a +-= ;12. 如图,菱形ABCD 的边长为10,3sin 5BAC ∠=,则对角线AC 的长为 ; 13. 抛物线22(3)4y x =--+的顶点坐标是 ;14. 若(1,2)A ,(3,2)B ,(0,5)C ,(,5)D m 是抛物线2y ax bx c =++图像上的四点,则m = ; 15. 已知1(4,)A y 、2(4,)B y -是抛物线2(3)2y x =+-的图像上两点,则1y 2y ; 16. 已知○O 中一条长为24的弦的弦心距为5,则此圆的半径长为 ;17. 如图,在等边△ABC 内有一点D ,5AD =,6BD =,4CD =,将△ABD 绕A 点逆时针旋转, 使AB 与AC 重合,点D 旋转至点E ,则CDE ∠的正弦值为 ;18. 如图,抛物线223y x x =--交x 轴于(1,0)A -、(3,0)B ,交y 轴于(0,3)C -,M 是抛物线的顶点, 现将抛物线沿平行于y 轴的方向向上平移三个单位,则曲线CMB 在平移过程中扫过的面积为 (面积单位);答案:1、D 2、B 3、C 4、A 5、C 6、D 7、21 8、1:4 9、∠ADE=∠C 10、6 11、b 8+a12、16 13、),(43 14、4 15、> 16、13 17、873 18、9【杨浦区】 一. 选择题1. 将抛物线22y x =向上平移2个单位后所得抛物线的表达式是( ) A. 222y x =+; B. 22(2)y x =+;C. 22(2)y x =-;D. 222y x =-; 2. 以下图形中一定属于互相放缩关系的是( )A. 斜边长分别是10和5的两直角三角形;B. 腰长分别是10和5的两等腰三角形;C. 边长分别为10和5的两菱形;D. 边长分别为10和5的两正方形;3. 如图,已知在△ABC 中,D 是边BC 的中点,BA a =,BC b =,那么DA 等于( ) A.12a b -; B. 12a b -; C. 12b a -; D. 12b a -; 4. 坡比等于1:3的斜坡的坡角等于( )A. 30°;B. 45°;C. 50°;D.60°;5. 下列各组条件中,一定能推得△ABC 与△DEF 相似的是( ) A. A E ∠=∠且D F ∠=∠; B. A B ∠=∠且D F ∠=∠;C. A E ∠=∠且AB EF AC ED =; D. A E ∠=∠且AB FDBC DE=; 6. 下列图像中,有一个可能是函数2y ax bx a b =+++(0a ≠)的图像,它是( )A. B. C. D.二. 填空题 7. 如果23x y y -=,那么x y = ;8. 如图,已知点G 为△ABC 的重心,DE 过点G ,且DE ∥BC ,EF ∥AB ,那么:CF BF = ; 9. 已知在△ABC 中,点D 、E 分别在边AB 和BC 上,2AD =,1DB =,6BC =,要使DE ∥AC , 那么BE = ;10. 如果△ABC 与△DEF 相似,△ABC 的三边之比为3:4:6,△DEF 的最长边是10cm ,那么 △DEF 的最短边是 cm ;11. 如果AB ∥CD ,23AB CD =,AB 与CD 的方向相反,那么AB = CD ;12. 计算:sin 60cot 30︒-︒= ; 13. 在△ABC 中,90C ∠=︒,如果1sin 3A =,6AB =,那么BC = ; 14. 如果二次函数2y x bx c =++配方后为2(2)1y x =-+,那么c 的值是 ; 15. 抛物线2241y x x =-+-的对称轴是直线 ;16. 如果1(1,)A y -、2(2,)B y -是二次函数2y x m =+图像上的两个点,那么1y 2y (请填入“>”或“<”);17. 请写出一个二次函数的解析式,满足:图像的开口向下,对称轴是直线1x =-,且与y 轴的交点在x 轴下方,那么这个二次函数的解析式可以是 ;18. 如图,已知将△ABC 沿角平分线BE 所在直线翻折,点A 恰好落在 边BC 的中点M 处,且AM BE =,那么EBC ∠的正切值为 ;答案:1、A 2、D 3、B 4、A 5、C 6、C 7、35 8、1:2 9、2 10、5 11、23- 12、23- 13、2 14、5 15、x=1 16、< 17、522---=x x y 18、32【黄浦区】 一. 选择题1. 如果两个相似三角形的周长比为1:4,那么这两个三角形的相似比为( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若9a cm =,4b cm =,则c 长( ) A. 18cm ; B. 5cm ; C. 6cm ; D. 6cm ±;3. 如果向量a 与向量b 方向相反,且3||||a b =,那么向量a 用向量b 表示为( ) A. 3a b =; B. 3a b =-; C. 13a b =; D. 13a b =-; 4. 在直角坐标平面内有一点(3,4)P ,OP 与x 轴正半轴的夹角为α,下列正确的是( ) A. 4tan 3α=; B. 4cot 5α=; C. 3sin 5α=; D. 5cos 4α=; 5. 下列函数中不是二次函数的有( ) A. (1)y x x =-; B. 221y x =-;C. 2y x =-; D. 22(4)y x x =+-;6. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且DCE B ∠=∠,那么下列说法中,错误的是( )A. △ADE ∽△ABC ;B. △ADE ∽△ACD ;C. △ADE ∽△DCB ;D. △DEC ∽△CDB ;二. 填空题7. 如果3sin 2α=,那么锐角α= ; 8. 已知线段a 、b 、c 、d ,如果23a c b d ==,那么a cb d+=+ ; 9. 计算:31(2)422a b a b --+= ;10. 在Rt △ABC 中,90C ∠=︒,2AC =,1cot 3A =,则BC = ;11. 如图,已知AD 、BC 相交于点O ,AB ∥CD ∥EF ,如果2CE =,4EB =, 1.5FD =, 那么AD = ;12. 如图,在△ABC 中,点D 是边BC 上的点,且2CD BD =,如果AB a =,AD b =, 那么BC = (用含a 、b 的式子表示);13. 在△ABC 中,点O 是重心,DE 经过点O 且平行于BC 交边AB 、AC 于点D 、E , 则:ADE ABC S S ∆∆= ;14. 如图,在△ABC 中,D 、E 分别是边AC 、AB 上的点,且2AD =,4DC =,3AE =,1EB =,则:DE BC = ;15. 某水库水坝的坝高位10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为 米;16. 如图,AD 、BE 分别是△ABC 中BC 、AC 边上的高,4AD =,6AC =,则sin EBC ∠= ;17. 已知抛物线21()y a x m k =-+与22()y a x m k =++(0m ≠)关于y 轴对称,我们称1y 与2y 互为 “和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线” ;18. 如图,在梯形ABCD 中,AD ∥BC ,45B ∠=︒,点E 是AB 的中点,DE DC =,90EDC ∠=︒, 若2AB =,则AD 的长是 ;答案:1、B 2、C 3、D 4、A 5、D 6、C 7、60° 8、32 9、b a + 10、6 11、2912、a 3-b 3 13、4:9 14、1:2 15、26 16、35 17、7642+--=x x y 18、22【崇明区】 一. 选择题 1. 已知23a b =,那么aa b+的值为( ) A.13; B. 25; C. 35; D. 34; 2. 已知Rt △ABC 中,90C ∠=︒,3BC =,5AB =,那么sin B 的值是( )A.35; B. 34; C. 45; D. 43; 3. 将抛物线2y x =先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是( ) A. 2(2)3y x =++; B. 2(2)3y x =+-;C. 2(2)3y x =-+;D. 2(2)3y x =--;4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 上,AED B ∠=∠,那么下列各式中一定正确的是( ) A. AE AC AD AB ⋅=⋅; B. CE CA BD AB ⋅=⋅; C. AC AD AE AB ⋅=⋅; D. AE EC AD DB ⋅=⋅;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是( ) A. 内切; B. 外切; C. 相交; D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm ,底边上的高长18cm ,现沿底边依次向下往上裁剪宽 度均为3cm 的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A. 第4张; B. 第5张; C. 第6张; D. 第7张; 二. 填空题7. 化简:2(2)3()a b a b --+= ;8. 如果在比例1:1000000的地图上,A 、B 两地的图上距离为2.4厘米,那么A 、B 两地的实际距离 为 千米;9. 抛物线2(2)3y a x x a =++-的开口向下,那么a 的取值范围是 ;10. 一斜面的坡度1:0.75i =,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了 米;11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为 ;12. 已知AB 是○O 的直径,弦CD ⊥AB 于点E ,如果8AB =,6CD =,那么OE = ;13. 如图所示,某班上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子为线段AD ,甲的 影子为线段AC ,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距 米;14. 如图,点(3,)A t 在第一象限,OA 与x 轴正半轴所夹的锐角为α,如果3tan 2α=,那么t 的值 为 ;15. 如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,2CD DE =, 如果△DEF 的面积为1,那么平行四边形ABCD 的面积为 ;16. 如图,在矩形ABCD 中,3AB =,5BC =,以B 为圆心BC 为半径画弧交AD 于点E ,如果点F 是弧EC 的中点,联结FB ,那么tan FBC ∠的值为 ;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC 中,AF 、BE 是中线,且AF BE ⊥,垂足为P ,像△ABC 这样的三角形称为“中垂三角形”,如果30ABE ∠=︒,4AB =,那么此时AC 的长为 ;18. 如图,等边△ABC 中,D 是边BC 上的一点,且:1:3BD DC =,把△ABC 折叠,使点A 落在边BC 上的点D 处,那么AMAN的值为 ; 答案:1、B 2、C 3、D 4、A 5、D 6、B 7、b 7-a -8、24 9、a<-2 10、16 11、1012、7 13、1 14、29 15、12 16、31 17、72 18、75【长宁、金山】 一. 选择题1. 如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A. 1:2; B. 1:4; C. 1:2; D. 2:1;2. 如图,在△ABC 中,ADE B ∠=∠,:2:3DE BC =,则下列结论正确的是( ) A. :2:3AD AB =; B. :2:5AE AC =;C. :2:3AD DB =;D. :3:2CE AE =;3. 在Rt △ABC 中,90C ︒∠=,2AB =,1AC =,则sin B 的值是( )A.22; B. 32; C. 12; D. 2;4. 在△ABC 中,若2cos 2A =,tan 3B =,则这个三角形一定是( ) A. 直角三角形; B. 等腰三角形; C. 钝角三角形; D. 锐角三角形; 5. 已知1O 的半径r 为3cm ,2O 的半径R 为4cm ,两圆的圆心距12O O 为1cm ,则这两圆的位置关系是( )A. 相交;B. 内含;C. 内切;D. 外切;6. 二次函数2(2)1y x =+-的图像可以由二次函数2y x =的图像平移而得到,下列平移正确的是( ) A. 先向左平移2个单位,再向上平移1个单位; B. 先向左平移2个单位,再向下平移1个单位; C. 先向右平移2个单位,再向上平移1个单位; D. 先向右平移2个单位,再向下平移1个单位;二. 填空题7. 已知抛物线21y x =+的顶点坐标是 ;8. 已知抛物线23y x bx =++的对称轴为直线1x =,则实数b 的值为 ;9. 已知二次函数2y ax bx =+,阅读右侧表格的信息,由此可知y 与x 之间的函数关系式是 ; 10. 已知二次函数2(3)y x =-图像上的两点(3,)A a 和(,)B x b ,则a 和b 的大小关系是a b ; (填>、≥、<或≤)11. 圆是轴对称图形,它的对称轴是 ; 12. 已知O 的弦8AB cm =,弦心距3OC cm =,那么该圆半径为 cm ;13. 如图,AB 是O 的直径,弦CD AB ⊥,已知1AC =,22BC =,那么sin ACD ∠的值是;14. 王小勇操纵一辆遥控汽车从A 处沿北偏西60︒方向走10m 到B 处,再从B 处向正南方向走20m 到C 处,此时遥控汽车离A 处 m ;15. 在△ABC 中,AD 是中线,G 是重心,设AD m =,那么用m 表示AG = ;16. 如图,已知AB BD ⊥,ED BD ⊥,C 是线段BD 的中点,且AC CE ⊥,1ED =,4BD =, 那么AB = ;17. 如果把两条邻边中较短边与较长边的比值为512-的矩形称作黄金矩形,现将长度为20厘米的铁丝 折成一个黄金矩形,这个黄金矩形较短的边长是 厘米;18. 如图,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,如果1tan 3AEN ∠=,10DC CE +=,那么△ANE 的面积为 ; 答案;1. B2. A3. C4. D5. C6. B7. (0,1)8. 2-9. 2y x x =+ 10. ≤ 11. 直径所在直线 12. 5 13. 13 14. 103 15. 23m 16. 4 17. 1555- 18. 103【嘉定区】1. 已知32x y =,那么下列等式中一定正确的是( ) A.392x y = B. 3635x y +=+ C. 3322x y -=- D. 52x y x += 2. 在Rt △ABC 中,90C ∠=︒,5AB =,3AC =,下列选项中,正确的是( ) A. 3sin 5A =; B. 3cos 5A =; C. 3tan 5A =; D. 3cot 5A =; 3. 如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,如果AB a =,AD b =,那么下列 选项中,正确的是( ) A. 1()2OC a b =+; B. 1()2OA a b =+; C. 1()2OD a b =-; D. BD a b =-;4. 已知二次函数23y x bx =++如图所示,那么2(1)3y x b x =+-+的图像可能是( )A. B. C. D. 5. 下面四个命题中,假命题是( ) A. 两角对应相等,两个三角形相似;B. 三边对应成比例,两个三角形相似;C. 两边对应成比例且其中一边的对角相等,两个三角形相似;D. 两边对应成比例且夹角相等,两个三角形相似;6. 已知○1O 的半径长为3,○2O 的半径长r (0r >),如果123O O =,那么○1O 与○2O 不可能存在的 位置关系是( )A. 两圆内含;B. 两圆内切;C. 两圆相交;D. 两圆外切;二. 填空题 7. 计算:33()22a ab --= ; 8. 如果两个相似三角形的周长比为4:9,那么面积比是 ;9. 如图,在平面直角坐标系xOy 内有一点(3,4)Q ,那么射线OQ 与x 轴正半轴的夹角α的余弦值10. 已知一个斜坡的坡度1:3i =,那么该斜坡的坡角的度数是 ;11. 如果抛物线2(1)y m x =+的最低点是原点,那么实数m 的取值范围是 ; 12. 抛物线22(1)1y x =--与y 轴的交点坐标是 ;13. 如果将抛物线221y x x =+-向上平移,使它经过原点,那么所得抛物线的表达式是 ; 14. 如果一个正多边形的中心角为72°,那么这个正多边形的边数是 ;15. 如果○2O 与○1O 外切,○1O 的半径长为6,圆心距1210O O =,那么○2O 的半径长是 ; 16. 在○O 中,已知2AB AC =,那么线段AB 与2AC 的大小关系是 (从“<”或“=”或“>”中选择);17. 将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义 为“白银矩形”,事实上,“白银矩形”在日常生活中随处可见,我们常见的4A 纸就是一个“白银矩形”, 请根据上述信息求4A 纸的较长边和较短边的比值,这个比值是 ; 18. 在梯形ABCD 中,AD ∥BC ,90ABC ∠=︒,AB CB =,4tan 3C ∠=(如图), 点E 在边CD 上运动,联结BE ,如果EC EB =,那么DECD 的值是 ; 答案:1、A 2、B 3、A 4、C 5、C 6、D 7、b 23a 21 + 8、16:81 9、5310、30° 11、m>-112、(0,1) 13、x x y 22+= 14、5 15、4 16、< 17、2 18、31【奉贤区】一. 选择题1. 用一个4倍放大镜照△ABC ,下列说法错误的是( ) A. △ABC 放大后,B ∠是原来的4倍;B. △ABC 放大后,边AB 是原来的4倍;C. △ABC 放大后,周长是原来的4倍;D. △ABC 放大后,面积是原来的16倍; 2. 抛物线2(1)2y x =-+的对称轴是( )A. 直线2x =;B. 直线2x =-;C. 直线1x =;D. 直线1x =-; 3. 抛物线223y x x =--与x 轴的交点个数是( ) A. 0个; B. 1个; C. 2个; D. 3个; 4. 在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,18BC =, 那么DE 的值为( )A. 3;B. 6;C. 9;D. 12;5. 已知△ABC 中,90C ︒∠=,3BC =,4AB =,那么下列说法正确的是( )A. 3sin 5B =; B. 3cos 4B =; C. 4tan 3B =; D. 3cot 4B =; 6. 下列关于圆的说法,正确的是( ) A. 相等的圆心角所对的弦相等;B. 过圆心且平分弦的直线一定垂直于该弦;C. 经过半径的端点且垂直于该半径的直线是圆的切线;D. 相交两圆的连心线一定垂直且平分公共弦; 二. 填空题7. 已知32x y =,那么xy= ; 8. 二次函数243y x =+的顶点坐标为 ;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i = ;10. 如果抛物线2(2)y k x k =+-的开口向下,那么k 的取值范围是 ;11. 从观测点A 观察到楼顶B 的仰角为35︒,那么从楼顶B 观察观测点A 的俯角为 ;12. 在以O 为坐标原点的直角坐标平面内有一点(1,3)A -,如果AO 与y 轴正半轴的夹角为α,那么 角α的余弦值为 ;13. 如图△ABC 中,BE 平分ABC ∠,DE ∥BC ,若2DE AD =,2AE =,那么EC = ; 14. 线段AB 长10cm ,点P 在线段AB 上,满足BP APAP AB=,则AP 的长为 cm ; 15.1O 的半径11r =,2O 的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d = ;16. 已知抛物线(4)y ax x =+,经过点(5,9)A 和点(,9)B m ,那么m = ;17. 如图,△ABC 中,4AB =,6AC =,点D 在BC 边上,DAC B ∠=∠,且有3AD =,那么BD 的 长是 ;18. 如图,已知平行四边形ABCD 中,25AB =,6AD =,1cot 2B =,将边AB 绕点A 旋转,使得 点B 落在平行四边形ABCD 的边上,其对应点为B '(点B '不与点B 重合),那么sin CAB '∠= ;答案:1. A2. C3. C4. B5. B6. D7.238. (0,3) 9. 1:3 10. 2k <- 11. 35︒12. 31010 13. 4 14. 555- 15. 1或3 16. 9- 17. 72 18. 1010或22【静安区】 一. 选择题 1.12的相反数是( ) A. 2; B. 2-; C.22; D. 22-;2. 下列方程中,有实数解的是( )A. 210x x -+=; B. 21x x -=-;C.210x x x -=-; D. 211xx x-=-; 3. 化简11(1)x ---的结果是( ) A.1x x -; B. 1x x -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2y x =上,将此抛物线向右平移3个单位后,点A 同时平移到点A ',那么A '坐标为( )A. (2,1);B. (2,7);C. (5,4);D. (1,4)-;5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( ) A. tan cos m αα⋅⋅; B. cot cos m αα⋅⋅;C.tan cos m αα⋅; D. tan sin m αα⋅;6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满足下列条件中的 ( ) A. AC AB AD AE =; B. AC BC AD DE =; C. AC AB AD DE =; D. AC BC AD AE=;二. 填空题7. 计算:23(2)a -= ; 8. 函数3()2x f x x -=+的定义域为 ; 9. 方程51x x +=-的根为 ;10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围为 ; 11. 二次函数261y x x =-+的图像的顶点坐标是 ;12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称点坐标是 ; 13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相交于点F , 如果1AE =,2CE =,那么:EF BF 等于 ;14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1sin 3A =,2BC =,那么GC 的长等于 ; 15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a =,BC b =,那么CD = (用向量a 、b 的式子表示);16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,4AC =, 如果四边形DBCE 的周长为10,那么AD 的长等于 ;17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,4sin 5B =,那么 tan CDE ∠= ;18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',且点C '、 B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;答案:1、D 2、D 3、A 4、C 5、C 6、C 7、a 68- 8、2-≠x 9、4 10、1<m<3 11、(3,-8)12、(2,5) 13、1:3 14、2 15、b 21-a - 16、错题 17、21 18、135【松江区】 一. 选择题1. 如果两个相似三角形的面积比是1:4,那么它们的周长比是( ) A. 1:16; B. 1:4; C. 1:6; D. 1:2;2. 下列函数中,属于二次函数的是( )A. 21y x =+;B. 22(1)y x x =-- ;C. 227y x =-;D. 21y x=-; 3. 在Rt △ABC 中,90ACB ∠=︒,1BC =,2AB =,则下列结论正确的是( ) A. 3sin 2A =; B. 3cos 2A =; C. 1tan 2A =; D. 3cot 3A =;4. 若四边形ABCD 的对角线交于点O ,且有2AB DC =,则以下结论正确的是( ) A. 2AO OC =; B. ||||AC BD =; C. AC BD =; D. 2DO OB =;5. 如果二次函数2y ax bx c =++(0a ≠)的图像如图所示,那么( ) A. 0a <,0b >,0c >; B. 0a >,0b <,0c >;C. 0a >,0b >,0c <;D. 0a <,0b <,0c <;6. P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC ,如果截得的 三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”Rt △ABC 中,90C ∠=︒,30A ∠=︒,当点P 为AC 的中点时,过点P 的△ABC 的“相似线最多有几条?( )A. 1条;B. 2条;C. 3条;D. 4条; 二. 填空题7. 若::1:3:2a b c =,且24a b c ++=,则a b c +-= ;8. 已知线段2a cm =,8b cm =,那么线段a 、b 的比例中项等于 cm ; 9. 二次函数223y x x =--+的图像与y 轴的交点坐标为 ;10. 在Rt △ABC 中,90C ∠=︒,如果4AC =,2sin 3B =,那么AB = ; 11. 一位运动员投掷铅球,如果铅球运行时离地面的高度为y (米)关于水平距离x (米)的函数解析式为21251233y x x =-++,那么铅球运动过程中最高点离地面的距离为 米;12. 如图,直线AD ∥BE ∥CF ,23BC AB =,6DE =,那么EF 的值是 ;13. 在一个斜坡上前进5米,水平高度升高了1米,则该斜坡坡度i = ;14. 若点1(3,)A y -、2(0,)B y 是二次函数22(1)3y x =--+图像上的两点,那么1y 与2y 的大小关系 是 (填12y y >、12y y =或12y y <);15. 将抛物线2y x =沿x 轴向右平移2个单位后所得抛物线的解析式是 ;16. 如图,已知DE ∥BC ,且DE 经过△ABC 的重心G ,若6BC cm =,那么DE 等于 cm ; 17. 已知二次函数的图像经过(0,3)、(4,3)两点,则该二次函数的图像对称轴为直线 ;18. 已知在△ABC 中,90C ∠=︒,3BC =,4AC =,点D 是AB 边上一点,将△ABC 沿着直线CD 翻折,点A 落在直线AB 上的点'A 处,则sin 'A CD ∠= ;答案:1. D2. C3. B4. A5. A6. C7. 88. 49. (0,3) 10. 6 11. 3 12. 4 13. 62:1 14. y 21y < 15. )2(2-=x y 16. 4 17. x=2 18.54【虹口区】一. 选择题1. 已知α为锐角,如果2sin 2α=,那么α等于( ) A. 30°; B. 45°; C. 60°; D. 不确定;2. 把二次函数241y x x =-+化成2()y a x m k =++的形式是( ) A. 2(2)1y x =-+; B. 2(2)1y x =--;C. 2(2)3y x =-+;D. 2(2)3y x =--;3. 若将抛物线2y x =平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A. 向左平移3个单位; B. 向右平移3个单位;C. 向上平移3个单位;D. 向下平移3个单位;4. 若坡面与水平面的夹角为α,则坡度i 与坡角α之间的关系是( ) A. cos i α=; B. sin i α=; C. cot i α=; D. tan i α=;5. 如图,平行四边形ABCD 对角线AC 与BD 相交于点O ,如果AB m =,AD n =,那么下列选项中,与向量1()2m n +相等的向量是( ) A. OA ; B. OB ; C. OC ; D. OD ;6. 如图,点A 、B 、C 、D 的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE 与△ABC 相似, 则点E 的坐标不可能是( )A. (4,2);B. (6,0);C. (6,4);D. (6,5);二. 填空题7. 若:5:2x y =,则():x y y +的值是 ; 8. 计算:13(2)2a ab --= ; 9. 二次函数22y x x =-的图像的对称轴是直线 ;10. 如果抛物线231y x x m =-+-+经过原点,那么m = ;11. 已知点11(,)A x y 、22(,)B x y 为二次函数2(1)y x =-图像上的两点,若121x x <<, 则1y 2y (填“>”、“<”或“=”);12. 用“描点法”画二次函数2y ax bx c =++的图像时,列出了下面的表格:x… -2 -1 0 1 … y…-11-21-2…根据表格上的信息回答问题:当2x =时,y = ;13. 如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的 比为 ;14. 如图,在平行四边形ABCD 中,E 是边BC 上的点,分别联结AE 、BD 相交于点O ,若5AD =,35BO DO =,则EC = ;15. 如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,若△ABC 的边BC 长为40厘米,高AH 为30厘米,则正方形DEFG 的边长为 厘米; 16. 如图,在△ABC 中,90ACB ∠=︒,若点G 是△ABC 的重心,2cos 3BCG ∠=,4BC =, 则CG = ;17. 如图,在四边形ABCD 中,90B D ∠=∠=︒,3AB =,2BC =,4tan 3A =,则CD = ;18. 如图,在矩形ABCD 中,6AB =,10AD =,点E 是边BC 的中点,联结AE ,若将△ABE 沿AE 翻折,点B 落在点F 处,联结FC ,则cos ECF ∠= ; 答案:1. B2. D3. A4. D5. C6. C7. 278. b a625-+ 9. x=1 10. 111. > 12. -11 13. 4:1 14. 2 15. 7120 16. 2 17. 56 18.61615。

2016年上海市各区县中考数学一模压轴题图文解析18题

2016年上海市各区县中考数学一模压轴题图文解析18题

答案
10 2 或 .思路如下: 10 2
1 ,可得BE=2,AE =4. 2
如图2,在 Rt△ABE 中,由AB= 2 5 ,cotB=
在Rt△ACE中,由AE=4, CE=BC-BE=6 -2=4,可得AC= 4 2 ,∠ACE=45°. ①如图 3,当点 B′在 BC 边上时,B′E =BE=2. 在等腰直角三角形 B′CH 中,B′C= 2,所以 B′H=CH = 2 . 在 Rt△ AB′H,B′H= 2 ,AH=AC- CH= 3 2 ,所以 AB′= 2 5 . 此时 sin∠CAB′=
5 7
DM △MBD的周长 AB BD . ND △DCN的周长 AC DC
如图3, 设等边三角形 ABC的边长为4 , 当BD∶DC=1∶3 时,
AM DM 4 1 5 . AN ND 4 3 7源自图2图32例
2016 年上海市奉贤区中考一模第 18 题
如图 1,已知平行四边形 ABCD 中,AB= 2 5 ,AD=6,cotB=
B'H 2 10 . AB ' 2 5 10
②如图 4,当点 B′在 AD 边上时,∠ CAB′=45°.此时 sin∠ CAB′=
2 . 2
图2
图3
图4
3
本讲义由《挑战中考数学压轴题》的作者马学斌老师制作

2016 年上海市虹口区中考一模第 18 题
如图 1,在矩形 ABCD 中,AB=6,AD=10,点 E 是 BC 的中点,联结 AE,若将△ABE
答案
2 .思路如下: 2 2 . 2 2 . 2
在Rt△AEM中,AE=1,∠EAM=45°,所以EM=AM=
由△EMD≌△DNC,得MD= NC=2EM= 2 .所以AD=

2016上海十七区初三中考数学一模试卷汇总(WORD)

2016上海十七区初三中考数学一模试卷汇总(WORD)

初三一轮数学检测卷(2016奉贤一模)一. 选择题1. 用一个4倍放大镜照△,下列说法错误的是()A.△放大后,是原来的4倍;B.△放大后,边是原来的4倍;C. △放大后,周长是原来的4倍;D.△放大后,面积是原来的16倍;2. 抛物线的对称轴是()A.直线;B. 直线;C. 直线;D. 直线;3. 抛物线与轴的交点个数是()A.0个;B. 1个;C. 2个;D. 3个;4. 在△中,点、分别是边、上的点,且有,,那么的值为()A. 3;B. 6;C. 9;D. 12;5. 已知△中,,,,那么下列说法正确的是()A. ;B. ;C. ;D. ;6. 下列关于圆的说法,正确的是()A. 相等的圆心角所对的弦相等;B. 过圆心且平分弦的直线一定垂直于该弦;C. 经过半径的端点且垂直于该半径的直线是圆的切线;D. 相交两圆的连心线一定垂直且平分公共弦;二. 填空题7. 已知,那么;8. 二次函数的顶点坐标为;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比;10. 如果抛物线的开口向下,那么的取值范围是;11. 从观测点观察到楼顶的仰角为,那么从楼顶观察观测点的俯角为;12. 在以为坐标原点的直角坐标平面内有一点,如果与轴正半轴的夹角为,那么角的余弦值为;13. 如图△中,平分,∥,若,,那么;14. 线段长,点在线段上,满足,则的长为;15. 的半径,的半径,若此两圆有且仅有一个交点,那么这两圆的圆心距;16. 已知抛物线,经过点和点,那么;17. 如图,△中,,,点在边上,,且有,那么的长是;18. 如图,已知平行四边形中,,,,将边绕点旋转,使得点落在平行四边形的边上,其对应点为(点不与点重合),那么;三. 解答题19. 计算:;20. 如图,已知∥∥,,;(1);(用来表示)(2)求作向量在、方向上的分向量;(不要求写作法,但要指出所表示向量)21. 为方便市民通行,某广场计划对坡角为,坡长为米的斜坡进行改造,在斜坡中点处挖去部分坡体(阴影表示),修建一个平行于水平线的平台和一条新的斜坡;(1)若修建的斜坡的坡角为,则平台的长约为多少米?(2)在距离坡角点米远的处是商场主楼,小明在点测得主楼顶部的仰角为,那么主楼高约为多少米?(结果取整数,参考数据:,,,)22. 如图,在中,为直径,点为的中点,直径交弦于,,;(1)求半径的值;(2)点在直径上,联结,当时,求的长;23. 已知在梯形中,∥,,;(1)求证:△∽△;(2)联结,若,求证:;24. 如图,二次函数图像经过原点和点,直线与抛物线交于点,且;(1)求二次函数解析式及其顶点的坐标;(2)在直线上是否存在点,使得△为直角三角形,若存在,求出点的坐标,若不存在,说明理由;25. 已知如图,△中,,,,点是斜边上任意一点,联结,过点作,联结,使得,联结;(1)求证:;(2)设,四边形的面积为,求与之间的函数关系式,并写出定义域;(3)当时,求的值;初三一轮数学检测卷(2016奉贤一模)参考答案一. 选择题1. A2. C3. C4. B5. B6. D二. 填空题7. 8. 9. 10.11. 12. 13. 14.15. 或 16. 17. 18. 或三. 解答题19. ;20.(1);(2)略;21.(1);(2);22.(1);(2);23. 略;24.(1),;(2)或;25.(1)略;(2);(3)或;初三一轮数学检测卷(2016浦东一模)一. 选择题1. 如果两个相似三角形对应边之比是,那么它们的对应边上的中线之比是()A.;B. ;C. ;D. ;2. 在△中,,若,,则的值为()A.;B. ;C. ;D. ;3. 如图,点、分别在、上,以下能推得∥的条件是()A.;B. ;C.;D. ;4. 已知二次函数的图像如图所示,那么、、的符号为()A. ,,;B. ,,;C. ,,;D. ,,;5. 如图,△中,,于点,下列结论中错误的是()A. ;B. ;C. ;D. ;6. 下列命题是真命题的是()A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知,那么;8. 计算:;9. 上海与杭州的实际距离约千米,在比例尺为的地图上,上海与杭州的图上距离约厘米;10. 某滑雪运动员沿着坡比为的斜坡向下滑行了100米,则运动员下降的垂直高度为米;11. 将抛物线向下平移2个单位,得到新抛物线的函数解析式是;12. 二次函数的图像如图所示,对称轴为直线,若此抛物线与轴的一个交点为,则抛物线与轴的另一个交点坐标是;13. 如图,已知是△的中线,点是△的重心,,那么用向量表示向量为;14. 如图,△中,,,是△的边上的点,且,那么的长是;15. 如图,直线∥∥,如果,,,那么线段的长是;16. 如图是小明在建筑物上用激光仪测量另一建筑物高度的示意图,在地面点处水平放置一平面镜,一束激光从点射出经平面镜上的点反射后刚好射到建筑物的顶端处;已知,,且测得米,米,米,、、在一条直线上,那么建筑物的高度是米;17. 若抛物线与轴交于点、,与轴交于点,则称△为“抛物三角形”;特别地,当时,称△为“正抛物三角形”;当时,称△为“倒抛物三角形”;那么,当△为“倒抛物三角形”时,、应分别满足条件;18. 在△中,,,,是边上的一点,是边上的一点(、均与端点不重合),如果△与△相似,那么;三. 解答题19. 计算:;20. 二次函数的变量与变量的部分对应值如下表:(1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴;21. 如图,梯形中,∥,点是边的中点,联结并延长交的延长线于点,交于点;(1)若,,求线段的长;(2)求证:;22. 如图,为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点、、,是一个观测点,,60米,,,测得该车从点行驶到点所用时间为1秒;(1)求、两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△中,是边的中点,交于点,,交于点;(1)求证:△∽△;(2)求证:;24. 如图,抛物线与轴交于、两点(在的左侧),与轴交于点,抛物线的顶点为;(1)求、的值;(2)求的值;(3)若点是线段上一个动点,联结;问是否存在点,使得以点、、为顶点的三角形与△相似?若存在,求出点坐标;若不存在,请说明理由;25. 如图,在边长为6的正方形中,点为边上的一个动点(与点、不重合),,交对角线于点,交对角线于点,交于点;(1)如图1,联结,求证:△∽△,并写出的值;(2)联结,如图2,设,,求关于的函数解析式,并写出定义域;(3)当为边的三等分点时,求的面积;初三一轮数学检测卷(2016浦东一模)参考答案一. 选择题1. B2. C3. C4. A5. B6. D二. 填空题7. 8. 9. 10.11. 12. 13. 14.15. 16. 17. 18. 或或三. 解答题19. ;20.(1);(2)对称轴,顶点坐标;21.(1);(2)略;22.(1);(2)不超速;23. 略;24.(1),;(2);(3),;25.(1);(2);(3)或;普陀区2015-2016年度第一学期初三质量调研一、选择题:(本大题共6题,每题4分,满分24分)1、如图1,相交于点,下列条件中,能推得的条件是()2、在中,点分别是边的中点,,如果的面积等于3,那么的面积等于()B、C、D、3、如图2.在中,,是斜边AB上的高,下列线段的比值不等于的值是()4、如图同号,那么二次函数的大致图像是()5、下列命题中,正确的是()A、圆心角相等,所对的弦的弦心距相等B、三点确定一个圆C、平分弦的直径垂直于弦,并且平分弦所对的弧D、弦的垂直平分线必经过圆心6、已知在平行四边形中,点分别是边的中点,如果,,那么向量关于的分解式是()二、填空(12*4=48)7.如果,那么=_______.8.计算:_________.9._________.10.已知点P把线段AB分割成AP和PB(AP>PB)两段,如果AP是AB和PB的比例中项,那么AP:BP的值为_____.11.在函数①,②,③,④中,关于的二次函数是_____.(填写序号)12.二次函数的图像有最_________点.(填:“高”或“低”)13.如果抛物线的顶点坐标为,那么的值等于_________.14.如图3,点G为的重心,DE经过点G,如果DE的长是4,那么CF的长是______.15.如图4,半圆形纸片的半径长是1cm,用如图所示的方法将纸片对折,使对折后半圆的中点M与圆心O重合,那么折痕CD的长是_________cm.16.已知在中,,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果与相似,那么AP的长等于_________.17.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原来坡角为的传送带AB,调整为坡度为的新传送带AC(如图5所示),已知原传送带AB的长是米,那么新传送带AC的长是_______米.18.已知是平面直角坐标系中的一点,点B是轴负半轴上一动点,联结AB,并以AB 为边在轴上方作矩形ABCD,且满足,设点C的横坐标是,如果用含的代数式表示点D的坐标,那么点D的坐标是_________.三,填空题:(本大题共7题,满分78分)19、(本题满分10分)已知:如图6,在梯形中,,,点M是边BC的中点,(1)填空:(结果用表示)(2)直接在图中画出向量(不要写作法,但要指出图中表示结论的向量)20、(本题满分10分)将抛物线先向上平移2个单位,再向左平移个单位,所得抛物线经过(—1,4),求新抛物线的解析式及新抛物线与y轴交点的坐标。

2016届一模普陀(上海中考数学系列)(带参考答案)

2016届一模普陀(上海中考数学系列)(带参考答案)

初三一轮数学检测卷(2016普陀一模)一. 选择题1. 如图,BD 、CE 相交于点A ,下列条件中,能推出DE ∥BC 的条件是( ) A. ::AE EC AD DB =; B. ::AD AB DE BC =; C. ::AD DE AB BC =; D. ::BD AB AC EC =;2. 在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DE ∥BC ,如果△ADE 的面积 等于3,那么△ABC 的面积等于( )A. 6;B. 9;C. 12;D. 15;3. 如图,在Rt △ABC 中,90C ︒∠=,CD 是斜边AB 上的高,下列线段的比值不等于cos A 的值的是( )A.AD AC ; B. AC AB ; C. BD BC ; D. CDBC; 4. 如果a 、b 同号,那么二次函数21y ax bx =++的大致图像是( )A. B. C. D. 5. 下列命题中,正确的是( )A. 圆心角相等,所对的弦的弦心距相等;B. 三点确定一个圆;C. 平分弦的直径垂直于弦,并且平分弦所对的弧;D. 弦的垂直平分线必经过圆心;6. 已知在平行四边形ABCD 中,点M 、N 分别是边BC 、CD 的中点,如果AB a =,AD b =,那么向量MN 关于a 、b 的分解式是( )A.1122a b -; B. 1122a b -+; C. 1122a b +; D. 1122a b --;二. 填空题7. 如果:2:5x y =,那么y xx y-=+ ; 8. 计算:2()()a b a b ++-= ; 9. 计算:2sin 45cot 30tan 60︒︒︒+⋅= ;10. 已知点P 把线段AB 分割成AP 和PB ()AP PB >两段,如果AP 是AB 和PB 的比例 中项,那么:AP PB 的值等于 ;11. 下列函数:①2y ax bx c =++;②22(1)y x x =--;③2255y x x=-;④22y x =-+; y 关于x 的二次函数是 ;(填写序号) 12. 二次函数223y x x =+-的图像有最 点;(填“高”或“低”)13. 如果抛物线22y x mx n =++的顶点坐标为(1,3),那么m n +的值等于 ; 14. 如图,点G 为△ABC 的重心,DE 经过点G ,DE ∥AC ,EF ∥AB ,如果DE 的 长是4,那么CF 的长是 ;15. 如图,半圆形纸片的半径长是1cm ,用如图所示的方法将纸片对折,使对折后半圆的 中点M 与圆心O 重合,那么折痕CD 的长是 cm ;16. 已知在Rt △ABC 中,90C ︒∠=,点P 、Q 分别在边AB 、AC 上,4AC =,3BC AQ ==,如果△APQ 与△ABC 相似,那么AP 的长等于 ;17. 某货站用传送带传送货物,为了提高传送过程中的安全性,工人师傅将原坡角为45︒的传送带AB ,调整为坡度i =AC (如图所示),已知原传送带AB 的长是AC 的长是 米;18. 已知(3,2)A 是平面直角坐标中的一点,点B 是x 轴负半轴上一动点,联结AB ,并以AB 为边在x 轴上方作矩形ABCD ,且满足:1:2BC AB =,设点C 的横坐标是a ,如果用含a 的代数式表示点D 的坐标,那么点D 的坐标是 ;三. 解答题19. 已知如图,在梯形ABCD 中,AD ∥BC ,13AD BC =,点M 是边BC 的中点, AD a =,AB b =;(1)填空:BM = ;MA = ;(用a 、b 表示)(2)直接在图中画出向量2a b +;(不要求写作法,但要指出图中表示结论的向量)20. 将抛物线212y x =先向上平移2个单位,再向左平移m (0)m >个单位,所得新抛物线 经过点(1,4)-,求新抛物线的表达式及新抛物线与y 轴交点的坐标;21. 如图,已知AD 是O 的直径,AB 、BC 是O 的弦,AD BC ⊥,垂足是点E ,8BC =,2DE =,求O 的半径长和sin BAD ∠的值;22. 已知如图,有一块面积等于12002cm的三角形纸片ABC,已知底边BC与底边上的高的和为100cm(底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形DEFG的边长;23. 已知如图,在四边形ABCD中,ADB ACB∠=∠,延长AD、BC相交于点E,求证:(1)△ACE∽△BDE;(2)BE DC AB DE⋅=⋅;24. 已知如图,在平面直角坐标系xOy中,二次函数27 3y ax x c=-+的图像经过点(0,8)A、(6,2)B、(9,)C m,延长AC交x轴于点D;(1)求这个二次函数的解析式及m的值;(2)求ADO∠的余切值;(3)过点B的直线分别与y轴的正半轴、x轴、线段AD交于点P(点A的上方)、M、Q,使以点P、A、Q为顶点的三角形与△MDQ相似,求此时点P的坐标;25. 如图,已知锐角MBN ∠的正切值等于3,△PBD 中,90BDP ︒∠=,点D 在MBN ∠ 的边BN 上,点P 在MBN ∠内,3PD =,9BD =,直线l 经过点P ,并绕点P 旋转,交 射线BM 于点A ,交射线DN 于点C ,设CAx CP=; (1)求2x =时,点A 到BN 的距离;(2)设△ABC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△ABC 因l 的旋转成为等腰三角形时,求x 的值;初三一轮数学检测卷(2016普陀一模)参考答案一、选择题1. A2. C3. C4. D5. D6. B二、填空题7.37 8. 3a b + 9. 72 10. 1211. ④ 12. 低 13. 1 14. 215. 16.125或154 17. 8 18. 6(2,)2a -三、解答题19.(1)32BM a =,32MA a b =--;(2)略; 20. 21(3)22y x =++,13(0,)2;21. 5r =,sin BAD ∠=; 22. 24; 23. 略; 24.(1)227893y x x =-+,5m =;(2)cot 3ADO ∠=;(3)(0,20)P ;25.(1)6;(2)2121x y x =-(19)x <≤;(3)5x =或135或15+;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年黄浦区一模
18、如图6,在梯形ABCD 中,AD//BC ,
45=∠B ,点E 是AB 的中点,DE=DC ,
90=∠EDC 若AB=2,则AD 的长是_____
24、在平面直角坐标系中,抛物线c ax ax y +-=32
与x 轴交于A (-1,0)、B 两点(A 在B 点左侧),与y 轴交于点C (0,2) (1)求抛物线的对称轴及B 点坐标 (2)求证:BCO CAO ∠=∠
(3)点D 是射线BC 上一点(不与B 、C 重合),联结OD ,过点B 作OD BF ⊥,垂足为BOD ∆外一点E ,若BDE ∆与ABC ∆相似,求点D 的坐标
25、已知直线1l 、2l ,1l //2l ,点A 是1l 上的点,B 、C 是2l 上的点
BC AC ⊥, 60=∠ABC ,AB=4,O 是AB 中点,D 是CB 延长线上的点,将DOC ∆沿直线
CO 翻折,点D 与'D 重合(1)如图12,当点'D 落在直线1l 上时,求DB 的长 (2)延长DO 交1l 于点E ,直线'OD 分别交1l 、2l 于点M 、N
如图13,当点E 在线段AM 上时,设AE=x,DN=y ,求y 关于x 的函数解析式及其定义域 若DON ∆的面积为32
3
时,求AE 的长
2016年杨浦区一模
18、如图,已知将ABC ∆沿角平分线BE 所在的直线翻折,点A 恰好落在边BC 的中点M 处,且AM=BE ,那么EBC ∠的正切值为_____
24、在平面直角坐标系中,抛物线c bx x y ++-=2
2
1与x 轴交于A 、B 两点,与y 轴交于点C ,直线4+=x y 经过A,C 两点 (1)求抛物线的表达式
(2)如果点P 、Q 在抛物线上(P 点在对称轴的左边),且PQ//AO,PQ=2AO,求点P 、Q 的坐标
(3)动点M 在直线4+=x y 上,且ABC ∆与COM ∆相似,求点M 的坐标
25、已知菱形ABCD 的边长为5,对角线AC 的长为6,(如图1),点E 为边AB 上的动点,点F 在射线AD 上,且B ECF ∠=∠,直线CF 交直线AB 于点M, (1)求B ∠的余弦值
(2)当点E 与点A 重合时,试画出符合题意的图形,并求BM 的长
(3)当点M 在边AB 的延长线上时,设BE=x ,BM=y,求y 关于x 的函数解析式并写出定义域
2016年徐汇区一模
18、如图8,在Rt△ABC中,∠BAC=90°,AB=3,cosB=,将△ABC绕着点A旋转得△AD E,点B的对应点D落在边BC上,联结CE,那么CE的长是________.
24、如图12,在Rt△AOB中,∠AOB=90°,已知点A(-1,-1),点B在第二象限,OB=,抛物线经过点A和点B.
(1)求点B的坐标;
(2)求抛物线的对称轴;
(3)如果该抛物线的对称轴分别和边AO、BO的延长线交于点C、D,设点E在直线AB上,当
△BOE和△BCD相似时,直接写出点E的坐标。

D
25、如图13,四边形ABCD 中,∠C=60°,AB=AD=5,CB=CD=8,点P 、Q 分别是边AD 、BC 上的动点,AQ 和BP 交于点E ,且∠BEQ =90°∠BAD ,设A 、P 两点的距离为x . (1) 求∠BEQ 的正切值;
(2) 设,求y 关于x 的函数关系式及定义域; (3) 当△AEP 是等腰三角形时,求B 、Q 两点的距离。

(注:可编辑下载,若有不当之处,请指正,谢谢!)
图13。

相关文档
最新文档