2018-2019年最新苏教版七年级数学下册《平面图形的认识》单元测试题及答案解析(精品试卷)
苏教版七年级下《平面图形的认识(二)》单元试卷含答案
《平面图形的认识(二)》单元测试卷一.选择题(共8小题)1.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.2.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B 向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35 B.7:34 C.7:33 D.7:323.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n 边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A.4个 B.3个 C.2个 D.1个4.下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,45.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°6.如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.67.a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c8.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定二.填空题(共10小题)9.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.10.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=度.11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是.12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.13.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是.14.如图,点D在△ABC的边BC上,已知点E、点F分别为△ABD和△ADC的重心,如果BC=12,那么两个三角形重心之间的距离EF的长等于.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对.16.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°.17.如图,△ABC的面积为S.点P1,P2,P3,…,P n是边BC的n等分点(n﹣1≥3,且n为整数),点M,N分别在边AB,AC上,且==,连接MP1,MP2,MP3,…,MP n﹣1,连接NB,NP1,NP2,…,NP n﹣1,线段MP1与NB相交于点D1,线段MP2与NP1相交于点D2,线段MP3与NP2相交于点D3,…,线段MP n﹣1与NP n﹣2相交于点D n﹣1,则△ND1P1,△ND2P2,△ND3P3,…,△ND n﹣1P n﹣1的面积和是.(用含有S与n的式子表示)18.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为个单位.三.解答题(共8小题)19.如图所示,在△ABC中,BO、CO是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.(3)若∠A=n°,求∠BOC的度数.20.如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)解:∵EF∥AD,(已知)∴∠2=()∵∠1=∠2,(已知)∴∠1=()∴∥,()∴∠AGD+ =180°,(两直线平行,同旁内角互补)∵,(已知)∴∠AGD=(等式性质)21.如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.22.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.24.如图,△ABC中,点E在边BA上,AD⊥BC,EF⊥BC,垂足分别是D、F,∠1=∠2.(1)DG与BA平行吗?为什么?(2)若∠B=51°,∠C=54°,求∠CGD的度数.25.(1)如图①,已知任意△ABC,过点C作DE∥AB,求证:△ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图②,求证:∠AGF=∠AEF+∠F;(3)如图③,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.26.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:45678……n多边形的顶点数从一个顶点出发的对角线的条数123 4 5 ……①多边形对角线的总条数25914 2……②(1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②;(2)实际应用数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.参考答案与试题解析一.选择题(共8小题)1.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选B.2.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35 B.7:34 C.7:33 D.7:32【解答】解:设x分钟后两船距离最近,当如图EF⊥BD,AE=DF时,两船距离最近,根据题意得出:36x=18.9﹣27x,解得:x=0.3,0.3小时=0.3×60分钟=18(分钟),则两船距离最近时的时刻为:7:33.故选:C.3.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n 边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:①假设一个三角形有两个钝角,那么这两个钝角的和大于180°,与三角形的内角和为180°相矛盾.故三角形的内角中最多有一个钝角,正确;②三角形的中线把三角形分成的两个三角形的底边相等,高相同,所以面积相等,正确;③因为连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,每一个三角形的内角和是180°,因此,n边形的内角和是(n﹣2)•180°,正确;④n边形共有条对角线,所以六边形的对角线有6×3÷2=9条,错误.故选B.4.下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,4【解答】解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选:D.5.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°【解答】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选B.6.如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.6【解答】解:根据两直线平行,同位角相等、内错角相等,与∠1相等的角有:∠2、∠3、∠4、∠5、∠6共5个.故选C.7.a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c【解答】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.8.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A二.填空题(共10小题)9.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=45°.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠2=30°,∴∠EPM=∠2=30°,又∵∠EPF=75°,∴∠FPM=45°,∴∠1=∠FPM=45°,故答案为:45°.10.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=25度.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是10.【解答】解:设正多边形的边数为n,由题意得,=144°,解得n=10.故答案为:10.12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=57°.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.13.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是4.【解答】解:∵AD、BE是△ABC的中线,∴点F是△ABC的重心,∴AF=AD=4,故答案为:4.14.如图,点D在△ABC的边BC上,已知点E、点F分别为△ABD和△ADC的重心,如果BC=12,那么两个三角形重心之间的距离EF的长等于4.【解答】解:如图,连接AE并延长交BD于G,连接AF并延长交CD于H,∵点E、F分别是△ABD和△ACD的重心,∴DG=BD,DH=CD,AE=2GE,AF=2HF,∵BC=12,∴GH=DG+DH=(BD+CD)=BC=×12=6,∵AE=2GE,AF=2HF,∠EAF=∠GAH,∴△EAF∽△GAH,∴==,∴EF=4,故答案为:4.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有3对.【解答】解:△BDC与△BEC、△BDC与△BAC、△BEC与△BAC共三对.故答案为:3.16.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【解答】解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB,∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°,故答案为:540.17.如图,△ABC 的面积为S .点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点(n ≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且==,连接MP 1,MP 2,MP 3,…,MP n ﹣1,连接NB ,NP 1,NP 2,…,NP n ﹣1,线段MP 1与NB 相交于点D 1,线段MP 2与NP 1相交于点D 2,线段MP 3与NP 2相交于点D 3,…,线段MP n ﹣1与NP n ﹣2相交于点D n ﹣1,则△ND 1P 1,△ND 2P 2,△ND 3P 3,…,△ND n ﹣1P n ﹣1的面积和是•S .(用含有S 与n 的式子表示)【解答】解:连接MN ,设BN 交MP 1于O 1,MP 2交NP 1于O 2,MP 3交NP 2于O 3.∵==,∴MN ∥BC ,∴==,∵点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点,∴MN=BP 1=P 1P 2=P 2P 3,∴四边形MNP 1B ,四边形MNP 2P 1,四边形MNP 3P 2都是平行四边形, 易知S △ABN =•S ,S △BCN =•S ,S △MNB =•S , ∴===•S ,n﹣1)•﹣=•S﹣(n﹣1)••S﹣∴S阴=S△NBC﹣(S=•S,故答案为•S.18.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为8个单位.【解答】解:根据题意,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,故四边形ABFD的边长分别为AD=1个单位,BF=3个单位,AB=DF=2个单位;故其周长为8个单位.故答案为:8.三.解答题(共8小题)19.如图所示,在△ABC中,BO、CO是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.(3)若∠A=n°,求∠BOC的度数.【解答】解:如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+3∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.20.如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)解:∵EF∥AD,(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠2,(已知)∴∠1=∠3(等量代换)∴DG∥BA,(内错角相等两直线平行)∴∠AGD+ ∠CAB=180°,(两直线平行,同旁内角互补)∵∠CAB=70°,(已知)∴∠AGD=110°(等式性质)【解答】解:∵EF∥AD,(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠2,(已知)∴∠1=∠3(等量代换)∴DG∥BA,(内错角相等两直线平行)∴∠AGD+∠CAB=180°,(两直线平行,同旁内角互补)∵∠CAB=70°,(已知)∴∠AGD=110°(等式性质).故答案为:∠3;两直线平行同位角相等;∠3;等量代换;DG;BA;内错角相等两直线平行;∠CAB;∠CAB;70°;110°21.如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.【解答】解:连接DE∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形.∴∠C=60°.∴∠AEC=90°﹣∠C=30°.22.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.【解答】证明:由三角形的外角性质得,∠EAC=∠B+∠C,∵∠B=∠C,∴∠EAC=2∠B,∵AD平分外角∠EAC,∴∠EAC=2∠EAD,∴∠B=∠EAD,∴AD∥BC.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为4.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:424.如图,△ABC中,点E在边BA上,AD⊥BC,EF⊥BC,垂足分别是D、F,∠1=∠2.(1)DG与BA平行吗?为什么?(2)若∠B=51°,∠C=54°,求∠CGD的度数.【解答】解:(1)平行,理由如下:∵EF⊥BC,AD⊥BC,∴∠BFE=∠BDA=90°,∴EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB;(2)∵DG∥AB,∴∠CDG=∠B=51°,∵∠C+∠CDG+∠CGD=180°,∴∠CGD=180°﹣51°﹣54°=75°.25.(1)如图①,已知任意△ABC,过点C作DE∥AB,求证:△ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图②,求证:∠AGF=∠AEF+∠F;(3)如图③,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.【解答】证明:(1)如图①所示,在△ABC中,∵DE∥BC,∴∠B=∠1,∠A=∠2(内错角相等).∵∠1+∠ACB+∠2=180°,∴∠A+∠B+∠C=180°即三角形的内角和为180°;(2)∵∠AGF+∠FGE=180°,由(2)知,∠GEF+∠EG+∠FGE=180°,∴∠AGF=∠AEF+∠F;(3)∵AB∥CD,∠CDE=119°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.26.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:多边形的顶点数45678……n从一个顶点出发的对角线的条数123 4 5 ……①n﹣3多边形对角线的总条数25912……②4 0n(n﹣3)(1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①n﹣3;②n(n﹣3);(2)实际应用数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.【解答】解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n﹣3,多边形对角线的总条数为n(n﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,∴数学社团的同学们一共将拨打电话为×18×(18﹣3)=135(个);(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n﹣3);数学社团有18名同学,当n=18时,×18×(18﹣3)=135.。
苏科版七年级下第七章《平面图形的认识》复习测试卷含试卷分析详解
苏科版七年级数学下册第七章《平面图形的认识》复习检测卷一、选择题(每题3分,共30分)1.下面四个图形中,线段BD是△ABC的高的是( )2.在5×5的方格纸中,图1中的图形N平移后的位置如图2所示,那么正确的平移方法是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格3.如图,在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°,现,A、B两地同时开工,若干天后公路要准确对接,则B地所修公路的走向应该是( )A.北偏西52°B.南偏东52°C.西偏北52°D.北偏西38°4.已知一个三角形三个内角度数的比是l:5:6,则其最大内角的度数为( ) A.60°B.75°C.90°D.120°5.现有两根木棒,它们的长分别为40 cm和50 cm,若要钉成一个三角形木架,则在下列四根木棒中应选取( ) A.10 cm的木棒B.50 cm的木棒C.100 cm的木棒D.110 cm的木棒6.(2011.娄底)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A.80°B.50°C.30°D.20°7.用一条宽相等的足够长的纸条打一个结,如图①所示,然后轻轻拉紧、压平就可以得到如图②所示的正五边形ABCDE,其中∠BAC的度数为( )A.30°B.36°C.40°D.72°8.如图,如果AB∥CD,那么∠1、∠2、∠3之间的关系为( ) A.∠1+∠2+∠3=360°B.∠1-∠2+∠3=180°C.∠1-∠2-∠3=180°D.∠1+∠2-∠3=180°9.如图,已知直线AB∥CD,当点E在直线AB与CD之间时,下列关系式成立的是( )A.∠BED=∠ABE+∠CDE B.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE D.∠BED=2∠CDE-∠ABE10.一电动玩具的正面是由半径为10cm的小圆盘和半径为20cm•的大圆盘依图中方式连接而成的,小圆盘在大圆盘的圆周上外切滚动一周且不发生滑动(大圆盘不动).回到原来的位置,在这一过程中,判断虚线所示位置的三个圆内,所画的头发,眼睛,嘴巴位置正确的是()二、填空题(每题3分,共18分)11.△ABC的高为AD,角平分线为AE,中线为AF,则把△ABC的面积分成相等两部分的线段是_______.12.下列说法:①三角形的外角和等于它的内角和;②三角形的一个外角大于任何一个内角;③三角形的一个外角和内角互补;④三角形的一个外角大于和它不相邻的内角.其中,正确的有_______(填序号).13.三角形的三边长为3,a,7,则a的取值范围是_______;如果这个三角形中有两条边相等,那么它的周长是_______.14.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.第14题 第15题 第16题15.如图,在△ABC 中,∠BAC=60°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 、CE 相交于点O ,则∠BOC 的度数是____________.16.小亮从A 点出发前进10 m ,向右转15°,再前进10 m ,又向右转15°,…,这样一直走下去,他第一次回到出发点A 时,一共走了___________m .三、解答题(共52分)17.(6分)如图,小明家有一块三角形菜地,要种面积相等的四种蔬菜,请你设计两种不同的方案,把这块地分成四块面积相等的三角形地块,分别种植这四种蔬菜.18.(6分)已知△ABC 的周长为24 cm ,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且a 、b 、c 满足条件a -b =b -c =2 cm ,求a 、b 、c 的长.19.(6分)如图,∠1=∠2=∠3,且∠BAC =70°,∠DFE =50°,求∠ABC 的度数.20.(8分)两个多边形的边数比为1:2,内角和的度数比为1:4,求这两个多边形的边数.21.(8分)如图,在△ABC 中,AD 平分∠BAC ,BE ⊥AC 于点E ,交AD 于点F ,试说明∠2=(∠ABC +∠C ).22.(10分)如图,请你从下列三个条件中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.①AD ∥BC ;②AB ∥CD ;③∠A=∠C .已知:________________________________________________.结论:________________________________________________.理由:1223.(12分)如图①,把△ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠l+∠2.请你继续探索:(1)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?(2)如果把四边形ABCD沿时折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠l与∠2之间的关系吗?(直接写出关系式即可)参考答案一、1.A 2.C 3.A 4.C 5.A 6.D 7.B8.D 9.A 10.B二、11.中线AF 12.④13.4<a<10 1714.本题答案不唯一,如∠1=∠B 15.120°16.240°三、17.答案不惟一,如图18.6 cm、8 cm、10 cm19.60°20.这两个多边形的边数分别为3、621.略22..本题答案不唯一,如:已知:①②,结论:③.理由:因为AD∥BC,所以∠A=∠ABF,理由是两直线平行,内错角相等.又因为AB∥CD,所以∠ABF=∠C,理由是两直线平行,同位角相等,所以∠A=∠C23.(1)2∠A=∠1-∠2.观察图②得:∠1+2∠ADE=180°,2∠AED-∠2=180°,所以∠1+2∠ADE+2∠AED-∠2=360°.由三角形内角和是180°得:∠A+∠ADE+∠AED=180°,所以2∠A+2∠ADE+2∠AED=360°,所以∠1+2∠ADE+2∠AED-∠2=2∠A+2∠ADE+2∠AED,所以2∠A=∠1-∠2 (2)2∠A+2∠D-∠1-∠2=360°。
苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案[1]
苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏科版七年级下《第7章平面图形的认识(二)》单元测试题含答案(word版可编辑修改)的全部内容。
第7章平面图形的认识(二)一、选择题(本大题共6小题,每小题4分,共24分;在每个小题列出的四个选项中,只有一项符合题意)1.如图7-Z-1所示的四个图形中,∠1和∠2是同位角...的是()图7-Z-1A.②③ B.①②③C.①②④ D.①④2。
下列图形中,不能通过其中一个四边形平移得到的是(),A),B),C) ,D)图7-Z-23.如图7-Z-3,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()图7-Z-3A.AC是△ABC的高 B.DE是△BCD的高C.DE是△ABE的高 D.AD是△ACD的高4.如图7-Z-4,BE∥AF,D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数为( )图7-Z-4A.105° B.115° C.125° D.135°5. 若一个多边形的每一个外角都是24°,则此多边形的内角和为()A.2160° B.2340°C.2700° D.2880°6.将一张长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360° B.540° C.720° D.900°二、填空题(本大题共6小题,每小题5分,共30分)7.如图7-Z-5,直线AB,CD被直线EF所截,若要AB∥CD,需增加条件:________.(填一个即可)图7-Z-58.若一个三角形的三边长分别为2,3,x,则x的值可以为________.(只需填一个整数) 9.如图7-Z-6,点D,E分别在AB,BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=________°。
苏科版2019七年级数学下册第七章平面图形的认识综合练习题一( 含答案)
2018-2019学年度???学校2月月考卷
试卷副标题
考试范围:xxx;考试时间:100分钟;命题人:xxx
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
一、单选题
1.如图:AB∥CD,CB⊥DB,∠D=55°,则∠ABC的度数是( )
【详解】
解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n-2).
故选B.
【点睛】
多边形有n条边,则经过多边形的一个顶点的所有对角线有(n-3)条,经过多边形的一个顶点的所有对角线把多边形分成(n-2)个三角形.
5.D
【解析】由题意知,BE=6,DE=AB=10,
∴OE=DE-DO=10-4=6,
(1)找出图中一对互相平行的线段,并用符号表示出来;
(2)找出图中一对互相垂直的线段,并用符号表示出来;
(3)找出图中的一个钝角、一个直角和一个锐角,用符号把它们表示出来,并求出它们的度数.(不包括直角尺自身所成的角)
24.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)说明:∠O=∠BEO+∠DFO.
(2)如果将折一次改为折二次,如图-2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.
25.如图,有一块不规则的四边形图形ABCD,各个顶点的坐标分别为A(﹣2,8),B(﹣11,6),C(﹣14,0),D(0,0),
(1)确定这个四边形的面积
(2)如果把原来四边形ABCD的各个顶点的纵坐标保持不变,横坐标加1,画出平移后的图形。
(3)求出平移后四边形面积
苏科版2019七年级数学下册第七章平面图形的认识单元测试题1( 基础含答案)
4.如图,将一个Rt△ABC沿着直角边CA所在的直线向右平移得到Rt△DEF,已知BC=a,CA=b,FA= b;则四边形DEBA的面积等于( )
A. abB. abC. abD.ab
5.若直角三角形两条直角边长分别为5和12,则斜边上的中线长为()
A.13B.6C.6.5D.5
【详解】
∵三角形三边的高的比和三边的比成反比,
∴ha:hb:hc= : : =6:3:4.
故答案为6:3:4.
【点睛】
本题考查了比例线段,解题的关键是熟练的掌握比例线段的相关知识点.
16.29°.
【解析】试题分析:【分析】根据AB∥CD,求出∠DFE=56°,又∵∠C=27°,再根据三角形外角的定义性质求出∠∠E=56°-27°=29°,故答案为29°.
②由三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,可得结论;
③根据等腰三角形的定义进行解答;
④根据三角形按角分类情况可得答案.
【详解】
①∵有两个边相等的三角形叫等腰三角形,三条边都相等的三角形叫等边三角形,
∴等腰三角形不一定是等边三角形,
∴①错误;
6.如图,已知a∥b,∠1=75°,则∠2的度数是( )
A.35°B.75°C.105°D.125°
7.一个n边形的内角和为360°,则n等于( )
A.3B.4C.5D.6
8.已知一个三角形两边的长分别为 和 ,那么第三边的边长可能是下列各数中的()
A.3B.4C.7D.10
9.下列说法正确的有( )
18.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是____.
苏科版七年级数学下《第7章平面图形的认识》单元测试含试卷分析详解
《第7章平面图形的认识》一、单选题1.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90°B.105°C.130°D.120°2.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形3.锐角三角形的三个内角是∠A,∠B,∠C,如果α=∠A+∠B,β=∠B+∠C,γ=∠C+∠A,那么α,β,γ这三个角中()A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角4.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.65.如果一个多边形的内角和等于它的外角和,则这个多边形是()A.三角形B.四边形C.五边形D.六边形6.一个三角形至少有()A.一个锐角B.两个锐角C.一个钝角D.一个直角7.如图所示,DE∥BC,EF∥AB,图中与∠BFE互补的角共有()A.3个B.2个C.5个D.4个8.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个B.2个C.3个D.4个9.如果两条平行线被第三条直线所截,那么一组内错角的平分线()A.互相垂直B.互相平行C.互相重合D.以上均不正确10.用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于()A.35°B.55°C.60° D.65°11.一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A.40°B.50°C.130°D.150°12.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75° D.125°13.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图).如果第一次转弯时的∠B=140°,那么∠C应是()A.140°B.40°C.100°D.180°二、填空题14.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为7:2,则这个多边形的边数为.15.一个多边形的每一个外角等于30°,则此多边形是边形,它的内角和等于.16.若一个多边形的内角和与外角和之和是1800°,则此多边形是边形.17.多边形的内角中,最多有个直角.18.一个多边形边数增加1,则这个多边形内角增加,外角增加.19.每一个内角都是144°的多边形有条边.20.用一根长15cm的细铁丝围成一个三角形,其中,三边的长(单位:cm)分别为整数a、b、c,且a>b>c.(1)请写出一组符合上述条件的a、b、c的值;(2)a最大可取,c最小可取.21.如果一个角的两边分别平行于另一角的两边,则这两个角.22.若两条平行线被第三条直线所截,则同旁内角的平分线相交所成的角的度数是.23.如图,a∥b,∠1=(3x+20)°,∠2=(2x+10)°,那么∠3=.24.如图,AB∥CD∥EF,又AF∥CG,图中与∠A(本身不算)相等的角有25.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).如果∠C=72°,那么∠B的度数是°.26.如图,直线a、b被直线c所截,a∥b,∠1=70°,则∠2=.27.如图,∠1与∠C是两条直线被第三条直线所截构成的角;∠2与∠B是两条直线被第三条直线所截构成的角;∠B与∠C是被第三条直线所截构成的角.28.在同一平面内,两条直线的位置关系有.29.如图,是一条暖气管道的剖面图,如果要求管道拐弯前后的方向保持不变,那么管道的两个拐角∠α与∠β之间应该满足的关系是,理由是.三、解答题30.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.31.有两个角都相等的多边形,它们的边数之比为1:2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.32.如图,在四边形ABCD中,∠B+∠D=180°,∠DCE是四边形ABCD的一个外角,∠DCE与∠A相等吗?为什么?33.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?34.有一块三角形优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出三种划分方案供选择(画图说明).35.已知三角形ABC的最长边为8,且三条边的比为2:3:4,求这个三角形的周长.36.画一画:已知:如图△ABC.试作△ABC的:①中线AD;②角平分线BE;③高CH.37.如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理由.38.如图,如果∠1=∠2,那么∠2+∠3=180°吗?为什么?39.如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.40.附加题:如图已知AB、BE、ED、CD依次相交于B、E、D,∠E=∠B+∠D.试证明AB∥CD.41.如图所示,已知∠1=∠2,再添加什么条件可使AB∥CD成立?请你说明理由.42.如图,已知∠1=45°,∠2=135°,∠D=45°,问:BC与DE平行吗?AB与CD 呢?为什么?43.如图,若∠1+∠3=180°,能否得出AB∥CD?为什么?《第7章平面图形的认识》参考答案与试题解析一、单选题1.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90°B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n ﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.2.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.3.锐角三角形的三个内角是∠A,∠B,∠C,如果α=∠A+∠B,β=∠B+∠C,γ=∠C+∠A,那么α,β,γ这三个角中()A.没有锐角B.有1个锐角C.有2个锐角D.有3个锐角【考点】三角形的外角性质.【分析】根据三角形的外角性质,及锐角三角形的性质作答.【解答】解:由于锐角三角形中三个都是锐角,而α,β,γ分别是其外角,根据三角形外角的性质,可知α,β,γ这三个角都是钝角.故选A.【点评】此题主要考查了三角形内角与外角的关系.(1)三角形的任一外角等于和它不相邻的两个内角之和;(2)三角形的任一外角>任何一个和它不相邻的内角.4.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.5.如果一个多边形的内角和等于它的外角和,则这个多边形是()A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】利用多边形的外角和以及四边形的内角和定理即可解决问题.【解答】解:∵多边形的内角和等于它的外角和,多边形的外角和是360°,∴内角和是360°,∴这个多边形是四边形.故选:B.【点评】本题考查了多边形的外角和定理以及四边形的内角和定理,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.6.一个三角形至少有()A.一个锐角B.两个锐角C.一个钝角D.一个直角【考点】三角形内角和定理.【分析】根据三角形的内角和是180°,则三角形的三个内角中最多只能有1个钝角或最多只能有1个直角,从而进行分析判断出最少有2个锐角.【解答】解:根据三角形的内角和定理,知三角形的三个内角中最多有1个直角,三角形的三个内角中最多有1个钝角.则三角形的三个内角中最少要有2个锐角.故选B.【点评】此题考查了三角形的内角和定理.三角形的三个内角可能是3个锐角或1个钝角、2个锐角或1个直角、2个锐角.7.如图所示,DE∥BC,EF∥AB,图中与∠BFE互补的角共有()A.3个B.2个C.5个D.4个【考点】平行线的性质;余角和补角.【分析】先找到∠BFE的邻补角∠EFC,再根据平行线的性质求出与∠EFC相等的角即可.【解答】解:∵DE∥BC,∴∠DEF=∠EFC,∠ADE=∠B,又∵EF∥AB,∴∠B=∠EFC,∴∠DEF=∠EFC=∠ADE=∠B,∵∠BFE的邻补角是∠EFC,∴与∠BFE互补的角有:∠DEF、∠EFC、∠ADE、∠B.故选D.【点评】解答此题要明确两方面的问题:①邻补角互补.②平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.8.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个B.2个C.3个D.4个【考点】平行线的判定与性质.【分析】①根据内错角相等,判定两直线平行;②根据两直线平行,同旁内角互补与同旁内角互补,两直线平行进行判定;③根据两直线平行,同旁内角互补与同角的补角相等判定;④∠D与∠ACB不能构成三线八角,无法判断.【解答】解:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)所以①正确∵AB∥CD(已证)∴∠BAD+∠ADC=180°(两直线平行,同旁内角互补)又∵∠BAD=∠BCD∴∠BCD+∠ADC=180°∴AD∥BC(同旁内角互补,两直线平行)故②也正确∵AB∥CD,AD∥BC(已证)∴∠B+∠BCD=180°∠D+∠BCD=180°∴∠B=∠D(同角的补角相等)所以③也正确.正确的有3个,故选C.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题还要注意运用平行线的性质.9.如果两条平行线被第三条直线所截,那么一组内错角的平分线()A.互相垂直B.互相平行C.互相重合D.以上均不正确【考点】平行线的判定与性质.【分析】结合图形分析所得结论,根据平行线的判定方法判断.【解答】解:因为两直线平行,内错角相等,一组内错角的平分线分出的两个角是原内错角的一半,仍然相等,再根据内错角相等两直线平行,即可得一组内错角的平分线互相平行.故选B.【点评】熟练掌握平行线的性质和判定是解决本题的关键.10.用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于()A.35°B.55°C.60° D.65°【考点】方向角.【专题】计算题.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:从图中我们会发现∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣65°=55°.故选B.【点评】解答此类题需要从运动的角度,正确画出方位角,找准中心是解答此类题的关键.11.一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()A.40°B.50°C.130°D.150°【考点】平行线的性质.【专题】应用题.【分析】根据平行线的性质:两条直线平行,同位角相等作答.【解答】解:如图,根据两直线平行,同位角相等,得第二次向右拐50°.故选B.【点评】此题首先能够把实际问题转化为几何问题,然后运用平行线的性质求解.12.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75° D.125°【考点】平行线的性质.【分析】由∠ADE=125°,根据邻补角的性质,即可求得∠ADB的度数,又由AD∥BC,根据两直线平行,内错角相等,即可求得∠DBC的度数.【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣∠ADE=55°,∵AD∥BC,∴∠DBC=∠ADB=55°.故选:A.【点评】此题考查了平行线的性质与邻补角的定义.此题难度不大,解题的关键是注意两直线平行,内错角相等定理的应用.13.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图).如果第一次转弯时的∠B=140°,那么∠C应是()A.140°B.40°C.100°D.180°【考点】平行线的性质.【专题】应用题.【分析】根据两直线平行,内错角相等可知是140°.【解答】解:∵AB∥CD,∠B=140°,∴∠C=∠B=140°.故选A.【点评】本题应用的知识点为:两直线平行,内错角相等.二、填空题14.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为7:2,则这个多边形的边数为9.【考点】多边形内角与外角.【分析】这个多边形的一个内角与一个外角的和是180°,然后求得这个多边形的一个外角的度数为40°,然后由360°÷40°=9可求得答案.【解答】解:∵多边形的每一个外角都相等,∴它的每个内角都相等.设它的一个内角为7x,一个外角和为2x.根据题意得:7x+2x=180°.解得:x=20°.∴2x=2×20°=40°.360°÷40°=9.故答案为:9.【点评】本题主要考查的是多边形的内角与外角,掌握正多边形的一个内角与一个外角的和是180°是解题的关键.15.一个多边形的每一个外角等于30°,则此多边形是十二边形,它的内角和等于1800°.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:∵多边形的每一个外角等于30°,360°÷30°=12,∴这个多边形是十二边形;其内角和=(12﹣2)•180°=1800°.故答案为:十二,1800°.【点评】本题考查了多边形的内角与外角,理解多边形的外角和是360度,外角和不随边数的变化而变化是关键.16.若一个多边形的内角和与外角和之和是1800°,则此多边形是十边形.【考点】多边形内角与外角.【分析】任意多边形的一个内角与相邻外角的和为180°,然后根据题意可求得答案.【解答】解:∵多边形的一个内角与它相邻外角的和为180°,∴1800°÷180°=10.故答案为:十.【点评】本题主要考查的是多边形的内角和与外角,掌握多边形的内角与它相邻外角的关系是解题的关键.17.多边形的内角中,最多有4个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.18.一个多边形边数增加1,则这个多边形内角增加180°,外角增加0°.【考点】多边形内角与外角.【分析】任意多边形的外角和为360°,多边形的内角和公式为(n﹣2)×180°.【解答】解:由多边形的内角和公式可知:一个多边形边数增加1,则这个多边形内角增加180°;由任意多边形的外角和是360°可知,外角和增加0°.故答案为:180°;0°.【点评】本题主要考查的是多边形的内角和、外角和定理,掌握多边形的内角和、外角和定理是解题的关键.19.每一个内角都是144°的多边形有10条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.20.用一根长15cm的细铁丝围成一个三角形,其中,三边的长(单位:cm)分别为整数a、b、c,且a>b>c.(1)请写出一组符合上述条件的a、b、c的值6,5,4;(2)a最大可取7,c最小可取3.【考点】三角形三边关系.【分析】(1)根据三角形的周长=15cm和三角形的三边关系即可得到结论;(2)根据已知条件结论得到结论.【解答】解:(1)∵三角形的三边的和=15,∴符合上述条件的a、b、c的值是6,5,4;(2)∵长棒的长度为15cm,即三角形的周长为15cm,∴a最大可取7,c最小可取3.故答案为:6,5,4,7,3.【点评】此题主要考查学生对三角形三边关系的理解及运用能力,熟练掌握三角形的三边关系是解题的关键.21.如果一个角的两边分别平行于另一角的两边,则这两个角相等或互补.【考点】平行线的性质.【专题】分类讨论.【分析】根据如果两个角的两边分别平行,那么这两个角相等或互补得出即可.【解答】解:∵一个角的两边分别平行于另一角的两边,∴这两个角相等或互补,故答案为:相等或互补.【点评】本题考查了平行线的性质的应用,注意:如果两个角的两边分别平行,那么这两个角相等或互补,题目比较好,难度适中.22.若两条平行线被第三条直线所截,则同旁内角的平分线相交所成的角的度数是90°.【考点】平行线的性质.【分析】根据两条直线平行,则同旁内角互补可得∠BGH+∠DHG=180°.再根据角平分线的定义可得∠1=∠BGH,∠2=∠DHG,进而得到∠1+∠2=90°,再根据三角形内角和定理可得答案.【解答】解:如图所示,∵AB∥CD,∴∠BGH+∠DHG=180°.又∵MG、MH分别平分∠BGH和∠DHG,∴∠1=∠BGH,∠2=∠DHG,∴∠1+∠2=90°.∴∠GMH=90°,故答案为:90°.【点评】此题综合运用了平行线的性质和角平分线定义.注意:同旁内角的角平分线互相垂直;内错角的角平分线互相平行;同位角的角平分线互相平行.23.如图,a∥b,∠1=(3x+20)°,∠2=(2x+10)°,那么∠3=70°.【考点】平行线的性质.【分析】首先根据平行线的性质可得∠2=∠3=(2x+10)°,再根据邻补角互补可得2x+10+3x+20=180,再解方程即可得到x的值,进而可得答案.【解答】解:∵a∥b,∴∠2=∠3=(2x+10)°,∵∠1=(3x+20)°,∴2x+10+3x+20=180,解得:x=30,∴∠3=2×30°+10°=70°,故答案为:70°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.24.如图,AB∥CD∥EF,又AF∥CG,图中与∠A(本身不算)相等的角有∠ADC,∠F,∠CGE,∠C【考点】平行线的性质.【分析】由AB∥CD∥EF,又AF∥CG,根据两直线平行,内错角相等与两直线平行,同位角相等,即可求得∠ADC=∠A,∠F=∠A,∠F=∠CGE,∠CGE=∠C,继而求得∠A=∠ADC=∠F=∠CGE=∠C.【解答】解:∵AB∥CD∥EF,AF∥CG,∴∠ADC=∠A,∠F=∠A,∠F=∠CGE,∠CGE=∠C,∴∠A=∠ADC=∠F=∠CGE=∠C.故答案为:∠ADC,∠F,∠CGE,∠C.【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,内错角相等与两直线平行,同位角相等定理的应用.25.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).如果∠C=72°,那么∠B的度数是108°.【考点】平行线的性质.【专题】应用题.【分析】根据平行线的性质可得∠B+∠C=180°,进而可以算出答案.【解答】解:∵AB∥DC,∴∠B+∠C=180°,∵∠C=72°,∴∠B=180°﹣72°=108°.故答案为:108.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.26.如图,直线a、b被直线c所截,a∥b,∠1=70°,则∠2=110°.【考点】平行线的性质.【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义即可求得∠2的度数.【解答】解:∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°.故答案为:110°.【点评】此题考查了平行线的性质与邻补角的定义.解题的关键是数形结合思想的应用.27.如图,∠1与∠C是两条直线AE、BC被第三条直线CD所截构成的同位角;∠2与∠B是两条直线AE、BC被第三条直线CD所截构成的内错角;∠B与∠C是AB、AC被第三条直线BC所截构成的同旁内角.【考点】同位角、内错角、同旁内角.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角分别进行的分析.【解答】解:∠1与∠C是两条直线AE、BC被第三条直线所截构成的同位角;∠2与∠B是AE、BC两条直线被第三条直线CD所截构成的内错角;AB、AC被第三条直线BC所截构成的同旁内角.故答案为:AE、BC、CD;同位;AE、BC;AB;内错;AB、AC;BC;同旁内.【点评】此题主要考查了三线八角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.28.在同一平面内,两条直线的位置关系有相交或平行.【考点】平行线.【分析】根据在同一平面内,两条直线的位置关系可知.【解答】解:在同一平面内,两条直线有2种位置关系,它们是相交或平行.【点评】本题是基础题型,主要考查了在同一平面内,两条直线的两种位置关系.29.如图,是一条暖气管道的剖面图,如果要求管道拐弯前后的方向保持不变,那么管道的两个拐角∠α与∠β之间应该满足的关系是,理由是内错角相等,两直线平行.【考点】平行线的判定.【专题】应用题.【分析】根据“内错角相等,两直线平行”即可得出结论.【解答】解:∵管道拐弯前后的方向保持不变,∴管道的两个拐角∠α=∠β.故答案为:内错角相等,两直线平行.【点评】本题考查的是平行线的判定,熟知内错角相等,两直线平行是解答此题的关键.三、解答题30.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.31.有两个角都相等的多边形,它们的边数之比为1:2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.【考点】多边形内角与外角.【分析】一个多边形的边数与另一个多边形边数的比为2:1,因而设一个多边形的边数是n,则另一个多边形的边数是2n,因而这两个多边形的外角是和,根据第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°就可以解得n的值.【解答】解:设一个多边形的边数是n,则另一个多边形的边数是2n,因而这两个多边形的外角是和,第二个多边形的内角比第一个多边形的内角大15°,即是第一个多边形的外角比第二个多边形的外角大15°,就得到方程:﹣=15°,解得n=12,故这两个多边形的边数分别为12,24.【点评】本题主要考查了多边形的内角与外角,根据条件可以转化为方程问题.32.如图,在四边形ABCD中,∠B+∠D=180°,∠DCE是四边形ABCD的一个外角,∠DCE与∠A相等吗?为什么?【考点】多边形内角与外角.【分析】先根据四边形内角和为360°得出∠A+∠BCD=180°,再由邻补角定义得出∠DCE+∠BCD=180°,然后根据同角的补角相等即可得到∠DCE=∠A.【解答】解:∵在四边形ABCD中内角和为360°,∴∠A+∠B+∠BCD+∠D=360°,又∵∠B+∠D=180°,∴∠A+∠BCD=180°,又∵∠DCE+∠BCD=180°,∴∠DCE=∠A.【点评】题考查了多边形内角与外角,四边形内角和定理,补角的性质,解决本题的关键是根据四边形内角和为360°得出∠A+∠BCD=180°.33.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.34.有一块三角形优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出三种划分方案供选择(画图说明).【考点】作图—应用与设计作图.【专题】作图题.【分析】(1)可把底边分为4等分,与A连接即可,利用等底同高的三角形面积相等可得4个三角形的面积相等;(2)作出三角形的三条中位线,可得4个三角形全等,则面积也相等;(3)可先作出三角形的中位线把三角形的面积二等分,进而再利用三角形的中线把三角形的面积分成相等的2部分,把所得的2个三角形继续二等分即可.【解答】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、ED、AF.方案2:如答图2,分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如答图3,分别取BC、AB、AC的中点D、E、F,连接AE、CD、DF.【点评】考查图形的应用与设计问题;用到的知识点为:等底同高的三角形面积相等;三角形的三条中位线把三角形分成4个全等的三角形;三角形的中线把三角形的面积分成相等的2部分.35.已知三角形ABC的最长边为8,且三条边的比为2:3:4,求这个三角形的周长.【考点】三角形.。
苏科版七年级下册单元测试卷《平面图形的认识2》【含答案】
苏科版七年级下册单元测试卷《平面图形的认识2》苏科版七年级下册单元测试卷《平面图形的认识2》一、单选题1.如图,“因为,所以”,其推导的依据是( )24∠∠=//AD BCA .两直线平行,同位角相等B .两直线平行,内错角相等C .同位角相等,两直线平行D .内错角相等,两直线平行2.如图所示,BE 平分∠CBA ,DE//BC ,∠ADE=50°,则∠DEB 的度数为( )A .10°B .25°C .15°D .20°3.如图,将沿方向平移得到,若的周长为,则四边形的周ABC AC 1cm DEF ABC 10cm ABEF 长为( )A .B .C .D .14cm 13cm 12cm 10cm4.如图,∠ACB =90°,CD ⊥AB ,D 为垂足.下列判断错误的是( )A .∠A=∠BB .∠A=∠BCDC .AC>AD D .BC>CD5.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=67°,则∠AED 的度数是( )A .78°B .88°C .92°D .112°6.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①平分;②;③;④OE AOD ∠AOC BOD ∠=∠15AOC CEA ∠-∠=︒180COB AOD ∠+∠=︒A .0B .1C .2D .37.如图,,,,如图所示,则下列各式中正确的是( )123////l l l 1∠2∠3∠A .B .312∠=∠+∠23190∠+∠-∠=︒C .D .123180∠-∠+∠=︒231180∠+∠-∠=︒8.如图,下列说法错误的是( )A .若,则B .若,则12∠=∠//a c35180∠+∠=︒//a c C .若,则D .若,则32∠=∠//b c //,//a b b c //a c9.如图,已知直线、被直线所截,,E 是直线右边任意一点(点E 不在直线AB CD AC //AB CD AC ,上),设,.下列各式:①,②,③,④AB CD BAE α∠=DCE β∠=αβ+αβ-βα-,的度数可能是( )360αβ︒--AEC ∠A .①②③B .①②④C .①③④D .①②③④10.如图,有下列说法:①若,,则是的平分线;13∠=∠//AD BC BD ABC ∠②若,则;//AD BC 123∠=∠=∠③若,则;13∠=∠//AD BC ④若,则.34180C ∠+∠+∠=//AD BC 其中正确的有( ).A .个B .个C .个D .1234二、填空题11.已知一个多边形的每一个内角都是,则这个多边形是_________边形.144︒12.下列生活中的物体的运动情况可以看成平移的是____.(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)汽车玻璃上雨刷的运动;(5)从楼顶自由落下的球(球不旋转).13.如图,直线DE 经过点A ,,,______.//DE BC 60B ∠=︒DAB ∠=14.如图,点在延长线上,四个条件中:①;②,③;④E BC 13∠=∠25180+=︒∠∠4∠=∠B ;⑤,能判断的是______.(填序号).B D ∠=∠180D BCD ∠+∠=︒//AB CD15.如图所示,,点,,在直线上,点,在直线上,满足平分,12//l l A E D 1l B C 2l BD ABC ∠,平分,若,那么___________.BD CD ⊥CE DCB ∠136BAD =︒∠AEC ∠=16.如图,若,与,分别相交于点E ,F ,的平分线和的平分线//AB CD EF AB CD BEF ∠EP EFD ∠交于点P ,则的度数是______.FP P ∠三、解答题17.如图,在的正方形网格中,每个小正方形的边长都是1,四边形的四个顶点1010⨯ABCD A 、B 、C 、D 都在格点(网格中每两条线的交点)上.(1)求四边形的面积:ABCD (2)把四边形先向右平移3个单位长度,再向下平移2个单位长度,画出第二次平移后的四边形;ABCD (3)线段的端点M 、N 也在格点上,以线段为一边画出一个,使其面积等于四边形MN MN MNP △的面积,且第三个顶点P 也在格点上.ABCD 18.如图,平分,与相交于F ,,求证:.//AB CD AE BAD ∠CD AE CFE E ∠=∠//AD BC19.完成下面推理过程.如图:已知,∠A =112°,∠ABC =68°,BD ⊥DC 于点D ,EF ⊥DC 于点F ,求证:∠1=∠2.证明:∵∠A =112°,∠ABC =68°(已知)∴∠A +∠ABC =180°∴AD ∥BC ( )∴∠1=()∵BD⊥DC,EF⊥DC(已知)∴∠BDF=90°,∠EFC=90°()∴∠BDF=∠EFC=90°∴BD∥EF()∴∠2=()∴∠1=∠2()20.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.21.如图,点D、E在AB上,点F、G分别在BC、CA上,且DG∥BC,∠1=∠2.(1)求证:DC∥EF;(2)若EF⊥AB,∠1=55°,求∠ADG的度数.22.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.参考答案1.D解:∵∠2和∠4是内错角,∴根据“内错角相等,两直线平行”可得AD ∥BC ,2.B解:∵DE ∥BC ,∴∠ABC=∠ADE=50°,∠DEB=∠EBC ,∵BE 是∠ABC 的平分线,∴∠DEB=∠EBC= ∠ABC=25°.123.C解:根据题意,将周长为10cm 的△ABC 沿AC 向右平移1cm 得到△DEF ,∴BE=1cm ,AF=AC+CF=AC+1cm ,EF=BC ;又∵AB+AC+BC=10cm ,∴四边形ABEF 的周长=BE+AB+AF+EF=1+AB+AC+1+BC=12cm .4.AA :根据题干给出的条件,无法判断∠A=∠B ,故此选项符合题意;B :∵∠ACB=90°,∴∠A+∠B=90°,又∵CD ⊥AB ,∴∠CDB=90°,∴∠BCD+∠B=90°,∴∠A=∠BCD ,故此选项不符合题意;C :直角三角形中,斜边长大于直角边长,所以AC>AD ,故此选项不符合题意;D :直角三角形中,斜边长大于直角边长,所以BC>CD ,故此选项不符合题意;5.B解:∵∠1+∠2+∠3+∠4+∠5=360°,∠1=∠2=∠3=∠4=67°,∴∠5=360°-4×67°=92°,∵∠5+∠AED =180°,∴∠AED =88°,故选择:B .6.D解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB ,即∠AOC=∠BOD ,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB 与OC 交于点P ,∵∠CPE=∠APO ,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正确;没有条件能证明OE 平分∠AOD ,故①错误.综上,②③④正确,共3个,7.C解:∵l 1∥l 2∥l 3,∴∠1=∠2+∠4,∠4+∠3=180°,∴∠1-∠2+∠3=180°,故选:C .8.CA 选项正确,∵,由内错角相等得两直线平行,∴;12∠=∠//a cB 选项正确,,由同旁内角互补得两直线平行,∴;35180∠+∠=︒//a cC 选项错误,不满足平行线的判定;D 选项正确,这个是平行的传递性.9.A解:(1)如图,由AB ∥CD ,可得∠AOC=∠DCE 1=β,∵∠AOC=∠BAE 1+∠AE 1C ,∴∠AE 1C=β-α.(2)如图,过E 2作AB 平行线,则由AB ∥CD ,可得∠1=∠BAE 2=α,∠2=∠DCE 2=β,∴∠AE 2C=α+β.(3)当点E 在CD 的下方时,同理可得,∠AEC=α-β.综上所述,∠AEC 的度数可能为β-α,α+β,α-β.即①α+β,②α-β,③β-α,都成立.10.B,13∠=∠//AD BC∴23∠∠=∴123∠=∠=∠∴是的平分线,即①正确;BD ABC ∠若,得,,不构成成立的条件,故②错误;//AD BC 23∠∠=14∠=∠123∠=∠=∠若,不构成成立的条件,故③错误;13∠=∠//AD BC 若,且34180C ∠+∠+∠=34ADC∠+∠=∠∴180C ADC ∠+∠= ∴,即④正确;//AD BC 11.十解:∵一个多边形的每一个内角都是,144︒∴这个多边形的外角为,18014436︒-︒=︒∴这个多边形的边数为:,3601036︒=︒12.(2)(5)解:(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(5)从楼顶自由落下的球沿直线运动,属于平移.故可以看成平移的是(2)(5).13.60°解:∵DE ∥BC ,∠B=60°,∴∠DAB=∠B=60°(两直线平行,内错角相等).故60°.14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ;③∵∠4=∠B ,∴AB ∥DC ;④∠B=∠D 无法判断出AD ∥BC ;⑤∵∠D+∠BCD=180°,∴AD ∥BC .15.146°解:∵l 1∥l 2,∴∠BAD+∠ABC=180°,∵∠BAD=136°,∴∠ABC=44°,∵BD 平分∠ABC ,∴∠DBC=22°,∵BD ⊥CD ,∴∠BDC=90°,∴∠BCD=68°,∵CE 平分∠DCB ,∴∠ECB=34°,∵l 1∥l 2,∴∠AEC+∠ECB=180°,∴∠AEC=146°,16.90°解:∵AB ∥CD∴∠BEF+∠DFE=180°又∵∠BEF 的平分线与∠DFE 的平分线相交于点P∴∠PEF=∠BEF ,∠PFE=∠DFE1212∴∠PEF+∠PFE=(∠BEF+∠DFE )=90°12∵∠PEF+∠PFE+∠P=180°∴∠P=90°,17.(1)由图可知:ABC ADCABCD S S S =+ 四边形1141+43=822=⨯⨯⨯⨯(2)如图所示:(3)8ABCD S S == △M N P 四边形设以MN 为底的高为MNP △h182MN h ∴⨯⨯=14824h h ∴⨯⨯=∴=如图所示:即为所求∴MNP△18.解:∵AB ∥CD ,∴∠1=∠CFE ,∵AE 平分∠BAD ,∴∠1=∠2,∵∠CFE=∠E ,∴∠2=∠E ,∴AD ∥BC .解:∵∠A =112°,∠ABC =68°(已知),∴∠A +∠ABC =180°.∴AD ∥BC (同旁内角互补,两直线平行).∴∠1=∠3 (两直线平行,内错角相等 ).∵BD ⊥DC ,EF ⊥DC (已知),∴∠BDF =90°,∠EFC =90°(垂直的定义).∴∠BDF =∠EFC =90°.∴BD ∥EF (同位角相等,两直线平行).∴∠2=∠3(两直线平行,同位角相等).∴∠1=∠2(等量代换).20.(1)∵在Rt △ABC 中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE 是∠CBD 的平分线,∴∠CBE=∠CBD=65°;12(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF ∥BE ,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.21.∵//DG BC∴∠1=∠DCF ,∵12∠=∠,∴∠2=∠DCF ,∴;//DC EF (2)∵,∴∠BEF=90°,EF AB ⊥1255∠=∠=︒∴∠B=90°-∠2=35°,又∵//DC EF∴=∠B=35°.ADG ∠22.(1)①∵∠A =60°,∠ACB =40°,∴∠ABC =80°,∵BM 平分∠ABC ,∴∠ABE =∠ABC =40°,12∵CE ∥AB ,∴∠BEC =∠ABE =40°;②∵∠A =60°,∠ACB =40°,∴∠ABC =80°,∠ACD =180°-∠ACB =140°,∵BM 平分∠ABC ,CE 平分∠ACD ,∴∠CBE =∠ABC =40°,∠ECD =∠ACD =70°,1212∴∠BEC=∠ECD-∠CBE =30°;(2)①如图1,当CE ⊥BC 时,∵∠CBE =40°,∴∠BEC =50°;②如图2,当CE ⊥AB 于F 时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.。
2018年苏科版七年级下《平面图形的认识(二)》单元试卷含答案
《平面图形的认识(二)》单元测试卷一.选择题(共8小题)1.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.2.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B 向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35 B.7:34 C.7:33 D.7:323.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n 边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A.4个 B.3个 C.2个 D.1个4.下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,45.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°6.如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.67.a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c8.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定二.填空题(共10小题)9.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.10.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=度.11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是.12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.13.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是.14.如图,点D在△ABC的边BC上,已知点E、点F分别为△ABD和△ADC的重心,如果BC=12,那么两个三角形重心之间的距离EF的长等于.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对.16.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°.17.如图,△ABC的面积为S.点P1,P2,P3,…,P n是边BC的n等分点(n﹣1≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且==,连接MP 1,MP 2,MP 3,…,MP n ﹣1,连接NB ,NP 1,NP 2,…,NP n ﹣1,线段MP 1与NB 相交于点D 1,线段MP 2与NP 1相交于点D 2,线段MP 3与NP 2相交于点D 3,…,线段MP n ﹣1与NP n ﹣2相交于点D n ﹣1,则△ND 1P 1,△ND 2P 2,△ND 3P 3,…,△ND n ﹣1P n ﹣1的面积和是 .(用含有S 与n 的式子表示)18.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 个单位.三.解答题(共8小题)19.如图所示,在△ABC 中,BO 、CO 是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC 的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC 的度数.(3)若∠A=n°,求∠BOC 的度数.20.如图,已知点D 、F 、E 、G 都在△ABC 的边上,EF ∥AD ,∠1=∠2,∠BAC=70°,求∠AGD 的度数.(请在下面的空格处填写理由或数学式)解:∵EF ∥AD ,(已知)∴∠2=()∵∠1=∠2,(已知)∴∠1=()∴∥,()∴∠AGD+ =180°,(两直线平行,同旁内角互补)∵,(已知)∴∠AGD=(等式性质)21.如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.22.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.24.如图,△ABC中,点E在边BA上,AD⊥BC,EF⊥BC,垂足分别是D、F,∠1=∠2.(1)DG与BA平行吗?为什么?(2)若∠B=51°,∠C=54°,求∠CGD的度数.25.(1)如图①,已知任意△ABC,过点C作DE∥AB,求证:△ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图②,求证:∠AGF=∠AEF+∠F;(3)如图③,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.26.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②;(2)实际应用数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.参考答案与试题解析一.选择题(共8小题)1.下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.D.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选B.2.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35 B.7:34 C.7:33 D.7:32【解答】解:设x分钟后两船距离最近,当如图EF⊥BD,AE=DF时,两船距离最近,根据题意得出:36x=18.9﹣27x,解得:x=0.3,0.3小时=0.3×60分钟=18(分钟),则两船距离最近时的时刻为:7:33.故选:C.3.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n 边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:①假设一个三角形有两个钝角,那么这两个钝角的和大于180°,与三角形的内角和为180°相矛盾.故三角形的内角中最多有一个钝角,正确;②三角形的中线把三角形分成的两个三角形的底边相等,高相同,所以面积相等,正确;③因为连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,每一个三角形的内角和是180°,因此,n边形的内角和是(n﹣2)•180°,正确;④n边形共有条对角线,所以六边形的对角线有6×3÷2=9条,错误.故选B.4.下列长度的三条线段能组成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,4【解答】解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选:D.5.如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°【解答】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°,=45°+60°,=105°.故选B.6.如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A.2 B.4 C.5 D.6【解答】解:根据两直线平行,同位角相等、内错角相等,与∠1相等的角有:∠2、∠3、∠4、∠5、∠6共5个.故选C.7.a,b,c为△ABC的三边,化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,结果是()A.0 B.2a+2b+2c C.4a D.2b﹣2c【解答】解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|=(a+b+c)﹣(b+c﹣a)﹣(a﹣b+c)﹣(a+b﹣c)=a+b+c﹣b﹣c+a﹣a+b﹣c﹣a﹣b+c=0故选:A.8.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A二.填空题(共10小题)9.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=45°.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠2=30°,∴∠EPM=∠2=30°,又∵∠EPF=75°,∴∠FPM=45°,∴∠1=∠FPM=45°,故答案为:45°.10.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=25度.【解答】解:∵∠ACE=∠A+∠ABC,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,又BD平分∠ABC,CD平分∠ACE,∴∠ABD=∠DBE,∠ACD=∠ECD,∴∠A=2(∠DCE﹣∠DBC),∠D=∠DCE﹣∠DBC,∴∠A=2∠D,∵∠A=50°,∴∠D=25°.故答案为:25.11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是10.【解答】解:设正多边形的边数为n,由题意得,=144°,解得n=10.故答案为:10.12.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=57°.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.13.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是4.【解答】解:∵AD、BE是△ABC的中线,∴点F是△ABC的重心,∴AF=AD=4,故答案为:4.14.如图,点D在△ABC的边BC上,已知点E、点F分别为△ABD和△ADC的重心,如果BC=12,那么两个三角形重心之间的距离EF的长等于4.【解答】解:如图,连接AE并延长交BD于G,连接AF并延长交CD于H,∵点E、F分别是△ABD和△ACD的重心,∴DG=BD,DH=CD,AE=2GE,AF=2HF,∵BC=12,∴GH=DG+DH=(BD+CD)=BC=×12=6,∵AE=2GE,AF=2HF,∠EAF=∠GAH,∴△EAF∽△GAH,∴==,∴EF=4,故答案为:4.15.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有3对.【解答】解:△BDC与△BEC、△BDC与△BAC、△BEC与△BAC共三对.故答案为:3.16.如图1所示,△ABO与△CDO称为“对顶三角形”,其中∠A+∠B=∠C+∠D.利用这个结论,在图2中,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【解答】解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB,∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°,故答案为:540.17.如图,△ABC 的面积为S .点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点(n≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且==,连接MP 1,MP 2,MP 3,…,MP n ﹣1,连接NB ,NP 1,NP 2,…,NP n ﹣1,线段MP 1与NB 相交于点D 1,线段MP 2与NP 1相交于点D 2,线段MP 3与NP 2相交于点D 3,…,线段MP n ﹣1与NP n ﹣2相交于点D n ﹣1,则△ND 1P 1,△ND 2P 2,△ND 3P 3,…,△ND n ﹣1P n ﹣1的面积和是•S .(用含有S 与n 的式子表示)【解答】解:连接MN ,设BN 交MP 1于O 1,MP 2交NP 1于O 2,MP 3交NP 2于O 3.∵==,∴MN ∥BC ,∴==,∵点P 1,P 2,P 3,…,P n ﹣1是边BC 的n 等分点,∴MN=BP 1=P 1P 2=P 2P 3,∴四边形MNP 1B ,四边形MNP 2P 1,四边形MNP 3P 2都是平行四边形,易知S △ABN =•S ,S △BCN =•S ,S △MNB =•S ,∴===•S ,∴S 阴=S △NBC ﹣(n ﹣1)•﹣=•S ﹣(n ﹣1)••S ﹣S=•S ,故答案为•S .18.如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 8 个单位.【解答】解:根据题意,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF ,故四边形ABFD 的边长分别为AD=1个单位,BF=3个单位,AB=DF=2个单位; 故其周长为8个单位.故答案为:8.三.解答题(共8小题)19.如图所示,在△ABC 中,BO 、CO 是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC 的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC 的度数.(3)若∠A=n°,求∠BOC 的度数.【解答】解:如图,∵BO、CO是角平分线,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+3∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.20.如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)解:∵EF∥AD,(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠2,(已知)∴∠1=∠3(等量代换)∴DG∥BA,(内错角相等两直线平行)∴∠AGD+ ∠CAB=180°,(两直线平行,同旁内角互补)∵∠CAB=70°,(已知)∴∠AGD=110°(等式性质)【解答】解:∵EF∥AD,(已知)∴∠2=∠3(两直线平行同位角相等)∵∠1=∠2,(已知)∴∠1=∠3(等量代换)∴DG∥BA,(内错角相等两直线平行)∴∠AGD+∠CAB=180°,(两直线平行,同旁内角互补)∵∠CAB=70°,(已知)∴∠AGD=110°(等式性质).故答案为:∠3;两直线平行同位角相等;∠3;等量代换;DG;BA;内错角相等两直线平行;∠CAB;∠CAB;70°;110°21.如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.【解答】解:连接DE∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形.∴∠C=60°.∴∠AEC=90°﹣∠C=30°.22.已知:如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.【解答】证明:由三角形的外角性质得,∠EAC=∠B+∠C,∵∠B=∠C,∴∠EAC=2∠B,∵AD平分外角∠EAC,∴∠EAC=2∠EAD,∴∠B=∠EAD,∴AD∥BC.23.如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为4.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:424.如图,△ABC中,点E在边BA上,AD⊥BC,EF⊥BC,垂足分别是D、F,∠1=∠2.(1)DG与BA平行吗?为什么?(2)若∠B=51°,∠C=54°,求∠CGD的度数.【解答】解:(1)平行,理由如下:∵EF⊥BC,AD⊥BC,∴∠BFE=∠BDA=90°,∴EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB;(2)∵DG∥AB,∴∠CDG=∠B=51°,∵∠C+∠CDG+∠CGD=180°,∴∠CGD=180°﹣51°﹣54°=75°.25.(1)如图①,已知任意△ABC,过点C作DE∥AB,求证:△ABC的三个内角(即∠A,∠B,∠ACB)之和等于180°;(2)如图②,求证:∠AGF=∠AEF+∠F;(3)如图③,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F的度数.【解答】证明:(1)如图①所示,在△ABC中,∵DE∥BC,∴∠B=∠1,∠A=∠2(内错角相等).∵∠1+∠ACB+∠2=180°,∴∠A+∠B+∠C=180°即三角形的内角和为180°;(2)∵∠AGF+∠FGE=180°,由(2)知,∠GEF+∠EG+∠FGE=180°,∴∠AGF=∠AEF+∠F;(3)∵AB∥CD,∠CDE=119°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.26.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①n﹣3;②n(n﹣3);(2)实际应用数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳乐乐认为(1)、(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.【解答】解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n﹣3,多边形对角线的总条数为n(n﹣3);故答案为:n﹣3,n(n﹣3);(2)∵3×6=18,∴数学社团的同学们一共将拨打电话为×18×(18﹣3)=135(个);(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n﹣3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n﹣3);数学社团有18名同学,当n=18时,×18×(18﹣3)=135.。
苏科版初一数学下第7章 平面图形的认识(二) 单元综合卷及答案(2套)
1第7章 平面图形的认识(二) 单元综合卷(A)一、选择题(每题3分,共21分)1.下列图案中,只要用其中一部分平移一次就可以得到的是 ( )2.如图,在所标记的角中,是同旁内角的有 ( )A .∠1和∠2B .∠1和∠4C .∠3和∠4D .∠2和∠33.如图,为了估计池塘两岸A 、B 间的距离,杨阳在池塘的一侧选到了一点,测得PA=16m ,PB=12 m ,那么AB 间的距离不可能是 ( ) A .5 m B .15 m C .20 m D .28 m 4.如图,.AB ∥CD ,AC ⊥BC ,图中与 ∠CAB 互余的角有 ( )A .1个B .2个C .3个D .4个5.一个正方形和两个等边三角形的位置如图所示,若∠3=50。
,则∠1+∠2的度数为( ) A .90︒ B .100︒ C .130︒ D .180︒26.已知一个多边形的最小的外角是60︒,其余外角依次增加20︒,则这个多边形的边数为( )A .6B .5C .4D .3 7.如图,在△ABC 中,ZA=96。
,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于点A 。
.∠A 1BC 与∠A 1CD 的平分线相交于点A 2,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于点A 5,则∠A 5的度数为 ( ) A .19.2︒ B .8︒ C .6︒ D .3︒ 二、填空题。
(每空3分,共21分)8.如图,AB ∥CD ,∠C=25︒,∠E=30︒,则∠A= . 9.在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B 一∠A=∠C 一∠B ,则∠B= .10.已知一个多边形的每一个内角都等于140︒,则这个多边形的边数是 . 11.已知三角形的边长分别为4、a 、8,则a 的取值范围是 ;如果这个三角形中有两条边相等,那么它的周长为 .12.如图是一块从一个边长为50 cm 的正方形材料中剪出的垫片,现测得FG=8 cm ,则这个剪出的图形的周长是 cm .13.在如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7= . 14.如图,∠A=10︒,∠ABC=90︒,∠ACB=∠DCE ,∠ADC=∠EDF ,∠CED=∠FEG ,则∠AFE= .3三、解答题。
七年级数学下册《平面图形的认识》单元测试卷(含答案解析)
七年级数学下册《平面图形的认识》单元测试卷(含答案解析)一.选择题(共10小题,满分30分)1.如果过一个多边形的一个顶点的对角线有5条,则该多边形是()A.九边形B.八边形C.七边形D.六边形2.如图,人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做蕴含的道理是()A.两点之间线段最短B.三角形具有稳定性C.经过两点有且只有一条直线D.垂线段最短3.如图,△ABC中,点D是BC上的一点,点E是AB的中点,若BD:CD=2:1,且△ABC的面积是9cm2,则△AED的面积为()A.1cm2B.2cm2C.3cm2D.4cm24.如图,在△ABC中,D是AB上的一点,且AD=3BD,E是BC的中点,CD、AE相交于点F.若△ABC的面积为28,则△EFC的面积为()A.1 B.2 C.2.5 D.35.如图,∠ABD、∠ACD的角平分线交于点P,若∠A>∠D,∠ACD﹣∠ABD=64°,∠P=18°,则∠A的度数为()A.50°B.46°C.48°D.80°6.由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为()A.4πB.9πC.5πD.13π7.下列图形中,是直角三角形的是()A.B.C.D.8.在五边形ABCDE中,∠A,∠B,∠C,∠D,∠E的度数之比为3:5:3:4:3,则∠D的外角等于()A.60°B.75°C.90°D.120°9.如图,在△ABC中,BD为AC边上的中线,已知BC=8,AB=5,△BCD的周长为20,则△ABD的周长为()A.17 B.23 C.25 D.2810.下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是()A.1,1,2 B.1,1,1 C.1,2,2 D.1,1,6二.填空题(共10小题,满分30分)11.从五边形的一个顶点出发的所有对角线,把这个五边形分成个三角形.12.如图,学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形13.过圆O内一点P的最长的弦、最短弦的长度分别是10cm,8cm,则OP=cm.14.若一个多边形的内角和为1800°,则这个多边形是边形,其对角线条数是.15.如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多2cm,已知AB =4cm,则AC的长为cm.16.如图,在△ABC中,中线AD、BE相交于点O,如果△AOE的面积是4,那么四边形OECD 的面积是.17.在△ABC内有1个点,三边上有三个点(不与顶点重合),则这4个点和三个顶点最多可构成个互不重叠的小三角形;如果把1个点改成2021个点,其他条件不变,那么,最多可构成个互不重叠的小三角形.18.如图所示的自行车架设计成三角形,这样做的依据是三角形具有.19.已知a,b,c是△ABC三边的长,化简|a+b﹣c|+|a﹣b﹣c|+|c﹣a﹣b|+|b﹣a﹣c|=.20.如图,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,则∠三.解答题(共6小题,满分90分)21.某中学七年级数学课外兴趣小组在探究:“n边形(n>3)共有多少条对角线”这一问题时,设计了如下表格,请在表格中的横线上填上相应的结果:多边形的边数 4 5 6 …n从多边形的一个1 2 …顶点出发2 …多边形对角线的总条数应用得到的结果解决以下问题:①求十二边形有多少条对角线?②过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.22.在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为17,求△BCD的周长.23.在△ABC中.(1)如图1,AB=AC,BE⊥AC于E,BE=6,CE=3,求AB的长.(2)如图2,AD⊥BC于D,∠DAC=2∠DAB,BD=3,DC=8,求△ABC的面积.24.如图,在△BCD中,CD=5,BD=7.(1)求BC的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=115°,求∠C的度数.25.对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在点A,使得∠APC =30°,则称P为⊙C的半角关联点.当⊙O的半径为1时,(1)在点D(,﹣),E(2,0),F(0,)中,⊙O的半角关联点是;(2)直线l:交x轴于点M,交y轴于点N,若直线l上的点P(m,n)是⊙O 的半角关联点,求m的取值范围.26.如图,已知△ABC中,E为AB上一点,DG∥BA交CA于G,∠1=∠2.(1)求证:EF∥AD;(2)若∠FEA=150°,∠FEA与∠DAE的角平分线相交于O,求∠EOA的度数.参考答案与解析一.选择题(共10小题,满分30分)1.解:∵过一个多边形的一个顶点的对角线有5条,∴多边形的边数为5+3=8,故选:B.2.解:人字梯中间一般会设计一“拉杆”,以增加使用梯子时的安全性,这样做的道理是三角形具有稳定性,故选:B.3.解:∵BD:CD=2:1,∴BD:BC=2:3,∴S△ABD=S△ABC=×9=6(cm2),∵点E是AB的中点,∴S△AED=S△ABD=×6=3(cm2).故选:C.4.解:连接BF,设△EFC的面积为x,∵E是BC的中点,∴△BEF的面积为x,∵△ABC的面积为28,且AD=3BD,∴△BCD的面积为7,∴△BDF的面积为(7﹣2x),∵AD=3BD,∴△ADF的面积为3(7﹣2x),∴△ABE的面积为3(7﹣2x)+(7﹣2x)+x,∵E是BC的中点,△ABC的面积为28,∴△ABE的面积为14,即3(7﹣2x)+(7﹣2x)+x=14,解得x=2,故选:B.5.解:如图,∵∠ABD、∠ACD的角平分线交于点P,∴∠ABP=∠ABD,∠ACP=∠ACD,∵∠1=∠2,∴∠ABP+∠A=∠ACP+∠P,∴∠A=∠ACP﹣∠ABP+∠P=(∠ACD﹣∠ABD)+∠P=×64°+18°=50°.故选:A.6.解:由所有到已知点O的距离大于或等于2,并且小于或等于3的点组成的图形的面积为以3为半径的圆与以2为半径的圆组成的圆环的面积,即π×32﹣π×22=5π,故选:C.7.解:A、第三个角的度数是180°﹣60°﹣60°=60°,是等边三角形,不符合题意;B、第三个角的度数是180°﹣55.5°﹣34.5°=90°,是直角三角形,符合题意;C、第三个角的度数是180°﹣30°﹣30°=120°,是钝角三角形,不符合题意;D、第三个角的度数是180°﹣40°﹣62.5°=77.5°,不是直角三角形,不符合题意;故选:B.8.解:设∠A=3x°,则∠B=5x°,∠C=3x°,∠D=4x°,∠E=3x°,∴(3x°+5x°+3x°+4x°+3x°)=540°,解得:x=30.∴∠D=4×30°=120°.∵180°﹣120°=60°,∴∠D的外角等于60°.故选:A.9.解:∵BD是AC边上的中线,∴AD=CD,∵△BCD的周长为20,BC=8,∴CD+BD=BC+BD+CD﹣BC=20﹣8=12,∴CD+BD=AD+BD=12,∵AB=5,∴△ABD的周长=AB+AD+BD=5+12=17.故选:A.10.解:A、∵1+1+2=4=4,∴此三条线段与长度为4的线段不能组成四边形,故不符合题意;B、∵1+1+1=3<4,∴此三条线段与长度为5的线段能组成四边形,故不符合题意;C、∵1+2+2=5>4,∴此三条线段与长度为4的线段不能组成四边形,故符合题意;D、∵1+1+4=6,∴此三条线段与长度为4的线段不能组成四边形,故不符合题意;故选:C.二.填空题(共10小题,满分30分)11.解:∵从n边形的一个顶点出发,分成了(n﹣2)个三角形,∴当n=5时,5﹣2=3.即可以把这个五边形分成了3个三角形,故答案为:3.12.解:学校大门口的电动伸缩门,其中间部分都是四边形的结构,这是应用了四边形的不稳定性.故答案为:不稳定性.13.解:如图所示,CD⊥AB于点P.根据题意,得AB=10cm,CD=6cm.∵CD⊥AB,∴CP=CD=4cm.根据勾股定理,得OP==3(cm).故答案为:3.14.解:设多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12,∴多边形的对角线的条数是:==54,故答案为:十二;54.15.解:∵AD是BC边上的中线,∴CD=BD,∵△ADC的周长比△ABD的周长多2cm,∴(AC+CD+AD)﹣(AD+DB+AB)=2cm,∴AC﹣AB=2cm,∵AB=4cm,∴AC=6cm,故答案为:6.16.解:在△ABC中,中线AD、BE相交于点O,∴点O是△ABC的重心,∴AO:OD=2:1,BO:OE=2:1,∵△AOE的面积是4,∴△AOB的面积=2×△AOE的面积=8,∴△BOD的面积=×△AOB的面积=4,∴△ABD的面积=△AOB的面积+△BOD的面积=12,∴△ADC的面积=△ABD的面积=12,∴四边形OECD的面积=△ADC的面积﹣△AOE的面积=12﹣4=8.故答案为:8.17.解:∵三角形内角和为180°,内部每个点所构成角之和为360°,三边所构成角为180°,当三角形内有1个点,三边有三个点时,所有三角形的内角和为180°+360°+3×180°=1080°,∵一个三角形内角和为180°,∴三角形个数为1080°÷180°=6(个)当三角形内有2021个点,三边有三个点时,所有三角形的内角和为180°+2021×360°+3×180°=4046×180°,∵一个三角形内角和为180°,∴三角形个数为4046个,故答案为:6;4046.18.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.19.解:∵a、b、c是△ABC的三边的长,∴a+b﹣c>0,a﹣b﹣c<0,c﹣a﹣b<0,b﹣a﹣c<0,∴原式=a+b﹣c﹣a+b+c﹣c+a+b﹣b+a+c=2a+2b.故答案为:2a+2b.20.证明:∵C、A、G三点共线AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.∴∠CFE=90°﹣∠M=90°﹣35°=55°.故答案为:55°.三.解答题(共6小题,满分90分)21.解:①把n=12代入得,=54.∴十二边形有54条对角线.②不能.由题意得,n﹣3+n﹣2=2016,解得n=.∵多边形的边数必须是正整数,∴过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和不可能为2016.22.解:(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为17,∴AB+AD+BD=17,∵AB=1,∴AD+BD=16,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+16=24.23.解:(1)∵AB=AC,CE=3,∴AE=AB﹣3,∵BE⊥AC于E,∴∠BEA=90°,∴AB2=AE2+BE2,∵BE=6,∴AB2=(AB﹣3)2+62,∴AB=;(2)作∠DAC的角平分线交BC于点E,过点E作EM⊥AC于点M,则∠DAE=∠CAE=∠DAC,∵∠DAC=2∠DAB,∴∠DAB=∠DAE,∵AD⊥BC于D,∴∠ADB=∠ADE=90°,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴DE=BD=3,∵ED⊥AD,EM⊥AC,AE平分∠DAC,∴EM=DE=3,∵DC=8,∴CE=8﹣3=5,∴CM==4,∴tan C===,∴AD=6,∴△ABC的面积=BC•AD=×(3+8)×6=33.24.解:(1)因为,所以2<BC<12;(2)∵AE∥BD,∠A=55°,∴∠CBD=∠A=55°.∵∠BDE=115°,∴∠BDC=65°.∴∠C=180°﹣55°﹣65°=60°.25.解:(1)由题意可知在圆上存在点A使∠ADO=30°和∠AEO=30°,∴D,E是,⊙O的半角关联点,故答案为D,E;(2)由直线解析式可直接求得,以O为圆心,ON长为半径画圆,交直线MN于点G,可得m≤0,设小圆⊙O与y轴负半轴的交点为H,连接OG,HG∵M(,0),N(0,2)∴OM=,ON=2,tan∠OMN=∴∠OMN=30°,∠ONM=60°∴△OGN是等边三角形∴GH⊥y轴,∴点G的纵坐标为﹣1,代入,可得,横坐标为,∴m≥,∴≤m≤0;26.证明:(1)∵DG∥BA,∴∠1=∠DAE.∵∠1=∠2,∴∠2=∠DAE.∴EF∥AD;(2)∵EF∥AD,∴∠FEA+∠BAD=180°.∵∠FEA与∠DAE的角平分线相交于O,∴∠OEA=∠FEA,∠OAE=∠BAD.∴∠OEA+∠OAE=(∠FEA+∠BAD)=90°.∴∠EOA=180°﹣(∠OEA+∠OAE)=90°.。
苏科版初一数学下册《平面图形的认识(二)》单元测试卷及答案解析
苏科版初一数学下册《平面图形的认识(二)》单元测试卷及答案解析一、选择题1、已知一多边形的内角和等于它外角和的3倍,那么该多边形是()边形。
A.8 B.7 C.6 D.52、如图,把等腰直角三角板的直角顶点靠在直尺的一边上,那么∠1+∠2=()A.60°B.90°C.120°D.135°3、下面哪个图中能由∠1=∠2得到AB∥CD的结论?A.B.C.D.4、如图,以下说法正确的是哪一个?( )A.若∠1=∠2,则AB∥CD B.若∠1=∠2,则AD∥BCC.若∠A=∠3,则AD∥BC D.若∠A+∠ADC=180°,则AD∥BC5、正多边形的每一个内角都为 135°,则该多边形的边数为()A.5 B.6 C.7 D.86、下列哪个说法正确?()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若a∥b,a∥c,则b∥c D.两直线不相交就平行7、如图,如果,那么()A.∠1= ∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180°D.∠1-∠2+∠3=180°8、如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中一共有几对全等三角形?()A.5对B.3对C.6对D.4对9、如图所示,直线AB和CD相交于E点,DF∥AB。
如果∠AEC=100°,那么∠D= ( )A. 70°B. 80°C. 90°D. 100°10、如图:AB∥CD,CB⊥DB,∠D=55°,那么∠ABC=()A.55°B.35°C.25°D.65°二、填空题11、如图,直线AB∥CD,BC∥DE,如果∠B=55°,那么∠D=_____.12、如图,∥,AB⊥,BC与相交,如果∠ABC=130°,那么∠1=________°.(第11题图) (第12题图) (第13题图)13、如图,AB∥CD,∠1=62°,FG平分∠EFD,那么∠BGF=_______度。
2018年苏科版七年级数学下册第七章平面图形的认识测试卷及答案
第七章平面图形的认识(二)单元检测卷姓名:__________班级:__________题号评分一二三总分一、选择题(共12小题;每小题3分,共36分)1.下列长度的三根小木棒能构成三角形的是()A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD. 3cm,3cm,4cm2.如图为一张椅子的侧面视图,图中∠1和∠2是一对()A.同旁内角B.内错角C.同位角D.对顶角3.下列说法正确的是()A. a,b,c是直线,且a∥b,b∥c,则a∥cB. a,b,c是直线,且a⊥b,b⊥c,则a⊥cC. a,b,c是直线,且a∥b,b⊥c,则a∥cD. a,b,c是直线,且a∥b,b∥c,则a⊥c4.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠4B.∠2=∠4C.∠3+∠2=∠4D.∠2+∠3+∠4=180°5.如图,由已知条件推出的结论,正确的是()A.由∠1=∠5,可以推出AD∥CBB.由∠4=∠8,可以推出AD∥BCC.由∠2=∠6,可以推出AD∥BCD.由∠3=∠7,可以推出AB∥DC6.如图,∠1和∠2是同位角的是()A. B. C. D.7.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 108.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C9.如图,下列结论中不正确的是()A.∠1=∠2+∠3B.∠1=∠2+∠4C.∠1=∠3+∠4+∠5D.∠2=∠4+∠510.如图,a // b,c与a,b都相交,∠1=50°,则∠2=()A. 40°B. 50°C. 100°D. 130°11.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 120°C. 140°D. 130°12.如图1,两个等边△ABD ,△CBD 的边长均为2,将△ABD 沿AC 方向向右平移k 个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k=1时,图中阴影部分为正六边形;③若阴影部分和空白部分的面积相等,则k=.其中正确的说法是()A.①B.①②C.②③D.①②③二、填空题(共10题;共13分)13.如图,AB ∥CD ,∠CDE=119°,GF 交∠DEB 的平分线EF 于点F ,∠AGF=130°,则∠F=________14.两个角的两边分别平行,其中一个角是60°,则另一个角是________.15.如图,直线l 1∥l 2,∠α=∠β,∠1=35°,则∠2=________°.16.如图所示,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上.若∠1=25°,则∠2的度数为________.17.图中的内错角是________.18.直线a,b,c是三条平行线,已知a与b的距离为5厘米,b与c的距离为2厘米,则a与c的距离为________19.如图所示,已知AB∥DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.试说明AD∥BC.完成推理过程:∵AB∥DC(已知)∴∠1=∠CFE(________)∵AE平分∠BAD(已知)∴∠1=∠2(角平分线的定义)∵∠CFE=∠E(已知)∴∠2=________(等量代换)∴AD∥BC(________)20.如图,AB∥CD,AD∥BE,试说明:∠ABE=∠D.解:∵AB ∥CD (已知)∴∠ABE=________(两直线平行,内错角相等)∵AD ∥BE (已知)∴∠D=________∴∠ABE=∠D (等量代换)21.如图,直线l 1∥l 2,∠A=125°,∠B=105°,则∠1+∠2=________°.22.如图所示,已知a ∥b ,∠1=29°,∠2=33°,则∠3=________度.三、解答题(共4小题;34分)23.已知平面内四条直线共有三个交点,则这四条直线中最多有几条平行线?24.如图,已知∠A=∠1,∠C=∠D .试说明FD ∥BC .25.如图,有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.26.如图,AB ∥DE.(1)试问:∠B 、∠E 、∠BCE 有什么关系.解:∠B+∠E=∠BCE过点C 作CF ∥AB ,则∠B=∠________(________)又∵AB ∥DE ,AB ∥CF ,∴________(________)∴∠E=∠________(________)∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE .(2)如图:当∠B 、∠E 、∠BCE 有什么关系时,有AB ∥DE ?参考答案一、选择题D C A C C A B C B B D A二、填空题13.9.5°14.60°或120°15.14516.20°17.∠A 与∠AEC ;∠B 与∠BED 18.7厘米或3厘米19.两直线平行,同位角相等;∠E ;内错角相等,两直线平行20.∠BEC ;∠BEC21.5022.62三、解答题23.解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.24.解:∵∠1=∠A ,∴CE ∥AD ,∴∠2=∠D ,∵∠C=∠D ,∴∠2=∠C ,∴FD ∥BC25.解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC ,∴∠1+∠5+∠7=180°.26.(1)1;两直线平行,内错角相等;DE ∥CF ;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;2;两直线平行,内错角相等(2)当∠B+∠E=∠BCE时,AB∥DE;理由如下:过点C作CF∥AB,如图2所示:则∠B=∠1,∵∠B+∠E=∠BCE,∴∠E=∠2,∴CF∥DE,∴AB∥DE.。
2018-2019年最新苏教版七年级数学下册《平面图形的认识》单元测试题及答案解析(精品试卷)
学年七年级下册2017-2018苏教版第七章平面图形的认识(二)xxx分钟;命题人:100;考试时间:xxx考试范围:班级:___________姓名:___________学校:___________ 考号:___________总分五四三二一题号得分注意事项:答题前填写好自己的姓名、班级、考号等信息1. 请将答案正确填写在答题卡上2. I分卷注释I 分卷得分评卷人)注释(一、单选题 ) ( 则这个内角的度数为°,2570其余各内角之和为若一个多边形除了一个内角外,、1C °;105.B °;90.A. °120.D °;130. ) ( 条对角线,则它是10、若从一个多边形的一个顶点出发,最多可以引2 .十三边形A .十边形D .十一边形C .十二边形B A+。
如果∠α=∠C、∠B、∠A、锐角三角形的三个内角是∠3,C∠B+,∠β=∠B∠)这三个角中(,则
个锐角3有D. 个锐角2有C. 个锐角1有B. 没有锐角A. ) ( °,则这个多边形的边数是1080、若一个多边形的内角
和等于4 6 .D7 .C8 .B9 .A )、已知一个多边形的外
角和等于它的内角和,则这多边形是(5 .六边形D .五边形
C .四边形.三角形AB )、一个三角形的三个内角中,
至少有(6 .一个直角D .一个钝角C .两个锐角B .一个锐
角A ∥EF,BC∥DE 、如图,7 )互补的角共有(BFE,图中与∠AB个4.D 个5.C 个2.B 个3.A AD∥BC,⑵AB∥CD,⑴则下列结论∠BAD=∠BCD,如图已知∠1=∠2,、8)∠ACB,正确的有(=∠D⑷∠B=∠D,⑶.4个D .3个C .2个B .1个A。
苏科版七年级数学下册第七章平面图形的认识(二)单元测试卷(C)及答案
第七章平面图形的认识( 二 )测试卷 C一、选择题 ( 每题 3 分,共 24 分 )1 .如图,由六个大小同样的等边三角形拼成了六边形,此中能够由A△ OBC 平移获得的是( ).△ OCDB .△ OABC .△ OAF D.△ OEF2.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与本来的方向同样,这两次拐弯角度可能是( )A .第一次向左拐 40°,第二次向右拐 40°B .第一次向右拐 40°,第二次向左拐 140°C .第一次向右拐 40°,第二次向右拐 140°D .第一次向左拐 40°,第二次向左拐 140°3.如图,直线 a 、 b 被直线 c 所截,以下说法正确的选项是.当 1 2 时,必定有 a // b B .当 a // b 时,必定有1 2A C .当 a // b 时,必定有 1 2180 D .当 a // b 时,必定有 1 2 904.如图,若 第 3 题 AE 是△ ABC 边上的高,∠EAC 的角均分线 AD 交 第 4 题 BC 于D ,∠ ACB=40°,则∠DAE 等于()A . 50°B .40°C . 35° D.25°5.如下图, AB ∥ CD , CD ∥ EF 且∠ 1=30°,∠ 2=70°,则∠ BCE 等于( )A .40°B .100°C .140°D .130°6.将以下图剪成若干小块,再分别平移后能够获得①、②、③中的( )A . 0 个B .1 个C . 2 个D . 3 个7.假如三角形有一条高与三角形的一条边重合,那么这个三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形 D.不可以确立8.小明同学在计算某n 边形的内角和时,不当心少输入一个内角,获得和为 2005°.则 n 等于()A .11 B . 12 C . 13 D . 14二、填空题 ( 每题 4 分,共 24 分 )9.如下图,直线 AB 、 CD 被直线 EF 所截,交点分别为M 、N ,则 EMB 的同位角是 ____________ .第 9 题 第 10 题 第 11 题10 .如图,直线 l 1∥ l 2,AB ⊥ l 1,垂足为O ,BC 与 l 2订交于点E ,若∠1=43°,则∠2=____________°.11.在△ ABC 中,若∠ A= 1∠ B=1∠ C ,则该三角形的形状是__________ . 2312 .如图,将一张长方形纸片沿EF 折叠后,点 D 、 C 分别落在 D ′、 C ′的地点, ED ′的延伸线与 BC交于点 G .若∠ EFG=55°,则∠ 1=__________.13.已知三角形的两边长为 3、 7,周长为奇数,则该三角形的周长为_________.14.倘若将 n(n ≥ 3) 边形切去一角,则切去后的多边形的内角和与n 边形的内角和之间的关系为______________ .三、解答题 (15 ~ 18 题每题 7 分, 19~ 21 题每题 8 分,共 52 分 )15.如图, EP ∥AB , PF ∥CD ,∠ B=100°,∠ C=120°,求∠ EPF 的度数.16.绘图题:(1)如图,已知△ ABC,请你画出△ ABC的高 AD,中线 BE,角均分线 CF.并依据绘图填空:AD_______BC AE_______CE∠ ACF_______∠ BCF.(2) 将以下图所示的四边形按箭头所指方向平移2 cm.17.如图,已知AB∥ CD,∠ 1==∠F,∠ 2=∠E,求∠ EOF的度数.18.等腰三角形ABC中,一腰AC 上的中线把三角形的周长分为12 cm 和 15 cm 两部分,求此三角形各边的长.19.如图,点E 在直线 DF上,点 B 在直线 AC上,∠ AGB=∠ EHF,∠ C=∠ D.试问:∠ A=∠ F 吗 ?假如成立,请你说明原因;假如不建立,说明原因.20.连接多边形不相邻的两个极点的线段,叫做多边形的对角线.察看以下图形,并阅读图形下边的有关文字,思虑以下问题:(1)三角形的对角线有 ________条;(2)四边形的对角线有 ________条;(3)五边形的对角线有 ________条;(4)六边形的对角线有 ________条;(5)在此基础上,你能概括出船边形的对角线有_________ 条.21 .小明有长为20 cm 、90 cm 、100 cm 的三根木条,可是不当心将100 cm 的一根折断了.(1)最长的木条被折的状况如何时,小明将不可以与另两根木条钉成三角形架?(2)假如最长的木条折去了 40 cm,小明能够经过如何再折木条的方法钉成一个三角形架?一、 1. C 2 . A3. C 4 . D 5 . C6参照答案.C 7 .B 8.D二、 9. END10 . 133°11 .直角三角形12.110° 13.15或17 或 1914 .大 180°或小三、 15. 40°180°或相等16.略17. 90°18.腰长 10 cm,底边长7 cm 或腰长 8 cm,底边长11cm19.建立,原因,略n n320. (1)0 ; (2)2 ; (3)5 ; (4)9 ; (5)221. (1)当被折成的两段都大于30cm,而小于70 cm 时,不可以与此外两根木条钉成三角形架;(2)将 90 cm的木条截去一段,截去部分的长大于10cm,而且小于50 cm,就能钉成三角形架.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版2017-2018学年七年级下册
第七章平面图形的认识(二)
考试范围:xxx;考试时间:100分钟;命题人:xxx
学校:___________姓名:___________班级:___________考号:___________
题号一二三四五总分
得分
注意事项:
1. 答题前填写好自己的姓名、班级、考号等信息
2. 请将答案正确填写在答题卡上
分卷I
分卷I 注释
评卷人得分一、单选题(注释)
1、若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )
A.90°;B.105°;C.130°;D.120°.
2、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( ) A.十三边形B.十二边形C.十一边形D.十边形
3、锐角三角形的三个内角是∠A、∠B、∠C。
如果∠α=∠A+∠B,∠β=∠B+∠C,
,则这三个角中()
A.没有锐角
B.有1个锐角
C.有2个锐角
D.有3个锐角
4、若一个多边形的内角和等于1080°,则这个多边形的边数是( )
A.9 B.8 C.7 D.6
5、已知一个多边形的外角和等于它的内角和,则这多边形是()
A.三角形B.四边形C.五边形D.六边形
6、一个三角形的三个内角中,至少有()
A.一个锐角B.两个锐角C.一个钝角D.一个直角
7、如图,DE∥BC,EF∥AB,图中与∠BFE互补的角共有()
A.3个B.2个C.5个D.4个
8、如图已知∠1=∠2,∠BAD=∠BCD,则下列结论⑴AB∥CD,⑵AD∥BC,⑶∠B=∠D,⑷∠D=∠ACB,正确的有()
A.1个B.2个C.3个D.4个
9、如果两条直线被第三条直线所截,那么一组内错角的平分线()
A.互相垂直;B.互相平行;C.互相重合;D.以上均不正确.
10、用A、B、C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25,小红家在小明家正东,小红家在学校北偏东35,则∠BAC=()
A.35B.55C.60D.65
11、一架飞机向北飞行,两次改变方向后,前进的方向与原来的航行方向平行,已知第一次向左拐50°,那么第二次向右拐()
A.40°B.50°C.130°D.150°
12、如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()
A.55°B.65°C.75°D.125°
13、一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是()
A.40°B.100°C.140°D.180°
分卷II
分卷II 注释
评卷人得分二、填空题(注释)
14、已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为7:2,则这个多边形的边数为_________.
15、一个多边形的每一个外角等于40°,则此多边形是边形,它的内角和等于 .
16、若一个多边形的内角和与外角和之和是1800°,则此多边形是边形.
17、多边形的内角中,最多有________个直角.
18、一个多边形边数增加1,则这个多边形内角增加,外角增加 .
19、每个内角都为144°的多边形为_________边形.
20、用一根长为15cm的细铁丝围成一个三角形,其三边的长(单位:cm)分别为整数a、b、c,且a>b>c,
(1)请写出一组符合上述条件的a、b、c的值;
(2)a最大可取,c最小可取.
21、若一个角的两边分别平行于另一个角的两边,则这两个角之间的关系
是.
22、若两条平行线被第三条直线所截,则同旁内角的平分线相交所成的角的度数
是.
23、如图,a//b,(3x+20)0,∠2=(2x+10)0,那么∠
3= 0.
24、如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角
是.
25、如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).如果∠
C=72°,那么∠B的度数是___ ____.
26、如图,直线被直线所截,若,∠1=60°,则
.
27、如图,∠1与∠C是两条直线______被第三条直线______所截构成的______角;∠2与∠B是两条直线______被第三条直线______所截构成的______角;______被第三条直线
______所截构成的______角.
28、在同一平面内,两条直线的位置关系是_______或_______.
29、如图,是一条暖气管道的剖面图,如果要求管道拐弯前后的方向保持不变,那么管道的两个拐角∠α与∠β之间应该满足的关系是,理由
是 .
评卷人得分三、计算题(注释)
评卷人得分四、解答题(注释)
30、从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.
31、有两个各角都相等的多边形,它们的边数之比为1:2,且第二个多边形的内角比第一个多边形的内角大15°,求这两个多边形的边数.
32、如图,在四边形ABCD中,∠B+∠D=180°,∠DCE是四边形ABCD的一个外角,∠DCE与∠A相等吗?为什么?
33、如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(n=20)时,需要多少根火柴?
34、有一块三角形优良品种试验土地,现引进四个良种进行对比实验,将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(可画图说明)
35、已知三角形ABC的最长边为8,且三条边的比为2:3:4,求这个三角形的周长.
36、已知:如图△ABC.试作△ABC的:①中线AD;②角平分线BE;③高
CH.
37、如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理
由.
38、如图,如果∠1=∠2,那么∠2+∠3=1800吗?为什么?
39、填写推理的理由:
已知,如图,∠1=∠2,CF⊥AB,DE⊥AB,说明:FG∥
BC.
40、已知:如图,AB、BE、ED、CD依次相交于B、E、D,∠E=∠B+∠D. 试说明AB∥CD.
41、如图已知∠1=∠2,再添上什么条件,可使AB∥CD成立?并说明理
由.
42、如图,已知∠1=450,∠2=1350,∠D=450,问:BC与DE平行吗?AB与CD呢?为什么?
43、如图,若∠1+∠3=1800,能否得出AB∥CD?为什么?
试卷答案
1.C
2.A
3.A
4.B
5.B
6.B
7.D
8.C
9.B10.C11.B12.A13.C
14.9
15.九,1260°
16.十
17.4
18.180度,0度
19.十
20.(1)答案不唯一,如;(2)7,2.
21.相等或互补
22.90°
23.70°
24.∠ADC、∠F、∠C、∠CGE
25.108°
26.60°
27.AE、BC、CD、同位角;AE、BC、AB、内错角;AB、AC、BC、同旁内角
28.平行或相交
29.∠α=∠β,内错角相等,两直线平行
30.n-3,.
31.12和24
32.∠DCE=∠A
33.630
34.如图所示:
35.18
36.如图所示:
37.∠B与∠C互补
38.∠2+∠3=1800
39.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.
40.见解析
41.BE⊥MN,DF⊥MN
42.BC∥DE,AB∥CD
43.AB∥CD。