Efficient Sparse Group Feature Selection via
repgfpn结构
repgfpn结构
repgfpn结构是一种深度学习模型的架构,它在计算机视觉任务中被广泛应用。
"repgfpn"代表了"Region Proposal-based Global Feature Pyramid Network"的缩写。
这个架构的主要目标是在目标检测任务中提高模型的准确性和效率。
repgfpn结构基于特征金字塔网络(Feature Pyramid Network, FPN)和区域建议网络(Region Proposal Network, RPN)的结合。
在repgfpn结构中,FPN用于提取图像特征。
它通过在不同层级上构建特征金字塔,以便在不同尺度下检测目标。
FPN可以有效地解决目标在不同尺度下的大小变化问题,并保留了图像的语义信息。
RPN部分负责生成候选目标框。
它通过在图像上滑动一个固定大小的窗口,并使用卷积神经网络来确定窗口中是否存在目标。
RPN会生成一系列候选目标框,并为每个框分配一个置信度得分。
最后,repgfpn结构将FPN和RPN进行整合,并通过使用分类器和回归器来对候选目标框进行进一步的筛选和定位。
分类器用于判断每个候选框中是否存在目标,而回归器用于优化目标框的位置和大小。
总的来说,repgfpn结构通过综合使用FPN和RPN,以及分类器和回归器,提供了一种有效的目标检测方法,能够在不同尺度下准确地检测出目标。
这种架构在计算机视觉领域中得到了广
泛应用,并取得了良好的效果。
人工智能领域中英文专有名词汇总
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
机器学习中的迁移学习算法评估指标
机器学习中的迁移学习算法评估指标在机器学习领域,迁移学习是指将从一个领域学到的知识应用到另一个相关但略有不同的领域中的技术。
迁移学习算法评估指标是用来评估迁移学习算法性能和效果的指标。
本文将介绍几种常用的迁移学习算法评估指标,并对其进行详细解释。
1. 准确率(Accuracy)准确率是迁移学习算法评估中最常用的指标之一。
它表示分类器被正确分类的样本在总样本中所占的比例。
准确率越高,说明算法在迁移学习任务上的性能越好。
2. 精确率(Precision)与召回率(Recall)精确率和召回率是用来评估二分类问题中的迁移学习算法的指标。
精确率表示被正确分类的正样本在所有被分类为正样本中的比例,召回率表示被正确分类的正样本在所有真实正样本中的比例。
精确率和召回率通常是相互影响的,需要在两者之间进行权衡。
3. F1值F1值是综合考虑精确率和召回率的指标。
它是精确率和召回率的调和平均值,可以有效评估迁移学习算法在处理不平衡数据集时的表现。
F1值越接近1,说明算法性能越好。
4. AUC-ROC(Area Under the Receiver Operating Characteristic Curve)AUC-ROC是用来评估二分类问题中迁移学习算法的指标。
ROC曲线是以真正例率(TPR)为纵轴,以假正例率(FPR)为横轴绘制的曲线。
AUC-ROC值表示ROC曲线下的面积,范围在0到1之间。
AUC-ROC值越接近1,说明算法具有更好的分类性能。
5. 平均准确率(Mean Average Precision)平均准确率是用来评估迁移学习算法在多类别问题中的指标。
它综合了每个类别的准确率,并计算出一个平均值。
平均准确率越高,说明算法对多个类别的分类性能越好。
6. 均方误差(Mean Squared Error)均方误差是用来评估回归问题中的迁移学习算法的指标。
它表示预测值与真实值之间的差异程度。
均方误差越小,说明算法对实际值的预测越准确。
efficientnet解读 -回复
efficientnet解读-回复什么是EfficientNet?EfficientNet是一种高效的卷积神经网络(Convolutional Neural Network, CNN)架构,由Google研究团队在2019年提出。
它通过优化网络的深度、宽度和分辨率,达到了在图像分类任务上,比目前其他SOTA(State-of-the-Art)的模型具有更高的精度和更好的效能。
EfficientNet的创新点在于使用了一种称为Compound Scaling的方法,该方法为网络的不同维度(深度、宽度和分辨率)选择了合适的比例,从而使网络在三个方面都能够提供良好的性能。
这意味着EfficientNet不仅提升了模型的准确性,同时还减少了可训练参数的数量,使得模型更加高效。
EfficientNet的核心思想是通过在网络的不同层次上相对比例地缩放深度、宽度和分辨率,从而平衡网络的规模和性能。
具体地说,EfficientNet利用了一个复合缩放系数phi(ϕ),它控制了网络的总体缩放比例。
该phi 参数是通过在一定范围内进行搜索和验证,确定出最佳值的。
在EfficientNet的工作中,研究人员通过在Imagenet上进行大规模的实验评估,找到了一个最佳的复合缩放系数phi=1.2。
在EfficientNet的网络结构中,首先进行的是深度方向的缩放。
通过复制某个输入模型(例如ResNet)的某个重复模块,即可扩展EfficientNet的深度。
而深度可以同时扩展子层的数量和整体的网络深度。
然后,进行的是宽度方向的缩放,即扩展通道/特征维度的数量。
为了平衡不同层级的性能,EfficientNet限制了扩展的范围。
这样,即使在更高分辨率的层级中,EfficientNet也能保证较高的计算效率。
最后,进行的是分辨率方向的缩放,即调整图像输入的分辨率。
通过在训练过程中逐渐增加分辨率,EfficientNet能够提高网络对更高分辨率图像的适应能力。
efficientnet解读
EfficientNet解读一、简介EfficientNet是谷歌研究团队在2019年提出的一种高效的卷积神经网络架构。
它通过对网络深度、宽度和分辨率进行统一的缩放来实现优化,达到了在计算资源有限的情况下提高模型性能的效果。
EfficientNet在多个计算机视觉任务上取得了优异的表现,成为了当今领域内备受关注的模型之一。
二、网络架构EfficientNet的网络架构采用了一种称为复合缩放 (Compound Scaling) 的方法,通过对网络的深度、宽度和分辨率进行统一的缩放,实现了在有限的计算资源下提升模型的性能。
具体地,EfficientNet使用了一个复合系数φ来同时控制深度、宽度和分辨率的缩放,使得模型既能够充分利用计算资源,又能够达到更好的性能。
三、性能表现EfficientNet在各种计算机视觉任务上都取得了优异的表现,例如在图像分类、目标检测和语义分割等任务上都取得了state-of-the-art的性能。
其高效的模型架构使得在计算资源有限的情况下也能够获得很好的性能,这使得EfficientNet成为了很多计算机视觉研究者和工程师们研究和使用的对象。
四、应用领域由于其高效的性能和优异的表现,EfficientNet在各种计算机视觉任务的应用领域非常广泛。
例如在智能手机上进行图像识别、无人驾驶领域的视觉感知、医疗影像识别等方面,EfficientNet都能够发挥重要作用,成为了当前人工智能领域内备受关注的模型之一。
五、未来展望随着计算资源的不断提升和深度学习技术的不断发展,EfficientNet有望在未来进一步发展壮大,在更多的应用领域展现出其优异的性能。
未来,EfficientNet还有望在模型的压缩和加速领域有更多的发展,在计算资源有限的环境下依然能够取得更好的性能,为人工智能技术的发展做出更大的贡献。
六、总结EfficientNet的神经网络架构和性能表现都使得它成为了当前领域内备受关注的模型之一。
人脸识别外文文献
Method of Face Recognition Based on Red-BlackWavelet Transform and PCAYuqing He, Huan He, and Hongying YangDepartment of Opto-Electronic Engineering,Beijing Institute of Technology, Beijing, P.R. China, 10008120701170@。
cnAbstract。
With the development of the man—machine interface and the recogni—tion technology, face recognition has became one of the most important research aspects in the biological features recognition domain. Nowadays, PCA(Principal Components Analysis) has applied in recognition based on many face database and achieved good results. However, PCA has its limitations: the large volume of computing and the low distinction ability。
In view of these limitations, this paper puts forward a face recognition method based on red—black wavelet transform and PCA. The improved histogram equalization is used to realize image pre-processing in order to compensate the illumination. Then, appling the red—black wavelet sub—band which contains the information of the original image to extract the feature and do matching。
findvariablefeatures函数每个参数的意义 -回复
findvariablefeatures函数每个参数的意义-回复参数1:dataframe数据集(DataFrame),包含要分析的变量。
参数2:target_variable目标变量(str),要分析的特定变量。
参数3:exclude_variables要排除的变量列表(list),不需要分析的变量。
参数4:correlation_threshold相关性阈值(float),用于确定要保留的相关性较强的特征。
参数5:importance_threshold特征重要性阈值(float),用于确定要保留的重要特征。
参数6:n_features要选择的变量的数量(int)。
如果不指定,则选择所有变量。
参数7:random_state随机种子(int),用于复现随机过程。
参数8:categorical_encoding分类变量编码方式(str),用于将分类变量转换为数值变量。
默认为None,即不进行编码。
参数9:feature_selection_method特征选择方法(str),用于选择变量的方法。
默认为"correlation",即通过相关性选择。
参数10:model机器学习模型(object),用于选择变量的方法为"importance"时需要指定一个机器学习模型。
参数11:model_parameters机器学习模型的参数(dict),用于选择变量的方法为"importance"时需要指定机器学习模型的参数。
参数12:scoring评估指标(str),用于选择变量的方法为"importance"时需要指定一个评估指标。
参数13:cv交叉验证折数(int),用于选择变量的方法为"importance"时需要指定交叉验证的折数。
参数14:n_jobs并行执行的作业数(int),默认为1。
如果为-1,则使用所有处理器。
超高维数据特征筛选方法综述
超高维数据特征筛选方法综述超高维数据是指具有大量特征(维度)的数据集。
在处理超高维数据时,由于维度的增加,可能会导致数据稀疏性、计算复杂度和过拟合等问题。
因此,特征筛选是处理超高维数据的重要步骤之一。
以下是一些常见的超高维数据特征筛选方法:1. 方差筛选(Variance Thresholding):根据特征的方差来选择重要的特征。
方差较小的特征被认为是不重要的,可以被删除。
2. 相关系数筛选(Correlation Thresholding):计算特征之间的相关系数,保留相关性较高的特征。
3. 随机森林特征重要性评估(Random Forest Feature Importance):利用随机森林算法评估特征的重要性,根据特征的重要性得分进行筛选。
4. 递归特征消除(Recursive Feature Elimination,RFE):一种基于模型的特征选择方法。
通过迭代地训练模型,并根据模型的预测能力来评估特征的重要性,逐步删除不重要的特征。
5. 基于L1 正则化的特征选择(L1-Regularized Feature Selection):通过在模型训练中加入 L1 正则项,使得不重要的特征的权重趋近于零,从而实现特征选择。
6. 基于树的特征选择(Tree-Based Feature Selection):利用决策树或随机森林等树模型进行特征选择。
可以根据特征在树中的出现频率或重要性来选择特征。
7. 主成分分析(Principal Component Analysis,PCA):一种降维技术,可以将高维数据投影到低维空间,同时保留数据的主要信息。
通过选择主成分,可以实现特征筛选。
8. 最大信息系数(Maximal Information Coefficient,MIC):一种衡量特征与目标变量之间相关性的方法。
MIC 可以用于选择与目标变量相关性较高的特征。
这些方法可以单独使用,也可以结合使用,以提高特征筛选的效果。
efficientformer 解析
《Efficientformer 解析》一、导论在当前人工智能领域,以Transformer为代表的模型架构备受瞩目,然而,随着问题规模的不断扩大,传统的Transformer模型在计算资源、时间成本方面存在较大的缺陷。
为了解决这一问题,近期出现了一种新的模型架构——Efficientformer,本文将对Efficientformer进行深入解析,帮助读者全面了解这一新兴模型。
二、Efficientformer的基本原理Efficientformer是一种旨在提高Transformer模型计算效率的模型架构。
它借鉴了传统Transformer模型的自注意力机制,并在此基础上进行了优化和改进。
Efficientformer的关键在于引入了轻量化的注意力机制,采用了一系列有效的参数共享和剪枝策略,从而在保证模型性能的前提下,大幅减少了模型参数量和计算复杂度,提高了模型的计算效率。
三、Efficientformer的技术特点1. 轻量化的注意力机制Efficientformer在设计自注意力机制时,采用了一些轻量级的技术,如低秩注意力、深度可分离卷积等,有效降低了原始Transformer模型中复杂的注意力计算,提高了模型的计算效率。
2. 参数共享和剪枝Efficientformer通过合理的参数共享和剪枝策略,减少了模型的参数量和计算复杂度,在不影响模型性能的前提下,显著提高了模型的计算效率。
3. 网络架构优化Efficientformer在网络架构设计上,充分考虑了模型的计算效率和性能,通过设计精妙的网络结构,使得模型在保持高精度的大幅提高了计算效率。
四、Efficientformer的应用前景作为一种新兴的模型架构,Efficientformer在自然语言处理、计算机视觉、语音识别等领域都具有广泛的应用前景。
在大规模数据集上,Efficientformer能够显著降低模型训练时的时间成本,并且在保持模型精度的大幅提高了模型的计算效率,因此受到了业界的高度关注。
随机森林特征重要度解释
随机森林特征重要度解释随机森林是一种集成学习算法,由多个决策树组成。
每个决策树的训练集是通过对原始数据集有放回抽样得到的(bootstrap sampling),并且每个决策树只使用部分特征进行训练。
特征重要度是指特征在随机森林中对模型性能的贡献程度。
它可以通过两种方法计算:一是基于袋外误差(out-of-bag error)的方法,二是基于置换特征重要度(permutation feature importance)的方法。
1. 基于袋外误差的方法:在构建随机森林时,每个决策树都有一部分样本没有被用于训练,这部分样本称为袋外样本。
对于每个决策树,我们可以计算其在袋外样本上的预测准确率。
然后,我们可以对每个特征进行以下操作:- 在袋外样本上使用原始特征进行预测,并计算预测准确率(假设为A)。
- 随机打乱该特征在袋外样本中的取值,并利用打乱后的特征进行预测,再计算预测准确率(假设为B)。
- 计算A和B之间的差异,越大表明这个特征在模型中的重要性越高。
2. 基于置换特征重要度的方法:在构建随机森林之后,我们可以对每个特征进行以下操作:- 在完整的测试集(或验证集)上进行预测,并计算预测准确率(假设为A)。
- 随机打乱该特征在测试集中的取值,并利用打乱后的特征进行预测,再计算预测准确率(假设为B)。
- 计算A和B之间的差异,越大表明这个特征在模型中的重要性越高。
需要注意的是,特征重要度并不是唯一的解释模型特征的方法,它只是通过在随机森林中的表现来评估特征的贡献程度。
不同的解释方法可能得出不同的结果。
此外,特征重要度是一种相对指标,不会给出特征对应的具体含义。
要更深入地理解特征对模型的影响,可以结合领域知识和其他解释方法进行分析。
改进鲍威尔法更新寻优方向组条件的证明与补充
改进鲍威尔法更新寻优方向组条件的证明与补充鲍威尔法是一种常用的寻优算法,它通常用于求解无约束优化问题。
该算法通过权衡历史搜索方向和当前梯度信息,寻找最优解的方向。
然而,鲍威尔法在更新搜索方向时需要一系列条件的约束,在某些情况下可能会导致算法失效。
本文将对鲍威尔法的更新搜索方向的条件进行改进,并加以证明与补充。
首先,我们回顾鲍威尔法的基本思想。
在每一次迭代中,鲍威尔法首先计算当前的梯度方向g,然后选择一个搜索方向p。
在原始的鲍威尔法中,p的选择是基于历史搜索方向的加权和,即:p = -g + βp_his其中,p_his表示历史搜索方向的加权和,β是一个权衡历史搜索方向和当前梯度信息的参数。
然而,这种简单的更新方式可能导致搜索方向在某些情况下不准确或无效。
为了解决这个问题,我们对原始的鲍威尔法进行改进。
改进的思路是通过增加一系列条件来限制搜索方向的选择,以提高搜索的准确性和有效性。
具体来说,我们可以添加以下三个条件:1.搜索方向与梯度方向的夹角小于90度:这个条件的目的是确保搜索方向与梯度方向足够接近,从而使得搜索方向在靠近最优解的路径上。
为了满足这个条件,我们可以引入一个夹角限制参数φ,然后更新搜索方向p如下:p = -g + βp_his, if |cos(φ)| < 1否则,我们选择梯度方向作为搜索方向,即p = -g。
2.搜索方向的长度小于历史搜索方向的加权和的长度:这个条件的目的是确保搜索方向的长度不会大于历史搜索方向的长度,从而避免搜索方向过长。
为了满足这个条件,我们可以引入一个长度限制参数λ,然后更新搜索方向p如下:p = min(-g + βp_his, λ)其中,min()函数表示取两个向量中长度较小的一个。
3.在搜索方向与梯度方向夹角大于90度的情况下,搜索方向与历史搜索方向夹角小于90度:这个条件的目的是在搜索方向与梯度方向夹角大于90度的情况下,尽可能减小搜索方向与历史搜索方向的夹角。
efficientdet简介
efficientdet简介
EfficientDet是一种高效目标检测算法,由谷歌公司在2019年提出并发表在CVPR上。
它结合了EfficientNet作为骨干网络和BiFPN 作为特征金字塔网络进行目标检测。
EfficientNet是一种高效的卷积神经网络结构,可以在保持准确度的前提下显著减少模型参数和计算量。
BiFPN是一种双向特征金字塔网络,可以有效地提取多尺度的特征来检测不同大小的目标。
EfficientDet通过在每个特征层上应用BiFPN来构建多尺度特征金字塔。
这个特征金字塔可以提供丰富的特征表示,使得算法可以在不同尺度和大小的目标之间进行有效检测。
此外,EfficientDet还使用了一种特定的损失函数设计来平衡不同目标之间的训练难度,并使用了一种自适应的网络宽度缩放方法来进一步提高检测性能。
与其他目标检测算法相比,EfficientDet在保持准确度的同时更加高效。
实验证明,EfficientDet在COCO数据集上的性能超越了以往基于单一网络的目标检测算法,具有更好的检测速度和更小的模型参数。
这使得EfficientDet成为一种理想的目标检测算法,可以在资源受限的环境下实现高效的实时检测应用。
粗糙集理论对于特征选择算法的改进与优化
粗糙集理论对于特征选择算法的改进与优化特征选择是数据挖掘和机器学习中的一个重要任务,它的目标是从原始数据集中选择出最具有代表性和区分性的特征,以便用于构建高效的分类器或回归模型。
在特征选择过程中,我们常常面临着特征维度高、样本数量有限、特征之间存在冗余等问题。
为了解决这些问题,粗糙集理论被引入到特征选择算法中,并取得了一定的改进和优化效果。
粗糙集理论是由Pawlak于1982年提出的一种数学工具,它主要用于处理不确定性和不完备性的问题。
在特征选择中,粗糙集理论通过将数据集划分为等价类来处理特征之间的关系,从而实现特征选择的目标。
具体而言,粗糙集理论通过计算下近似和上近似来评估特征的重要性,从而确定哪些特征对于分类或回归任务是最关键的。
与传统的特征选择算法相比,粗糙集理论在以下几个方面进行了改进和优化。
首先,粗糙集理论考虑了特征之间的依赖关系。
在传统的特征选择算法中,通常假设特征之间是相互独立的,但实际上特征之间可能存在一定的依赖关系。
粗糙集理论通过将数据集划分为等价类,可以更好地捕捉到特征之间的依赖关系,从而提高了特征选择的准确性和鲁棒性。
其次,粗糙集理论考虑了特征之间的冗余性。
在特征选择中,冗余特征往往会对分类或回归任务造成干扰,降低模型的性能。
传统的特征选择算法往往只考虑特征的个体重要性,而忽略了特征之间的冗余性。
粗糙集理论通过计算下近似和上近似,可以更好地评估特征的重要性和冗余性,从而实现对特征的精确选择。
此外,粗糙集理论还考虑了样本分布的不均衡性。
在实际的数据集中,不同类别的样本数量往往存在不均衡的情况。
传统的特征选择算法往往无法有效地处理样本分布不均衡的问题,导致选择出的特征具有较大的偏向性。
粗糙集理论通过计算下近似和上近似,可以更好地处理样本分布不均衡的情况,从而提高了特征选择的公平性和稳定性。
综上所述,粗糙集理论在特征选择算法中的应用,对于改进和优化特征选择过程具有重要意义。
通过考虑特征之间的依赖关系、冗余性和样本分布的不均衡性,粗糙集理论可以更准确地评估特征的重要性,从而选择出最具有代表性和区分性的特征。
语义分割指标,oa、iou、f1-score的参考文献
语义分割指标,oa、iou、f1-score的参考文献
首先,我们拆分这句话来逐一解释。
1.语义分割指标:语义分割是计算机视觉领域的一个任务,它涉及到图像中
每个像素或区域对象的识别和分类。
对于语义分割的评价,有多个指标。
2.OA、IoU、F1-score:这些都是语义分割的评估指标。
o OA (Overall Accuracy):整体准确率,通常用于分类任务,表示正确分类的像素或区域占所有像素或区域的比例。
但在语义分割中,由于
每一个像素都可能有不同的类别,因此OA并不能很好地衡量分割的性
能。
o IoU (Intersection over Union):交并比,这是一个衡量分割效果的指标。
具体来说,它计算的是预测的分割区域与真实的分割区域之间
的交集与并集的比例。
IoU的值越高,表示预测越准确。
o F1-score:这是一个综合了精确度和召回率的指标,用于衡量分类或分割任务的性能。
F1-score越高,表示模型性能越好。
3.参考文献:指的是关于这些指标的研究或文献。
综上,"语义分割指标,oa、iou、f1-score的参考文献" 这句话询问的是关于语义分割评价指标OA、IoU和F1-score的相关研究或文献。
这些文献通常会详细解释这些指标的定义、计算方法和在语义分割中的重要性,以及如何使用它们来评估语义分割算法的性能。
语义分割算法在图像处理中的性能评估
语义分割算法在图像处理中的性能评估随着计算机视觉技术的快速发展,语义分割算法在图像处理中扮演着重要的角色。
语义分割是指将图像中的每个像素分配到预定义的语义类别中,从而实现对图像的精细化理解和理解。
语义分割算法的性能评估是评估算法有效性和可靠性的重要手段,通过合理的性能评估可以帮助我们理解算法的表现,并且为算法优化和改进提供指导。
在语义分割算法的性能评估中,常用的准确性和效率是两个主要的衡量指标。
下面将对这两个指标进行详细的讨论。
首先,准确性是衡量语义分割算法性能的重要指标之一。
准确性评估的关键是比较算法预测结果与真实标签之间的差异。
常用的评估指标包括像素准确性(Pixel Accuracy)、均方差(Mean Square Error)、交并比(Intersection over Union),以及各类别的精确率(Precision)、召回率(Recall)和F1-score等。
像素准确性是最直观的指标,它以像素为单位计算预测结果与真实标签的一致性。
均方误差则能量化真实标签和预测结果之间的差异程度。
交并比被广泛应用于语义分割算法的性能评估中,它通过计算预测结果与真实标签的交集与并集之间的比值来衡量算法的分割精度。
其次,效率是另一个需要考虑的重要指标。
语义分割算法通常在大规模图像数据上进行训练和测试,因此算法的效率直接影响着其在实际应用中的可用性和可行性。
效率评估主要包括算法在不同硬件平台上的运行时间和计算资源使用量。
运行时间的长短直接反映了算法的实时性和实用性,而计算资源的使用情况则关系到算法的扩展性和可部署性。
对于大多数应用场景而言,高效的语义分割算法是理想的选择。
除了准确性和效率,一些特殊的应用场景也需要考虑其他衡量指标。
比如,在医学图像处理中,算法的灵敏度和特异性是非常重要的指标。
灵敏度是指算法能够正确检测出真实标签中的阳性样本的能力,而特异性则是指算法能够正确排除真实标签中的阴性样本的能力。
自然语言处理中的机器学习模型选择与优化思路
自然语言处理中的机器学习模型选择与优化思路自然语言处理(Natural Language Processing, NLP)是人工智能领域中一个重要的研究方向,它致力于让计算机能够理解和处理人类语言。
在NLP中,机器学习模型的选择和优化是非常关键的一环。
本文将探讨在自然语言处理中,如何选择和优化机器学习模型的思路。
一、模型选择在自然语言处理领域,有许多不同的机器学习模型可供选择。
常见的模型包括朴素贝叶斯、支持向量机、决策树、随机森林、深度学习模型等。
不同的模型在处理文本数据时有着各自的优势和适用场景。
朴素贝叶斯模型是一种基于概率的分类模型,在文本分类等任务中表现出色。
它假设特征之间相互独立,适用于处理高维稀疏的文本数据。
支持向量机模型则是一种通过寻找最优超平面来进行分类的模型,它在处理二分类问题时表现出色。
决策树模型通过构建一系列的决策规则来进行分类,易于理解和解释。
随机森林是一种集成学习方法,通过组合多个决策树来提高模型的性能。
这些模型在文本分类、情感分析等任务中都有广泛的应用。
深度学习模型如循环神经网络(RNN)、长短时记忆网络(LSTM)和Transformer等,通过建立深层次的神经网络结构来处理文本数据。
它们在机器翻译、文本生成等任务中取得了巨大的成功。
在选择模型时,需要根据具体的任务需求和数据特点来进行综合考虑。
比如,对于文本分类任务,可以尝试朴素贝叶斯、支持向量机和深度学习模型,然后通过实验对比它们的性能表现,选择最适合的模型。
二、模型优化选择了适合的机器学习模型后,接下来需要对模型进行优化,以提高其性能和效果。
模型优化的方法有很多,下面介绍几种常见的思路。
1. 特征工程在自然语言处理中,特征工程是非常重要的一环。
通过合理选择和构造特征,可以提供更有信息量的输入数据,从而提高模型的性能。
常见的特征包括词袋模型、TF-IDF、词向量等。
此外,还可以考虑使用N-gram模型、词性标注等特征来丰富输入数据。
分割模型中比较严格的评价指标
分割模型中比较严格的评价指标分割模型是计算机视觉领域中的一个重要任务,其目标是将一张输入图像分割成多个语义上有意义的区域。
在评价分割模型时,通常会使用多种指标来衡量模型的性能。
在这些指标中,有一些被认为比较严格,可以提供更准确的评估结果。
本文将介绍几个比较严格的评价指标,并探讨它们的应用。
我们需要了解分割模型常用的数据集。
常见的分割数据集包括PASCAL VOC、COCO和Cityscapes等。
这些数据集中的图像都有人工标注的分割标签,可以用作模型性能评估的参考。
一种常用的评价指标是像素准确率(Pixel Accuracy)。
像素准确率是将模型预测的分割结果与真实分割标签进行像素级别的对比,计算预测正确的像素占总像素数的比例。
这个指标可以很好地反映出模型对每个像素的预测准确性,但它没有考虑到分割结果的边界信息。
为了更好地评估模型的边界预测能力,我们可以使用平均准确率(Mean Accuracy)和平均交并比(Mean Intersection over Union,简称mIOU)这两个指标。
平均准确率是将预测的分割结果与真实分割标签进行区域级别的对比,计算预测正确的区域数占总区域数的比例。
而mIOU则是计算预测的分割结果与真实分割标签之间的交并比,并取平均值。
这两个指标可以更好地评估模型对分割边界的预测能力,但它们对预测结果的准确性要求更高。
我们还可以使用Dice系数作为评价指标之一。
Dice系数是计算预测的分割结果与真实分割标签之间的重叠程度,其取值范围为0到1,值越大表示预测结果与真实标签的重叠程度越高。
Dice系数可以很好地评估模型对目标区域的分割效果,但它对预测结果的灵敏度较高,要求模型具有较高的准确性和鲁棒性。
除了上述指标外,还有一些更细致的评价指标可以用来评估分割模型的性能。
例如,边界上的误差(Boundary Error)可以用来衡量模型对分割边界的预测准确性;区域内的误差(Region Error)可以用来衡量模型对分割区域的预测准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Efficient Sparse Group Feature Selection viaNonconvex OptimizationShuo Xiang†‡shuo.xiang@ Xiaotong Shen∗shenx002@ Jieping Ye†‡jieping.ye@ †Computer Science and Engineering,Arizona State University,Tempe,AZ85287‡Center for Evolutionary Medicine and Informatics,Arizona State University,Tempe,AZ85287∗School of Statistics,University of Minnesota,Minneapolis,MN55347AbstractSparse feature selection has been demon-strated to be effective in handling high-dimensional data.While promising,mostof the existing works use convex methods,which may be suboptimal in terms of the ac-curacy of feature selection and parameter es-timation.In this paper,we expand a non-convex paradigm to sparse group feature se-lection,which is motivated by applicationsthat require identifying the underlying groupstructure and performing feature selection si-multaneously.The main contributions of thisarticle are twofold:(1)computationally,weintroduce a nonconvex sparse group featureselection model and present an efficient op-timization algorithm,of which the key stepis a projection with two coupled constraints;(2)statistically,we show that the proposedmodel can reconstruct the oracle estimator.Therefore,consistent feature selection andparameter estimation can be achieved.Nu-merical results on synthetic and real-worlddata suggest that the proposed nonconvexmethod compares favorably against its com-petitors,thus achieving desired goal of deliv-ering high performance.1.IntroductionDuring the past decade,sparse feature selection has been extensively investigated,on both optimization algorithms(Bach et al.,2010)and statistical proper-Proceedings of the30th International Conference on Ma-chine Learning,Atlanta,Georgia,USA,2013.JMLR: W&CP volume28.Copyright2013by the author(s).ties(Tibshirani,1996;Zhao&Yu,2006;Bickel et al., 2009).When the data possesses certain group struc-ture,sparse modeling has been explored in(Yuan& Lin,2006;Meier et al.,2008;Huang&Zhang,2010) for group feature selection.The group lasso(Yuan &Lin,2006)proposes an L2-regularization method for each group,which ultimately yields a group-wisely sparse model.The utility of such a method has been demonstrated in detecting splice sites(Yang et al., 2010)—an important step in genefinding and theoret-ically justified in(Huang&Zhang,2010).The sparse group lasso(Friedman et al.,2010)enables to encour-age sparsity at the level of both features and groups simultaneously.In the literature,most approaches use convex methods to pursue the grouping effect due to globality of the solution and tractable computation. However,this may lead to suboptimal results.Recent studies demonstrate that nonconvex methods(Fan& Li,2001;Wang et al.,2007;Breheny&Huang,2009; Huang et al.,2009;2012),particularly the truncated L1-penalty(Shen et al.,2012;Mazumder et al.,2011; Zhang,2011),may deliver superior performance than the standard L1-formulation.In addition,(Shen et al., 2012)suggests that a constrained nonconvex formu-lation is slightly more preferable than its regulariza-tion counterpart due to theoretical merits.In this pa-per,we investigate the sparse group feature selection through a constrained nonconvex formulation.Ideally, we wish to optimize the following L0-model:minimizex12∥Ax−y∥22subject top∑j=1I(|x j|=0)≤s1|G|∑j=1I(∥x Gj∥2=0)≤s2,(1)where A is an n by p data matrix with its columns representing different features.x=(x1,···,x p)ispartitioned into|G|non-overlapping groups{x Gi}andI(·)is the indicator function.The advantage of the L0-model(1)lies in its complete control on two levels of sparsity(s1,s2),which are the numbers of features and groups respectively.However,problems like(1) are known to be NP-hard(Natarajan,1995)due to the discrete nature.This paper develops an efficient nonconvex method, which is a computational surrogate of the L0-method described above and has theoretically guaranteed per-formance.We contribute in two aspects:(i)com-putationally,we present an efficient optimization al-gorithm,of which the key step is a projection with two coupled constraints.(ii)statistically,the proposed method retains the merits of the L0approach(1)in the sense that the oracle estimator can be reconstructed, which leads to consistent feature selection and param-eter estimation.The rest of this paper is organized as follows.Section2 presents our nonconvex formulation with its optimiza-tion algorithm explored in Section3.We analyze the theoretical properties of our formulation in Section4 and discuss the significance of this work in Section5. Section6demonstrates the efficiency of the proposed method as well as the performance on real-world ap-plications.Section7concludes the paper with a dis-cussion of future research.2.Nonconvex Formulation andComputationOne major difficulty of solving(1)comes from noncon-vex and discrete constraints,which require enumerat-ing all possible combinations of features and groups to achieve the optimal solution.Therefore we approxi-mate these constraints by their continuous computa-tional surrogates:minimizex 12∥Ax−y∥22subject top∑j=1Jτ(|x j|)≤s1,|G|∑i=1Jτ(∥x Gi∥2)≤s2,(2)where Jτ(z)=min(|z|/τ,1)is a truncated L1-function approximating the L0-function(Shen et al.,2012; Zhang,2010),andτ>0is a tuning parameter such that Jτ(z)approximates the indicator function I(|z|= 0)asτapproaches zero.To solve the nonconvex problem(2),we develop a Dif-ference of Convex(DC)algorithm(Tao&An,1997)based on a decomposition of each nonconvex constraint function into a difference of two convex functions:p∑j=1Jτ(|x j|)=S1(x)−S2(x),whereS1(x)=1τp∑j=1|x j|,S2(x)=1τp∑j=1max{|x j|−τ,0}are convex in x.Then each trailing convex function,say S2(x),is replaced by its affine minorant at the previous iterationS1(x)−S2(ˆx(m−1))−∇S2(ˆx(m−1))T(x−ˆx(m−1)),(3) which yields an upper approximation of the constraint function∑pj=1Jτ(|x j|)as follows:1τp∑j=1|x j|·I(|ˆx(m−1)j|≤τ)+p∑j=1I(|ˆx(m−1)j|>τ)≤s1.(4) Similarly,the second nonconvex constraint in(2)canbe approximated by1τ|G|∑j=1∥x G j∥2·I(∥ˆx(m−1)G j∥2≤τ)+|G|∑j=1I(∥ˆx(m−1)G j∥2>τ)≤s2.(5)Note that both(4)and(5)are convex constraints, which result in a convex subproblem as follows:minimizex12∥Ax−y∥22subject to1τ∥x T1(ˆx(m−1))∥1≤s1−(p−|T1(ˆx(m−1))|)1τ∥x T3(ˆx(m−1))∥G≤s2−(|G|−|T2(ˆx(m−1))|),(6) where T1,T2and T3are the support sets1defined as:T1(x)={i:|x i|≤τ},T2(x)={i:∥x G i∥2≤τ}T3(x)={i:x i∈x G j,j∈T2(x)},∥x T1∥1and∥x T3∥G denote the corresponding valuerestricted on T1and T3respectively,and∥x∥G=∑|G|i=1∥x G i∥2.Solving(6)would provide us an up-dated solution,denoted asˆx(m),which leads to a re-fined formulation of(6).Such procedure is iterateduntil the objective value stops decreasing.The DC al-gorithm is summarized in Algorithm1,from which wecan see that efficient computation of(6)is critical tothe overall DC routine.We defer detailed discussionof this part to Section3.1Support sets indicate that the elements outside thesesets have no effect on the particular items in the constraintsof(6).Algorithm1DC programming for solving(2)12Output:solution x to(2)1:Initializeˆx(0).2:for m=1,2,···do3:Computeˆx(m)by optimizing(6).4:Update T1,T2and T3.5:if the objective stops decreasing then6:return x=ˆx(m)7:end if8:end for3.Optimization ProceduresAs mentioned in Section2,efficient computation of the convex subproblem(6)is of critical importance for the proposed DC algorithm.Note that(6)has an identical form of the constrained sparse group lasso problem:minimizex 12∥Ax−y∥22subject to∥x∥1≤s1∥x∥G≤s2(7)except that x is restricted to the two support sets.As to be shown in Section3.3,an algorithm for solving(6) can be obtained through only a few modifications on that of(7).Therefore,wefirst focus on solving(7). Notice that if problem(7)has only one constraint,the solution is well-established(Duchi et al.,2008;Bach et al.,2010).However,the two coupled constraints here make the optimization problem more challenging to solve.3.1.Accelerated Gradient MethodFor large-scale problems,the dimensionality of data can be very high,thereforefirst-order optimization is often preferred.We adapt the well-known accel-erated gradient method(AGM)(Nesterov,2007;Beck &Teboulle,2009),which is commonly used due to its fast convergence rate.To apply AGM to our formulation(7),the crucial step is to solve the following Sparse Group Lasso Projection (SGLP):minimizex 12∥x−v∥22subject to∥x∥1≤s1(C1)∥x∥G≤s2(C2),(8)which is an Euclidean projection onto a convex set and a special case of(7)when A is the identity.For conve-nience,let C1and C2denote the above two constraints in what follows.Since the AGM is a standard framework whose effi-ciency mainly depends on that of the projection step, we leave the detailed description of AGM in the sup-plement and introduce the efficient algorithm for this projection step(8).3.2.Efficient ProjectionWe begin with some special cases of(8).If only C1exists,(8)becomes the well-known L1-ball projec-tion(Duchi et al.,2008),whose optimal solution is denoted as P s11(v),standing for the projection of v onto the L1-ball with radius s1.On the other hand,if only C2is involved,it becomes the group lasso projec-tion,denoted as P s2G.Moreover,we say a constraint is active,if and only if an equality holds at the optimal solution x∗;otherwise,it is inactive.Preliminary results are summarized in Lemma1: Lemma1.Denote a global minimizer of(8)as x∗. Then the following results hold:1.If both C1and C2are inactive,then x∗=v.2.If C1is the only active constraint,i.e.,∥x∗∥1=s1,∥x∗∥G<s2,then x∗=P s11(v)3.If C2is the only active constraint,i.e.,∥x∗∥1<s1,∥x∗∥G=s2,then x∗=P s2G(v)puting x∗from the optimal dualvariablesLemma1describes a global minimizer when either constraint is inactive.Next we consider the case in which both C1and C2are active.By the convex dual-ity theory(Boyd&Vandenberghe,2004),there exist unique non-negative dual variablesλ∗andη∗such that x∗is also the global minimizer of the following regu-larized problem:minimizex12∥x−v∥22+λ∗∥x∥1+η∗∥x∥G,(9) whose solution is given by the following Theorem. Theorem1((Friedman et al.,2010)).The optimal solution x∗of(9)is given byx∗Gi=max{∥vλ∗Gi∥2−η∗,0}vλ∗G i∥vλ∗Gi∥2i=1,2,···,|G|(10)where vλ∗G iis computed via soft-thresholding(Donoho, 2002)v Giwith thresholdλ∗as follows:vλ∗Gi=SGN(v Gi)·max{|v Gi|−λ∗,0},where SGN(·)is the sign function and all the opera-tions are taken element-wisely.Theorem1gives an analytical solution of x∗in an ideal situation when the values ofλ∗andη∗are given.Un-fortunately,this is not the case and the values ofλ∗andη∗need to be computed directly from(8).Based on Theorem1,we have the following conclusion char-acterizing the relations between the dual variables: Corollary1.The following equations hold:∥x∗∥1=|G|∑i=1max{∥vλ∗Gi∥2−η∗,0}∥vλ∗Gi∥1∥vλ∗Gi∥2=s1(11)∥x∗∥G=|G|∑i=1max{∥vλ∗Gi∥2−η∗,0}=s2.(12)Supposeλ∗is given,then computingη∗from(12) amounts to solving a medianfinding problem,which can be done in linear time(Duchi et al.,2008). Finally,we treat the case of unknownλ∗(thus un-knownη∗).We propose an efficient bisection approach to compute it.putingλ∗:bisectionGiven an initial guess(estimator)ofλ∗,saysˆλ,one may perform bisection to locate the optimalλ∗,pro-vided that there exists an oracle procedure indicating if the optimal value is greater thanˆλ2.This bisection method can estimateλ∗in logarithm time.Next,we shall design an oracle procedure.Let the triples(x∗,λ∗,η∗)=SGLP(v,s1,s2)be the optimal solution of(8)with both constraints active,i.e.,∥x∗∥1=s1,∥x∗∥G=s2,with(λ∗,η∗)be the optimal dual variables.Consider the following two sparse group lasso projections:(x,λ,η)=SGLP(v,s1,s2),(x′,λ′,η′)=SGLP(v,s′1,s′2).The following key result holds.Theorem2.Ifλ≤λ′and s2=s′2,then s1≥s′1. Theorem2gives the oracle procedure with its proof presented in the supplement.For a given estimatorˆλ, we compute its correspondingˆηfrom(12)and thenˆs1 from(11),satisfying(ˆx,ˆλ,ˆη)=SGLP(v,ˆs1,s2).Then ˆs1is compared with s1.Clearly,by Theorem2,if 2An upper bound and a lower bound ofλ∗should be provided in order to perform the bisection.These bounds can be easily derived from the assumption that both C1 and C2are active.ˆs1≤s1,the estimatorˆλis no less thanλ∗.Otherwise,ˆs1>s1meansˆλ<λ∗.In addition,from(11)we know thatˆs1is a continuous function ofˆλ.Together with the monotonicity given in Theorem2,a bisection approach can be employed to calculateλ∗.Algorithm2gives a detailed description of this procedure.Algorithm2Sparse Group Lasso Projection Algo-rithmInput:v,s1,s2Output:an optimal solution x to the Sparse Group Projection ProblemFunction SGLP(v,s1,s2)1:if∥x∥1≤s1and∥x∥G≤s2then2:return v3:end if4:x C1=P s11(v)5:x C2=P s2G(v)6:x C12=bisec(v,s1,s2)7:if∥x C1∥G≤s2then8:return x C19:else if∥x C2∥1≤s1then10:return x C211:else12:return x C1213:end ifFunction bisec(v,s1,s2)1:Initialize up,low and tol2:while up−low>tol do3:ˆλ=(low+up)/24:if(12)has a solutionˆηgiven vˆλthen5:calculate s1using ηandˆλ.6:ifˆs1≤s1then7:up=ˆλ8:else9:low=ˆλ10:end if11:else12:up=ˆλ13:end if14:end while15:λ∗=up16:Solve(12)to getη∗17:Calculate x∗fromλ∗andη∗via(10)18:return x∗3.3.Solving Restricted version of(7)Finally,we modify the above procedures to compute the optimal solution of the restricted problem(6).To apply the accelerated gradient method,we considerthe following projection step:minimizex 12∥x−v∥22subject to∥x T1∥1≤s1(C1)∥x T3∥G≤s2(C2).(13)Ourfirst observation is:T3(x)⊂T1(x),since if an element of x lies in a group whose L2-norm is less thanτ,then the absolute value of this element must also be less thanτ.Secondly,from the decomposable nature of the objective function,we conclude that:x∗j={v j if j∈(T1)c vλ∗j if j∈T1\T3,since there are no constraints on x j if it is outside T1 and involves only the L1-norm constraint if j∈T1\T3. Following routine calculations as in(Duchi et al., 2008),we obtain the following results similar to(11) and(12):s1=∑i∈T2max{∥vλ∗Gi∥2−η∗,0}∥vλ∗Gi∥1∥vλ∗Gi∥2+∑j∈T1\T3vλ∗j(14) s2=∑i∈T2max{∥vλ∗Gi∥2−η∗,0}.(15)Based on(14)and(15),we design a similar bisection approach to computeλ∗and thus(x∗)T3,as in Algo-rithm2.Details can be found in the supplement. Since the projection(13)does not possess an closed-form,it is instructive to discuss the convergence prop-erty of overall accelerated gradient method.Follow the discussion in(Schmidt et al.,2011),we can pro-vide sufficient conditions for a guaranteed convergence rate.Moreover,we found in practice that a reasonable convergence property can be obtained as long as the precision level for the computation of the projection is small,as revealed in Section6.Remark Problem(7)can also be solved using the Alternating Direction Method of Multiplier (ADMM)(Boyd et al.,2011)instead of the acceler-ated gradient method(AGM).However,our evalua-tions show that AGM with our projection algorithm is more efficient than ADMM.4.Theoretical ResultsThis section investigates theoretical aspects of the pro-posed method.More specifically,we demonstrate that the oracle estimatorˆx o,the least squares estimator based on the true model,can be reconstructed.As a result,consistent selection as well as optimal parame-ter estimation can be achieved.For better presentation,we introduce some notations that would be only utilized in this section.Let C= (G i1,···,G ik)be the collection of groups that contain nonzero elements.Let A Gj=A Gj(x)and A=A(x) denote the indices of nonzero elements of x in group G j and in entire x respectively.DefineS j,i={x∈S:(A C,C)=(A Cf0,C0),|A|=j,|C|=i}, where S is the feasible region of(2)and C0represents the true nonzero groups.The following assumptions are used to obtain consis-tent reconstruction of the oracle estimator: Assumption1(Separation condition).DefineC min(x0)=infx∈S−log(1−h2(x,x0))max(|C0\C|,1),then for some constant c1>0,C min(x0)≥c1log|G|+log s01n,whereh(x,x0)=(12∫(g1/2(x,y)−g1/2(x0,y))2dµ(y))1/2is the Hellinger-distance for densities with respect to a dominating measureµ.Assumption2(Complexity of the parameter space). For some constants c0>0and any0<t<ε≤1,H(t,F j,i)≤c0max((log(|G|+s01))2,1)|B j,i|log(2ε/tff), where B j,i=S j,i∩{x∈h(x,x0)≤2ε}is a local parameter space and F j,i={g1/2(x,y):x∈B j,i} is a collection of square-root densities.H(·,F)is the bracketing Hellinger metric entropy of space F(Kol-mogorov&Tihomirov,1961).Assumption3.For some positive constants d1,d2,d3 with d1>10,−log(1−h2(x,x0))≥−d1log(1−h2(xτ,x0))−d3τd2p, where xτ=(x1I(|x1|≥τ),···,x p I(|x p|≥τ)).With these assumptions hold,we can conclude the fol-lowing non-asymptotic probability error bound regard-ing the reconstruction of the oracle estimatorˆx o.The proof is provided in the supplement.Theorem3.Suppose that Assumptions2and3hold. For a global minimizer of(2)ˆx with(s1,s2)=(s01,s02)and τ≤((d 1−10)C min (x 0)d 3d )1/d 2,the following result hold:P (ˆx=ˆx o )≤exp (−c 2nC min (x 0)+2(log |G |+log s 01)).Moreover,with Assumption 1hold,P (ˆx =ˆx o)→1andEh 2(ˆx ,x o )=(1+o (1))max(Eh 2(ˆx o ,x 0),s 01n)as n →∞,|G |→∞.Theorem 3states that the oracle estimator ˆxo can be accurately reconstructed,which in turn yields fea-ture selection consistency as well as the recovery of the performance of the oracle estimator in parame-ter estimation.Moreover,as indicated in Assump-tion 1,the result holds when s 01|G |grows in the or-der of exp(c −11nC min ).This is in contrast to exist-ing results on consistent feature selection,where the number of candidate features should be no greater than exp(c ∗n )for some c ∗(Zhao &Yu ,2006;Wang et al.,2007).In this sense,the number of candidate features is allowed to be much larger when an ad-ditional group structure is incorporated,particularly when each group contains considerable redundant fea-tures.It is not clear whether such a result also holds for other bi-level 3variable selection methods,such as the composite MCP (Huang et al.,2009)and group bridge (Breheny &Huang ,2009).To our knowledge,our theory for the grouped selec-tion is the first of this kind.However,it has a root in feature selection.The large deviation approach used here is applicable to derive bounds for feature selec-tion consistency.In such a situation,the result agrees with the necessary condition for feature selection con-sistency for any method,except for the constants in-dependent of the sample size (Shen et al.,2012).In other words,the required conditions are weaker than those for L 1-regularization commonly used in the lit-erature (Van De Geer &B¨u hlmann ,2009).The use of the Hellinger-distance is to avoid specifying a sub-Gaussian tail of the random error.This means that the result continues to hold even when the error doesnot have a sub-Gaussian tail.Although we require ˆxto be a global minimizer of (2),a weaker version of the theory can be derived for a local minimizer obtained from the DC programming by following similar deriva-tions in (Shen et al.,2012).We leave such discussions in a longer version of the paper.3The by-level here means simultaneous group-level and feature-level analysis.This term is first introduced in (Bre-heny &Huang ,2009).5.SignificanceThis section is devoted to a brief discussion of ad-vantages of our work statistically and computation-ally.Moreover,it explains why the proposed method is useful to perform efficient and interpretable feature selection given a natural group structure.Interpretability.The parameters in formulation (2)are highly interpretable in that s 1and s 2are upper bounds of the number of nonzero elements as well as that of groups.This is advantageous,especially in the presence of certain prior knowledge regarding the number of features and/or that of groups.However,such an interpretation vanishes with other (convex &nonconvex)methods such as lasso,sparse group lasso,composite MCP or group bridge,in which incorporat-ing such prior knowledge often requires repeated trials of different parameters.Parameter tuning.Typically,tuning parameters for good generalization usually requires considerable amount work due to a large number of choices of pa-rameters.However,parameter tuning in model (1)may search through integer values in a bounded range,and can be further simplified when certain prior knowl-edge is available.This permits more efficient tuning than its regularization counterpart.Based on our lim-ited experience,we note that τdoes not need to be tuned precisely as we may fix at some small values.Performance and Computation.Although our model (2)is proposed as a computational surrogate of the ideal L 0-method,its performance can also be theoretically guaranteed,i.e.,consistent feature selec-tion can be achieved.Moreover,the computation of our model is much more efficient and applicable to large-scale applications.6.Empirical Evaluation6.1.Evaluation of Projection Algorithms Since DC programming and the accelerated gradient methods are both standard,the efficiency of the pro-posed nonconvex formulation (2)depends on the pro-jection step in (8).Therefore,we focus on evaluat-ing the projection algorithms and comparing with two popular projection algorithms:Alternating Direction Method of Multiplier (ADMM)(Boyd et al.,2011)and Dykstra’s projection algorithm (Combettes &Pesquet ,2010).We give a detailed derivation of adapting these two algorithms to our formulation in the supplement.To evaluate the efficiency,we first generate the vector v whose entries are uniformly distributed in [−50,50]and the dimension of v ,denoted as p ,is chosen fromthe set {102,103,104,105,106}.Next we partition the vector into 10groups of equal size.Finally,s 2is set to 5log(p )and s 1,the radius of the L 1-ball,is computed by √102s 2(motivated by the fact that s 1≤√10s 2).For a fair comparison,we run our projection algorithm until converge and record the minimal objective value as f ∗.Then we run ADMM and Dykstra’s algorithm until their objective values become close to ours.More specifically,we terminate their iterations as soon as f ADMM −f ∗≤10−3and f Dykstra −f ∗≤10−3,where f ADMM and f Dykstra stand for the objective value of ADMM and Dykstra’s algorithm respectively.Table 1summarizes the average running time of all three al-gorithms over 100replications.Table 1.Running time (in seconds)of Dykstra’s,ADMM and our projection algorithm.All three algorithms are averaged over 100replications.Methods 102103104105106Dykstra 0.19440.5894 4.870251.756642.60ADMM 0.05190.1098 1.200026.240633.00ours<10−70.00020.00510.04400.5827Next we demonstrate the accuracy of our projection algorithm.Toward this end,the general convex opti-mization toolbox CVX (Grant &Boyd ,2011)is chosen as the baseline.Following the same strategy of gener-ating data,we report the distance (computed from the Euclidean norm ∥·∥2)between optimal solution of the three projection algorithms and that of the CVX as well as the running time.Note that the projection is strictly convex with a unique global optimal solution.For ADMM and Dykstra’s algorithm,the termination criterion is that the relative difference of the objec-tive values between consecutive iterations is less than a threshold value.Specifically,we terminate the iter-ation if |f (x k −1)−f (x k )|≤10−7f (x k −1).For our projection algorithm,we set the tol in Algorithm 2to be 10−7.The results are summarized in Table 2and Figure 1.Powered by second-order optimization algo-rithms,CVX can provide fast and accurate solutions for medium-size problems but would suffer from great computational burden for large-scale ones.Therefore we only report the results up to 5,000dimensions.From the above results we can observe that for projec-tions of a moderate size,all three algorithms perform well.However,for large-scale ones,the advantage of the proposed algorithm is evident as our method pro-vides more accurate solution with less time.Table 2.Distance between the optimal solution of projec-tion algorithms and that of the CVX.All the results are averaged over 100replications.Methods 5010050010005000Dykstra 9.009.8111.4011.9012.42ADMM 0.640.08 3.6e-3 6.3e-3 1.3e-2ours1.4e-31.1e-31.2e-31.7e-37.3e-3Figure 1.The average running time for different algorithms to achieve the precision level listed in Table 2.6.2.Performance on Synthetic DataWe generate a 60×100matrix A ,whose entries follow i.i.d standard normal distribution.The 100features (columns)are partitioned into 10groups of equal size.The ground truth vector x 0possesses nonzero elements only in 4of the 10groups.In addition,only 4elements in each nonzero group are nonzero.Finally y is gen-erated according to Ax 0+z with z following distri-bution N (0,0.52).The data are divided into training and testing set of equal size.We fit our method to the training set and compare with both convex methods (lasso,group lasso and sparse group lasso)and methods based on nonconvex bi-level penalties (group bridge and composite MCP).Since the data are intentionally generated to be sparse in both group-level and feature-level,approaches that only perform group selection,such as group lasso,group SCAD and ordinary group MCP,are not in-cluded due to their suboptimal results.The tuning parameters of the convex methods are se-lected from {0.01,0.1,1,10},whereas for our method,the number of nonzero groups is selected from the set {2,4,6,8}and the number of features is chosen from {2s 2,4s 2,6s 2,8s 2}.10-fold cross validation is taken forparameter tuning.Group bridge and composite MCP are carried out using their original R-package grpreg and the tuning parameters are set to the default values (100parameters with10-fold cross-validation). Following similar settings in(Breheny&Huang,2009), we list the number of selected groups and features by each method.In addition,the number of false posi-tive or false negative groups/features are also reported in Table3.We can observe that our model correctly identifies the underlying groups and features.More-over,our method effectively excludes redundant fea-tures and groups compared to other methods,which is illustrated by our low false positive numbers and relatively high false negative numbers.Such a phe-nomenon also appears in the evaluations in(Breheny &Huang,2009).parison of performance on synthetic data.All the results are averaged for100replications.MethodsGroups Features NO.FP FN NO.FP FNlasso7.56 3.850.2917.379.848.47sgl7.29 3.680.3917.6810.138.45ours 3.370.81 1.4411.70 5.9710.27 cMCP9.5 5.70.28.02 3.411.38 gBrdg106072.857.92 1.12 6.3.Performance on Real-world Application Our method is further evaluated on the application of examining Electroencephalography(EEG)correlates of genetic predisposition to alcoholism(Frank&Asun-cion,2010).EEG records the brain’s spontaneous elec-trical activity by measuring the voltagefluctuations over multiple electrodes placed on the scalp.This technology has been widely used in clinical diagnosis, such as coma,brain death and genetic predisposition to alcoholism.In fact,encoded in the EEG data is a certain group structure,since each electrode records the electrical activity of a certain region of the scalp. Identifying and utilizing such spatial information has the potential of increasing stability of a prediction.The training set contains200samples of16384di-mensions,sampled from64electrodes placed on sub-ject’s scalps at256Hz(3.9-msec epoch)for1second. Therefore,the data can naturally be divided into64 groups of size256.We apply the lasso,group lasso, sparse group lasso,group SCAD,group MCP,group bridge,composite MCP and our proposed method on the training set and adapt the5-fold cross-validation for selecting tuning parameters.More specifically,for lasso and group lasso,the candidate tuning parameters are specified by10parameters4sampled using the log-arithmic scale from the parameter spaces,while for thesparse group lasso,the parameters form a10×10grid5,sampled from the parameter space in logarithmic scale.For our method,the number of groups is selected fromthe set:s2={30,40,50}and s1,the number of fea-tures is chosen from the set{50s2,100s2,150s2}.De-fault settings in the R package grpreg(100param-eters,10-fold cross validation)are applied to othernonconvex methods.The accuracy of classification to-gether with the number of selected features and groupsover a test set,which also contains200samples,arereported in Table4.Clearly our method achieves thebest performance of classification.Note that,althoughlasso’s performance is almost as good as ours with evenless features,however,it fails to identify the underly-ing group structure in the data,as revealed by the factall64groups are selected.Moreover,other nonconvexapproaches such as the group SCAD,group MCP andgroup bridge seem to over-penalized the group penalty,which results in very few selected groups and subopti-mal performance.parison of performance on EEG data.Methods Accuracy#Feature#Grouplasso67.0206864glasso62.5870434sglasso65.5483461ours68.0389025gSCAD63.017927gMCP55.02561cMCP65.56235gBrdg51.58027.Conclusion and Future WorkThis paper expands a nonconvex paradigm into sparsegroup feature selection.In particular,an efficient op-timization scheme is developed based on the DC pro-gramming,accelerated gradient method and efficientprojection.In addition,theoretical properties on theaccuracy of selection and parameter estimation are an-alyzed.The efficiency and efficacy of the proposedmethod are validated on both synthetic data and real-world applications.The proposed method will be fur-ther investigated on real-world applications involvingthe group structure.Moreover,extending our ap-proach to multi-modal multi-task learning(Zhang&Shen,2011)is another promising direction.4λlasso=logspace(10−3,1),λglasso=logspace(10−2,1) 5The product space ofλlasso×λglasso。