人教版高中数学总复习[知识点整理及重点题型梳理]推理与证明、数学归纳法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推理与证明、数学归纳法
编稿:辛文升 审稿:孙永钊
【考纲要求】
1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.
2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.
3.了解合情推理和演绎推理之间的联系和差异.
4.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.
5.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.
6.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 【知识网络】
【考点梳理】
【推理与证明、数学归纳法407426 知识要点】
考点一:合情推理与演绎推理
1.推理的概念
根据一个或几个已知事实(或假设)得出一个判断,这种思维方式叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做前提,一部分是由已知推出的判断,叫做结论.
2.合情推理
根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理称为合情推理.
合情推理又具体分为归纳推理和类比推理两类:
(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这
推 理 与 证 明
归纳
推 理
证 明
合情推理
演绎推理
数学归纳法
综合法 分析法 直接证明
类比
间接证明
反证法
些特征的推理,或者由个别事实概括出一般结论的推理.简言之,归纳推理是由部分到整体、个别到一般的推理,归纳推理简称归纳.
(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理,类比推理简称类比.
3.演绎推理
从一般性的原理出发,推出某个特殊情况下的结论.简言之,演绎推理是由一般到特殊的推理.
三段论是演绎推理的一般模式,它包括: (1)大前提——已知的一般原理; (2)小前提——所研究的特殊情况;
(3)结论——根据一般原理,对特殊情况作出的判断. 要点诠释:
合情推理与演绎推理的区别与联系 (1)从推理模式看:
①归纳推理是由特殊到一般的推理. ②类比推理是由特殊到特殊的推理. ③演绎推理是由一般到特殊的推理. (2)从推理的结论看:
①合情推理所得的结论不一定正确,有待证明。 ②演绎推理所得的结论一定正确。
(3)总体来说,从推理的形式和推理的正确性上讲,二者有差异;从二者在认识事物的过程中所发挥的作用的角度考虑,它们又是紧密联系,相辅相成的。合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的;演绎推理可以验证合情推理的正确性,合情推理可以为演绎推理提供方向和思路.
考点二:直接证明与间接证明 1.综合法
(1)定义:综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种由因索果的证明方法,又叫顺推法.
(2)综合法的思维框图:
用P 表示已知条件,1i Q i =(,2,3,...,n )为定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为:
1P Q ⇒()→12Q Q ⇒()→23Q Q ⇒()→.........n Q Q ⇒()
2.分析法
(1) 定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判断一个明显成立的条件(已知条件,定理,定义,公理)为止.这种证明方法叫做分析法.分析法又叫逆推法或执果索因法.
(2)分析法的思维框图:
1Q P ⇐()→12P P ⇐()→23P P ⇐()
→.........得到一个明显成立的条件. 3.反证法
(1)定义:假设原命题的结论不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.这样的证明方法叫反证法.反证法是一种间接证明的方法.
(2)应用反证法证明数学命题的一般步骤: ①分清命题的条件和结论.
②做出与命题结论相矛盾的假设.
③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.
④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.
考点三:数学归纳法
数学归纳法证明命题的步骤:
(1)证明当n 取第一个值0n 时结论正确;
(2)假设当n k =0(*,)k N k n ∈≥时结论正确,证明1n k =+时结论也正确, 由(1)(2)确定对0*,n N n n ∈≥时结论都正确。
要点诠释: 1.在证明过程中 证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的普遍性.在第一步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对这几个正整数都成立,也不能保证命题对其他正整数也成立;
证明了第二步,就获得了递推的依据,但没有第一步就失去了递推的基础.只有把第一步和第二步结合在一起,才能获得普遍性的结论;
2.用数学归纳法证明问题时 初始值的选取:
初始值0n 就是我们要证明的命题对象的最小自然数。根据题目不同,初始值不一定从
01n =开始。如,证明不等式22n n >,初始值应从05n =开始.
必须把要把归纳假设用上一次或者多次:
在由假设n k =时命题成立,证明1n k =+时命题也成立,必须把要把归纳假设用上一
次或者多次。必须把归纳假设“*
0(,)n k k n k =≥∈N 时命题成立”作为条件来推导出
“1n k =+时命题也成立”是第二步的关键,只有通过归纳假设的使用,才达到由n=k 的情况递推到n=k+1的情况,保证了命题的传递性。此处变形的方法较多,要在不同题型中逐步去体会,如证明整除问题、几何问题等。 【典型例题】
类型一:合情推理与演绎推理 例1.在数列{}n a 中,a 1=1,且12(*)2n
n n
a a n N a +=∈+,计算a 2,a 3,a 4,并猜想n a 的表达式.
【思路点拨】根据递推关系依次把n 的值代入就可以.