新五年级奥数速算与巧算

合集下载

五年级奥数分数加减法速算与巧算学生版

五年级奥数分数加减法速算与巧算学生版

分数加减法速算与巧算教学目标五年级奥数分数加减法速算与巧算学生版知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。

即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。

即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。

二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。

如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例 1】11410410042282082008+++=_____【例 2】如果111207265009A +=,则A =________(4级) 模块一:分组凑整思想【例3】11211232112199511222333331995199519951995+++++++++++++++【例4】1111222233318181923420345204520192020⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【巩固】分母为1996的所有最简分数之和是_________例题精讲【巩固】所有分母小于30并且分母是质数的真分数相加,和是__________。

五年级奥数速算、巧算方法及习题

五年级奥数速算、巧算方法及习题

五年级奥数速算、巧算方法及习题五年级奥数速算、巧算方法及习题数的概念自然数:0,1,2,3,4……叫自然数。

整数:正整数,0,负整数统称整数。

……-4,-3,-2,-1,0,1,2,3,4……1、整除:整数a除以整数b,如果除得的商是整数,而余数为0,我们就说a能被b整除,或者说b能整除a。

如果整数a能被整数b整除(b不等于0),a就叫b的倍数,b 就叫a的约数(因数)。

2、整除的条件:(1)、除数被除数都是整数( 2 )、被除数除以除数,商是整数,而且余数为零,除数不为零。

4、整除的特征:(1)、0能整除任意非零的整数,1能整除任意整数(2)、能被2整除的数的特征:一个数的末尾数字是0,2,4,6,8(3)、能被3(或9)整除的数的特征:各位数字的和能被3(或9)整除(4)、能被4(或25)整除的数的特征:末尾两位能被4(或25)整除(5)、能被5整除的数的特征:一个数的末尾是0或5(6)、能被6整除的数的特征:同时能被2或3整除(7)、能被7整除的数的特征:去掉个位数字,再从剩下的数中减去个位数字的2倍,差是7的倍数(8)、能被8(或125)整除的数的特征:末尾3位能被8(或125)整除(9)、能被10整除的数的特征:末尾数字是0(10)、能被11整除的数的特征:奇位上的数字的和与偶位上数字的和的差能被11整除(11)、能被7、11、13整除的数的特征:一个整数,如果他的末三位数与末三位以前的数字所组成的数的差能被7、11、13整除(12)、能被16(或625)整除的数的特征:末尾四位数能被16或625整除。

练习1:(1)、判断下列哪些数能被2整除?21 44 56 65 98(2)、判断下列哪些数能被3整除111 135 186 **** ****(3)、判断下列哪些数能被4整除?84 200 1984 1978 2008 200912456 37212 7800 5408(4)、判断下列哪些数能被5整除?135 65 80 4246 15360 95556 50058(5)、判断下列哪些数能被25整除?75 125 7800 178 197 2050 2029 2350 65325(6)、判断下列哪些数能被10整除?9060 4140 1531 95856 56340(7)、判断下列哪些数能被100整除?1200 170 110 200 2029(8)、判断下列哪些数能被7整除?判断下列哪些数能被11整除?判断下列哪些数能被13整除?128114 94146 64152 238231 413412 242231 439417(9) 判断下列哪些数能被8整除?判断下列哪些数能被125整除?1880 1978 1997 2008 2009 178 197 2250 2029 672520 333640 78500 987000 333420(10)、判断下列哪些数能被9整除?1161 4248 15310 95856 56349 73265 64585 6723 661232:(1)、在□中填入合适的数字,使组成的数能被4整除78□4 7653□ 863□□(2)、在□中填入合适的数字,使组成的数能被25整除98□5 765□ 667□ 874□0(3)、在□中填入合适的数字,使组成的数能被8整除32□80 789□2□ 664□(4)、在□中填入合适的数字,使组成的数能被125整除662□0 887□0 4525□□ 6673□□(5)、在□中填入合适的数字,使组成的数能被9整除78□3 68□4 322□(6)、在□中填入合适的数字,使852□7能被7整除,7630□2能被11整除,890□能被13整除。

五年级奥数尖子生特训班速算与巧算简便运算

五年级奥数尖子生特训班速算与巧算简便运算
第一讲
速算与巧算 简便运算
我们学过的运算定律有:
加法交换律:a+b=b+a 加法结合律:(a+b) +c=a+ (b+c) 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(运算性质有:
减法的性质:a-b-c=a-(b+c)
(3)125×(10+8)
(3)125×(16×8)(4)(20-4)×25
例6 巧算下列各题: (1)17× 21 (2)1111×9999 (3)132476×111
巧解乘法须牢记: 只含乘法运算(两步运算)时,交换、结合用于 此;一步乘法或乘加乘减算式要巧算,有了分配 就好办!
例7 巧算:75×45+17×25
运用乘法分配须记牢: 乘法分配先找c,正反都能来应用;没有c来要 变c,常用分拆或扩缩。
小练兵
1巧算下列各题
(2)9898+203 (4)995+996+997+998+999 (5)38×101 (6)1234×111 (8)25×32+75×48(10)9999×2222+3333×3334
除法的性质:a÷b÷c=a÷(b×c)
例1 巧算下列各题。
(1)219 +648+ 51- 138 -548 -62
(2)100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1
解答此类题技巧:
只含加减运算时,可以任意交换数字的位 置,但必 须带着符号“搬家”!交换的原则 是 能凑整!
例2 巧算:348-179 例3 巧算:2356-(256+159) 例4 巧算:599996+49997+3998+407+89

(完整版)小学五年级奥数速算与技巧、包含与排除.doc

(完整版)小学五年级奥数速算与技巧、包含与排除.doc

小学五年级奥数题——速算与巧算在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法 ,但如果善于观察、勤于思考 ,计算中还能找到更多的巧妙的计算方法 ,不仅使你能算得好、算得快 ,还可以让你变得聪明和机敏 .例 1:计算: 9.996+ 29.98+ 169.9+ 3999.5算式中的加法看来无法用数学课中学过的简算方法计算,但是 ,这几个数每个数只要增加一点 ,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了.当然要记住 ,“凑整”时增加了多少要减回去.9.996+ 29.98+ 169.9+ 3999.5=10+ 30+ 170+ 4000-( 0.004+ 0.02+ 0.1+ 0.5)=4210- 0.624=4209.376例 2:计算: 1+ 0.99- 0.98- 0.97+ 0.96+ 0.95- 0.94-0.93 ++ 0.04+ 0.03- 0.02- 0.01 式子的数是从 1 开始 ,依次减少0.01, 直到最后一个数是0.01, 因此 ,式中共有100 个数而式子中的运算都是两个数相加接着减两个数,再加两个数 ,再减两个数这样的顺序排列的 .由于数的排列、运算的排列都很有规律,按照规律可以考虑每 4 个数为一组添上括号 ,每组数的运算结果是否也有一定的规律?可以看到把每组数中第 1 个数减第 3 个数 ,第 2 个数减第 4 个数 ,各得 0.02, 合起来是 0.04,那么 ,每组数(即每个括号)运算的结果都是0.04,整个算式 100 个数正好分成 25 组 ,它的结果就是25 个 0.04 的和 .1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01 =( 1+ 0.99- 0.98- 0.97)+( 0.96+ 0.95 -0.94- 0.93 )++( 0.04+ 0.03- 0.02- 0.01 )=0.04× 25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01 =1+( 0.99- 0.98- 0.97+ 0.96)+(0.95 -0.94- 0.93 + 0.92)++( 0.03- 0.02- 0.01 )=1例 3:计算: 0.1+ 0.2+ 0.3++ 0.8 +0.9+0.10 + 0.11+ 0.12++ 0.19+ 0.20这个算式的数的排列像一个等差数列,但仔细观察 ,它实际上由两个等差数列组成,0.1+0.2+ 0.3++ 0.8+ 0.9 是第一个等差数列,后面每一个数都比前一个数多0.1,而 0.10+ 0.11+0.12++ 0.19+ 0.20 是第二个等差数列,后面每一个数都比前一个数多0.01, 所以 ,应分为两段按等差数列求和的方法来计算.0.1+ 0.2+ 0.3++ 0.8+0.9+ 0.10+ 0.11 + 0.12++0.19+ 0.20=( 0.1+ 0.9)×9÷ 2+( 0.10+0.20 )× 11÷2=4.5+ 1.65=6.15例 4:计算: 9.9× 9.9+ 1.99算式中的 9.9× 9.9 两个因数中一个因数扩大10 倍 ,另一个因数缩小10 倍 ,积不变 ,即这个乘法可变为99× 0.99; 1.99 可以分成0.99+ 1 的和 ,这样变化以后 ,计算比较简便.9.9× 9.9+ 1.99=99× 0.99+ 0.99+ 1=( 99+ 1)× 0.99 +1=100例 5:计算: 2.437× 36.54+ 243.7× 0.6346虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的 2.437 和后一个乘法的243.7 两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点.按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了2.437× 36.54+ 243.7× 0.6346=2.437× 36.54+ 2.437× 63.46=2.437×( 36.54+ 63.46)=243.7* 例 6:计算: 1.1×1.2 ×1.3× 1.4×1.5算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果.平时注意积累计算经验的同学也许会注意到7、 11 和 13 这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如 578× 1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数.1.1× 1.2× 1.3× 1.4× 1.5=1.1× 1.3× 0.7× 2× 1.2× 1.5=1.001× 3.6=3.6036计算下列各题并写出简算过程:1. 5.467+ 3.814+ 7.533+ 4.1862. 6.25× 1.25× 6.43. 3.997+ 19.96+ 1.9998 + 199.74. 0.1+ 0.3++ 0.9+ 0.11+ 0.13+ 0.15++ 0.97+ 0.995. 199.9× 19.98- 199.8× 19.976. 23.75× 3.987+ 6.013× 92.07+ 6.832× 39.87*7 . 20042005 × 20052004 - 20042004 ×20052005 *8 .(1+ 0.12+ 0.23)×( 0.12+ 0.23+ 0.34)-( 1+ 0.12+ 0.23+ 0.34)×( 0.12+ 0.23 )计算下列各题并写出简算过程:1. 6.734- 1.536+ 3.266- 4.4642. 0.8÷ 0.1253. 89.1+ 90.3+ 88.6+ 92.1+ 88.9+ 90.84. 4.83× 0.59+ 0.41× 1.59- 0.324× 5.95. 37.5× 21.5× 0.112+ 35.5× 12.5× 0.112包含与排除1、某班有40 名学生 ,其中有 15 人参加数学小组,18 人参加航模小组,有 10 人两个小组都参加. 那么有多少人两个小组都不参加?两个小组共有(15+18) -10=23 (人) ,都不参加的有40-23=17(人)答:有 17 人两个小组都不参加 .--2、某班45 个学生参加期末考试,成绩公布后 ,数学得满分的有 10 人 ,数学及语文成绩均得满分的有 3 人 ,这两科都没有得满分的有29 人.那么语文成绩得满分的有多少人?45-29-10+3=9 (人)答:语文成绩得满分的有9 人 .3、 50 名同学面向老师站成一行.老师先让大家从左至右按1,2,3,,49,50 依次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转 .问:现在面向老师的同学还有多少名 ?4 的倍数有 50/4 商 12 个 ,6 的倍数有 50/6 商 8个,既是 4又是 6的倍数有 50/12 商 4 个.4 的倍数向后转人数 =12,6 的倍数向后转共8 人 ,其中 4 人向后 ,4 人从后转回 .面向老师的人数 =50-12=38(人)答:现在面向老师的同学还有38 名.4、在游艺会上 ,有 100 名同学抽到了标签分别为 1 至 100 的奖券 .按奖券标签号发放奖品的规则如下:( 1)标签号为 2 的倍数 ,奖 2 支铅笔;( 2)标签号为 3 的倍数 ,奖 3 支铅笔;( 3 )标签号既是 2 的倍数 ,又是 3 的倍数可重复领奖;( 4)其他标签号均奖 1 支铅笔 .那么游艺会为该项活动准备的奖品铅笔共有多少支?2 的倍数有100/2 商 50 个 ,3 的倍数有100/3 商 33 个 ,2 和 3 人倍数有100/6 商 16 个 .领 2 支的共准备( 50— 16)*2=68, 领 3 支的共准备( 33— 16)*3=51, 重复领的共准备16*( 2+3)=80,其余准备100-( 50+33-16 ) *1=33共需要 68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232 支.5、有一根长为180 厘米的绳子 ,从一端开始每隔后将标有记号的地方剪断.问绳子共被剪成了多少段3 厘米作一记号?,每隔 4 厘米也作一记号,然3 厘米的记号:180/3=60, 最后到头了不划,60-1=59 个4 厘米记号: 180/4=45,45-1=44 个 ,重复的记号:180/12=15,15-1=14 个 ,所以绳子中间实际有记号 59+44-14=89 个 .剪 89 次 ,变成 89+1=90 段答:绳子共被剪成了 90 段 .6、东河小学画展上展出了许多幅画,其中有 16 幅画不是六年级的 ,有 15 幅画不是五年级的 . 现知道五、六年级共有25 幅画 ,那么其他年级的画共有多少幅?1,2,3,4,5 年级共有 16,1,2,3,4,6 年级共有 15,5,6 年级共有 25所以总共有( 16+15+25) /2=28 (幅) ,1,2,3,4 年级共有28-25=3 (幅)答:其他年级的画共有 3 幅.---7、有若干卡片 ,每张卡片上写着一个数 ,它是 3 的倍数或 4 的倍数 ,其中标有 3 的倍数的卡片占 2/3, 标有 4 的倍数的卡片占 3/4, 标有 12 的倍数的卡片有15 张 .那么 ,这些卡片一共有多少张?12 的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)答:这些卡片一共有36 张.----8、在从 1 至 1000 的自然数中 ,既不能被 5 除尽 ,又不能被7 除尽的数有多少个?5 的倍数有1000/5 商 200 个 ,7 的倍数有 1000/7 商 142 个,既是 5 又是 7 的倍数有1000/35商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不能被 5 除尽 ,又不能被 7 除尽的数有686 个.---9、五年级三班学生参加课外兴趣小组,每人至少参加一项 .其中有 25 人参加自然兴趣小组 ,35 人参加美术兴趣小组 ,27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人, 参加自然同时又参加美术兴趣小组的有8 人 ,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然 3 科兴趣小组都参加的有 4 人 .求这个班的学生人数 .25+35+27-( 8+12+9) +4=62(人)答:这个班的学生人数是62 人.-- --10、如图 8-1,已知甲、乙、丙 3 个圆的面积均为 30,甲与乙、乙与丙、甲与丙重合部分的面积分别为 6,8,5,而 3 个圆覆盖的总面积为 73.求阴影部分的面积 .甲、乙、丙三者重合部分面积=73+( 6+8+5) -3*30=2阴影部分面积=73-( 6+8+5) +2*2=58答:阴影部分的面积是58.11、四年级一班有 46 名学生参加 3 项课外活动 .其中有 24 人参加了数学小组 ,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的 7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数 .设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.________________________________________-12、图书室有 100 本书 ,借阅图书者需要在图书上签名.已知在 100 本书中有甲、乙、丙签名的分别有 33,44 和 55 本 ,其中同时有甲、乙签名的图书为29 本 ,同时有甲、丙签名的图书有25 本,同时有乙、丙签名的图书有36 本 .问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过 ?三个人一共看过的书的本数是:甲 +乙 +丙(-甲乙 +甲丙 +乙丙)+甲乙丙 =33+44+55(- 29+25+36)+甲乙丙 =42+甲乙丙 ,当甲乙丙最大时 ,三人看过的书最多,因为甲、丙共同看过的书只有25 本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25 本.三人总共看过最多有42+25=67(本) ,都没看过的书最少有100-67=33 (本)答:这批图书中最少有33 本没有被甲、乙、丙中的任何一人借阅过.________________________________________13、如图 8-2,5 条同样长的线段拼成了一个五角星.如果每条线段上恰有1994 个点被染成红色,那么在这个五角星上红色点最少有多少个?五条线上右发有 5*1994=9970 个红点 ,如果所有交叉点上都放一个红点,则红点最少 ,这五条线有 10 个交叉点 ,所以最少有9970-10=9960 个红点答:在这个五角星上红色点最少有9960 个 .14、甲、乙、丙同时给100 盆花浇水 .已知甲浇了 78 盆 ,乙浇了 68 盆 ,丙浇了 58 盆 ,那么 3 人都浇过的花最少有多少盆?甲和乙必有 78+68-100=46 盆共同浇过 ,丙有 100-58=42 没浇过 ,所以 3 人都浇过的最少有46-42=4(盆)答: 3 人都浇过的花最少有 4 盆 .15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每个人都从某一个故事开始,按顺序往后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最少有多少个?乙和丙共同读过的故事至少有60+52-100=12(个) ,甲无论从哪里开始都必定要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最少有12 个.15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每个人都从某一个故事开始,按顺序往后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最少有多少个?乙和丙共同读过的故事至少有60+52-100=12(个) ,甲无论从哪里开始都必定要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最少有12 个.________________________________________-8、在从 1 至 1000 的自然数中 ,既不能被 5 除尽 ,又不能被 7 除尽的数有多少个 ?5 的倍数有 1000/5 商 200 个 ,7 的倍数有1000/7 商 142 个,既是 5 又是 7 的倍数有 1000/35 商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不能被 5 除尽 ,又不能被7 除尽的数有686 个 .题中的除尽应该是整除吧.11、四年级一班有46 名学生参加 3 项课外活动 .其中有 24 人参加了数学小组,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数.设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.。

五年级《速算与巧算》奥数教案

五年级《速算与巧算》奥数教案
可以先约分再计算,就像这道题一样,会发现简算的方法。
板书:
原式= + + +
=2
练习2:(5分)
计算: + + + -
分析:
将算式中的分数先化成最简分数,然后会发现化简后每个分数都是 。
板书:
原式= + + + -
=1
三、小结:(5分)
整数的加法交换律、结合律对分数的加减计算同样适用。
第二课时(50分)
师:那么我们可不可以将式子写成这种形式。
板书:
原式=(1- )+( - )+( - )+……+( - )
=1- + - + - +……+ -
=1-
=
师:从式子中我们发现中间的分数都是一加一减刚好抵消的。将数列中的每一
项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,我们
把这种解题方法叫做裂项相消法。
生: ,老师,我知道了,给式子加上一个 ,再在最后减去一个 ,
+ = , + = , + = ,最后式子变成1+2+3+4+5+ + - 。
师:恩恩,同学的反应能力很快,那么请你将过程板书到黑板上。
板书:
原式=1+2+3+4+5+ + + + +( + )-
=15+ + + +( + )-
=15+ + +( + )-
练习1:(5分)
计算: - + +
分析:

五年级奥数第2课时:速算与简算

五年级奥数第2课时:速算与简算

第二讲速算与巧算一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×42.分解因数,凑整先乘。

例 2计算① 24×25②56×125③125×5×32×53.应用乘法分配律。

例3 计算① 175×34+175×66②67×12+67×35+67×52+6例4 计算① 123×101② 123×994.几种特殊因数的巧算。

例5一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。

如:15×10=15015×100=150015×1000=15000 例6一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;…以此类推。

如:12×9=12×99=12×999=例7一个偶数乘以5,可以除以2添上0 如:6×5=16×5=116×5=例8 一个数乘以11,“两头一拉,中间相加”。

如2222×11=2456×11=例9一个偶数乘以15,“加半添0”.24×15例10个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=1×(1+1)×100+25=22525×25=2×(2+1)×100+25=625自己尝试往下写:二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。

五年级奥数- 巧算与速算

五年级奥数- 巧算与速算

速算与巧算一、考点、热点回顾:1、掌握小学数学中常用的速算方法,并根据数字特点选择恰当方法计算。

二、典型例题:例1计算72.19+6.48+27.81-1.38-5.48-0.62。

解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。

于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。

解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。

于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3计算1999+199.9+19.99+1.999。

解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。

五年级奥数:速算与巧算

五年级奥数:速算与巧算

五年级奥数:速算与巧算例1:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。

例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。

236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764例2:计算333×334+999×222分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。

333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000例3:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比较麻烦。

根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。

20012001×2002-20022002×2001=2001×10001×2002-2002×10001×2001=0例4:不用笔算,请你指出下面哪个得数大。

163×167 164×166分析与解答:仔细观察可以发现,第二个算式中的两个因数分别与第一个算式中的两个因数相差1,根据这个特点,可以把题中的数据作适当变形,再利用乘法分配律,然后进行比较就方便了。

163×167 164×166=163×(166+1) =(163+1)×166=163×166+163 =163×166+166所以,163×167<164×166例5:888…88[1993个8]×999…99[1993个9]的积是多少?分析将999…99[1993个9]变形为“100…0[1993个0]-1”,然后利用乘法分配律来进行简便计算。

五年级奥数速算与巧算

五年级奥数速算与巧算

例 9÷13+13÷9+11÷13+14÷9+6÷13 =(9+11+6)÷13+(13+14)÷9 =26÷13+27÷9 =2+3 =5
总结:除数相同,多商求和时,可以将被除数 相加除以相同的除数。
教学资料整理
• 仅供参考,
(1)199999+19999+1999+199+19 =200000+20000+2000+200+19-4 =200000+20000+2000+200+15 =22215 (2)997+9979+124 =(997+3)+(9979+21)+124-3-21 =11100
2000x200120012001-2001x200020002000 =2000x2001x100010001-2001x2000x100010001 =0
=333×(3×111)+333×667 =333×333+333×667 =333×(333+667) =333×1000 =333000
(1)100000÷32÷125÷25 =100000÷(4×8)÷125÷25 =100000÷(125×8)÷(25×4) =1
(2)999×222+333×334 =3×(3×222)+333×334 =333×(666+334) =333000
÷100
= =
1990-1985+1980-1975+ ……+20-15+10-5 =5 ×199=5 ×(200-1)=1000-5=995

五年级奥数 速算与巧算

五年级奥数 速算与巧算

【共步培养疑息】之阳早格格创做原周教教真质:速算取巧算(一)共教们,即日咱们所有去钻研速算取巧算,正在数的运算中根据数的特性及数取数之间的特殊闭系,妥当天力用四则运算中的逆序,没有单不妨普及运算速度,而且还能使咱们的估计又准又快,锻炼思维,普及运算的技能本领.[教习历程]一. 阅读思索:例1. 简算:(1分解:题中,交近10,且战皆是有6、8那二个数字.解法一:解法二:(2分解:审题可知,125战不妨互相转移例2.分解:那讲题是乘除共级运算,解问时,利用加括号规则,正在“÷”后里加括号,括号内里要变号,“×”变“÷”,“÷”变“×”.没有过,共教们请注意,那种要领只适用于乘、除共级运算.例分解:咱们不妨把乘法调配律扩充启,用去解题.二. 测验考查感受1. 请您推断底下的干法是可烦琐、精确.(1(22. 先按提示央供完毕底下题的估计,再比较哪种算法巧,道道巧算的依据.(1(2【模拟试题】(问题时间:20分钟)【试题问案】60124518【励志故事】茄子的佳坏大亨对于仆人道:“茄子删进食欲,是佳物品.”“没有错.”仆人道,“易怪它戴着顶王冠.”几天后,大亨又道:“茄子倒人胃心,还死痰,是坏物品呢.”“是呀!”仆人道,“瞧它头上少着刺呢.”大亨没有谦意了:“前天您道茄子是佳物品,即日又道它是坏物品,什么意义?”仆人道:“尔该怎么道呢?尔是老爷您的仆人,没有是茄子的仆人呀.”那则中国典故厥后成了成语:“没有是茄子的仆人”,相称于尔国的成语“睹风使舵”.尔念它的讽刺真正在是搞错了对于象.仆人的问话易讲没有是源于大亨的疑心雌黄?仆人没有过是给大亨的胡道八讲找了面注足而已.它的确切含意应当是:强权下的逆从.。

小学五年级奥数速算与技巧、包含与排除

小学五年级奥数速算与技巧、包含与排除

小学五年级奥数题——速算与巧算在平常生活和解答数学识题时,常常要进行计算,在数学课里我们学习了一些简易计算的方法 ,但假如擅长察看、勤于思虑 ,计算中还可以找到更多的奇妙的计算方法 ,不单使你能算得好、算得快 ,还可以够让你变得聪慧和机警 .例 1:计算: 9.996+ 29.98+ 169.9+ 3999.5算式中的加法看来没法用数学课中学过的简算方法计算,可是 ,这几个数每个数只需增加一点 ,就成为某个整十、整百或整千数,把这几个数“凑整”此后,就简单计算了.自然要记住 ,“凑整”时增添了多少要减回去.9.996+ 29.98+ 169.9+ 3999.5=10+ 30+ 170+ 4000-( 0.004+ 0.02+ 0.1+ 0.5)=4210- 0.624=4209.376例 2:计算: 1+ 0.99- 0.98- 0.97+ 0.96+ 0.95- 0.94-0.93 ++ 0.04+ 0.03- 0.02- 0.01 式子的数是从 1 开始 ,挨次减少0.01, 直到最后一个数是0.01, 所以 ,式中共有100 个数而式子中的运算都是两个数相加接着减两个数,再加两个数 ,再减两个数这样的次序摆列的 .因为数的摆列、运算的摆列都很有规律,依据规律能够考虑每 4 个数为一组添上括号 ,每组数的运算结果能否也有必定的规律?能够看到把每组数中第 1 个数减第 3 个数 ,第 2 个数减第 4 个数 ,各得 0.02, 合起来是 0.04,那么 ,每组数(即每个括号)运算的结果都是0.04,整个算式 100 个数正好分红 25 组 ,它的结果就是25 个 0.04 的和 .1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01=( 1+ 0.99- 0.98- 0.97)+( 0.96+ 0.95 -0.94- 0.93 )++( 0.04+ 0.03- 0.02- 0.01 )=0.04× 25=1假如能够灵巧地运用数的互换的规律,也能够按下边的方法分组添上括号计算:1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01=1+( 0.99- 0.98- 0.97+ 0.96)+(0.95 -0.94- 0.93 + 0.92)++( 0.03- 0.02- 0.01 )=1例 3:计算: 0.1+ 0.2+ 0.3++ 0.8 +0.9+0.10 + 0.11+ 0.12++ 0.19+ 0.20这个算式的数的摆列像一个等差数列,但认真察看 ,它实质上由两个等差数列构成,0.1+0.2+ 0.3++ 0.8+ 0.9 是第一个等差数列,后边每一个数都比前一个数多0.1,而 0.10+ 0.11 +0.12++ 0.19+ 0.20 是第二个等差数列,后边每一个数都比前一个数多0.01, 所以 ,应分为两段按等差数列乞降的方法来计算.0.1+ 0.2+ 0.3++ 0.8+0.9+ 0.10+ 0.11 + 0.12++0.19+ 0.20=( 0.1+ 0.9)×9÷ 2+( 0.10+0.20 )× 11÷2=4.5+ 1.65=6.15例 4:计算: 9.9× 9.9+ 1.99算式中的 9.9× 9.9 两个因数中一个因数扩大10 倍 ,另一个因数减小10 倍 ,积不变 ,即这个乘法可变为99× 0.99; 1.99 能够分红0.99+ 1 的和 ,这样变化此后 ,计算比较简易.9.9× 9.9+ 1.99=99× 0.99+ 0.99+ 1=( 99+ 1)× 0.99 +1=100例 5:计算: 2.437× 36.54+ 243.7× 0.6346固然算式中的两个乘法计算没有相同的因数,但前一个乘法的 2.437 和后一个乘法的243.7 两个数的数字相同,不过小数点的地点不一样 ,假如把此中一个乘法的两个因数的小数点.按相反方向挪动相同多位,使这两个数变为相同的,就能够运用乘法分派律进行简算了2.437× 36.54+ 243.7× 0.6346=2.437× 36.54+ 2.437× 63.46=2.437×( 36.54+ 63.46)=243.7* 例 6:计算: 1.1×1.2 ×1.3× 1.4×1.5算式中的几个数固然是一个等差数列,但算式不是乞降,不可以用等差数列乞降的方法来计算这个算式的结果.平常注意累积计算经验的同学或许会注意到7、 11 和 13 这三个数连乘的积是1001,而一个三位数乘1001,只需把这个三位数连续写两遍就是它们的积,比如 578× 1001=578578,这一题参照这个方法计算,能奇妙地算出正确的得数.1.1× 1.2× 1.3× 1.4× 1.5=1.1× 1.3× 0.7× 2× 1.2× 1.5=1.001× 3.6=3.6036计算以下各题并写出简算过程:1. 5.467+ 3.814+ 7.533+ 4.1862. 6.25× 1.25× 6.43. 3.997+ 19.96+ 1.9998 + 199.74. 0.1+ 0.3++ 0.9+ 0.11+ 0.13+ 0.15++ 0.97+ 0.995. 199.9× 19.98- 199.8× 19.976. 23.75× 3.987+ 6.013× 92.07+ 6.832× 39.87*7 . 20042005 × 20052004 - 20042004 ×20052005 *8 .(1+ 0.12+ 0.23)×( 0.12+ 0.23+ 0.34)-( 1+ 0.12+ 0.23+ 0.34)×( 0.12+ 0.23 )计算以下各题并写出简算过程:1. 6.734- 1.536+ 3.266- 4.4642. 0.8÷ 0.1253. 89.1+ 90.3+ 88.6+ 92.1+ 88.9+ 90.84. 4.83× 0.59+ 0.41× 1.59- 0.324× 5.95. 37.5× 21.5× 0.112+ 35.5× 12.5× 0.112包括与清除1、某班有40 名学生 ,此中有 15 人参加数学小组,18 人参加航模小组,有 10 人两个小组都参加. 那么有多少人两个小组都不参加?两个小组共有(15+18) -10=23 (人) ,都不参加的有40-23=17(人)答:有 17 人两个小组都不参加 .--2、某班45 个学生参加期末考试,成绩宣布后 ,数学得满分的有 10 人 ,数学及语文成绩均得满分的有 3 人 ,这两科都没有得满分的有29 人.那么语文成绩得满分的有多少人?45-29-10+3=9 (人)答:语文成绩得满分的有9 人 .3、 50 名同学面向老师站成一行.老师先让大家从左至右按1,2,3,,49,50 挨次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转 .问:此刻面向老师的同学还有多少名 ?4 的倍数有 50/4 商 12 个 ,6 的倍数有 50/6 商 8个,既是 4又是 6的倍数有 50/12 商 4 个.4 的倍数向后转人数 =12,6 的倍数向后转共8 人 ,此中 4 人向后 ,4 人从后转回 .面向老师的人数 =50-12=38(人)答:此刻面向老师的同学还有38 名.4、在游艺会上 ,有 100 名同学抽到了标签分别为 1 至 100 的奖券 .按奖券标签号发放奖品的规则以下:( 1)标签号为 2 的倍数 ,奖 2 支铅笔;( 2)标签号为 3 的倍数 ,奖 3 支铅笔;( 3 )标签号既是 2 的倍数 ,又是 3 的倍数可重复领奖;( 4)其余标签号均奖 1 支铅笔 .那么游艺会为该项活动准备的奖品铅笔共有多少支?2 的倍数有100/2 商 50 个 ,3 的倍数有100/3 商 33 个 ,2 和 3 人倍数有100/6 商 16 个 .领 2 支的共准备( 50— 16)*2=68, 领 3 支的共准备( 33— 16)*3=51, 重复领的共准备16*( 2+3)=80,其余准备100-( 50+33-16 ) *1=33共需要 68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232 支.5、有一根长为180 厘米的绳索 ,从一端开始每隔后将标有记号的地方剪断.问绳索共被剪成了多少段3 厘米作一记号?,每隔 4 厘米也作一记号,然3 厘米的记号:180/3=60, 最后到头了不划,60-1=59 个4 厘米记号: 180/4=45,45-1=44 个 ,重复的记号:180/12=15,15-1=14 个 ,所以绳索中间实质有记号 59+44-14=89 个 .剪 89 次 ,变为 89+1=90 段答:绳索共被剪成了 90 段 .6、东河小学画展上展出了很多幅画,此中有 16 幅画不是六年级的 ,有 15 幅画不是五年级的 . 现知道五、六年级共有25 幅画 ,那么其余年级的画共有多少幅?1,2,3,4,5 年级共有 16,1,2,3,4,6 年级共有 15,5,6 年级共有 25所以总合有( 16+15+25) /2=28 (幅) ,1,2,3,4 年级共有28-25=3 (幅)答:其余年级的画共有 3 幅.---7、有若干卡片 ,每张卡片上写着一个数 ,它是 3 的倍数或 4 的倍数 ,此中标有 3 的倍数的卡片占 2/3, 标有 4 的倍数的卡片占 3/4, 标有 12 的倍数的卡片有15 张 .那么 ,这些卡片一共有多少张?12 的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)答:这些卡片一共有36 张.----8、在从 1 至 1000 的自然数中 ,既不可以被 5 除尽 ,又不可以被7除尽的数有多少个?1000/355 的倍数有1000/5 商 200 个 ,7 的倍数有 1000/7 商 142 个,既是 5 又是 7 的倍数有商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不可以被 5 除尽 ,又不可以被 7 除尽的数有686 个.---9、五年级三班学生参加课外兴趣小组,每人起码参加一项 .此中有 25 人参加自然兴趣小组 ,35 人参加美术兴趣小组 ,27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人, 参加自然同时又参加美术兴趣小组的有8 人 ,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然 3 科兴趣小组都参加的有 4 人 .求这个班的学生人数 .25+35+27-( 8+12+9) +4=62(人)答:这个班的学生人数是62 人.-- --10、如图 8-1,已知甲、乙、丙 3 个圆的面积均为 30,甲与乙、乙与丙、甲与丙重合部分的面积分别为 6,8,5,而 3 个圆覆盖的总面积为 73.求暗影部分的面积 .甲、乙、丙三者重合部分面积=73+( 6+8+5) -3*30=2暗影部分面积=73-( 6+8+5) +2*2=58答:暗影部分的面积是58.11、四年级一班有 46 名学生参加 3 项课外活动 .此中有 24 人参加了数学小组 ,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的 7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数 .设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.________________________________________-12、图书馆有 100 本书 ,借阅图书者需要在图书上署名.已知在 100 本书中有甲、乙、丙署名的分别有 33,44 和 55 本 ,此中同时有甲、乙署名的图书为29 本 ,同时有甲、丙署名的图书有25 本,同时有乙、丙署名的图书有36 本 .问这批图书中最罕有多少本没有被甲、乙、丙中的任何一人借阅过 ?三个人一共看过的书的本数是:甲 +乙 +丙(-甲乙 +甲丙 +乙丙)+甲乙丙 =33+44+55(- 29+25+36)+甲乙丙 =42+甲乙丙 ,当甲乙丙最大时 ,三人看过的书最多,因为甲、丙共同看过的书只有25 本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25 本.三人总合看过最多有42+25=67(本) ,都没看过的书最罕有100-67=33 (本)答:这批图书中最罕有33 本没有被甲、乙、丙中的任何一人借阅过.________________________________________13、如图 8-2,5 条相同长的线段拼成了一个五角星.假如每条线段上恰有1994 个点被染成红色,那么在这个五角星上红色点最罕有多少个?五条线上右发有 5*1994=9970 个红点 ,假如全部交错点上都放一个红点,则红点最少 ,这五条线有 10 个交错点 ,所以最罕有9970-10=9960 个红点答:在这个五角星上红色点最罕有9960 个 .14、甲、乙、丙同时给100 盆花浇水 .已知甲浇了 78 盆 ,乙浇了 68 盆 ,丙浇了 58 盆 ,那么 3 人都浇过的花最罕有多少盆?甲和乙必有 78+68-100=46 盆共同浇过 ,丙有 100-58=42 没浇过 ,所以 3 人都浇过的最罕有46-42=4(盆)答: 3 人都浇过的花最罕有 4 盆 .15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每一个人都从某一个故事开始,按次序今后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最罕有多少个?乙和丙共同读过的故事起码有60+52-100=12(个) ,甲不论从哪里开始都必然要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最罕有12 个.15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每一个人都从某一个故事开始,按次序今后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最罕有多少个?乙和丙共同读过的故事起码有60+52-100=12(个) ,甲不论从哪里开始都必然要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最罕有12 个.________________________________________-8、在从 1 至 1000 的自然数中 ,既不可以被5 除尽 ,又不可以被 7 除尽的数有多少个 ?5 的倍数有 1000/5 商 200 个 ,7 的倍数有1000/7 商 142 个,既是 5 又是 7 的倍数有 1000/35 商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不可以被5除尽 ,又不可以被7 除尽的数有686 个 .题中的除尽应当是整除吧.11、四年级一班有46 名学生参加 3 项课外活动 .此中有 24 人参加了数学小组,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数.设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.。

五年级奥数分数的速算与巧算

五年级奥数分数的速算与巧算

五年级奥数 分数的速算与巧算(一)一、知识要点1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.5、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯(2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新五年级奥数速算与巧

Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
【同步教育信息】 本周教学内容:
速算与巧算(一)
同学们,今天我们一起来研究速算与巧算,在数的运算中根据数的特点及数与数之间的特殊关系,恰当地利用四则运算中的规律,不但可以提高运算速度,而且还能使我们的计算又准又快,锻炼思维,提高运算的技能技巧。

[学习过程]
一.阅读思考:
例1.简算:
(1)99
68068...⨯+ 分析:题中,9.9接近10,且6.8和0.68都是有6、8这两个数字。

解法一:
解法二:
或99
68068...⨯+ (2)288
125280125..⨯-⨯ 分析:审题可知,125和12.5可以互相转化
解:288
125280125..⨯-⨯ 或288
125280125..⨯-⨯ 例2.计算768
5614...÷⨯ 分析:这道题是乘除同级运算,解答时,利用添括号法则,在“÷”后面添括号,括号里面要变号,“×”变“÷”,“÷”变“×”。

不过,同学们请注意,这种方法只适用于乘、除同级运算。

解:768
5614...÷⨯ 例3.()77728077+÷
分析:我们可以把乘法分配律引申开,用来解题。

解:()77728077+÷
二.尝试体验
1.请你判断下面的做法是否简便、正确。

(1)8448
7948⨯-⨯.. (2)8448
7948⨯-⨯.. 2.先按提示要求完成下面题的计算,再比较哪种算法巧,说说巧算的依据。

(1)()130052013-÷
(2)()130052013-÷
【模拟试题】(答题时间:20分钟)
1.53
125043125...⨯-⨯ 2.06
16684..⨯+⨯ 3.144156
13÷⨯..
4.6355711⨯÷÷
5.()()487581242527⨯⨯÷⨯⨯
6.343535353434⨯-⨯
【试题答案】
1.53
125043125...⨯-⨯ 12.5
2.06
16684..⨯+⨯ 60
3.144156
13÷⨯.. 12
4.6355711⨯÷÷
45
5.()()487581242527⨯⨯÷⨯⨯
18
6.343535353434⨯-⨯
【励志故事】
茄子的好坏
富翁对仆人说:“茄子增进食欲,是好东西。

”“不错。

”仆人说,“难怪它戴着顶王冠。

”几天后,富翁又说:“茄子倒人胃口,还生痰,是坏东西呢。

”“是呀!”仆人说,“瞧它头上长着刺呢。

”富翁不满意了:“前天你说茄子是好东西,今天又说它是坏东西,什么意思?”仆人说:“我该怎么说呢?我是老爷您的仆人,不是茄子的仆人呀。


这则外国典故后来成了成语:“不是茄子的仆人”,相当于我国的成语“见风使舵”。

我想它的讽刺实在是搞错了对象。

仆人的答话难道不是源于富翁的信口雌黄?仆人不过是给富翁的胡说八道找了点注脚而已。

它的确切含义应当是:强权下的顺从。

相关文档
最新文档