【精品完整版】微分方程在数学建模中的应用

合集下载

数学建模的微分方程方法

数学建模的微分方程方法

数学建模的微分方程方法数学建模是将现实问题抽象化为数学问题并运用数学方法来解决的过程。

微分方程方法是一种常用的数学建模方法,可以描述问题中的变化过程和规律。

下面将介绍微分方程方法在数学建模中的应用。

微分方程是描述自变量与其之间的关系的方程,其中自变量通常表示时间或空间。

微分方程方法通过建立适当的微分方程来描述问题中的变化过程,然后利用数学工具来求解这些微分方程,从而得到问题的解析解或数值解。

微分方程方法在数学建模中的应用非常广泛。

例如,经典的弹簧振子问题可以通过建立二阶线性常微分方程来描述。

通过求解该微分方程,可以得到弹簧振子的运动规律,从而预测其位置和速度随时间的变化。

微分方程方法还可以用来描述人口增长、化学反应、电路等问题。

人口增长问题可以通过建立一阶常微分方程来描述,从而得到人口数量随时间的变化规律。

化学反应可以通过建立化学动力学方程来描述,从而预测反应速率随时间和反应物浓度的变化。

电路问题可以通过建立电路方程来描述,从而预测电流和电压随时间的变化。

在数学建模中,常常需要求解一类特殊的微分方程,即边值问题。

边值问题是指在一定边界条件下求解微分方程的解。

例如,热传导问题可以通过建立热传导方程和适当的边界条件来描述。

通过求解这个边值问题,可以得到在不同边界条件下的温度分布。

微分方程方法还与其他数学建模方法相结合,如优化方法、概率统计方法等。

例如,最优化问题可以通过建立约束条件下的微分方程来描述,从而求解最优解。

概率统计问题可以通过建立随机微分方程来描述,从而分析问题中的随机性和不确定性。

在实际建模中,常常会遇到复杂的问题和非线性的微分方程。

对于这些问题,常常需要借助数值方法来求解。

数值方法通过将微分方程离散化为差分方程,然后利用计算机进行数值计算,从而得到问题的数值解。

常用的数值方法包括欧拉法、龙格-库塔法、有限差分法、有限元法等。

总之,微分方程方法是数学建模中常用的方法之一,可以描述变化过程和规律,并通过数学分析和数值计算来求解。

微分方程在建模中的应用

微分方程在建模中的应用

微分方程在建模中的应用随着科学技术的不断发展,微分方程已经成为了数学中一项非常重要的研究领域。

微分方程不仅在数学中有着广泛的应用,而且在其他各个学科中,尤其是在自然科学、工程学、经济学等领域中,微分方程也有着广泛的应用。

在这些应用中,微分方程在建模中起着非常重要的作用,可以帮助我们更好地理解和解决实际问题。

一、微分方程在物理学中的应用物理学是微分方程在科学中最广泛应用的领域之一。

在物理学中,微分方程可以描述物理系统的运动和变化,例如牛顿运动定律、热传导定律、电磁场方程等等。

以下是几个具体的例子:(1)牛顿第二定律:物体的加速度与作用力成正比,反比于物体的质量。

可以用微分方程表示为:F = ma,其中F为物体所受的作用力,m为物体的质量,a为物体的加速度。

(2)热传导方程:描述物体内部温度分布的变化。

可以用微分方程表示为:u/t = α2u,其中u为温度分布,t为时间,α为热扩散系数。

(3)电磁场方程:描述电磁场的变化。

可以用微分方程表示为:·E = ρ/ε0,·B = 0,×E = -B/t,×B = μ0J + μ0ε0E/t,其中E 为电场,B为磁场,ρ为电荷密度,J为电流密度,ε0和μ0为真空中的电介质常数和磁导率。

二、微分方程在工程学中的应用微分方程在工程学中也有着广泛的应用。

在工程学中,微分方程可以描述物理系统的行为和特性,例如机械振动、电路分析、流体力学等等。

以下是几个具体的例子:(1)机械振动方程:描述机械系统的振动行为。

可以用微分方程表示为:mx'' + kx = F(t),其中m为质量,k为弹性系数,x为位移,F(t)为外部作用力。

(2)电路方程:描述电路中电流和电压的变化。

可以用微分方程表示为:Ldi/dt + Ri = V(t),其中L为电感,R为电阻,i为电流,V(t)为电压。

(3)流体力学方程:描述流体的运动和变化。

微分方程与数学建模

微分方程与数学建模

微分方程与数学建模微分方程是研究函数的变化规律以及函数与其导数之间的关系的数学工具。

它在数学领域中具有广泛的应用,尤其在数学建模中发挥着重要的作用。

本文将介绍微分方程在数学建模中的应用以及解决实际问题的过程。

一、微分方程在数学建模中的应用微分方程是数学建模的重要工具之一,它能够描述变化的量与其变化率之间的关系。

在实际问题中,很多情况下我们需要确定某个物理量随时间的变化规律,而微分方程正是可以用来解决这类问题的数学工具。

数学建模是将实际问题抽象为数学模型,并利用数学方法进行求解和分析的过程。

在数学建模中,常常需要通过建立微分方程来描述问题的动力学行为。

例如,一个机械摆的摆动规律可以用二阶线性微分方程来描述;生物学中的人口变化可以用常微分方程来描述;在物理学中,众多的物理规律也可以转化为微分方程。

二、解决实际问题的过程数学建模是一个系统工程,它通常包括问题的提出、问题的分析、建立数学模型、求解模型、验证和应用等步骤。

其中,微分方程的建立和求解是数学建模中的关键环节。

在问题的提出和分析阶段,需要明确问题背景、目标和限制条件,并对问题进行全面的分析。

在确定采用微分方程进行建模时,需要对问题进行适当的简化和假设,以便将实际问题转化为可求解的数学模型。

建立微分方程模型是实现数学建模的核心步骤。

在建立模型时,需要根据问题的特点选择合适的微分方程类型,并确定方程中的参数和初值条件。

建立模型后,可以利用数学、物理和统计学等知识对模型进行分析,以了解问题的本质和特征。

对于求解微分方程模型,通常可以采用数值方法、解析方法或数学软件进行求解。

数值方法可以通过近似计算来得到问题的数值解,而解析方法则通过解析求解微分方程得到问题的解析解。

在求解过程中,需要根据具体情况选择适当的方法,并利用数学工具进行计算和分析。

验证是数学建模的重要环节,通过与实际数据进行对比验证模型的准确性和可行性。

如果模型与实际情况相符,就可以进一步进行应用和推广,为实际问题的解决提供有力支持。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用
4.微分方程的初始条件和特解 (1)确定通解中任意常数值的附加条件叫做初始条件;
一般地
一阶微分方程的初始条件为:y xx0 y0 二阶微分方程的初始条件为:y xx0 y0
y x x0 y1
( x0,y0,y1为给定值)
(2)由初始条件确定了通解中任意常数后所得到的解,称为微
分方程的特解。
如 y = x2 + 2是方程(1)的特解.
则C1 2,
于是所求特解为 y 2x ex.
二、分离变量法
1.定义 形如 dy f x g y (1)
dx 的方程称为可分离变量的方程.
特点 -- 等式右端可以分解成两个函数之积,其中一个只是x 的函数,另一个只是y的函数
2.解法
设 dy f xgy
dx
分离变量得
1
g y
dy
f
x dx
k
k
故所求特解为
v
mg k
1
k
em
t
由此可见,随着t的增大,速度趋于常数mg/k,但不会超过 mg/k,这说明跳伞后,开始阶段是加速运动,以后逐渐趋于匀 速运动.
第二节 一阶线性微分方程与可降阶的高阶微分方程
一、一阶线性微分方程
1.定义: 形如
dy P x y Q x (1)
dx
例1 函数y Cx2 1 是方程xy 2 y 1 0的解吗?若是解, 是通解 2
还是特解 ?
解 将y x2 1 及y 2Cx代入所给方程左端得 2
2Cx2
2
Cx2
1 2
1
2Cx2
2Cx2
11
0
y Cx2 1 是所给方程的解. 2
又 y Cx2 1 中含有一个任意常数C,而所给方程又是一阶微分方程,

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用
常微分方程(Ordinary Differential Equations, ODEs)是一类用来描述物理系统动态变化的方程。

它们在数学建模中有广泛的应用,可以用来描述各种各样的系统,包括力学系统、电学系统、热学系统、生物学系统等等。

举个例子,假设你想描述一个物体在受到重力作用力时的运动轨迹。

这个问题可以用常微分方程来解决,具体来说,你可以用下面的方程来描述物体的运动:
其中,x 是物体的位置,t是时间,g 是重力加速度。

这个方程表示物体受到重力作用力时的加速度,根据牛顿第二定律,加速度等于作用力除以质量。

因此,这个方程可以用来描述物体在受到重力作用力时的运动轨迹。

常微分方程还可以用来描述其他类似的问题,例如:
•电路中的电流和电压的变化
•化学反应过程中物质浓度的变化
•振动系统中振动的频率和振幅的变化
•生物学系统中生物体内激素浓度的变化
总的来说,常微分方程在数学建模中有着广泛的应用。

它们可以用来描述各种各样的物理系统的动态变化,并且通常都有解析解或者近似解的存在。

此外,常微分方程还有很多的数学理论,可以用来解决常微分方程的特殊情况。

尽管常微分方程在数学建模中有着广泛的应用,但它们也有一些局限性。

例如,常微分方程通常假设系统是连续的、平滑的,并且忽略了离散的、非连续的现象。

在这些情况下,常微分方程可能不再适用。

因此,在使用常微分方程进行数学建模时,需要谨慎考虑是否适用。

微分方程在数学建模中的应用

微分方程在数学建模中的应用

微分方程在数学建模中有广泛的应用,具体如下:
1.微分方程可以描述现实世界的变化,揭示实际事物内在的动态关
系。

2.微分方程可以建立纯数学(特别是几何)模型。

3.微分方程可以建立物理学(如动力学、电学、核物理学等)模型。

4.微分方程可以建立航空航天(火箭、宇宙飞船技术)模型。

5.微分方程可以建立考古(鉴定文物年代)模型。

6.微分方程可以建立交通(如电路信号,特别是红绿灯亮的时间)
模型。

7.微分方程可以建立生态(人口、种群数量)模型。

8.微分方程可以建立环境(污染)模型。

9.微分方程可以建立资源利用(人力资源、水资源、矿藏资源、运
输调度、工业生产管理)模型。

10.微分方程可以建立生物(遗传问题、神经网络问题、动植物循环
系统)模型。

11.微分方程可以建立医学(流行病、传染病问题)模型。

12.微分方程可以建立经济(商业销售、财富分布、资本主义经济周
期性危机)模型。

13.微分方程可以建立战争(正规战、游击战)模型。

(完整版)常微分方程在数学建模中的应用.

(完整版)常微分方程在数学建模中的应用.

微分方程应用1 引言常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具.数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用.2 数学模型简介通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助.建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节.3 常微分方程模型3.1 常微分方程的简介微分方程的发展有着渊远的历史.微分方程和微积分产生于同一时代,如苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时就对简单的微分方程用级数来求解.后来,瑞士数学家雅各布·贝努、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程理论.纵观微分方程的发展史,我们发现微分方程与物理、天文学以及日异月新的科学技术有着密切的联系.如牛顿研究天体力学和机械力学的时候,就利用了微分方程这个工具,从理论上得到了行星运动的规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.而这些都证明微分方程在改造自然和认识自然方面有着巨大的力量.微分方程是自变量、未知函数及函数的导数(或微分)组成的关系式.在解决实际问题的过程中,我们又得出了常微分方程的概念:如果在一个微分方程中出现的未知函数中只含有一个自变量,那么这个方程则称为常微分方程,也可以简单的叫做微分方程.在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质.常微分方程是解决实际问题的重要工具.3.2 常微分方程模型示例数学模型按照建立模型的数学方法可以分为初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型和规划论模型等.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测他的未来性态时,通常要建立对象的动态模型,即微分方程模型.建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来.下面我们由浅入深地介绍一些微分方程模型.例1 细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长为400,那么,前12h后总数是多少?解:第一句话说的是在任何瞬间都成立的事实;第二句话给出的是特定瞬间的信息.如果我们用)y表示总数,第一句话告诉我们(tky dtdy = 它的通解为kt y Ae =A 和k 这两个常数可以由问题中第二句话提供的信息计算出来,即,100)0(=y (3.1) 和 ,400)24(=y (3.2) 其中t 的单位为小时.(3.1)意味着.100)0(0===A Ae y(3.2)意味着.400100)24(24==k e y它给出 .24)4(ln =k 故 .100)(244ln t e t y =要我们求的是200100)12(4ln )2412(==e y 个细菌.例 2 将室内一支读数为 60的温度计放到室外.10min 后,温度计的读数为 70;又过了10min ,读数为 76.先不用计算,推测一下室外的温度.然后利用牛顿的冷却定律计算出正确的答案.牛顿的冷却定律或称加热定律是:将温度为T 的物体放进处于常温m 的介质中时,T 的变化速率正比于T 与周围介质的温度差.在这个数学模型中,假定介质足够大,从而,当放入一个较热或较冷的物体时,m 基本上不受影响.实验证明,这是一个相当好的近似.解 显然,对于这个题首先要做的是了解牛顿定律的含义,这已经做过了。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用首先是物理方面。

在物理学中,常微分方程广泛应用于描述运动、波动、电磁学、量子力学等问题。

例如,牛顿第二定律可以用常微分方程的形式表示为:\[m \frac{{d^2x}}{{dt^2}} = F(x,t)\]其中m为质量,x为位置,t为时间,F(x,t)为力。

这个方程可以用来描述物体的运动。

另一个例子是振动方程,可以通过常微分方程来描述弹簧振子、简谐振动等。

生物方面是另一个常见的应用领域。

生物学中经常需要对生物体的增长、衰退、群体动态等问题进行建模。

而常微分方程可以很好地描述这些问题。

例如,布鲁塞尔方程是描述细菌群体增长的常微分方程模型。

该模型使用了增长速率与细菌种群密度之间的关系。

通过求解布鲁塞尔方程,我们可以预测细菌的增长趋势,并为控制细菌的增长提供依据。

此外,常微分方程还可以在生物学中应用于描述神经网络、生物化学反应等。

经济方面也是常微分方程的应用领域之一、经济学中的一些重要问题,如经济增长、通货膨胀、利率变动等,都可以通过常微分方程进行建模和分析。

例如,Solow增长模型是描述经济增长的常微分方程模型。

该模型考虑了资本积累和技术进步对经济增长的影响。

通过求解Solow增长模型,我们可以分析经济增长的稳定状态、长期趋势和影响经济增长的因素。

除了物理、生物和经济学,常微分方程还可以在其他领域中应用。

例如,环境科学中可以通过常微分方程描述污染物的传输和扩散过程;工程学中可以应用常微分方程来描述振动、控制系统等问题。

此外,计算机科学中的数值方法也广泛应用于求解常微分方程的数值解。

总而言之,常微分方程在数学建模中的应用非常广泛,涵盖了物理、生物、经济等多个领域。

通过对常微分方程的求解和分析,我们可以获得有关问题的定量结论,并为问题的解决和决策提供支持。

常微分方程的解法在数学建模中的应用

常微分方程的解法在数学建模中的应用

常微分方程的解法在数学建模中的应用
常微分方程的解法在数学建模中有广泛的应用,涉及到许多领域,如物理学、经济学、生物学、工程学等。

以下介绍其中一些应用:
1. 物理学模型:在物理学建模中,常微分方程可以用来描述射线的传播,弹性杆的变形,振动的周期等。

如著名的二阶线性微分方程 y''+by'+ky=0 可以用来描述简谐振动,而 y'+ky=0 可以用来描述自由阻尼振动。

2. 经济学模型:经济学中很多模型,如经济增长模型、消费模型、储蓄模型等都可以用常微分方程来描述。

经济模型一般包含多个变量,每个变量都可以用常微分方程来表示,构成一组微分方程组,从而得到系统的解析解。

3. 生物学模型:常微分方程也是生物学建模中最常用的工具之一。

生物学中很多现象如人口增长、病毒传播、生物物种的竞争和合作等都可以用常微分方程来描述。

4. 工程学模型:工程学中,常微分方程可以用来描述控制系统中的动态行为,例如控制电路、城市交通流、水力系统等。

综上所述,常微分方程的解法在数学建模中有广泛的应用,能够帮助科学家和工程师更好地预测和解决现实生活中的问题。

数学建模中的微分方程与边界条件的应用分析

数学建模中的微分方程与边界条件的应用分析

数学建模中的微分方程与边界条件的应用分析在数学建模中,微分方程是一种重要的工具,用于描述自然界和社会现象中的各种变化规律。

微分方程可以分为常微分方程和偏微分方程两类。

常微分方程是只涉及一个自变量的方程,而偏微分方程则涉及多个自变量。

边界条件是微分方程求解过程中的重要条件,它限定了解的取值范围。

微分方程在数学建模中的应用非常广泛,我们可以通过一些具体的实例来进行分析。

首先,考虑一个经典的物理问题:自由落体运动。

假设一个物体从高处自由落下,我们想要知道它在任意时刻的位置。

根据牛顿第二定律,我们可以得到物体的运动方程:$m\frac{d^2y}{dt^2} = -mg$,其中$y$表示物体的高度,$m$表示物体的质量,$g$表示重力加速度。

这是一个二阶常微分方程,我们需要给出适当的边界条件来求解它。

边界条件可以是物理上的限制,比如物体在$t=0$时刻的初始位置和初始速度。

假设物体在$t=0$时刻的位置为$y_0$,初始速度为$v_0$,那么我们可以得到边界条件$y(0) = y_0$和$\frac{dy}{dt}(0) = v_0$。

将这些边界条件代入微分方程,我们可以求解得到物体在任意时刻的位置。

另一个常见的应用是热传导问题。

假设一个杆体的两端分别与两个恒温热源接触,我们想要知道杆体上各点的温度分布。

根据热传导定律,我们可以得到杆体上的热传导方程:$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$,其中$u(x,t)$表示杆体上某点的温度,$\alpha$表示热扩散系数。

这是一个一维的偏微分方程,我们需要给出适当的边界条件来求解它。

边界条件可以是温度的限制,比如杆体两端的温度分别为$T_1$和$T_2$。

我们可以得到边界条件$u(0,t) = T_1$和$u(L,t) = T_2$,其中$L$表示杆体的长度。

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是|⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.;例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;@(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,t N d d 单减,即人口增长率t Nd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿. )值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为—⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 。

数学建模中的微分方程及其应用研究

数学建模中的微分方程及其应用研究

数学建模中的微分方程及其应用研究随着科技的不断发展,数学建模已经成为了一个不可或缺的工具。

数学建模是指将现实问题抽象为数学模型,通过数学方法来预测和解决问题。

微分方程是数学建模中的关键工具之一。

在本文中,我将介绍微分方程在数学建模中的重要性以及其应用研究。

一、微分方程的定义和分类微分方程是描述一个或多个未知函数及其导数之间关系的方程,通常用来描述自然现象。

微分方程可以分为常微分方程和偏微分方程两种。

常微分方程是指只涉及一个自变量的导数的方程,例如:$\frac{dy}{dx}= f(x,y)$偏微分方程是指涉及多个自变量的导数的方程,例如:$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}=0$二、微分方程在数学建模中的重要性微分方程在数学建模中有着广泛的应用。

它可以用来研究自然现象中的变化关系,例如物理学中的运动规律、化学中的反应过程,甚至是医学中的疾病治疗。

通过微分方程的求解,我们可以得到有关系统的重要信息,比如系统的稳定性、解的性质、系统的动态行为等等。

三、常微分方程在数学建模中的应用常微分方程是数学建模中最常见的工具之一。

在数学建模中,解决一个常微分方程通常需要以下步骤:1. 根据问题描述建立数学模型。

2. 对模型中的常微分方程进行求解。

3. 通过解析解或数值解来得到所需的结果。

以下是常微分方程在数学建模中的一些应用:1. 表示天体运动的牛顿运动定律。

牛顿运动定律可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -G\frac{Mm}{r^2}$其中,$m$ 是天体的质量,$M$ 是太阳的质量,$r$ 是天体和太阳之间的距离,$G$ 是万有引力常数,$x$ 是天体相对太阳的位置。

通过求解这个方程,我们可以得到天体的运动轨迹。

2. 描述弹簧振动的简谐运动。

弹簧振动可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -kx$其中,$m$ 是弹簧质量,$k$ 是弹簧的弹性系数,$x$ 是弹簧相对平衡位置的偏移量。

微分方程数学模型应用举例

微分方程数学模型应用举例

微分方程数学模型应用举例
1. 生物学模型:微分方程可以用于描述生物系统中的各种动态过程。

例如,Lotka-Volterra模型是一种描述捕食者和被捕食者之间相互作用的微分方程模型,可以用于研究食物链中物种的数量和相互关系。

2. 经济学模型:微分方程可以用于描述经济系统中的各种变化和趋势。

例如,Solow增长模型是一种描述经济增长和资本积累的微分方程模型,可以用于分析国家经济发展的长期趋势。

3. 物理学模型:微分方程可以用于描述物理系统中的各种动态过程。

例如,带有阻尼和驱动力的简谐振动可以用二阶线性常微分方程来描述,可以用于研究机械系统中的振动现象。

4. 化学反应动力学模型:微分方程可以用于描述化学反应中物质浓度随时间变化的关系。

例如,化学反应速率方程可以用一阶或二阶线性微分方程来描述,可以用于研究化学反应速率的变化规律。

5. 环境科学模型:微分方程可以用于描述环境系统中的各种变化和相互作用。

例如,Black-Scholes模型是一种描述金融市场中期权价格变化的微分方程模型,可以用于分析金融市场的波动和风险。

6. 工程科学模型:微分方程可以用于描述工程系统中的各种动态过程。

例如,控制系统中的传递函数可以用微分方程表示,可以用于研究系统的稳定性和响应特性。

这些只是微分方程在数学模型中的一些应用举例,实际上微分方程在各个学科领域中都有广泛的应用。

数学建模中的微分方程理论

数学建模中的微分方程理论

数学建模中的微分方程理论数学建模是数学的一个重要分支,它在科学、工程、计算机等领域中都有广泛的应用。

其中,微分方程是数学建模中的重要工具之一。

微分方程的理论研究和应用,对于解决现实世界中的问题具有重要意义。

一、微分方程的定义和分类微分方程是数学模型中常见的数学表达式,它描述了变量之间的关系,以及随时间变化的规律。

微分方程的一般形式为:$$F(x,y,y',y'',\cdots,y^{(n)})=0$$其中,$x$ 是自变量,$y$ 是因变量,$y'$ 是 $y$ 对 $x$ 的一阶导数,$y''$ 是 $y$ 对 $x$ 的二阶导数,$y^{(n)}$ 是 $y$ 对$x$ 的 $n$ 阶导数。

微分方程按照阶数和类型的不同,可以分为很多种类。

例如:1. 一阶常微分方程:$$\frac{dy}{dx}=f(x,y)$$2. 二阶常微分方程:$$\frac{d^2y}{dx^2}=f(x,y,\frac{dy}{dx})$$3. 偏微分方程:$$\frac{\partial u}{\partialt}=k\frac{\partial^2u}{\partial x^2}$$二、微分方程的求解方法求解微分方程是微分方程理论中的核心问题之一。

对于不同类型的微分方程,有不同的求解方法。

以下为一些常用的方法:1. 变量分离法:$$\frac{dy}{dx}=f(x)g(y)$$2. 齐次方程法:$$\frac{dy}{dx}=\frac{f(x,y)}{g(x,y)}=\frac{\frac{\partial}{\partial x}h(x,y)}{\frac{\partial}{\partial y}h(x,y)}$$3. 一阶线性微分方程法:$$\frac{dy}{dx}+P(x)y=Q(x)$$4. 二阶常系数齐次线性微分方程法:$$y''+ay'+by=0$$5. 分离变量法:$$\frac{\partial u}{\partialt}=k\frac{\partial^2u}{\partial x^2}$$三、微分方程在数学建模中的应用微分方程在数学建模中具有广泛的应用,例如:1. 物理问题:微分方程可以用来描述物理世界中的各种问题,例如运动学、动力学、热力学、电磁学等。

常微分方程在数学建模中的应用【完整版】

常微分方程在数学建模中的应用【完整版】

常微分方程在数学建模中的应用【完整版】(文档可以直接使用,也可根据实际需要修订后使用,可编辑放心下载)目录摘要 (2)1引言 (3)2 常微分方程的开展概况 (3)3 数学建模简介 (4)4 常微分方程和数学建模结合的特点 (4)5 常微分方程在数学建模中的应用 (4)5.1 建立微分方程的方法 (5)5.2市场价格模型 (6)5.3广告模型 (8)5.4人口预测模型 (10)5.5混合溶液的数学模型 (12)5.6振动模型 (13)5.7教育问题模型 (17)6 总结 (20)参考文献 (21)常微分方程在数学建模中的应用摘要常微分方程是在17世纪伴随着微积分而开展起来的一门具有重要应用价值的学科.它是研究连续量变化规律的重要工具,是众多实际问题与数学之间联系的重要桥梁.在历史上,牛顿正是通过求解常微分方程证实了地球绕太阳运动的轨道是椭圆;天文学家通过常微分方程的计算,预见了海王星的存在.随着工业化的进展,常微分方程在航海、航空工业生产以及自然科学的研究中发挥了重要作用.计算机和计算技术的开展,使微分方程的求解突破了经典方法的局限,迈向数值计算和图像模拟,这为微分方程的应用提供了更为广阔的天地和有效手段,也使得建立数学模型显得尤为重要.本文主要从市场价格模型、广告模型、人口预测模型、混合溶液的数学模型、教育问题模型来论述常微分方程在数学建模中的应用。

关键字:常微分方程;数学建模;市场价格模型;广告模型;人口预测模型;混合溶液的数学模型;教育问题模型1引言在初等数学中,方程有很多种,比方线性方程、指数方程、对数方程、三角方程等,然而并不能解决所有的实际问题。

要研究实际问题就要寻求满足某些条件的一个或几个未知数方程。

这类问题的根本思想和初等数学的解方程思想有着许多的相似之处,但是在方程的形式、求解的具体方法、求出解的性质等方面依然存在很多不同的地方,为了解决这类问题,从而产生了微分方程。

常微分方程是许多理工科专业需要开设的根底课程,常微分方程与微积分是同时产生的,一开始就成为人类认识世界和改造世界的有力工具,随着生产实践和科学技术的开展,该学科已经演变开展为数学学科理论中理论联系实际的一个重要分支。

微分方程在数学建模中应用

微分方程在数学建模中应用

总结
描述对象特征随时间(空间)变化的特征 分析对象特征的变化规律 根据函数及其变化率之间的关系确定函
数 根据建模目的和问题分析做出简化假设 按照内在规律或用类比的方法建立微风
方程
模型1:马尔萨斯(Malthus)模型
马尔萨斯通过对大量的人口数据进行分析, 做出了如下假设:单位时间内人口增长量与人
口总数成正比,即人口净增长率 r 基本上是一 常数 ,r b d , b 为出生率,d 为死亡率。
设时刻 t的人口总数为N(t),时间从 t 到t t
人口增长量为:
N(t t) N(t) rN (t)t
模型2
区分已感染者(病人)和未感染者(健康人)
假设
1)总人数N不变,病人和健康 人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人 ~ 日 数为, 且使接触的健康人致病 接触率
建模
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
已感染人数 (病人) i(t)
假设
每个病人每天有效接触(足以
使人致病)人数为
建模
i(t t) i(t) i(t)t
di i
dt i(0) i0
i(t) i0et
t i
分析一下
若有效接触的是病人,则不能使病人数增加 ?
必须区分已感染者(病人)和未感染者(健康人)
Malthus模型呈现的是J型增长,只适应 于短期内,并无外界因素影响。而Logistic 模型呈现S型,适应于中长期且有外界因素 影响。
Malthus模型和Logistic模型的推广
Malthus模型与Logistic模型虽然都是 为了研究种群数量的增长情况而建立的, 但它们也可用来研究其他实际问题,只要 这些实际问题的数学模型有相同的微分方 程即可。

微分方程在建模中的应用

微分方程在建模中的应用

微分方程在建模中的应用
微分方程是数学中重要的一个分支,主要研究变化率与未知量之
间的关系,并且在各个领域都有着广泛的应用。

在工程、物理、金融
等领域,微分方程都是重要的建模工具。

本文将从应用情况、建模步
骤和应用案例三个方面,介绍微分方程在建模中的应用。

一、应用情况
建模中经常遇到的问题一般都与时间、位置、质量等变量有关,
而微分方程正是研究这些变量随时间和位置变化的函数关系的基本工具。

因此,在建模过程中,微分方程被广泛应用在模拟复杂现象、预
测未来演变趋势、决策策略优化等方面。

二、建模步骤
建模的第一步是寻找建模对象,即寻找与问题相关的变量,然后
确定它们之间的关系。

接着,根据问题的特点选择不同的微分方程类型,例如常微分方程、偏微分方程、随机微分方程等。

然后进行求解,得到模型中的参数或者预测模型的表现。

三、应用案例
以物理学中的自由落体为例,将小球的高度表示为时间的函数
$h(t)$,依据万有引力定律和牛顿力学,可以得到微分方程
$\frac{d^2h(t)}{dt^2}=-g$,其中$g$表示重力加速度。

通过求解该
方程,可以得到自由落体运动的轨迹和速度。

同样的,微分方程也可
以应用在pid控制系统中、燃料经济性优化等方面。

总之,微分方程是建模中常用的工具,在系统分析、预测、演化
等方面发挥了重要作用。

对于建模者而言,掌握微分方程的知识和技
能可以强化其分析问题的能力,并提高其在建模领域的竞争力。

微分方程在数学建模中的应用

微分方程在数学建模中的应用

35微分方程在数学建模中的应用黄 羿(吉首大学湖南吉首416000)摘 要:高等数学在很多领域有着成功的应用,因此,通过建立实际应用模型,将高等数学课程中的微分方程理论与实际相结合,可以增加学生学习新知识的兴趣,提高课堂授课效果。

关键词:数学教学;理论与实际;教学方法中图分类号:O175文献标识码:A 文章编号:1000-9795(2010)04-0315-02收稿日期:5作者简介:黄 羿(),女,湖南岳阳人,从事微分方程与动力系统方向的研究。

一、数学建模与微分方程概述数学建模(Mathematical Modeling)是用数学方法解决各种实际问题的桥梁,随着计算机的发明和计算机技术的飞速发展,数学的应用日益广泛,数学建模的作用也越来越重要,而且已经渗透到各个领域,可以毫不夸张的说,数学和数学建模无处不在。

经典的数学建模理论认为数学建模一般由下列六个步骤组成。

1.建模准备:包括进行调查研究,明确问题,搜集信息,查阅文献资料,初步确定问题属于哪一类模型。

2.分析与简化:分析问题,分析信息与资料,抓住主要因素,忽略次要因素,简化问题。

3.模型建立:用数学语言刻画所研究问题的因果关系,得到问题的数学描述,通常是所研究问题的主要因素的变量之间的一个关系式或其他的数学结构。

4.模型求解:选择合适的方法求解上述数学模型,多数情况下很难获得其解析解,而只能得到其数值解,这就需要应用各种数值方法,各种软件系统和计算机。

5.模型检验与评价:包括模型是否易于求解,是否能反映和解决实际问题等。

6.模型应用:就是把经过改进的模型及其解应用于实际系统,看是否达到预期的目的.若不够满意,则建模任务尚未完成,仍需继续努力。

二、微分方程在数学建模中的应用(一)人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长。

为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多。

因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型。

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用

常微分方程在数学建模中的应用常微分方程是数学中的一个重要分支,它研究描述自然现象中连续变化的函数的微分方程。

在数学建模中,常微分方程是一种常用的工具,用于描述和解释各种自然和社会现象。

本文将探讨常微分方程在数学建模中的应用,并详细介绍其中的一些具体案例。

首先,常微分方程在经济学建模中发挥着重要作用。

经济学中,人们经常使用常微分方程来描述经济系统中的变化。

例如,经济增长模型可以使用一阶线性常微分方程来描述。

这个方程中的未知函数是时间的函数,表示经济变量(如国内生产总值)的增长率。

通过求解这个方程,可以推导出经济增长模型中的稳定点、周期性和渐近行为等信息,从而对经济现象进行预测和分析。

其次,常微分方程在物理学建模中也有广泛的应用。

物理学中的许多自然现象可以用微分方程来描述,例如运动学、力学、光学等。

例如,一个简单的自由落体模型可以用一阶非线性微分方程来描述。

这个方程中的未知函数是时间的函数,表示物体的高度随时间的变化。

通过求解这个方程,可以推导出物体的运动轨迹、终止位置和速度等信息,从而对物理现象进行分析和预测。

此外,常微分方程在生物学建模中也有重要的应用。

生物学中的许多现象和过程可以用微分方程来描述,例如生物种群的增长、化学反应速率的变化等。

例如,一个简单的生物种群模型可以用一阶线性微分方程来描述。

这个方程中的未知函数是时间的函数,表示种群数量随时间的变化。

通过求解这个方程,可以推导出种群的稳定点、消亡速度和周期性等信息,从而对生物现象进行研究和分析。

最后,常微分方程还在工程学建模中广泛应用。

工程学中的许多问题,如电路、动力学系统、流体力学等,都可以用微分方程来描述。

例如,一个简单的电路模型可以用一阶非线性微分方程来描述。

这个方程中的未知函数是时间的函数,表示电流随时间的变化。

通过求解这个方程,可以推导出电流的稳定值、频率响应和幅频特性等信息,从而对电路的性能进行分析和优化。

综上所述,常微分方程在数学建模中具有重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆科技学院
毕业设计(论文)题目微分方程在数学建模中的应用
学院数理学院
专业班级数学与应用数学12-2
学生姓名学号
指导教师杨懿职称
评阅教师杨懿职称
2016年 5 月 10 日
学生毕业设计(论文)原创性声明
本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。

与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

毕业设计(论文)作者(签字):
年月日
中文摘要
数学建模是数学在实际应用中的具体体现,微分方程是数学联系实际和应用于实际的重要桥梁,是各个学科进行科学研究的强有力的工具。

建立数学模型就是把复杂的实际问题简化、抽象为合理的数学结构。

数学建模是用数学语言来描述实际问题的过程。

就是将实际问题的固有特征和内在规律用来建立起反映实际问题数量关系的数学表达式,然后利用数学的理论和方法去分析和解决问题。

微分方程是表达事物发展过程的一种工具,它能揭示实际事物内在的动态关系,建立微分方程模型可以帮助我们做出相应的决策或者对未来发展进行某种预测。

用微分方程解决实际问题的关键是建立实际问题的数学模型——微分方程模型。

我们根据实际问题所提供的条件,确定模型的变量,再根据物理、化学、生物、经济等学科理论,用微分方程的形式将问题的规律表示出来。

微分方程模型在数学建模课程内占有很重要的地位。

关键字:微分方程数学建模微分方程模型
ABSTRACT
Mathematical modeling is the concrete embodiment of mathematics in practical application. The differential equation is an important bridge between mathematics and practical application. It is a powerful tool for scientific research in all disciplines. The establishment of mathematical model is to simplify and abstract the complex practical problem into a reasonable mathematical structure. Mathematical modeling is a process of describing the practical problems with mathematical language. of the actual problem and the inherent law used to establish a mathematical expression to reflect the actual number of problems, and then use the theory and methods of mathematics to analyze and solve problems.
Differential equation is a means of expression, as a tool for the development of things。

it can reveal the actual things within the dynamic relationship, establishing the differential equation model can help us to make the corresponding decision or for the future development of a prediction. The key to solving practical problems by using differential equations is to establish the mathematical model of practical problems -- differential equation model. We determine the variables of the model according to the conditions provided by the practical problems, and then according to the theory of physics, chemistry, biology, economics and other disciplines, the law of the problem is expressed in the form of differential equations. The differential equation model plays an important role in the course of mathematical modeling.
Key words:differential equations, mathematical model, differential equation model。

相关文档
最新文档