江苏专用2018版高考数学大一轮复习第1课时两角和与差的正弦余弦和正切公式教师用书理
高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式
高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎪⎭⎫ ⎝⎛∈+≠+Z k k ,2,,ππβαβα 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎪⎭⎫ ⎝⎛∈+≠+≠Z k k k ,且42ππαππα 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角. 二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎪⎪⎭⎫ ⎝⎛+=+=2222cos ,sin b a ab a b ϕϕ三、考点解析考点一 三角函数公式的直接应用例、(1)已知sin α=35,α∈⎪⎭⎫ ⎝⎛ππ,2,tan β=-12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112(2)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( ) A .-229 B .-429 C.229 D.429[解题技法]应用三角公式化简求值的策略:(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.跟踪训练1.已知sin α=13+cos α,且α∈⎪⎭⎫ ⎝⎛2,0π,则)4sin(2cos παα+的值为( ) A .-23 B.23 C .-13 D.132.已知sin α=45,且α∈⎪⎭⎫ ⎝⎛23,2ππ,则sin ⎪⎭⎫ ⎝⎛+32πα的值为________. 考点二 三角函数公式的逆用与变形用例、(1)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解题技法]两角和、差及倍角公式的逆用和变形用的技巧:(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin α=⎝⎛⎭⎫sin α2±cos α22;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.跟踪训练1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b 2.已知cos ⎪⎭⎫ ⎝⎛-6πα+sin α=435,则sin ⎪⎭⎫ ⎝⎛+6πα=________. 3.化简sin 2⎪⎭⎫ ⎝⎛-6πα+sin 2⎪⎭⎫ ⎝⎛+6πα-sin 2α的结果是________.考点三 角的变换与名的变换考法(一) 三角公式中角的变换典例、已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎪⎭⎫ ⎝⎛--54,53,若角β满足sin(α+β)=513,则cos β的值为________.[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+ββα22a 等.考法(二) 三角公式中名的变换典例、已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.[解题技法]三角函数名的变换技巧:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.跟踪训练1.已知tan θ+1tan θ=4,则cos 2⎪⎭⎫ ⎝⎛+4πα=( ) A.12 B.13 C.14 D.152.若sin ⎪⎭⎫ ⎝⎛+4πA =7210,A ∈⎪⎭⎫ ⎝⎛ππ,4,则sin A 的值为( ) A.35 B.45 C.35或45 D.343.已知sin α=-45,α∈⎥⎦⎤⎢⎣⎡ππ223,,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136 C .-613 D .-136课后作业1.sin 45°cos 15°+cos 225°sin 165°=( )A .1 B.12 C.32 D .-122.若2sin x +cos ⎪⎭⎫ ⎝⎛-x 2π=1,则cos 2x =( ) A .-89 B .-79 C.79 D .-7253.若cos ⎪⎭⎫ ⎝⎛-6πα=-33,则cos ⎪⎭⎫ ⎝⎛-3πα+cos α=( ) A .-223 B .±223C .-1D .±1 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B.2 C.22 D.335.若α∈⎪⎭⎫ ⎝⎛ππ,2,且3cos 2α=sin ⎪⎭⎫ ⎝⎛-απ4,则sin 2α的值为( ) A .-118 B.118 C .-1718 D.17186.已知sin 2α=13,则cos 2⎪⎭⎫ ⎝⎛-4πα=( ) A .-13 B.13 C .-23 D.237.已知sin ⎪⎭⎫ ⎝⎛+2πα=12,α∈⎪⎭⎫ ⎝⎛-0,2π,则cos ⎪⎭⎫ ⎝⎛-3πα的值为________. 8.已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________. 9.若tan ⎪⎭⎫ ⎝⎛-4πα=16,则tan α=________. 10.化简:sin 235°-12cos 10°cos 80°=________. 11.已知tan α=2.(1)求tan ⎪⎭⎫ ⎝⎛+4πα的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.。
(完整版)两角和与差的正弦、余弦、正切公式及变形
两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。
2018年高考数学总复习配套课件:两角和与差的正弦、余弦与正切公式
3 2
C.-
1 2
D.
1 2
关闭
sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 1 10°=sin(20°+10°)=sin 30°=2, 故选 D.
D
解析
.(2017 山东高考)已知 cos x=4,则 cos 2x=( A.-4
4+3 3 10
π π 2 2
3 5
4 5
π 3
=cos αcos -sin αsin = × − -
π 3
π 3
4 5
1 2
3 5
×
3 2
=
4+3 3 . 10
关闭
解析
答案
-9知识梳理 双击自测
4.已知 sin α-3cos α=0,则co s 2 ������ -si n 2 ������ =
两角和与差的正弦、余弦与正 切公式
-2-
年份
2017
2016 16(1),7 分 (理)
三角恒 18(2),8 等变换 分 11,6 分(文) 16(1),7 分 18(1),4 分 6,5 分 16(2),7 分 (文) (文) (文) (文) 1.掌握两角和与两角差的正弦、余弦、正切公式,掌握 考查要 正弦、余弦、正切二倍角的公式. 求 2.掌握简单的三角函数式的化简、求值及恒等式证明. 以两角和与差的三角函数公式以及二倍角公式为基础, 求三角函数的周期、最值、单调性等是考查的重点,选 考向分 择题、填空题、解答题均有可能,难度不大,目前新高考 析 背景下以三角函数和三角恒等变换综合以解答题形式 考查是热点之一.
π
【例 1】 (1)(2017 浙江镇海测试卷)已知 tan ������ + 4 = 2,且=
2018届高三数学(理)一轮复习课件:4.5两角和与差的正弦、余弦与正切公式
1
2
3
4
5
1.下列结论正确的打“√”,错误的打“×”. (1)两角和与差的正弦、余弦公式中的角α,β是任意的. ( (2)两角和与差的正切公式中的角α,β是任意的. ( ) (3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos
)
60°=2. (
1-tan������
-11-
π + 6
考点1
考点2
考点3
解题心得三角函数公式对使公式有意义的任意角都成立.使用中 要注意观察角之间的和、差、倍、互补、互余等关系.
-12-
考点1
考点2
考点3
对点训练 1(1)已知 sin
5 2
3 π α=5,α∈ 2 ,π π
5
cos2������ ,则 π √2sin ������+ 4
1
)
������ 2 π + ������ 4 ������ 2
(4)cos θ=2cos2 -1=1-2sin2 . ( (5)1+tan������=tan .( )
)
关闭
(1)√ (2)× (3)× (4)√ (5)×
答案
-5知识梳理 双基自测
1
2
3
4
5
2.sin 20°sin 80°-cos 160°cos 80°=(
=cos α-sin
1 α=-2.
7 α=- . 5
(2)∵sin 2α=2sin αcos α=-sin α,∴cos 又 α∈
π √3 , π , ∴ sin α = ,∴tan α=-√3. 2 2 7 ∴tan 2α= 2tan������ = -2√3 = √3. (1)- (2)√3 1-tan2 ������ 1-(-√3)2 5
高三数学两角和与差的正弦、余弦、正切苏教版
高三数学两角和与差的正弦、余弦、正切苏教版【本讲教育信息】一. 教学内容:两角和与差的正弦、余弦、正切二、教学目标:1. 掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式。
2. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。
三、知识要点: 1、和、差角公式βαβαβαsin cos cos sin )sin(±=±; βαβα=β±αsin sin cos cos )cos( ;tan tan tan()1tan tan αβαβαβ±±=。
2、二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3、降幂公式22cos 1sin 2αα-=;22cos 1cos 2αα+=。
4、半角公式2cos 12sinαα-±=2cos 12cosαα+±=;sin 1cos tan 21cos sin ααααα-===+。
*5、积化和差公式)]sin()[sin(21cos sin βαβαβα-++=;)]sin()[sin(21sin cos βαβαβα--+=;)]cos()[cos(21cos cos βαβαβα-++=;)]cos()[cos(21sin sin βαβαβα--+-=。
*6、和差化积公式2cos2sin2sin sin βαβαβα-+=+;2sin2cos2sin sin βαβαβα-+=-;2cos 2cos 2cos cos βαβαβα-+=+;2sin 2sin 2cos cos βαβαβα-+-=-。
两角和与差的三角函数,二倍角公式是高考的重点内容之一,同时也是三角部分后继学习的基础,最重要的是这是多数考生得分的主要阵地之一。
两角和与差的正弦、余弦、正切公式及倍角公式(高三一轮复习)
数学 N 必备知识 自主学习 关键能力 互动探究
2.若sinπ6-α=12,则cosπ3-2α=( A )
1 A.2
B.-12
3 C. 2
D.-
3 2
解析 因为sinπ6-α=12, 所以cos3π-2α=cos2π6-α =1-2sin2π6-α=1-2×122=12.
— 9—
数学 N 必备知识 自主学习 关键能力 互动探究
3.sin 72°cos 42°-cos 72°sin 42°=( A )
1 A.2
B.
3 2
C.-12
D.-
3 2
解析 sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.
— 10 —
数学 N 必备知识 自主学习 关键能力 互动探究
— 11 —
3+ 3×
333=-223 3
3 =-
3 3.
数学 N 必备知识 自主学习 关键能力 互动探究
— 21 —
命题点2 三角函数公式的逆用和变形应用
例2 (1)计算:4cos 10°-csoins 1100°°= - 3 .
(2)(2022·江苏盐城模拟)tan
9π+tan
29π+
3tan
π 9tan
命题点3 三角函数公式的灵活应用
考向1 角的变换
例3 已知cos52π-α=2cos(2π+α),且tan(α+β)=13,则tan β的值为( D )
A.-7
B.7
C.1
D.-1
解析
因为cos 52π-α =2cos(2π+α),所以sin
α=2cos
α,所以tan
α=
2018届高三数学文一轮总复习江苏专用课件:第四章 第五节 两角和与差的正弦、余弦和正切公式 精品
答案:-7 9
2.在△ABC 中,若 tan Atan B= tan A+tan B+1, 则 cos
C 的值为________. 解析:由 tan Atan B=annBB=-1,
即 tan(A+B)=-1,又 A+B∈(0,π),
所以 A+B=34π,
cosα+54π=cos
α
cos54π-sin
5π αsin 4
=-
2 2 (cos
α-sin
α)
=- 102.
答案:-
2 10
4.已知 tanα-π6=37,tanπ6+β=25,则 tan(α+β)=________. 解析: tan(α+ β)=tanα-π6 +π6 + β =1t-antaαn-απ6-+π6t·atannπ6π6++ββ=1-37+37×25 25=1. 答案:1
[即时应用]
1.(2015·贵阳监测)已知sin
π 6
-α=
1 3
,则cos2
π3+α
的
值是________.
解析:∵sinπ6-α=13,
∴cosπ3-2α=cos2π6-α
=1-2sin2π6-α=79,
∴cos2π3+α=cos23π+2α
=cosπ-π3-2α
=-cosπ3-2α=-79.
4.(2014·江苏高考)已知α∈π2,π,sin
α=
5 5.
(1)求sinπ4+α的值;
(2)求cos56π-2α的值.
解:(1)因为α∈π2,π,sin α= 55,
所以cos α=-
1-sin2α=-2
5
5 .
故sinπ4+α=sin
π 4cos
α+cos
高考数学(文江苏专用)一轮复习课件:第三章第3讲两角和与差的正弦、余弦和正切公式
第三章三角函数、解三角形第3讲两角和与差的正弦、余弦和正切公式教材回顾▼夯实基础课本温故追根求源矩识梳理,1.两角和与差的正弦、余弦、正切公式sin(a±p)=sina cos 0 土cos a sin 0;cos(a爭)=cos a cos 0=Fsin a sin B ;tan a土tan Btan(a切)-1不饴口a tan B e2 •2. 二倍角的正弦、余弦、正切公式 sin 2 a =2sin a cos a ;2 2 2 2cos 2 a =cos a —sin a =2cos a —1 = 1—2sin a ;tan 2 a = 2tan a1—tan 2a雇D【做二做〕1. sin 75° cos 30° -sin 15° sin 150°解析:sin 75° cos 30°—sin 15° sin 150° =sin 75° cos 30 -cos 75° sin 30° =sin (75° -30° )=sin 45°2 •亠 1 32. (2016・昆明一模)若 cos(a+〃)=w ,cos(a —/?)=-,则 tan a1tan B = 2 • 解析:cos(a+0)=cos acos 0—sin asin 0=£’ ①3cos(a —/?)=cos a cos 0+sin a sin 0=亍② 2 1由①②解得 cos a cos B=g sin a sin B=g 十c sin a sin 0 1贝 U tan a tan B= - 下=孑cos a cos p 2JI_13.函数/(x)=sinxcosx的最小值是 2解析:因为/(x)=|sin2x,所以/(x)min=—4.已知cos 2a=s解析:cos 2 a =1—2sin2a 二「Ji又 aU ——, 0 ,■所以sin ^ = —2-JI\\,0,则sin))_1 Q 的值为一2二㊁今sin a =±-e要点整食/1.必明辨的1个易错点忽视三角函数值对角的范围的制约致错.2.常用的3个结论⑴和差角公式变形:tanx±tan j=tan(x±y)-(1+tan x *tan y)(2)倍角公式变形:降壽公式cos2a =1+号2 a , sin2 a =1—cos 2 af、a a 2a = sin^~+cos^~ , 1+cos2a 2 a=2cos 亍1—cos a =2sin 亍(3)函数/(a)=asin a +方cos a(a t b为常数),可以化为/(a)=^a2+Z>2sin(a+(p)其中tan 0=£),或/(a)=A/?4-Pcos(a —卩)2 ,配方变形:l±sin其中tan 0=彳・產D [缘二缘]1.已知为锐角,cos a =|, sin(a+0)=+?,则cos B 1 =~2 .解析:因为sin(a+0)=^^v¥,且0<a+/?< n ,n 2 n所以Ovu+/?v了或a +/?< JI;又由cos a=*£且a为锐角得yv2 JI所以丁v a +/?< n ,于是cos(a+0)=—sin'1£>"+V>O 瓦= ("+W)u引帀驸'(I-0U创• V UE;)^=UBJ+vuej 甲:出挪。
2018高考一轮数学(课件)第3章 第5节 两角和与差的正弦、余弦和正切公式
= c3ocsos202°0°= 3.
(2)sin 50°(1+ 3tan 10°)
=sin 50°1+
3·csoins
10° 10°
上一页
返回首页
下一页
第十五页,编辑于星期六:二十二点 三十二分。
高三一轮总复习
=sin αcos(α-β)-cos αsin(α-β)
=
55×3 1010-2 5 5×-
1100=
2 2.
∴β=π4.]
上一页
返回首页
下一页
第二十一页,编辑于星期六:二十二点 三十二 分。
高三一轮总复习
[规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察 非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角 的三角函数求解.
②sin α±cos α=
π 2sinα±4.
4.辅助角公式
asin
α+bcos
α=___a_2+__b_2___sin(α+φ)其中tan
φ=ba.
上一页
返回首页
下一页
第四页,编辑于星期六:二十二点 三十二分。
高三一轮总复习
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数 α,β,使等式 sin(α+β)=sin α+sin β 成立.( ) (2)在锐角△ABC 中,sin Asin B 和 cos Acos B 大小不确定.( ) (3)公式 tan(α+β)=1t-antαan+αttaannββ可以变形为 tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角 α,β 都成立.( ) (4)公式 asin x+bcos x= a2+b2sin(x+φ)中 φ 的取值与 a,b 的值无关.( ) [答案] (1)√ (2)× (3)× (4)×
高考大一轮总复习4.3两角和与差的正弦、余弦和正切公式、二倍角公式
§4.3两角和与差的正弦、余弦和正切公式、二倍角公式考纲展示►1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.考点1三角函数公式的基本应用1.两角和与差的正弦、余弦和正切公式sin(α±β)=________________;cos(α∓β)=________________;tan(α±β)=tan α±tan β1∓tan αtan β.答案:sin αcos β±cos αsin βcos αcos β±sin αsin β2.二倍角的正弦、余弦、正切公式sin 2α=________________;cos 2α=______________=______________=______________;tan 2α=2tan α1-tan2α.答案:2sin αcos αcos2α-sin2α2cos2α-1 1-2sin2α(1)[教材习题改编]计算:sin 108°cos 42°-cos 72°sin 42°=________.答案:12(2)[教材习题改编]已知cos α=-35,α∈⎝⎛⎭⎫π2,π,则sin⎝⎛⎭⎫α+π3的值是________.答案:4-3310解析:因为cos α=-35,α∈⎝⎛⎭⎫π2,π,所以sin α=45,所以sin⎝⎛⎭⎫α+π3=sin αcosπ3+cos αsinπ3=45×12+⎝⎛⎭⎫-35×32=4-3310.公式使用中的误区:角的范围;公式的结构.(1)若函数f(α)=tan α+21-2tan α,则α满足2tan α≠1,且α≠________.答案:kπ+π2(k∈Z)解析:要使函数f(α)=tan α+21-2tan α有意义,则1-2tan α≠0,tan α有意义,所以2tan α≠1,则α≠kπ+π2(k∈Z).(2)化简:12sin x-32cos x=________.答案:sin⎝⎛⎭⎫x-π3解析:12sin x-32cos x=cosπ3sin x-sinπ3cos x=sin⎝⎛⎭⎫x-π3.[典题1](1)[2017·江西新余三校联考]已知cos⎝⎛⎭⎫π3-2x=-78,则sin⎝⎛⎭⎫x+π3的值为()A.14B.78 C .±14 D .±78 [答案] C[解析] 因为cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2x =cos ⎝⎛⎭⎫2x +2π3=78, 所以有sin 2⎝⎛⎭⎫x +π3=12×⎝⎛⎭⎫1-78=116, 从而求得sin ⎝⎛⎭⎫x +π3的值为±14,故选C. (2)已知cos θ=-513,θ∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫θ-π6的值为________. [答案]5-12326[解析] 由cos θ=-513,θ∈⎝⎛⎭⎫π,3π2得 sin θ=-1-cos 2θ=-1213,故sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-1213×32-⎝⎛⎭⎫-513×12 =5-12326. (3)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. [答案]3[解析] ∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12.又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. [点石成金]三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.考点2 三角函数公式的逆用与变形应用公式的常用变形(1)tan α±tan β=tan(α±β)(________);(2)________=1+cos 2α2,________=1-cos 2α2;(3)1+sin 2α=(________)2,1-sin 2α=(________)2,________=2sin ⎝⎛⎭⎫α±π4.答案:(1)1∓tan αtan β (2)cos 2α sin 2α (3)sin α+cosα sin α-cos α sin α±cos α(1)[教材习题改编]计算:sin 43°cos 13°-sin 13°cos 43°=________. 答案:12解析:原式=sin(43°-13°)=sin 30°=12.(2)[教材习题改编]已知sin θ=35,θ为第二象限角,则sin 2θ的值为________.答案:-2425解析:∵sin θ=35,θ为第二象限角,∴cos θ=-45,∴sin 2θ=2sin θcos θ=2×35×⎝⎛⎭⎫-45=-2425.辅助角公式.(1)函数f (x )=sin x +cos x 的最大值为________. 答案: 2解析:sin x +cos x =2⎝⎛⎭⎫sin x cos π4+cos x sin π4 =2sin ⎝⎛⎭⎫x +π4≤ 2. (2)一般地,函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=________⎝⎛⎭⎫其中tan φ=b a 或f (α)=________⎝⎛⎭⎫其中tan φ=a b . 答案:a 2+b 2sin(α+φ)a 2+b 2cos(α-φ)解析:一般地,函数f (x )=a sin α+b cos α(a ,b 为常数)可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝⎛⎭⎫其中tan φ=ab.[典题2] (1)[2017·贵州贵阳监测]已知sin ⎝⎛⎭⎫π3+α+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235C.45 D .-45 [答案] D[解析] ∵sin ⎝⎛⎭⎫π3+α+sin α=435, ∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435, 即32sin α+12cos α=45. 故sin ⎝⎛⎭⎫α+7π6=sin αcos 7π6+cos αsin 7π6 =-⎝⎛⎭⎫32sin α+12cos α=-45.(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.22C.12 D .-12[答案] B[解析] 由tan A tan B =tan A +tan B +1, 可得tan A +tan B 1-tan A tan B =-1,即tan(A +B )=-1, 又A +B ∈(0,π), 所以A +B =3π4,则C =π4,cos C =22.(3)[2017·陕西西安模拟]计算:1+cos 20°2sin 20°-sin 10°·⎝⎛⎭⎫1tan 5°-tan 5°=________. [答案]32 [解析] 原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. [点石成金] 三角函数公式活用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(3)注意切化弦思想的运用.1.已知sin ⎝⎛⎭⎫π6-α=13,则cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α的值是( ) A.79 B.13 C .-13D .-79答案:D解析:∵sin ⎝⎛⎭⎫π6-α=13, ∴cos ⎝⎛⎭⎫π3-2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α =1-2sin 2⎝⎛⎭⎫π6-α=79,∴cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α=cos ⎝⎛⎭⎫2π3+2α =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2α =-cos ⎝⎛⎭⎫π3-2α=-79. 2.化简:(1+sin α+cos α)·⎝⎛⎭⎫cos α2-sin α22+2cos α(0<α<π)=________.答案:cos α 解析:原式=⎝⎛⎭⎫2cos 2α2+2sin α2cos α2⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos 2α2-sin 2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2. 因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α.考点3 角的变换角的变换技巧2α=(α+β)+(α-________); α=(α+________)-β;β=α+β2________α-β2; α-β2=⎝⎛⎭⎫α+β2________⎝⎛⎭⎫α2+β.[典题3] 已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值. [解] (1)∵α,β∈⎝⎛⎭⎫0,π2, ∴-π2<α-β<π2.又tan(α-β)=-13<0,∴-π2<α-β <0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010 =91050. [题点发散1] 在本例条件下,求sin(α-2β)的值. 解:∵sin(α-β)=-1010,cos(α-β)=31010,cos β=91050,sin β=131050.∴sin(α-2β)=sin [(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β =-2425.[题点发散2] 若本例中“sin α=35”变为“tan α=35”,其他条件不变,求tan(2α-β)的值.解:∵tan α=35,tan(α-β)=-13,∴tan(2α-β)=tan []α+(α-β) = tan α+tan (α-β)1-tan αtan (α-β)=35-131+35×13=29.[点石成金] 利用角的变换求三角函数值的策略(1)当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值. 解:∵0<β <π2<α<π,∴π4<α-β2<π, -π4<α2-β<π2, ∴sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫2-β=1-sin 2⎝⎛⎭⎫2-β=53, ∴cosα+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, 则由二倍角公式,可得cos(α+β)=2cos 2α+β2-1=-239729.真题演练集训1.[2015·新课标全国卷Ⅰ]sin 20°cos 10°-cos 160°·sin 10°=( ) A .-32 B.32 C .-12 D.12答案:D解析:sin 20°cos 10°-cos 160°sin 10°=sin 20°·cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.[2016·四川卷]cos 2π8-sin 2π8=________.答案:22解析:由二倍角公式,得 cos 2 π8-sin 2 π8=cos ⎝⎛⎭⎫2×π8=22. 3.[2015·四川卷]sin 15°+sin 75°的值是________.答案:62解析:sin 15°+sin 75°=sin 15°+cos 15° =2⎝⎛⎭⎫22sin 15°+22cos 15°=2sin 60°=2×32=62. 4.[2015·江苏卷]已知tan α=-2,tan(α+β)=17,则tan β的值为________.答案:3解析:tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.课外拓展阅读 三角恒等变换的综合问题1.三角恒等变换与三角函数性质的综合应用利用三角恒等变换先将三角函数式转化为y =A sin(ωx +φ)的形式,再求其周期、单调区间、最值等,一直是高考的热点.[典例1] [改编题]已知函数f (x )=2sin ωx -4sin 2ωx2+2+a (其中ω>0,α∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为2.(1)求函数f (x )的最小正周期;(2)若f (x )在区间[6,16]上的最大值为4,求a 的值. [解] (1)f (x )=2sin ωx -4sin 2ωx2+2+a =22sin ⎝⎛⎭⎫ωx +π4+a , 由题意,知2ω+π4=π2,得ω=π8.所以最小正周期T =2πω=16.(2)f (x )=22sin ⎝⎛⎭⎫π8x +π4+a , 因为x ∈[6,16],所以π8x +π4∈⎣⎡⎦⎤π,9π4.由图象可知(图略),当π8x +π4=9π4,即当x =16时, f (x )的最大值, 由22sin9π4+a =4,得a =2. 2.三角恒等变换与三角形的综合三角恒等变换经常出现在解三角形中,与正弦定理、余弦定理相结合,综合考查三角形中的边与角、三角形形状的判断等,是高考热点内容.根据所给条件解三角形时,主要有两种途径:(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正弦、余弦定理把边的关系化成角的关系,再用三角恒等变换化简求解. [典例2] 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. [解] (1)因为a 2+b 2+2ab =c 2,由余弦定理,得cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.故C =3π4.(2)由题意,得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25, 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,A +B =π4,所以sin(A +B )=22. 因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4. 3.三角恒等变换与向量的综合三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,a ∥b ⇔x 1y 2=x 2y 1,a ⊥b ⇔x 1x 2+y 1y 2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.[典例3] 已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A,1+sin A ),是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B2的最大值. [思路分析] (1)向量共线→三角函数式――→化简得sin 2A 的值→得锐角A(2)化函数为A sin (ωx +φ) +b 的形式→根据B 的范 围求最值[解] (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A -cos A ), 则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3. (2)y =2sin 2B +cosC -3B2=2sin 2B +cos⎝⎛⎭⎫π-π3-B -3B 2=2sin 2B +cos ⎝⎛⎭⎫π3-2B=1-cos 2B +12cos 2B +32sin 2B=32sin 2B -12cos 2B +1 =sin ⎝⎛⎫2B -π6+1. 因为B ∈⎝⎛⎭⎫0,π2,所以2B -π6∈⎝⎛⎭⎫-π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值,解得B =π3,y max =2.课时跟踪检测(二十) [高考基础题型得分练]1.(1+tan 17°)(1+tan 28°)的值是( ) A .-1 B .0 C .1 D .2答案:D解析:原式=1+tan 17°+tan 28°+tan 17°·tan 28° =1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28° =1+1=2.2.已知sin ⎝⎛⎭⎫π2+α=12,-π2<α<0,则cos ⎝⎛⎭⎫α-π3的值是( ) A.12 B .23C .-12D .1 答案:C解析:由已知得cos α=12,sin α=-32,∴cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 3.[2017·河南六市联考]设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c =1-cos 50°2,则有( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案:D解析:由题意可知,a =sin 28°,b =tan 28°,c =sin 25°, ∴c <a <b .4.[2017·安徽师大附中学高三上学期期中]设当x =θ时,函数y =sin x -2cos x 取得最大值,则cos θ=( )A .-55B .55 C .-255D .255答案:C解析:f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -α),其中sin α=255,cos α=55,因为当x =θ时,函数y =sin x -2cos x 取得最大值,所以sin(θ-α)=1, 即sin θ-2cos θ=5,又sin 2θ+cos 2θ=1,联立方程组可得cos θ=-255,故选C.5.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .13C .-23D .23答案:D解析:依题意,得cos 2⎝⎛⎭⎫α-π4=12(cos α+sin α)2 =12(1+sin 2α)=23. 6.[2017·广西柳州、北海、钦州三市模拟]若sin ⎝⎛⎭⎫α-π4=-cos 2α,则sin 2α的值可以为( )A .-12或1B .12C .34D .-34答案:A解析:解法一:由已知得22(sin α-cos α)=sin 2α-cos 2α,∴sin α+cos α=22或sin α-cos α=0,解得sin 2α=-12或1.解法二:由已知得sin ⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫2α-π2 =2sin ⎝⎛⎫α-π4cos ⎝⎛⎫α-π4, ∴cos ⎝⎛⎭⎫α-π4=12或sin ⎝⎛⎭⎫α-π4=0, 则sin 2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫α-π4=2cos 2⎝⎛⎭⎫α-π4-1=2×14-1=-12或sin 2α=1. 7.[2017·四川成都一诊]若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( )A.7π4 B .9π4C .5π4或7π4D .5π4或9π4答案:A解析:因为α∈⎣⎡⎦⎤π4,π,所以2α∈⎣⎡⎦⎤π2,2π, 又sin 2α=55,所以2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2, 故cos 2α=-255.又β∈⎣⎡⎦⎤π,3π2,所以β-α∈⎣⎡⎦⎤π2,5π4, 故cos(β-α)=-31010.所以cos(α+β)=cos [2α+(β-α)] =cos 2αcos(β-α)-sin 2αsin(β-α) =-255×⎝⎛⎭⎫-31010-55×1010=22,且α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4. 8.计算2cos 10°-sin 20°sin 70°=________.答案: 3解析:原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.9.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案:17250解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. 10.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 答案:12解析:解法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.解法二:令α=0,则原式=14+14=12.11.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________.答案:13解析:因为cos(α+β)=16,所以cos αcos β-sin αsin β=16.①因为cos(α-β)=13,所以cos αcos β +sin αsin β=13.②①+②得cos αcos β=14.②-①得sin αsin β=112.所以tan αtan β=sin αsin βcos αcos β=13.[冲刺名校能力提升练]1.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A.45 B .-45C .35D .-35答案:C解析:由sin ⎝⎛⎭⎫α-π4=7210得, sin α-cos α=75,①由cos 2α=725得,cos 2α-sin 2α=725,所以(cos α-sin α)(cos α+sin α)=725,② 由①②可得,cos α+sin α=-15,③由①③可得,sin α=35.2.[2017·江西九校联考]已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是( ) A .α<π4<βB .β<π4<αC .π4<α<βD .π4<β<α答案:B解析:∵α为锐角,sin α-cos α=16>0,∴α>π4.又tan α+tan β+3tan αtan β=3, ∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.3.[2017·河北衡水中学二调]3cos 10°-1sin 170°=( )A .4B .2C .-2D .-4答案:D解析:3cos 10°-1sin 170°=3cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin (10°-30°)12sin 20°=-2sin 20°12sin 20°=-4.4.[2017·山东菏泽二模]已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β=________.答案:-3π4解析:因为tan α=tan [(α-β)+β] =tan (α-β)+tan β1-tan (α-β)tan β=12-171-12×⎝⎛⎭⎫-17=13<1,所以0<α<π4.又因为tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34<1, 所以0<2α<π4,所以tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34-⎝⎛⎭⎫-171+34×⎝⎛⎭⎫-17=1.因为0<β<π,所以-π<2α-β<π4,所以2α-β=-3π4.5.已知cos α=17,cos(α-β)=1314⎝⎛⎭⎫0<β<α<π2. (1)求tan 2α的值; (2)求β的值.解:(1)∵cos α=17,0<α<π2,∴sin α=437,∴tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. (2)∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.6.[2017·安徽合肥质检]已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
高考数学大一轮复习 4.5两角和与差的正弦、余弦、正切公式教师用书 理 苏教版-苏教版高三全册数学试
§4.5 两角和与差的正弦、余弦、正切公式1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β)); cos(α+β)=cos αcos β-sin αsin β (C (α+β)); sin(α-β)=sin αcos β-cos αsin β (S (α-β)); sin(α+β)=sin αcos β+cos αsin β (S (α+β)); tan(α-β)=tan α-tan β1+tan αtan β (T (α-β));tan(α+β)=tan α+tan β1-tan αtan β (T (α+β)).2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T (α±β)可变形为tan α±tan β=tan(α±β)(1∓tan αtan β), tan αtan β=1-tan α+tan βtan α+β=tan α-tan βtan α-β-1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tanαtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)设sin 2α=-sin α,α∈(π2,π),则tan 2α= 3.( √ )1.(2013·某某改编)已知α∈R ,sin α+2cos α=102,则tan 2α=. 答案 -34解析 ∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简得:4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.2.若sin α+cos αsin α-cos α=12,则tan 2α=.答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tanα=-3,则tan 2α=2tan α1-tan 2α=34. 3.(2013·课标全国Ⅱ)设θ为第二象限角,若tan ⎝ ⎛⎭⎪⎫θ+π4=12,则sin θ+cos θ=. 答案 -105解析 ∵tan ⎝⎛⎭⎪⎫θ+π4=12,∴tan θ=-13, 即⎩⎪⎨⎪⎧3sin θ=-cos θ,sin 2θ+cos 2θ=1,且θ为第二象限角,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.4.(2014·课标全国Ⅱ)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为. 答案 1解析 ∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin[(x +φ)-φ]=sin x , ∴f (x )的最大值为1.题型一 三角函数公式的基本应用例1 (1)设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为. (2)若0<α<π2,-π2<β<0,cos(π4+α)=13,cos(π4-β2)=33,则cos(α+β2)=.答案 (1)-3 (2)539解析 (1)由根与系数的关系可知 tan α+tan β=3,tan αtan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.(2)cos(α+β2)=cos[(π4+α)-(π4-β2)]=cos(π4+α)cos(π4-β2)+sin(π4+α)sin(π4-β2).∵0<α<π2,则π4<π4+α<3π4,∴sin(π4+α)=223.又-π2<β<0,则π4<π4-β2<π2, 则sin(π4-β2)=63.故cos(α+β2)=13×33+223×63=539.思维升华 三角函数公式对使公式有意义的任意角都成立.使用中要注意观察角之间的和、差、倍、互补、互余等关系.(1)若α∈(π2,π),tan(α+π4)=17,则sin α=.(2)计算:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°)=.答案 (1)35 (2)32解析 (1)∵tan(α+π4)=tan α+11-tan α=17,∴tan α=-34=sin αcos α,∴cos α=-43sin α.又∵sin 2α+cos 2α=1, ∴sin 2α=925.又∵α∈(π2,π),∴sin α=35.(2)原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin 30°-10°2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为. (2)化简:2cos 4x -2cos 2x +122tan π4-x sin 2π4+x=.(3)求值:cos 15°+sin 15°cos 15°-sin 15°=.答案 (1)22 (2)12cos 2x (3) 3 解析 (1)原式=sin(65°-x )·c os(x -20°)+cos(65°-x )cos[90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)]=sin 45°=22. (2)原式=124cos 4x -4cos 2x +12×sin π4-xcos π4-x·cos 2π4-x=2cos 2x -124sin π4-x cos π4-x =cos 22x2sin π2-2x=cos 22x 2cos 2x =12cos 2x . (3)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)已知α∈(0,π),化简:1+sin α+cos α·cos α2-sinα22+2cos α=.(2)在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为.答案 (1)cos α (2) 3 解析 (1)原式= 2cos2α2+2sin α2cosα2·cos α2-sinα24cos2α2.因为α∈(0,π),所以cos α2>0, 所以原式= 2cos2α2+2sin α2cos α2·cos α2-sinα22cosα2=(cosα2+sinα2)·(cosα2-sinα2)=cos2α2-sin2α2=cos α.(2)因为三个内角A ,B ,C 成等差数列,且A +B +C =π,所以A +C =2π3,A +C 2=π3,tanA +C2=3,所以tan A 2+tan C 2+3tan A 2tan C2=tan ⎝ ⎛⎭⎪⎫A 2+C 2⎝ ⎛⎭⎪⎫1-tan A 2tan C 2+3tan A 2tan C2=3⎝⎛⎭⎪⎫1-tan A 2tan C 2+3tan A 2tan C2= 3.题型三 三角函数公式运用中角的变换例3(1)已知α,β均为锐角,且sin α=35,tan(α-β)=-13.则sin(α-β)=,cos β=.(2)(2013·课标全国Ⅱ改编)已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=.答案 (1)-101095010 (2)16解析 (1)∵α,β∈(0,π2),从而-π2<α-β<π2.又∵ta n(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010,cos(α-β)=31010. ∵α为锐角,sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050. (2)因为cos 2⎝ ⎛⎭⎪⎫α+π4=1+cos2⎝ ⎛⎭⎪⎫α+π42=1+cos ⎝⎛⎭⎪⎫2α+π22=1-sin 2α2,所以cos 2⎝⎛⎭⎪⎫α+π4=1-sin 2α2=1-232=16.思维升华 1.解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.(1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β=. (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是.答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin2α+β=±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45×55+35×255=2525.(2)∵cos(α-π6)+sin α=453,∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453,∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45.高考中的三角函数求值、化简问题典例:(1)若tan 2θ=-22,π<2θ<2π,则2cos 2θ2-sin θ-12sin θ+π4=.(2)(2014·课标全国Ⅰ改编)设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=.(3)已知α为第二象限角,sin α+cos α=33,则cos 2α=. (4)sin 47°-sin 17°cos 30°cos 17°=.思维点拨 (1)注意和差公式的逆用及变形.(2)“切化弦”,利用和差公式、诱导公式找α,β的关系.(3)可以利用sin 2α+cos 2α=1寻求sin α±cos α与sin αcos α的联系. (4)利用和角公式将已知式子中的角向特殊角转化. 解析 (1)原式=cos θ-sin θsin θ+cos θ=1-tan θ1+tan θ,又tan 2θ=2tan θ1-tan 2θ=-22,即2tan 2θ-tan θ-2=0, 解得tan θ=-12或tan θ= 2.∵π<2θ<2π,∴π2<θ<π.∴tan θ=-12,故原式=1+121-12=3+2 2.(2)由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin(π2-α).∵α∈(0,π2),β∈(0,π2),∴α-β∈(-π2,π2),π2-α∈(0,π2),∴由sin(α-β)=sin(π2-α),得α-β=π2-α,∴2α-β=π2.(3)方法一 ∵sin α+cos α=33,∴(sin α+cos α)2=13,∴2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sin α+cos α=33>0, ∴2k π+π2<α<2k π+34π(k ∈Z ),∴4k π+π<2α<4k π+32π(k ∈Z ),∴2α为第三象限角, ∴cos 2α=-1-sin 22α=-53. 方法二 由sin α+cos α=33两边平方得1+2sin αcos α=13, ∴2sin αcos α=-23.∵α为第二象限角,∴sin α>0,cos α<0, ∴sin α-cos α=sin α-cos α2=1-2sin αcos α=153. 由⎩⎪⎨⎪⎧sin α+cos α=33,sin α-cos α=153,得⎩⎪⎨⎪⎧sin α=3+156,cos α=3-156.∴cos 2α=2cos 2α-1=-53. (4)原式=sin 30°+17°-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.答案 (1)3+2 2 (2)π2 (3)-53 (4)12温馨提醒 (1)三角函数的求值化简要结合式子特征,灵活运用或变形使用公式.(2)三角求值要注意角的变换,掌握常见的配角技巧.方法与技巧 1.巧用公式变形: 和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎪⎫sin α2±co s α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形. 失误与防X1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)X 围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的X 围后再求值.A 组 专项基础训练(时间:40分钟)1.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝⎛⎭⎪⎫α+π4=. 答案 322解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4,所以 tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝ ⎛⎭⎪⎫β-π4 =tan α+β-tan ⎝ ⎛⎭⎪⎫β-π41+tan α+βtan ⎝⎛⎭⎪⎫β-π4=322. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ=. 答案 34解析 由sin 2θ=387和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.已知tan α=4,则1+cos 2α+8sin 2αsin 2α的值为. 答案 654解析 1+cos 2α+8sin 2αsin 2α=2cos 2α+8sin 2α2sin αcos α, ∵tan α=4,∴cos α≠0,分子、分母都除以cos 2α得2+8tan 2α2tan α=654. 4.(2013·某某)4cos 50°-tan 40°=.答案 3解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin 50°+30°-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.5.已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是. 答案 - 1 解析 cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x )=3cos(x -π6)=-1. 6.sin 250°1+sin 10°=. 答案 12解析 sin 250°1+sin 10°=1-cos 100°21+sin 10°=1-cos 90°+10°21+sin 10°=1+s in 10°21+sin 10°=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α=.答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.3tan 12°-34cos 212°-2sin 12°=. 答案 -4 3解析 原式=3sin 12°cos 12°-322cos 212°-1sin 12° =23⎝ ⎛⎭⎪⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin -48°2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-4 3. 9.已知 1+sin α1-sin α- 1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合. 解 因为 1+sin α1-sin α- 1-sin α1+sin α = 1+sin α2cos 2α- 1-sin α2cos 2α =|1+sin α||cos α|-|1-sin α||cos α| =1+sin α-1+sin α|cos α|=2sin α|cos α|, 所以2sin α|cos α|=-2tan α=-2sin αcos α. 所以sin α=0或|cos α|=-cos α>0.故α的取值集合为{α|α=k π或2k π+π2<α<2k π+π或2k π+π<α<2k π+3π2,k ∈Z }. 10.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝ ⎛⎭⎪⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32. (2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45. cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝ ⎛⎭⎪⎫-35=-43+310. B 组 专项能力提升(时间:25分钟)1.函数y =sin(πx +φ)(φ>0)的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,记∠APB =θ,则sin 2θ的值是.答案 1665解析 由周期公式可知函数周期为2,∴AB =2.过P 作PD ⊥AB 于D ,由函数的最大值为1,知PD =1,根据函数的图象,可得AD =12,BD =32.在Rt△APD 和Rt△BPD 中,sin∠APD =15,cos∠APD =25,sin∠BPD =313,cos∠BPD =213.所以sin θ=sin(∠APD +∠BPD )=865,cos θ=cos(∠APD +∠BPD )=165,故sin 2θ=2sin θcos θ=2×865×165=1665. 2.若α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值为. 答案 3解析 ∵α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14, ∴sin 2α+cos 2α-sin 2α=14,∴cos 2α=14, ∴cos α=12或-12(舍去), ∴α=π3,∴tan α= 3.3.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)=. 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝⎛⎭⎪⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. (1)解 ∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+cos ⎝⎛⎭⎪⎫x -π4-π2 =sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝⎛⎭⎪⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明 由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45, 两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2, ∴[f (β)]2-2=4sin2π4-2=0. 5.已知f (x )=(1+1tan x )sin 2x -2sin(x +π4)·sin(x -π4). (1)若tan α=2,求f (α)的值;(2)若x ∈[π12,π2],求f (x )的取值X 围. 解 (1)f (x )=(sin 2x +sin x cos x )+2sin ⎝⎛⎭⎪⎫x +π4· cos ⎝⎛⎭⎪⎫x +π4 =1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎪⎫2x +π2 =12+12(sin 2x -cos 2x )+cos 2x =12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以,f (α)=12(sin 2α+cos 2α)+12=35. (2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎪⎫2x +π4+12. 由x ∈⎣⎢⎡⎦⎥⎤π12,π2,得5π12≤2x +π4≤5π4. 所以-22≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,0≤f (x )≤2+12, 所以f (x )的取值X 围是⎣⎢⎡⎦⎥⎤0,2+12.。
江苏专用2018版高考数学大一轮复习4.5简单的三角恒等变换第1课时两角和与差的正弦余弦和正切公式课件理
1+4tan α 64 = . 2 = 25 1+tan α
sin 110° sin 20° (2)计算: 2 的值为 2 cos 155° -sin 155°
答案 解析
1 2 .
sin 110° sin 20° sin 70° sin 20° = cos 310° 2 2 cos 155° -sin 155°
4 3.(2016· 全国丙卷改编)若tan θ=- 1 ,则cos 2θ= 5 . 3
答案 解析
1 tan θ=-3,则 cos 2θ=cos2θ-sin2θ
cos2θ-sin2θ 1-tan2θ 4 = 2 2 = 2 = . cos θ+sin θ 1+tan θ 5
4.(2015· 江苏)已知tan α=-2,tan(α+β)= 1 ,则tan β的值为 3 . 7
2 2
a cos φ= 2 2. a +b
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )
(2)在锐角△ABC中,sin Asin B和cos Acos B大小不确定.( × )
(3)若α+β=45°,则tan α+tan β=1-tan αtan β.( √ ) α α (4)对任意角α都有1+sin α=(sin +cos )2.( √ ) 2 2 (5)y=3sin x+4cos x的最大值是7.( × ) (6)在非直角三角形中,tan A+tan B+tan C=tan Atan Btan C.( √ )
1
2
3
4
5
6
7
8
9
10 11 12 13
π 2.(2016· 盐城三模)若角 α+4的顶点为坐标原点, 始边与 x 轴的非负半轴重合, 1 1 -3 终边在直线 y=2x 上,则 tan α 的值为 .
高考数学一轮复习两角和与差的正弦、余弦和正切公式
思维升华
运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟 悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从 正向思维向逆向思维转化的能力.
跟踪训练 2 (1)(2022·咸阳模拟)已知 sinx-π6= 33,则 sin x+sinx-3π等于
√A.1
B.-1
23 C. 3
A.-1
B.1
√C.0或-3
D.0或1
因为 α+β=π4, 所以 tan(α+β)=tan π4⇒1t-antαan+αttaannββ=1⇒1-1+mmm++m1=1⇒m2+3m=0,
解得m=0或m=-3.
思维升华
两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三 角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时, 特别要注意角与角之间的关系,完成统一角和角与角转换的目的.
b a2+b2
,cos
φ=
知识拓展
两角和与差的公式的常用变形: (1)sin αsin β+cos(α+β)=cos αcos β. (2)cos αsin β+sin(α-β)=sin αcos β. (3)tan α±tan β=tan(α±β)(1∓tan αtan β). tan αtan β=1-tatnanα+α+taβnβ=tatnanα-α-taβnβ-1.
D. 3
因为 sinx-π6= 33,
所以
sin
x+sinx-π3=sin
x+12sin
x-
3 2 cos
x=
3sinx-π6=1.
(2)满足等式(1+tan α)(1+tan β)=2的数组(α,β)有无穷多个,试写出一个 这样的数组__0_,__π4_(_答__案__不__唯__一__)_.
两角和与差的正弦、余弦和正切(二倍角公式)
两角和与差的正弦、余弦和正切(二倍角公式)一.【学习目标】1、掌握并熟练使用两角和与差的余弦、正弦、正切进行证明、化简和求值;2、能针对不同情况进行寻找已知角之间的关系,灵活使用两角和与差的余弦、正弦、正切公式,二倍角公式进行证明、化简和求值.二.重点、难点、易错(混)点、常考点灵活使用两角和与差的余弦、正弦、正切进行证明、化简和求值三.【知识梳理】1.两角和与差的正弦、余弦、正切公式: C (),cos()αβαβ--= ; C (),cos()αβαβ++= S (),sin()αβαβ--= ; S (),sin()αβαβ++= . T (),tan()αβαβ++= 由T ()αβ+可得公式变形tan tan αβ+= T (),tan()αβαβ--=由T ()αβ-可得公式变形得:tan tan αβ-= 2. 二倍角的正弦、余弦、正切公式2:sin 2S ________________;2:tan 2T ________________。
2:cos 2C ________________=________________=________________;四.【基础题达标】 1.12cos312sinππ-=2.sin15°sin30°sin75°=__________.3.cos20°cos40°cos60°cos80° =4.),0(πθ∈,θθsin 1sin 1--+=5.313sin 253sin 223sin 163sin +的值等于 6.12cos312sinππ-=7.化简:x x sin 6cos 2-= 8.若51cos sin =+θθ,则θ2sin 的值 9.81cos sin =x x 且24ππ<<x ,则=-x x sin cos 10.),0(πθ∈,θθsin 1sin 1--+=11.函数)(2cos 21cos )(R x x x x f ∈-=的最大值为 12..若223tan 1tan 1+=-+αα,则=-αα2cos 2sin 113.50tan 10tan 350tan 10tan ++=14.化简:15tan 115tan 1-+=15.已知cos (6πα-)+sin α76)πα+的值是考点一: 运用公式求值、求角问题【例1】 (1)已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎫0,π2,求cos(α-β)的值. (2)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; (3)已知π2<β<α<34π,sin(α-β)=1213,cos(α+β) =-35,求sin2α的值(3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【训练1】已知βα,是锐角且1010sin ,55sin ==βα,求βα+【训练2】(2012·江苏卷)设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________.考点二: 公式的变形应用【例2】已知:)tan(βα+=βtan 2。
高考苏教版数学理大一轮复习课件4.5两角和与差的正弦、余弦和正切
(1)变角: 目的是沟通题设条件 与结论中所涉及的角, 其手法 通常是“配凑”. (2)变名: 通过变换函数名称达 到减少函数种类的目的, 其手 法通常有“切化弦”、 “升幂 与降幂”等. (3)变式: 根据式子的结构特征 进行变形, 使其更贴近某个公 式或某个期待的目标, 其手法 通常有“常值代换”、 “逆用 变用公式”、“通分约分”、 “分解与组合”、 “配方与平 方”等.
思维启迪 解析 探究提高
【例 1】 (1)化简: α 1 α - tan α 2 · 1 + tan α · tan ; tan 2 2 (2)求值:[2sin 50° +sin 10° (1+ 3tan 10° )]· 2sin280° .
题型分类·深度剖析
题型一 三角函数式的化简、求值问题
思维启迪 解析 探究提高
【例 1】 (1)化简: α 1 α - tan α 2 · 1 + tan α · tan ; tan 2 2 (2)求值:[2sin 50° +sin 10° (1+ 3tan 10° )]· 2sin280° .
;
2 2 2 cos 2α=cos α-sin α = 2coLeabharlann α-1 2 = 1-2sin α ;
2tan α 2 tan 2α= 1-tan α .
基础知识·自主学习
要点梳理
3.在准确熟练地记住公式的基础上,要 灵活运用公式解决问题 : 如公式的正 用、 逆用和变形用等.如 T(α±β)可变形为 β)(1∓tan αtan β , tan α± tan β= tan(α± tan α+tan β 1- tanα+β tan αtan β= = tan α-tan β -1 tanα-β .
(苏教版)高考数学一轮复习第五节两角和与差的正弦、余弦和正切公式教案理(解析版)
对应学生用书P481.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.[小题体验]1.已知sin ⎝⎛⎭⎫π2+α=12,-π2<α<0,则cos ⎝⎛⎭⎫α-π3=______.答案:-122.化简cos 18°cos 42°-cos 72°sin 42°的值为________. 答案:123.已知sin(α-π)=35,则cos 2α=________.答案:7254.化简:2sinπ-α+sin 2αcos2α2=________.解析:2sin π-α+sin 2αcos 2α2=2sin α+2sin αcos α121+cos α=4sin α1+cos α1+cos α=4sin α.答案:4sin α1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.[小题纠偏]1.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=________.答案:162.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3.答案:π3对应学生用书P48考点一 三角公式的基本应用 基础送分型考点——自主练透对应学生用书P48[题组练透]1.(2018·苏州期末)若tan ⎝⎛⎭⎫α-π4=-13,则sin αcos α=________.解析:∵tan ⎝⎛⎭⎫α-π4=-13,∴tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+11-tan ⎝⎛⎭⎫α-π4=-13+11-⎝⎛⎭⎫-13=12,∴sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1214+1=25. 答案:252.(2018·海安高三学业质量测试)已知cos α=35,α∈⎝⎛⎭⎫0,π2,则sin ⎝⎛⎭⎫α+π3=________.解析:因为cos α=35,α∈⎝⎛⎭⎫0,π2,所以sin α=45,则sin ⎝⎛⎭⎫α+π3=12sin α+32cos α=4+3310.答案:4+33103.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.解析:∵sin 2α=2sin αcos α=-sin α,α∈⎝⎛⎭⎫π2,π,∴cos α=-12,∴sin α=32,tan α=-3,∴tan 2α=2tan α1-tan 2α=-231--32=3.答案: 3[谨记通法]三角公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值. 考点二 三角公式的逆用与变形用 重点保分型考点——师生共研对应学生用书P49[典例引领]1.(2019·汇龙中学检测)计算:3tan 12°-34cos 2 12°-2sin 12°=________.解析:3tan 12°-34cos 212°-2sin 12°=3sin 12°-3cos 12°cos 12°22cos 212°-1·sin 12°=23⎝⎛⎭⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23·sin 12°-60°cos 24°·2sin 12°cos 12°=-23sin 48°cos 24°·sin 24°=-4 3.答案:-4 32.已知θ∈⎝⎛⎭⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=________.解析:由sin θ-cos θ=-144得sin ⎝⎛⎭⎫π4-θ=74, 因为θ∈⎝⎛⎭⎫0,π4,所以0<π4-θ<π4,所以cos ⎝⎛⎭⎫π4-θ=34. 2cos 2θ-1cos ⎝⎛⎭⎫π4+θ=cos 2θsin ⎝⎛⎭⎫π4-θ=sin ⎝⎛⎭⎫π2-2θsin ⎝⎛⎭⎫π4-θ=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-θsin ⎝⎛⎭⎫π4-θ=2cos ⎝⎛⎭⎫π4-θ=32.答案:32[由题悟法]1.三角函数公式活用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.2.三角函数公式逆用和变形用应注意的问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[即时应用]1.(2018·启东中学测试)sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°21+sin 10=1-cos 90°+1021+sin 10=1+sin 10°21+sin 10=12.答案:122.(2019·南京四校联考)已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6=________.解析:由cos ⎝⎛⎭⎫α-π6+sin α=435,可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, 所以3sin ⎝⎛⎭⎫α+π6=435,sin ⎝⎛⎭⎫α+π6=45,所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45.答案:-45考点三 利用角的变换进行求值 重点保分型考点——师生共研对应学生用书P49[典例引领](2019·镇江模拟)已知α,β为锐角,cos α=17,sin(α-β)=3314.(1)求tan 2α; (2)求β.解:(1)∵α为锐角,cos α=17,∴sin α=1-cos 2α=437,则tan α=sin αcos α=4 3.∴tan 2α=2tan α1-tan 2α=-8347. (2)∵α,β为锐角,∴-π2<α-β<π2,又sin(α-β)=3314,∴cos(α-β)=1-sin 2α-β=1314. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32,∴β=π3.[由题悟法]1.利用角的变换求三角函数值的策略(1)当“已知角”有两个时:一般把“所求角”表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时:此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.角变换的几个注意点明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的拆分与组合的技巧,半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2,α2=2×α4等.[即时应用]1.已知tan(α+β)=1,tan ⎝⎛⎭⎫α-π3=13,则tan ⎝⎛⎭⎫β+π3=________.解析:tan ⎝⎛⎭⎫β+π3=tan ⎣⎡⎦⎤α+β-⎝⎛⎭⎫α-π3=tan α+β-tan ⎝⎛⎭⎫α-π31+tan α+βtan ⎝⎛⎭⎫α-π3=1-131+1×13=12.答案:122.(2018·扬州高三期末)已知cos ⎝⎛⎭⎫π3+α=13⎝⎛⎭⎫0<α<π2,则sin(π+α)=________.解析:因为cos ⎝⎛⎭⎫π3+α=13⎝⎛⎭⎫0<α<π2,所以π3<π3+α<π2,故sin ⎝⎛⎭⎫π3+α=1-cos 2⎝⎛⎭⎫π3+α=223,所以sin(π+α)=sin ⎣⎡⎦⎤⎝⎛⎭⎫π3+α+2π3=sin ⎝⎛⎭⎫π3+αcos 2π3+cos ⎝⎛⎭⎫π3+αsin 2π3=223×⎝⎛⎭⎫-12+13×32=3-226.答案:3-226一抓基础,多练小题做到眼疾手快1.(2019·无锡调研)已知sin(α+30°)=35,60°<α<150°,则cos α=________.解析:∵60°<α<150°,∴90°<α+30°<180°, ∵sin(α+30°)=35,∴cos(α+30°)=-1-sin 2α+30=-45,∴cos α=cos[(α+30°)-30°]=cos(α+30°)cos 30°+sin(α+30°)sin 30° =-45×32+35×12=3-4310.答案:3-43102.若2sin ⎝⎛⎭⎫θ+π3=3sin(π-θ),则tan θ=________.解析:由已知得sin θ+3cos θ=3sin θ, 即2sin θ=3cos θ,所以tan θ=32. 答案:323.(2018·苏锡常镇调研)若tan α=12,tan(α-β)=-13,则tan(β-2α)=________.解析:tan(β-2α)=-tan(2α-β)=-tan(α+α-β)=-tan α+tan α-β1-tan αtan α-β=-12-131-12×⎝⎛⎭⎫-13=-17.答案:-174.(2019·泰州调研)已知α∈(0,π),sin ⎝⎛⎭⎫α+π4=-35,则tan α=________.解析:因为α∈(0,π),sin ⎝⎛⎭⎫α+π4=-35,所以α+π4∈⎝⎛⎭⎫π,5π4,所以cos ⎝⎛⎭⎫α+π4= -1-sin 2⎝⎛⎭⎫α+π4=-45,所以tan ⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=34=1+tan α1-tan α,所以tan α=-17.答案:-175.(2018·常州模拟)已知cos(θ+π)=-13,则sin ⎝⎛⎭⎫2θ+π2=________.解析:cos(θ+π)=-13,所以cos θ=13,sin ⎝⎛⎭⎫2θ+π2=cos 2θ=2cos 2θ-1=-79.答案:-796.(2018·江苏太湖高级中学检测)设sin α=2cos α,则tan 2α的值为________. 解析:由题可知,tan α=sin αcos α=2,所以tan 2α=2tan α1-tan 2α=-43. 答案:-43二保高考,全练题型做到高考达标1.(2019·无锡一中检测)已知sin ⎝⎛⎭⎫x +π6=13,则sin ⎝⎛⎭⎫5π6-x +tan 2⎝⎛⎭⎫π3-x =________.解析:∵sin ⎝⎛⎭⎫x +π6=13,∴cos 2⎝⎛⎭⎫x +π6=1-sin 2⎝⎛⎭⎫x +π6=89,且sin ⎝⎛⎭⎫5π6-x =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫x +π6=13, ∴sin ⎝⎛⎭⎫5π6-x +tan 2⎝⎛⎭⎫π3-x =13+sin 2⎝⎛⎭⎫π3-x cos 2⎝⎛⎭⎫π3-x =13+cos 2⎝⎛⎭⎫x +π6sin 2⎝⎛⎭⎫x +π6=13+8919=253. 答案:2532.(2018·苏州暑假测试)已知α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫π2,π,cos α=13,sin(α+β)=-35,则 cosβ=________.解析:因为α∈⎝⎛⎭⎫0,π2,cos α=13,所以sin α=223.又α+β∈⎝⎛⎭⎫π2,3π2,sin(α+β)=-35<0,所以α+β∈⎝⎛⎭⎫π,3π2,故cos(α+β)=-45,从而cos β=cos []α+β-α=cos(α+β)cos α+sin(α+β)sin α=-45×13-35×223=-4+6215.答案:-4+62153.已知sin α+cos α=13,则sin 2⎝⎛⎭⎫π4-α=________.解析:由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718.答案:17184.(2018·通州模拟)已知P (2,m )为角α终边上一点,且tan ⎝⎛⎭⎫α+π4=13,则sin α=________.解析:∵P (2,m )为角α终边上一点,∴tan α=m2,再根据tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=m 2+11-m 2=13,∴m =-1,故x =2,y =-1,r =|OP |=4+m 2=5, 则sin α=y r =-15=-55.答案:-555.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=________.解析:由sin ⎝⎛⎭⎫α-π4=7210得sin α-cos α=75. ①由cos 2α=725得cos 2α-sin 2α=725,所以(cos α-sin α)(cos α+sin α)=725. ②由①②可得cos α+sin α=-15. ③由①③可得sin α=35.答案:356.(2019·如东模拟)已知α∈⎝⎛⎭⎫0,π2,且2cos α=cos ⎝⎛⎭⎫π2-α,则sin 2α的值为________.解析:∵α∈⎝⎛⎭⎫0,π2,且2cos α=cos ⎝⎛⎭⎫π2-α=sin α,∴tan α=2,则sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. 答案:457.(2019·启东模拟)若sin α+cos α=233,则cos 2⎝⎛⎭⎫α-π4=________.解析:由sin α+cos α=233,可得sin 2α=13,故cos 2⎝⎛⎭⎫α-π4=cos ⎝⎛⎭⎫2α-π2+12=sin 2α+12=23.答案:238.(2018·苏锡常镇调研)已知sin α=3sin ⎝⎛⎭⎫α+π6,则tan ⎝⎛⎭⎫α+π12=________.解析:由题意可得sin ⎝⎛⎭⎫α+π12-π12=3sin ⎝⎛⎭⎫α+π12+π12,即sin ⎝⎛⎭⎫α+π12cos π12-cos ⎝⎛⎭⎫α+π12sin π12=3sin ⎝⎛⎭⎫α+π12·cos π12+3cos ⎝⎛⎭⎫α+π12sin π12,所以tan ⎝⎛⎭⎫α+π12=-2tan π12=-2tan ⎝⎛⎭⎫π3-π4=-23-21+3=23-4.答案:23-49.(2019·南京调研)如图,已知OP Q 是半径为1,圆心角为π3的扇形,点A 在弧P Q 上(异于点P ,Q),过点A 作AB ⊥OP ,AC ⊥O Q ,垂足分别为B ,C .记∠AOB =θ,四边形ACOB 的周长为l .(1)求l 关于θ的函数关系式;(2)当θ为何值时,l 有最大值,并求出l 的最大值. 解:(1)在Rt △OAB 中,∵OA =1,∠AOB =θ, ∴OB =cos θ,AB =sin θ. 在Rt △OAC 中,∵∠PO Q =π3,∴∠AOC =π3-θ, ∴OC =cos ⎝⎛⎭⎫π3-θ,AC =sin ⎝⎛⎭⎫π3-θ.∴l =sin θ+cos θ+sin ⎝⎛⎭⎫π3-θ+cos ⎝⎛⎭⎫π3-θ=sin θ+cos θ+⎝⎛⎭⎫32cos θ-12sin θ+⎝⎛⎭⎫12cos θ+32sin θ=3+12sin θ+3+32cos θ=(3+1)⎝⎛⎭⎫12sin θ+32cos θ=(3+1)sin ⎝⎛⎭⎫θ+π3,θ∈⎝⎛⎭⎫0,π3.(2)由(1)知,l =(3+1)sin ⎝⎛⎭⎫θ+π3,∵θ∈⎝⎛⎭⎫0,π3 ,∴θ+π3∈⎝⎛⎭⎫π3,2π3,∴当θ+π3=π2,即θ=π6时,l 取得最大值3+1.10.(2018·盐城调研)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R.(1)求f ⎝⎛⎭⎫-π4的值;(2)若cos θ=45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值.解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12.(2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ).因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250. 三上台阶,自主选做志在冲刺名校 1.(2019·南通模拟)已知cos ⎝⎛⎭⎫π2+α=3sin ⎝⎛⎭⎫α+7π6,则tan ⎝⎛⎭⎫π12+α=________.解析:由cos ⎝⎛⎭⎫π2+α=3sin ⎝⎛⎭⎫α+7π6=-3sin ⎝⎛⎭⎫α+π6,得sin α=3sin ⎝⎛⎭⎫α+π6,∴sin ⎝⎛⎭⎫α+π12-π12=3sin ⎝⎛⎭⎫α+π12+π12,展开得sin ⎝⎛⎭⎫α+π12cos π12-cos ⎝⎛⎭⎫α+π12sin π12即-2sin ⎝⎛⎭⎫α+π12cos π12=4cos ⎝⎛⎭⎫α+π12sin π12,∴tan ⎝⎛⎭⎫α+π12=-2tan π12.又tan π12=tan ⎝⎛⎭⎫π3-π4=tan π3-tan π41+tan π3tan π4=2-3,∴tan ⎝⎛⎭⎫α+π12=-2(2-3)=23-4.答案:23-42.(2018·苏北四市一模)若tan β=2tan α,且cos αsin β=23,则sin(α-β)的值为________.解析:因为tan β=2tan α,所以sin βcos β=2sin αcos α,即cos αsin β=2sin αcos β.又因为cos αsin β=23,所以sin αcos β=13,从而sin(α-β)=sin αcos β-cos αsin β=13-23=-13.答案:-133.(2019·海门中学检测)已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2.(1)求sin 2α的值;(2)求tan α-1tan α的值.解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14,即sin ⎝⎛⎭⎫2α+π3=-12.因为α∈⎝⎛⎭⎫π3,π2,所以2α+π3∈⎝⎛⎭⎫π,4π3,所以cos ⎝⎛⎭⎫2α+π3=-32,所以 sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3(2)因为α∈⎝⎛⎭⎫π3,π2,所以2α∈⎝⎛⎭⎫2π3,π,又由(1)知sin 2α=12,所以cos 2α=-32.所以tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
高考数学大一轮复习4.5两角和与差的正弦、余弦、正切公式学案理苏教版
学案20 两角和与差的正弦、余弦和正切公式导学目标: 1.会用向量数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、变形应用.自主梳理1.(1)两角和与差的余弦cos(α+β)=____________________________________, cos(α-β)=____________________________________. (2)两角和与差的正弦sin(α+β)=_____________________________________, sin(α-β)=_____________________________________. (3)两角和与差的正切tan(α+β)=_____________________________________, tan(α-β)=_____________________________________.(α,β,α+β,α-β均不等于k π+π2,k ∈Z )其变形为:tan α+tan β=tan(α+β)(1-tan αtan β), tan α-tan β=tan(α-β)(1+tan αtan β). 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ), 其中⎩⎪⎨⎪⎧cos φ=aa 2+b 2,sin φ=ba 2+b 2,tan φ=b a,角φ称为辅助角.自我检测1.cos 43°cos 77°+sin 43°cos 167°的值为________.2.已知tan(α+β)=3,tan(α-β)=5,则tan 2α=________.3.cos π12+3sin π12=________.4.(1+tan 17°)(1+tan 18°)(1+tan 27°)(1+tan 28°)的值是________.5.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=435,则sin ⎝⎛⎭⎪⎫α+7π6的值是________.探究点一 给角求值问题(三角函数式的化简、求值)例1 求值:(1)[2sin 50°+sin 10°(1+3tan 10°)]2sin 280°; (2)sin(θ+75°)+cos(θ+45°)-3·cos(θ+15°).变式迁移1 求值:(1)2cos 10°-sin 20°sin 70°;(2)tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).探究点二 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)例2 已知0<β<π4<α<3π4,cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫3π4+β=513,求sin(α+β)的值.变式迁移2 (2010·广州高三二模)已知tan ⎝ ⎛⎭⎪⎫π4+α=2,tan β=12. (1)求tan α的值;(2)求α+β-2sin αcos β2sin αsin β+α+β的值.探究点三 给值求角问题(已知某角的三角函数值,求另一角的值)例3 已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.变式迁移3 若sin A =55,sin B =1010,且A 、B 均为钝角,求A +B 的值.转化与化归思想例 (14分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.(1)求cos(α-β)的值;(2)若-π2<β<0<α<π2,且sin β=-513,求sin α的值.【答题模板】解 (1)∵|a -b |=255,∴a 2-2a·b +b 2=45.[2分]又∵a =(cos α,sin α),b =(cos β,sin β),∴a 2=b 2=1, a·b =cos αcos β+sin αsin β=cos(α-β),[4分]故cos(α-β)=a 2+b 2-452=2-452=35.[7分](2)∵-π2<β<0<α<π2,∴0<α-β<π.∵cos(α-β)=35,∴sin(α-β)=45.[9分]又∵sin β=-513,-π2<β<0,∴cos β=1213.[11分]故sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β =45×1213+35×⎝ ⎛⎭⎪⎫-513=3365.[14分] 【突破思维障碍】本题是三角函数问题与向量的综合题,唯一一个等式条件|a -b |=255,必须从这个等式出发,利用向量知识化简再结合两角差的余弦公式可求第(1)问,在第(2)问中需要把未知角向已知角转化再利用角的范围来求,即将α变为(α-β)+β.本节主要应用转化与化归思想,即异角化同角.未知角向已知角转化,非特殊角向特殊角转化.【易错点剖析】|a -b |平方逆用及两角差的余弦公式是易错点,把未知角转化成已知角并利用角的范围确定三角函数符号也是易错点.1.转化思想是实施三角变换的主导思想,变换包括:函数名称变换,角的变换,“1”的变换,和积变换.2.变换则必须熟悉公式.分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.3.恒等变形前需已知式中角的差异,函数名称的差异,运算结构的差异,寻求联系,实现转化.4.基本技巧:切割化弦,异名化同,异角化同或尽量减少名称、角数.(满分:90分)一、填空题(每小题6分,共48分)1.已知a ∈(-π2,0),sin α=-45,则tan(α+π4)=______________.2.(2011·盐城模拟)已知cos(π6-α)=33,则sin 2(α-π6)-cos(5π6+α)的值是________.3.(2010·东北育才中学一模)已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)=________.4.函数y =2sin(π4-x )+6cos(π4-x )的最大值为________.5.求值:sin 7°+cos 15°sin 8°cos 7°-sin 15°sin 8°=________.6.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 的大小为________.7.函数f (x )=a sin(x +π4)+3sin(x -π4)是偶函数,则a =________.8.已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈⎝ ⎛⎭⎪⎫-π2,π2,则tan(α+β)=__________,α+β的值为________.二、解答题(共42分)9.(14分)(1)已知α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫π2,π且sin(α+β)=3365,cos β=-513.求sin α;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.10.(14分)(2010·四川)(1)①证明两角和的余弦公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cos αsin β.(2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C .11.(14分)(2010·济南高三三模)设函数f (x )=a·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x ; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.答案 自主梳理1.(1)cos αcos β-sin αsin β cos αcos β+sin αsin β (2)sin αcos β+cos αsin β sin αcos β-cos αsin β(3)tan α+tan β1-tan αtan β tan α-tan β1+tan αtan β 自我检测1.-12 2.-47 3. 2 4.4 5.-45课堂活动区例 1 解题导引 在三角函数求值的问题中,要注意“三看”口诀,即(1)看角,把角尽量向特殊角或可计算的角转化,合理拆角,化异为同;(2)看名称,把算式尽量化成同一名称或相近的名称,例如把所有的切都转化为弦,或把所有的弦都转化为切;(3)看式子,看式子是否满足三角函数的公式.如果满足则直接使用,如果不满足需转化一下角或转换一下名称,就可以使用.解 (1)原式=⎣⎢⎡⎦⎥⎤2sin 50°+sin 10°·⎝⎛⎭⎪⎫1+3sin 10°cos 10°·2sin 80°=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°·2sin 80°=⎝ ⎛⎭⎪⎪⎫2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°·2cos 10°=⎝ ⎛⎭⎪⎫2sin 50°+2sin 10°sin 40°cos 10°·2cos 10° =2·sin 50°·cos 10°+sin 10°·cos 50°cos 10°·2cos 10°=2sin 60°cos 10°·2cos 10°=22sin 60°=22×32= 6.(2)原式=sin[(θ+45°)+30°]+cos(θ+45°)-3·cos[(θ+45°)-30°] =32sin(θ+45°)+12cos(θ+45°)+cos(θ+45°)-32cos(θ+45°)-32sin(θ+45°)=0.变式迁移1 解 (1)原式=--sin 20°sin 70°=3cos 20°+sin 20°-sin 20°sin 70°=3cos 20°sin 70°= 3.(2)原式=tan[(π6-θ)+(π6+θ)][1-tan(π6-θ)·tan(π6+θ)]+3tan(π6-θ)tan(π6+θ)= 3.例2 解题导引 对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应分类讨论.应注意公式的灵活运用,掌握其结构特征,还要学会拆角、拼角等技巧.解 cos ⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4+α=35,∵0<β<π4<α<3π4,∴π2<π4+α<π,3π4<3π4+β<π.∴cos ⎝ ⎛⎭⎪⎫π4+α=-1-sin 2⎝ ⎛⎭⎪⎫π4+α=-45,cos ⎝⎛⎭⎪⎫3π4+β=-1-sin 2⎝⎛⎭⎪⎫3π4+β=-1213.∴sin[π+(α+β)]=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4+β =sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫3π4+β+cos ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫3π4+β =35×⎝ ⎛⎭⎪⎫-1213-45×513=-5665.∴sin(α+β)=5665. 变式迁移2 解 (1)由tan ⎝ ⎛⎭⎪⎫π4+α=2,得1+tan α1-tan α=2, 即1+tan α=2-2tan α,∴tan α=13.(2)α+β-2sin αcos β2sin αsin β+α+β=sin αcos β+cos αsin β-2sin αcos β2sin αsin β+cos αcos β-sin αsin β =-αcos β-cos αsin βcos αcos β+sinαsin β=-α-βα-β=-tan(α-β)=-tan α-tan β1+tan αtan β=-13-121+13×12=17.例 3 解题导引 (1)通过求角的某种三角函数值来求角,在选取函数时,遵循以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好. (2)解这类问题的一般步骤: ①求角的某一个三角函数值; ②确定角的范围;③根据角的范围写出所求的角.解 (1)∵tan α2=12,∴sin α=sin ⎝⎛⎭⎪⎫2·α2=2sin α2cos α2=2sin α2cos α2sin 2α2+cos 2α2=2tan α21+tan 2α2=2×121+⎝ ⎛⎭⎪⎫122=45.(2)∵0<α<π2,sin α=45,∴cos α=35.又0<α<π2<β<π,∴0<β-α<π.由cos(β-α)=210,得sin(β-α)=7210. ∴sin β=sin[(β-α)+α]=sin(β-α)cos α+cos(β-α)sin α=7210×35+210×45=25250=22. 由π2<β<π得β=34π.(或求cos β=-22,得β=34π) 变式迁移3 解 ∵A 、B 均为钝角且sin A =55,sin B =1010,∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010.∴cos(A +B )=cos A cos B -sin A sin B=-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22.① 又∵π2<A <π,π2<B <π,∴π<A +B <2π.②由①②,知A +B =7π4.课后练习区1.-17 2.2+33 3.1 4.2 25.2- 3 解析 原式=-+cos 15°sin 8°--sin 15°sin 8°=sin 15°cos 8°cos 15°cos 8°=tan 15°=tan(45°-30°)=tan 45°-tan 30°1+tan 45°tan 30°=1-331+33=2- 3. 6.π6解析 两式平方相加得9+16+24sin(A +B )=37,sin(A +B )=sin C =12,所以C =π6或56π.如果C =56π,则0<A <π6,从而cos A >32,3cos A >1与4sin B +3cos A =1矛盾,故C =π6.7.-3解析 f (x )=a sin(x +π4)+3sin(x -π4)=22a sin x +22a cos x +(322sin x -322cos x )=22(a +3)sin x +22(a -3)cos x ,因为是偶函数,则f (-x )=f (x ),代入得:2(a +3)sin x =0,所以a =-3.8. 3 -23π解析 ⎩⎨⎧tan α+tan β=-33,tan αtan β=4,∴tan(α+β)=tan α+tan β1-tan αtan β=3,又⎩⎨⎧tan α+tan β=-33,tan αtan β=4>0.α、β∈⎝ ⎛⎭⎪⎫-π2,π2, ∴α、β∈⎝ ⎛⎭⎪⎫-π2,0,-π<α+β<0,α+β=-2π3. 9.解 (1)∵β∈⎝ ⎛⎭⎪⎫π2,π,cos β=-513, ∴sin β=1213.………………………………………………………………………………(2分)又∵0<α<π2,π2<β<π,∴π2<α+β<3π2,又sin(α+β)=3365, ∴cos(α+β)=-1-sin 2α+β=- 1-⎝ ⎛⎭⎪⎫33652=-5665,………………………………………………………………(5分)∴sin α=sin[(α+β)-β]=sin(α+β)cos β-cos(α+β)sin β =3365·⎝ ⎛⎭⎪⎫-513-⎝ ⎛⎭⎪⎫-5665·1213=35.……………………………………………………………(7分)(2)∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13,……………………………………………………(10分) ∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=13+121-13×12=1.……………………………………………………(12分)∵α,β∈(0,π),tan α=13<1,tan β=-17<0,∴0<α<π4,π2<β<π,∴-π<2α-β<0,∴2α-β=-3π4.………………………………………………………(14分) 10.(1)①证明 如图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α), P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)),…………………………………………………………………(2分)由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展开并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β),∴cos(α+β)=cos αcos β-sin αsin β.………………………………………………………………………………………(4分)②解 由①易得,cos ⎝ ⎛⎭⎪⎫π2-α=sin α,sin ⎝ ⎛⎭⎪⎫π2-α=cos α. sin(α+β)=cos ⎣⎢⎡⎦⎥⎤π2-α+β=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2-α+-β =cos ⎝ ⎛⎭⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎫π2-αsin(-β) =sin αcos β+cos αsin β. ∴sin(α+β)=sin αcos β+cos αsin β.……………………………………………………(7分)(2)解 由题意,设△ABC 的角B 、C 的对边分别为b 、c .则S =12bc sin A =12,AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎪⎫0,π2,cos A =3sin A ,…………………………………………………………(10分)又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010,由cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.…………………………………………(12分)故cos C =cos[π-(A +B )]=-cos(A +B )=-1010.……………………………………(14分)11.解 (1)依题设得f (x )=2cos 2x +3sin 2x=1+cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6+1.由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=1-3,得sin ⎝⎛⎭⎪⎫2x +π6=-32.……………………………………(3分)∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6.∴2x +π6=-π3,即x =-π4.………………………………………………………………(6分)(2)-π2+2k π≤2x +π6≤π2+2k π (k ∈Z ),即-π3+k π≤x ≤π6+k π (k ∈Z ),得函数单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π (k ∈Z ).……………………………………(10分)列表:x 0 π6 π3 π2 2π3 5π6πy 2 3 2 0 -1 0 2描点连线,得函数图象如图所示:……………………………(14分)。
最新-2018届高考数学一轮复习 三角函数及三角恒等变换 两角和与差的正弦、余弦、正切公式调研课件
探究 3 在解决三角函数求值问题时,一定要注意已知角与所
求角之间的关系,恰当地运用拆角、拼角技巧,如:
α=(α+β)-α=β-(β-α);
α=12[(α+β)+ (α-β)];
1 α=2[(β+α)- (β-α)]等.
思考题 3
已知
cosα=17,cos(α-β)=1134,且
π 0<β<α< 2 ,
课本导读
课前自助餐
1.两角和的正弦、余弦、正切公式 (1)sin(α+β)=sinαcosβ+cosαsinβ. (2)cos(α +β )= cosα cosβ - sinα sinβ .
tanα+tanβ (3)tan(α +β )=1- tanα tanβ. 2.两角差的正弦、余弦、正切公式 (1)sinαcosβ-cosαsinβ=sin(α-β). (2)cosα cosβ+ sinα sinβ= cos(α-β ).
π
π
2π
π sinx = (cos 3 + 2cos 3 - 3 sin 3 )sinx +
π
π
2π
1
(sin 3 - 2sin 3 - 3 cos 3 )cosx = (2 + 1 - 3 ×
3
3
1
2 )sinx+( 2 - 3+ 3×2)cosx=0.
sin[(α+β)+α]-2cos(α+β)sinα (2)原式=
【解析】 ①原式= cos(15°-8°)-sin15°sin8°
sin15°cos8°
tan45°-tan30°
=cos15°cos8°=tan15°=tan(45°-30°)=1+tan45°tan30°
3 1- 3 3-1 = = =2- 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 三角函数、解三角形 4.5 简单的三角恒等变换 第1课时 两角和与差的正弦、余弦和正切公式教师用书 理 苏教版1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β,(C (α-β)) cos(α+β)=cos αcos β-sin αsin β,(C (α+β)) sin(α-β)=sin αcos β-cos αsin β,(S (α-β)) sin(α+β)=sin αcos β+cos αsin β,(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β,(T (α-β))tan(α+β)=tan α+tan β1-tan αtan β.(T (α+β))2.二倍角公式sin 2α=2sin αcos α,(S 2α)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,(C 2α) tan 2α=2tan α1-tan 2α.(T 2α) 【知识拓展】1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“³”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( ³ ) (3)若α+β=45°,则tan α+tan β=1-tan αtan β.( √ )(4)对任意角α都有1+sin α=(sin α2+cos α2)2.( √ )(5)y =3sin x +4cos x 的最大值是7.( ³ ) (6)在非直角三角形中,tan A +tan B +tan C =tan A tan B tan C .( √ )1.tan 20°+tan 40°+3tan 20°tan 40°= . 答案3解析 ∵tan 60°=tan(20°+40°)=tan 20°+tan 40°1-tan 20°tan 40°,∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°) =3-3tan 20°tan 40°,∴原式=3-3tan 20°tan 40°+3tan 20°tan 40°= 3. 2.(2016²四川)cos 2π8-sin 2π8= . 答案22解析 由题意可知,cos2π8-sin 2π8=cos π4=22(二倍角公式). 3.(2016²全国丙卷改编)若tan θ=-13,则cos 2θ= .答案 45解析 tan θ=-13,则cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45. 4.(2015²江苏)已知tan α=-2,tan(α+β)=17,则tan β的值为 .答案 3解析 tan β=tan[(α+β)-α]=tan α+β -tan α1+tan α+β tan α=17- -2 1+17³ -2 =3.5.(2016²全国甲卷改编)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为 . 答案 5解析 由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,所以当sin x =1时函数的最大值为5.第1课时 两角和与差的正弦、余弦和正切公式题型一 和差公式的直接应用例1 (2016²盐城模拟)已知α为锐角,cos(α+π4)=55.(1)求tan(α+π4)的值;(2)求sin(2α+π3)的值.解 (1)因为α∈(0,π2),所以α+π4∈(π4,3π4),所以sin(α+π4)=1-cos 2α+π4 =255,所以tan(α+π4)=sin α+π4cos α+π4=2.(2)因为sin(2α+π2)=sin 2(α+π4)=2sin(α+π4)cos(α+π4)=45,cos(2α+π2)=cos 2(α+π4)=2cos 2(α+π4)-1=-35,所以sin(2α+π3)=sin[(2α+π2)-π6]=sin(2α+π2)cos π6-cos(2α+π2)sin π6=43+310.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)(2016²全国丙卷改编)若tan α=34,则cos 2α+2sin 2α= .(2)计算:sin 110°sin 20°cos 2155°-sin 2155°的值为 . 答案 (1)6425 (2)12解析 (1)tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α =1+4tan α1+tan α=6425. (2)sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.题型二 和差公式的综合应用 命题点1 角的变换例2 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)(2016²镇江期末)由sin 36°=cos 54°,可求得cos 2 016°的值为 . 答案 (1)2525 (2)-5+14解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2α+β =±45.又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β). 因为45>55>-45,所以cos(α+β)=-45.于是cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-45³55+35³255=2525.(2)由sin 36°=cos 54°,得sin 36°=2sin 18°cos 18°=cos(36°+18°)=cos 36°cos 18°-sin 36°sin 18°=(1-2sin 218°)²cos 18°-2sin 218°cos 18°=cos18°-4sin 218°²cos 18°,即4sin 218°+2sin 18°-1=0,解得sin 18°=-2+22+162³4=5-14,cos 2 016°=cos(6³360°-144°)=cos 144°=-cos 36°=2sin 218°-1=-5+14. 命题点2 三角函数式的变形例3 (1)(2016²无锡调研)若tan α=12,tan(α-β)=-13,则tan(β-2α)= .答案 -17解析 方法一 因为tan α=12,所以tan 2α=2tan α1-tan 2α=11-14=43. 又tan(α-β)=tan α-tan β1+tan αtan β=12-tan β1+12tan β=-13,故tan β=1.所以tan(β-2α)=tan β-tan 2α1+tan βtan 2α=1-431+43=-17.方法二 tan(β-2α)=-tan(2α-β)=-tan(α+α-β) =-tan α+tan α-β 1-tan αtan α-β=-12-131-12³ -13=-17.(2)求值:1+cos 20°2sin 20°-sin 10°(1tan 5°-tan 5°).解 原式=2cos 210°2³2sin 10°cos 10°-sin 10°(cos 5°sin 5°-sin 5°cos 5°)=cos 10°2sin 10°-sin 10°²cos 25°-sin 25°sin 5°cos 5° =cos 10°2sin 10°-sin 10°²cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin 30°-10°2sin 10°=cos 10°-2 12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.引申探究化简: 1+sin θ-cos θ sin θ2-cos θ22-2cos θ (0<θ<π).解 ∵0<θ2<π2,∴2-2cos θ=2sin θ2,又1+sin θ-cos θ=2sin θ2cos θ2+2sin 2θ2=2sin θ2(sin θ2+cos θ2)∴原式=2sin θ2 sin θ2+cos θ2 sin θ2-cos θ22sinθ2=-cos θ.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等.(1)(2016²泰州模拟)若sin(π4+α)=13,则cos(π2-2α)= .(2)(2016²南京模拟)化简(tan α+1tan α)²12sin 2α-2cos 2α= .(3)计算:sin 50°(1+3tan 10°)= . 答案 (1)-79(2)-cos 2α (3)1解析 (1)∵sin(π4+α)=13,∴cos(π4-α)=13,∴cos(π2-2α)=cos 2(π4-α)=2³19-1=-79.(2)原式=1sin αcos α²12sin 2α-2cos 2α=1-2cos 2α=-cos 2α.(3)sin 50°(1+3tan 10°)=sin 50°(1+3sin 10°cos 10°)=sin 50°³cos 10°+3sin 10°cos 10°=sin 50°³2 12cos 10°+32sin 10° cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.8.利用联系的观点进行角的变换典例 (1)设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 .(2)若tan α=2tan π5,则cos α-3π10sin α-π5= .思想方法指导 三角变换的关键是找出条件中的角与结论中的角的联系,通过适当地拆角、凑角来利用所给条件.常见的变角技巧有α+β2=(α-β2)-(α2-β);α=(α-β)+β;α+π12=(α+π3)-π4;15°=45°-30°等.解析 (1)∵α为锐角且cos(α+π6)=45>0,∴α+π6∈(π6,π2),∴sin(α+π6)=35.∴sin(2α+π12)=sin[2(α+π6)-π4]=sin 2(α+π6)cos π4-cos 2(α+π6)sin π4=2sin(α+π6)cos(α+π6)-22[2cos 2(α+π6)-1]=2³35³45-22[2³(45)2-1]=12225-7250=17250. (2)cos α-3π10 sin α-π5 =sin α-3π10+π2sin α-π5=sin α+π5 sin α-π5 =sin αcos π5+cos αsinπ5sin αcos π5-cos αsinπ5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5 =2²sinπ5cosπ5cos π5+sinπ52²sinπ5cosπ5cos π5-sinπ5=3sinπ5sinπ5=3.答案 (1)17250(2)31.(2016²苏州暑假测试)已知α∈(0,π),cos α=-45,则tan(α+π4)= .答案 17解析 由α∈(0,π),cos α=-45,得tan α=-34,则tan(α+π4)=tan α+11-tan α=-34+11+34=17.2.(2016²盐城三模)若角α+π4的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y =12x 上,则tan α的值为 .答案 -13解析 若角α+π4的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y =12x 上,则tan(α+π4)=12,又tan(α+π4)=tan α+11-tan α,所以tan α=-13.3.(2015²重庆改编)若tan α=13,tan(α+β)=12,则tan β=________.答案 17解析 tan β=tan[(α+β)-α]=tan α+β -tan α1+tan α+β tan α=12-131+12³13=17.4.(2016²江苏启东中学阶段检测)若α、β均为锐角,且cos α=117,cos(α+β)=-4751,则cos β= . 答案 13解析 由于α、β都是锐角,所以α+β∈(0,π), 又cos α=117,cos(α+β)=-4751,所以sin α=12217,sin(α+β)=14251,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α =-4751³117+14251³12217=13.5.2cos 10°-sin 20°sin 70°的值是 .答案 3解析 原式=2cos 30°-20° -sin 20°sin 70°=2 cos 30°²cos 20°+sin 30°²sin 20° -sin 20°sin 70°=3cos 20°cos 20°= 3.6.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是 . 答案 β<α解析 ∵α为锐角,sin α-cos α=16>0,∴α>π4.又tan α+tan β+3tan αtan β=3, ∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.7.化简2tan 45°-α 1-tan 2 45°-α ²sin αcos αcos 2α-sin 2α= . 答案 12解析 原式=tan(90°-2α)²12sin 2αcos 2α=sin 90°-2α cos 90°-2α ²12²sin 2αcos 2α=cos 2αsin 2α²12²sin 2αcos 2α=12.8.(2016²江苏无锡普通高中期末)已知sin(α-45°)=-210且0°<α<90°,则cos 2α的值为 . 答案725解析 因为sin(α-45°)=-210且0°<α<90°, 所以cos(α-45°)= 1- -210 2=7210.cos 2α=sin(90°-2α)=-sin(2α-90°)=-sin[2(α-45°)]=-2sin(α-45°)cos(α-45°) =-2³(-210)³7210=725. *9.(2016²南京模拟)已知cos(π4+θ)cos(π4-θ)=14,则sin 4θ+cos 4θ的值为 . 答案 58解析 因为cos(π4+θ)cos(π4-θ) =(22cos θ-22sin θ)(22cos θ+22sin θ) =12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12. 故sin 4θ+cos 4θ=(1-cos 2θ2)2+(1+cos 2θ2)2 =116+916=58. 10.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得的图象关于y 轴对称,则m 的最小值是 .答案 π6 解析 y =3cos x +sin x =2sin(x +π3), 所以此函数的图象向左平移m (m >0)个单位长度后得到y =2sin(x +m +π3)的图象,由题意得m +π3=π2+k π(k ∈Z ),∵m >0,∴m =π6+k π(k ∈Z 且k ≥0),∴m 的最小值是π6. 11.已知α∈(π2,π),sin α=55. (1)求sin(π4+α)的值; (2)求cos(5π6-2α)的值.解 (1)因为α∈(π2,π),sin α=55,所以cos α=-1-sin 2α=-255.故sin(π4+α)=sin π4cos α+cos π4sin α=22³(-255)+22³55=-1010.(2)由(1)知sin 2α=2sin αcos α =2³55³(-255)=-45,cos 2α=1-2sin 2α=1-2³(55)2=35,所以cos(5π6-2α)=cos 5π6cos 2α+sin 5π6sin 2α=(-32)³35+12³(-45)=-4+3310.12.已知α∈(0,π2),tan α=12,求tan 2α和sin(2α+π3)的值.解 ∵tan α=12,∴tan 2α=2tan α1-tan 2α=2³121-14=43,且sin αcos α=12,即cos α=2sin α,又sin 2α+cos 2α=1,∴5sin 2α=1, 而α∈(0,π2),∴sin α=55,cos α=255.∴sin 2α=2sin αcos α=2³55³255=45,cos 2α=cos 2α-sin 2α=45-15=35,∴sin(2α+π3)=sin 2αcos π3+cos 2αsin π3=45³12+35³32=4+3310.*13.已知cos(π6+α)cos(π3-α)=-14,α∈(π3,π2).(1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos(π6+α)²cos(π3-α)=cos(π6+α)²sin(π6+α)=12sin(2α+π3)=-14,即sin(2α+π3)=-12.∵α∈(π3,π2),∴2α+π3∈(π,4π3),∴cos(2α+π3)=-32,∴sin 2α=sin[(2α+π3)-π3]=sin(2α+π3)cos π3-cos(2α+π3)sin π3=12.(2)∵α∈(π3,π2),∴2α∈(2π3,π),又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2³-3212=2 3.。