正弦定理、余弦定理和解斜三角形
知识梳理_正弦、余弦定理及解三角形_基础
正弦、余弦定理及解三角形【考纲要求】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 【知识网络】【考点梳理】要点一、三角形中的边与角之间的关系约定:ABC ∆的三个内角A 、B 、C 所对应的三边分别为a 、b 、c . 1.边的关系:(1) 两边之和大于第三边:a b c +>,a c b +>,c b a +>;两边之差小于第三边:a b c -<,a c b -<,c b a -<; (2) 勾股定理:ABC ∆中,22290a b c C +=⇔=︒. 2.角的关系:ABC ∆中,A B C π++=,222C B A ++=2π (1)互补关系:sin()sin()sin A B C C π+=-= cos()cos()cos A B C C π+=-=- tan()tan()tan A B C C π+=-=-(2)互余关系:sinsin()cos 2222A B C Cπ+=-= cos cos()sin 2222A B C C π+=-=tan tan()cot 2222A B C C π+=-=3.直角三角形中的边与角之间的关系Rt ABC ∆中,90C =︒(如图),有: c cC c b B c a A ====1sin ,sin ,sin , cos ,cos ,cos 0b aA B C c c===.要点二、正弦定理、余弦定理1.正弦定理:在—个三角形中,各边和它所对角的正弦的比相等.即:应用解三角形正弦定理 余弦定理2s i n s i ns i n abc R A B C ===(R 为ABC ∆的外接圆半径)⇒⎪⎩⎪⎨⎧===CR c B R b AR a sin 2sin 2sin 2 2. 余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
5.6正弦定理、余弦定理和解斜三角形(3)教案案
课题:5.6正弦定理、余弦定理和解斜三角形(3)教案教学目的:1、进一步巩固利用正弦定理及余弦定理解任意三角形的方法 2、掌握正弦定理扩充公式的推导 3、掌握三角形面积公式的推导4、掌握边到角的转化方法,和角到边的转化方法,解决三角形形状的判断问题和恒等式的证明问题。
教学重点:正弦定理的扩充公式的推导和边角之间的转化 教学过程: (一)、引入 复习引入:1、正弦定理:A a sin =B b sin =Ccsin 2、正弦定理的变形:a :b :c =C B A sin :sin :sin3、余弦定理:在ABC ∆中有:A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=.2cos ,2cos ,2cos 222222222abc b a C ac b a c B bc a c b A -+=-+=-+=4、正弦定理的两个应用:(1)已知三角形中两角及一边,求其他元素;(2)已知三角形中两边和其中一边所对的角,求其他元素. 5、余弦定理的两个应用:(1)已知两边和它们的夹角,求其他的边和角; (2)已知三边,求三个内角.(二)、新课 一、(新课教学,注意情境设置) 由正弦定理我们知道,在ABC ∆中,A a sin 、B b sin 、Ccsin 都等于同一个比值k ,这个k 到底有没有什么特殊几何意义呢? 二、概念或定理或公式教学(推导)1、当ABC ∆是直角三角形时,若90=∠C ,我们知道A a s i n =B b sin =Ccsin =c,此时c 可看成Rt ABC ∆外接接圆的直 径,即R k c 2== 。
2、若ABC ∆是任意三角形,作ABC ∆的外接圆O ,O 为圆心, 连接BO 并延长交圆D ,连接CD ,把一般三角形转化为直角三 角形。
证明:连续BO 并延长交圆于D90=∠∴DCB ,A D ∠=∠ ,R BD 2= ,a BC ===∴BC a A R A BD D BD sin 2sin sin == ,即:R Aa2sin = 由正弦定理,得A a sin =B b sin =Ccsin =2R结论:从刚才的证明过程中, A a sin =B b sin =Ccsin =2R ,显示正弦定理的比值等于三角形外接圆的直径R 2。
高考数学一轮复习正弦定理余弦定理及解三角形课件理
基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7
=
7 14 .
基础诊断 考点突破
课堂总结
在
Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形
余弦定理公式大全
正弦、余弦定理 解斜三角形建构知识结构1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c aA bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。
正弦、余弦定理可用向量方法证明。
要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
5.6(6)正弦定理、余弦定理和解斜三角形
例5、已知平行四边形两条 邻边分别是 4 6cm和 4 3cm,夹角为 45 ,求平行四边形的两条 对角线长和面积. D C
解:在ABD中,
B BD AD AB 2 AD AB cos A 2 48 96 2 4 3 4 6 48 2 BD 4 3cm 2 2 2 在ABC中, AC AB BC 2 AB BC cos B 240 AC 4 15cm 1 S平行四边形 2 AD AB sin A 2 1 2 2 4 3 4 6 48cm 2 2 2
4
3
B
例4.某观测站 C 在 A 城的南偏西 200 的方向.由 A 城出发的一条 公路,走向是南偏东 400,在 C 处测得公路上 B 处有一人距 C 为 31 千米正沿公路向 A 城走去, 走了 20 千米后到达 D 处, 此时 CD 间的距离为 21 千米,问这人还要走多少千米才能 到达 A 城?
∴隧道的长约为421米
B 40.24 E 80.13 A D
631.50 56.30
C
482.80
例3、上海的金茂大厦是改革开放以来的上海超高 层标志性建筑.有一位测量爱好者在与金茂 大厦底部同一水平线上的B处测得金茂大厦 顶部A的仰角为15.660,再向金茂大厦前进 500米到C处,测得金茂大厦顶部A的仰角为 22.810,他能否算出金茂大厦的高度呢? 若能算出,请计算其高度(精确到1米).
∴他测得金茂大厦的高度约为420米
A
7.150
h
B
15.660 500 C
22.810
D
ex、 如图ABC中,AB 3,BC 3,AC 4, 求AC边上中线BD的长.
解三角形
C .10( 6 2 ) D.10( 6 2 )
典例:
例1:在△ABC中,∠B=450,AC= cosC= 2 5
5
(1)求BC边的长
10 ,
(2)记AB的中点为D,求中线CD的长度
例2:
在ABC中,m
(cos
C
,
sin
C
),n
(cos
(4)余弦定理的变式:cos C a2 b2 c2 2ab
(5)三角形面积公式:SΔ
1 ah
2
,
SΔ
1 ab sinC
2
(6)在△ABC中,易推出: ① sinA=sin(B+C),cosA=-cos(B+C),
tanA=-tan(B+C)
② sin A cos B C , cos A sin B C ,
解斜三角形
知识要点归纳
(1)正弦定理:
a b c 2R sinA sinB sinC
(2)余弦定理: c2=a2+b2-2abcosC
(3)正弦定理的变式:
a=2RsinA b=2RsinB
sin A a sinB b
2R
2R
c=2RsinC.
sinC c 2R
a : b : c sin A: sinB : sinC
基础训练: 1、在△ABC中, 若A 600,a 4 3,b 4 2
则B=
。
2、在△ABC中, a=6,b= 6 3 ,A=300
则边c=
。
3、在△ABC中,sinA:sinB:sinC=2:3:4, 则CosB=_________
正弦定理、余弦定理和解斜三角形
5.6正弦定理、余弦定理和解斜三角形正弦定理:,22sin sin sin ∆====S abcR C c B b A a (2R 为三角形外接圆直径), (∆S 为三角形面积),其他形式: a :b :c = sinA :sinB :sinCa=2RsinA, b=2RsinB , c=2RsinC余弦定理:a 2=b 2+c 2-2bccosA,(可按a,b,c,轮换得另二式)余弦定理变式:bca cb A 2cos 222-+= , (轮换得另二式)余弦定理向量式:如图 a=b+ c , c= a – b c 2=|c|2=|a-b |2=(a-b)2=a 2+b 2- 2﹒a ﹒b=a 2+b 2- 2abcosC(其中|a|=a,|b|=b,|c|=c)【例1】 在△ABC 中,求证:tan A tan B =a 2+c 2-b2b 2+c 2-a2.►变式训练1 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.求证:cos B cos C =c -b cos A b -c cos A .【例2】在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.►变式训练2 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状.CABa cb【当堂训练】1、在三角形ABC 中, 如果B A cos sin =, 那么这个三角形是 ( ) A .直角三角形 B . 锐角三角形C .钝角三角形D . 直角三角形或钝角三角形2、在△ABC 中,“︒A>30”是“1sinA>2”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3、在△ABC 中,已知B=30°, ,那么这个三角形是 ( )A .等边三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4、设A 是△ABC 中的最小角,且1cos 1a A a -=+,则实数a 的取值范围是 ( ) A .a ≥3 B .a >-1 C .-1<a ≤3 D .a >05、在△ABC 中,a,b,c,分别是三内角A 、B 、C 所对的边,若B=2A ,则b:a 的取值范围是( )A .()2,2-B .()1,2C .()1,1-D .()0,16、在△ABC 中,若三个内角A ,B ,C 成等差数列且A<B<C ,则cos cos A C 的取值范围是( ) A .11,24⎛⎤-⎥⎝⎦ B .31,44⎡⎤-⎢⎥⎣⎦ C .11,24⎛⎫- ⎪⎝⎭ D .31,44⎛⎫- ⎪⎝⎭7、在A B C ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+和12c b =+A ∠和B tan 的值.8、已知ABC ∆的三边a 、b 、c 成等比数列,且cot cot A C +=,3=+c a . (1)求B cos ;(2)求ABC ∆的面积.【家庭作业】 一、填空题1.在ABC Δ中,已知613πB ,b ,a ===,则=c ___________ 2.已知等腰三角形的底边上的高与底边长之比为34:,则它的顶角的正切值是__________3.在ABC Δ中,若2cos cos sin cos cos sin sin sin =+++B A B A B A B A ,那么三角形的形状为_______________4.在ABC Δ中,()()211=++B cot A cot ,则=C sin log 2_______________ 5.在ABC Δ中,313===S ,b ,πA ,则=++++Csin B sin A sin c b a 6.在锐角ABC Δ中,若11-=+=t B tan ,t A tan ,则t 的取值范围是__________ 7.在ABC Δ中,若1222=-+Csin B sin Asin C sin B sin ,则=A ________________8.在ABC Δ中,已知42πA ,a ==,若此三角形有两解,则b 的取值范围是__________________ 9.(A)在ABC Δ中,ac b ,B C A ==+22,则三角形的形状为________________(B) 已知A B C π++=,且sin cos cos A B C =⋅,则在cot cot tan tan B C B C ++、、s i nB+s i nC 及cos cos B C +中必为常数的有_________ 10.(A)在ABC Δ中,21==a ,c ,则C 的取值范围是__________________(B)已知三角形的三边长分别是()2223,33,20a a a a a a ++++>,则三角形的最大角等于______________ 二、 选择题11.在ABC Δ中,B cos A cos B sin A sin +=+是2πC =( ) A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件12.在ABC Δ中,若543::C sin :B sin :A sin =则此三角形是 ( ) A. 等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形 13.在ABC Δ中,若232222b A cosc C cos a =+,那么其三边关系式为 ( ) A.c b a 2=+ B. b c a 2=+ C.a c b 2=+ D. b c a 322=+14.(A)在ABC Δ中,c ,b ,a 为三角形三条边,且方程02222=++-b a cx x 有两个相等的实数根,则该三角形是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形(B)已知关于x 的方程2cos cos 1cos 0x x A B C +⋅-+=的两根之和等于两根之积的一半,则ABC Δ是 ( )A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形 三、解答题15.在ABC Δ中,若22Acos C sin B sin =,试判断三角形的形状16.在ABC Δ中,若()()ac c b a c b a =+-++,求B 。
正弦定理、余弦定理知识点总结及最全证明
正弦定理、余弦定理知识点总结及最全证明work Information Technology Company.2020YEAR正弦定理、余弦定理知识点总结及证明方法——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b =,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2= .若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A =,cos B=,cos C= .若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知A为锐角A为钝角或直角图形关系式a=b sin Ab sin A<a<ba≥b a>b解的个数①②③④(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径.(2)A+B+C =π,则A =__________,A2=__________,从而sin A=____________,cos A=____________,tan A=____________;sin A2=__________,cosA2=__________,tan A2=+tan B+tan C=__________.(3)若三角形三边a,b,c成等差数列,则2b=____________⇔2sin B=____________⇔2sin B2=cosA-C2⇔2cosA+C2=cosA-C2⇔tan A2tanC2=13.【自查自纠】1.(1)asin A=bsin B=csin C=2R(2)①2R sin B2R sin C②b2Rc2R③sin A∶sin B∶sin C2.(1)b2+c2-2bc cos A c2+a2-2ca cos Ba2+b2-2ab cos C a2+b2(2)b2+c2-a22bcc2+a2-b22caa2+b2-c22ab> <(3)互化sin2C+sin2A-2sin C sin A cos Bsin2A+sin2B-2sin A sin B cos C3.(1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解(3)余弦(4)余弦4.(1)12ab sin C12bc sin A12ac sin Babc4R12(a+b+c)r(2)π-(B+C)π2-B+C2sin(B+C) -cos(B+C)-tan(B+C)cosB+C2sinB+C2 1tanB+C2tan A tan B tan C(3)a+c sin A+sin C在△ABC中,A>B是sin A>sin B的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.在△ABC中,已知b=6,c=10,B=30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解 解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B,C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B=2,则角A 的大小为________.解:∵sin B +cos B =2,∴2sin ⎝⎛⎭⎪⎫B +π4=2,即sin ⎝⎛⎭⎪⎫B +π4=1. 又∵B ∈(0,π),∴B +π4=π2,B =π4. 根据正弦定理a sin A=b sin B,可得sin A =a sin Bb =12. ∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ),即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°.【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2; (2)若a =2,求△ABC 的面积. 解:(1)证明:对b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a应用正弦定理得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,即sin B⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝⎛⎭⎪⎫0,3π4,∴B -C =π2. (2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8. ∵a =2,A =π4,∴由正弦定理知b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8. ∴S △ABC =12bc sin A =12×2sin 5π8×2sinπ8×22=2sin 5π8sin π8=2cos π8sin π8=22sinπ4=12. 类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c. (1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,将上式代入cos B cos C =-b 2a +c得 a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )B .8-4 3C .1解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值. 解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .②由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4. (2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1. 【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又a +c=6,b =2,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227. 类型四 判断三角形的形状 在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B,所以sin A cos B cos A sin B =sin 2A sin 2B ,即sin2A =sin2B .所以2A =2B ,或2A +2B =π,因此A =B 或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2Asin 2B,所以tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B,再由正、余弦定理,得a 2+c 2-b 22ac b 2+c 2-a 22bc =ab ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S=900t 2+400-2·30t ·20·cos(90°-30°) =900t 2-600t +400=900⎝⎛⎭⎪⎫t -132+300,故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t+400t 2.∵0<v ≤30,∴900-600t+400t 2≤900,即2t 2-3t≤0, 解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt , 此时,轮船航行时间t =1030=13,v =10313=30 3. 即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23.据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC=103,AC=10,故OC>AC,且对于线段AC上任意点P,有OP≥OC>AC.而小艇的最高航行速度只能达到30 n mile/h,故小艇与轮船不可能在A,C之间(包含C)的任意位置相遇.设∠COD=θ(0°<θ<90°),则在Rt△COD中,CD=103tanθ,OD=103 cosθ.由于从出发到相遇,轮船与小艇所需要的时间分别为t=10+103tanθ30和t=103 v cosθ,所以10+103tanθ30=103v cosθ.由此可得,v=153sin(θ+30°).又v≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°.由于θ=30°时,tanθ取得最小值,且最小值为3 3 .于是,当θ=30°时,t=10+103tanθ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sinα的值.解:(1)依题意,∠BAC=120°,AB=12,AC=10×2=20,在△ABC中,由余弦定理知BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos120°=784,BC=28.所以渔船甲的速度为v=282=14(海里/小时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理得ABsinα=BC sin∠BAC ,即12sinα=28sin120°,从而sinα=12sin120°28=3314.1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A+B+C=π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A=sin(B+C),cos A=-cos(B+C),sin A2=cos B+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。
正弦定理、余弦定理和解斜三角形ⅡⅢ
(1) b=20,A=60°,a=10√3; b sinA sinB= =1 , a B=90°
C 20
已知两边一对角解三角形的解的情况
无 解 a < bsin A a = bsin A 一 (直 ) 解 角 ⑴若A为锐角时 解 锐 一 角 bsin A< a < b 两 (一 角 钝 ) a > b 一 (锐 ) 解 角
在例3 中,若将已知条件改为以下几种情况, 则结果如何呢?
1 (1) b=20,A=60°,a=10√3 ;
一解
2 (2) b=20,A=60°,a=18 ; 二解 3 (3) b=20,A=60°,a=15. 无解
C b 60° B
A
60° A B (2) b=20,A=60°,a=18; C 5 3 b sinA sinB= a = , b 9 o o QB > A⇒B ≈ 74.2 或 .8 A 60° 105 B1 B2 C (3) b=20,A=60°,a=15. b sinA 2√3 >1 sinB= = 20 3 a ∴ 无解 A 60°
已已已a,b和∠A
C b A H a<CH=bsinA 无仅 a A B a=CH=bsinA 仅仅仅仅仅 b a A C b a a A a≥b H B C b C a
B1 H B2 CH=bsinA<a<b 仅有仅仅
仅仅仅仅仅
解 a ≤ b 无 ⑵若A为直角或钝角时 解 a > b 一
一、复习
1、三角形的面积公式: 、三角形的面积公式: 1 1 1 S∆ABC = bcsin A= acsin B = absin C 2 2 2 2、三角形内角和定理: 、三角形内角和定理:
5.6(2)(3)正弦定理、余弦定理和解斜三角形
(3) 已知a 2 3,c 2,C 30 ,求b、S.
解: (3) c a b 2ab cos C
2 2 2 2
A
4 12 b 2 2 3 b cos 30 2 30 2 B 即:b 6 b 8 0 2 3 b 4或b 2 1 当b 4时,S ab sin C 2 3 2 1 当b 2时,S ab sin C 3 2 求边 余弦定理 第三类:已知两边一对角 正弦定理 求角
C
(4) 三边之比为 3 : 5 : 7,求此三角形的最大内 角.
解:设三边长分别为3x、 5x、 7 x( x 0)
则7 x所对的角最大,设为
9 x 25 x 49 x 1 cos 2 3x 5 x 2 是三角形的内角
2 2 2
三角形的最大角为120
例2、 在ABC中,已知a 8,b 5,S 12,求c.
又sin C cos C 1 4 cos C 5 2 2 2 c a b 2ab cos C
2 2
综上,c 5或c 3 17
例3 、 在ABC中,已知B 45 ,D是BC上一点,
说明: 本系列课件,经多次使用,修改,其中有部分 来自网络,它山之石可以攻玉,希望谅解。 为了一个课件,我们仔细研磨; 为了一个习题,我们精挑细选; 为了一点进步,我们竭尽全力; 没有最好,只有更好! 制作水平有限,错误难免,请多指教: 28275061@
第五章 三角比
一、复习
1、三角形的面积公式: 1 1 1 S ABC bc sin A ac sin B ab sin C 2 2 2 2、三角形内角和定理:
正弦定理余弦定理应用举例要点梳理解斜三角形的常
正弦定理 余弦定理
由A+B+C=180°,求出 角C;再利用正弦定理 或余弦定理求c.
可有两解,一解或无解
2.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面 积问题、航海问题、物理问题等.
3.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标 视线的夹角,目标视线在水平视线 上方 叫仰角, 目标视线在水平视线 下方 叫俯角(如图①).
2
4.一船自西向东匀速航行,上午10时到达一座灯塔
P的南偏西75°距塔68海里的M处,下午2时到达这
座灯塔的东南方向的N处,则这只船的航行速度为
3
探究提高 解斜三角形应用题的一般步骤是: (1)准确理解题意,分清已知与所求; (2)依题意画出示意图; (3)分析与问题有关的三角形; (4)运用正、余弦定理,有序地解相关的三角形,
逐步求解问题的答案; (5)注意方程思想的运用; (6)要综合运用立体几何知识与平面几何知识.
知能迁移2 如图所示,测量河对岸的 塔高AB时,可以选与塔底B在同一水 平面内的两个测点C与D,现测得
B.5 3 海里
C.10海里
D.10 3 海里
解析 如图所示,依题意有∠BAC=60°,
∠BAD=75°,
所以∠CAD=∠CDA=15°,
从而CD=CA=10,
在Rt△ABC中,得AB=5, 于是这艘船的速度是 5 10(海里/小时).
0.5
3.如图所示,已知两座灯塔A和B与海洋
观察站C的距离都等于a km,灯塔A在
的水平角. 3.坡度——坡面与水平面的二面角的度数. 4.仰角与俯角——与目标视线在同一铅直平面内
的水平视线和目标视线的夹角,目标视线在水 平视线上方时称为仰角,目标视线在水平视线 下方时称为俯角.
5.6正弦定理、余弦定理和解斜三角形
小结(ASA,SAS,SSS)
已知两角一边ASA (内角和之和为180度,算出三角,然后利用正弦定理, 算出其它两边) 已知一角两边,
(a)可分为两边一夹角SAS
用余弦定理求出角所对的边,然后利用三边求角
(b) 两边一邻角
已知三边 SSS
利用余弦定理求出角的余弦,然后求角
(3)判断解的个数的方法:(已知A,b,a) 方案1:正弦定理
b sin A (a)若 sin B 1, 无解。 a b sin A 1, 有唯一解。 b 若 sin B a b sin A 1, 在(0,)上有两解,但其中 c 若 sin B a 与已知角A(或B)的和小于,才合
5.6正弦定理、余弦定理 和解斜三角形
解斜三角形(1)
一、复习正、余弦定理
正弦定理
a b c sin A sin B sin C
余弦定理
a2=b2+c2-2bccosA b2=a2+c2-2accosB c2=a2+b2-2abcosC
b2 c2 a 2 cos A 2bc a 2 c2 b2 cos B 2ac b2 a2 c2 cosC 2ab
0 , c 8, a 5, 求C、B和b 例4: 1 在 ABC 中,已知 A 30
2 在ABC中,已知A 30 , c 3, a 5, 求C、B和b.
0
(保留两位小数)
练习: 在 ABC 中已知 b 6, c 9, B 45, 求C、A和边a.
留两个有效数字).
解:∵
b c 且 B 180 ( A C ) 105 sin B sin C
高三数学-专题复习-三角函数(2)解斜三角形(正弦定理余弦定理应用)
三角函数(2)解斜三角形(正余弦定理应用)1.正弦定理:A a sin =B b sin =Ccsin =2R.(关键点“比”,用法:边角转化) 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 2.余弦定理:a 2=b 2+c 2-2bccosA ; cos B =cab ac 2222-+;在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. 利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来理解”.题型一、判断三角形的形状:1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) 答案:CA.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形2.下列条件中,△ABC 是锐角三角形的是( ) A.sin A +cos A =51B.AB ·BC >0C.tan A +tan B +tan C >0D.b =3,c =33,B =30° 答案:C解析:由sin A +cos A =51 得2sin A cos A =-2524<0,∴A 为钝角. 由AB ·BC >0,得BA ·BC <0,∴cos 〈BA ,BC 〉<0.∴B 为钝角.由tan A +tan B +tan C >0,得tan (A +B )·(1-tan A tan B )+tan C >0. ∴tan A tan B tan C >0,A 、B 、C 都为锐角.由B b sin =C c sin ,得sin C =23,∴C =3π或3π2.3.在△ABC 中,sin A =CB CB cos cos sin sin ++,判断这个三角形的形状.解:△ABC 是直角三角形. 题型二、解斜三角形(求角度和长度)4.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______. 解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a2=bc .∴bc a c b 2222-+=21.∴∠A =3π. 答案:3π5.在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1 sin A >21;sin A >21⇒30°<A <150°⇒A >30°答案:B6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.解析:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C .∴tan C =1.∴C =4π. 答案:45° 7.△ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c ,如果a 2=b (b +c ),求证:A =2B . 证明:用正弦定理,a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b (b +c )中,得sin 2A =sin B (sin B +sin C )⇒sin 2A -sin 2B =sin B sin C ⇒22cos 1A --22cos 1B- =sin B sin (A +B )⇒21(cos2B -cos2A )=sin B sin (A +B ) ⇒sin (A +B )sin (A -B )=sin B sin (A +B ), 因为A 、B 、C 为三角形的三内角,所以sin (A +B )≠0.所以sin (A -B )=sin B .所以只能有A -B =B ,即A =2B .该题若用余弦定理如何解决?解:利用余弦定理,由a 2=b (b +c ),得cos A =bc a c b 2222-+=bc c b b c b 222)()(+-+=b bc 2-,cos2B =2cos 2B -1=2(ac b c a 2222-+)2-1=2222cc b b c c b )()(++-1=b b c 2-. 所以cos A =cos2B .因为A 、B 是△ABC 的内角,所以A =2B .评述:高考题中,涉及到三角形的题目,重点考查正弦、余弦定理,考查的侧重点还在于三角转换.这是命题者的初衷.8.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于( )A.231+ B.1+3 C.232+ D.2+3答案:B9.已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51. (1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高. (1)证明:∵sin (A +B )=53,sin (A -B )=51,∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2. ∴tan A =2tan B . (2)解:2π<A +B <π,∴sin (A +B )=53. ∴tan (A +B )=-43, 即BA BA tan tan 1tan tan -+=-43.将tan A =2tanB 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6. 设AB边上的高为CD ,则AB =AD +DB =A CD tan +B CDtan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.10.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值. 解cBb sin =sin A =23.11.在△ABC 中,若∠C =60°,则ca bc b a +++=_______. 解析:c a bc b a +++=))((c a c b bc b ac a +++++22 =222c bc ac ab bc ac b a ++++++. (*)∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab . ∴a 2+b 2=ab +c 2. 代入(*)式得222cbc ac ab bc ac b a ++++++=1. 答案:1题型三、取值范围题目12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,依次成等比数列,求y =BB Bcos sin 2sin 1++的取值范围.解:∵b2=ac ,∴cos B =ac b c a 2222-+=ac ac c a 222-+=21(c a +a c )-21≥21. ∴0<B ≤3π,y =BB B cos sin 2sin 1++=B B B B cos sin cos sin 2++)(=sin B +cos B =2sin (B +4π).∵4π<B +4π≤12π7, ∴22<sin (B +4π)≤1. 故1<y ≤2.13.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2. (1)求∠C ; (2)求△ABC 面积的最大值.解:(1)由22(sin 2A -sin 2C )=(a -b )·sin B 得22(224R a -224R c )=(a -b )Rb2. 又∵R =2,∴a 2-c 2=ab -b 2.∴a 2+b 2-c2=ab . ∴cos C =ab c b a 2222-+=21.又∵0°<C<180°,∴C =60°. (2)S =21ab sin C =21×23ab =23sin A sin B =23sin A sin (120°-A )=23sin A(sin120°cos A -cos120°sin A )=3sin A cos A +3sin 2A =23sin2A -23sin2A cos2A +23=3sin (2A -30°)+23. ∴当2A =120°,即A =60°时,S max =233. 14.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.解析:若c 是最大边,则cos C >0.∴abc b a 2222-+>0,∴c <5.又c >b -a =1, ∴1<c <5.●思悟小结1.在△ABC 中,∵A +B +C =π,∴sin2B A +=cos 2C ,cos 2B A +=sin 2C2.∠A 、∠B 、∠C 成等差数列的充分必要条件是∠B =60°.3.在非直角三角形中,tan A +tan B +tan C =tan A ·tan B ·tan C .。
正弦定理余弦定理与解斜三角形
正弦定理、余弦定理和解斜三角形1、 正弦定理推导在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==,A则sin sin sin abccABC===b c从而在直角三角形ABC 中,sin sin sin abcABC ==C a B思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图 1.1-3,当∆ABC是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a Bb A =,则sin sin abA B =, C 同理可得sin sin c bCB =, b a 从而sin sin a b A B=sin cC =A DB (图1.1-3) 证明二:(等积法)在任意斜△ABC 当中S △ABC =Abc B ac C ab sin 21sin 21sin 21== 两边同除以abc21即得:A a sin =B b sin =C c sin证明三:(外接圆法) 如图所示,∠A=∠D∴R CD D aA a 2sin sin === (R 为外接圆的半径)同理 B b sin =2R ,C csin =2R由于涉及边长问题,从而可以考虑用向量来研究这个问题。
类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
从上面的研究过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC =(1) 理解定理(1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)sin sin abAB=sin c C =等价于sin sin ab AB =,sin sin cb CB =,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A Bb=。
正弦定理、余弦定理和解斜三角形ⅣⅤ
a = 2 R sin A,b = 2 R sin B,c = 2 R sin C
a b c sin A = , B= sin , C= sin 2R 2R 2R
sin A : sin B : sin C = a : b : c
4、余弦定理: 、余弦定理:
a = b + c − 2bc cos A
扩 的 弦 理 充 正 定
a b c = = = 2R sin A sin B sin C
a b c = = = 2R 扩 的 弦 理 充 正 定 sin A sin B sin C
变 得 a = 2Rsin A 形 : b = 2Rsin B c = 2Rsin C
a sin A = 2R b sin B = 2R c sin C = 2R
一、扩充的正弦定理
如图:已知圆O是∆ABC的外接圆,直径为2 R. 试用R与A、B、C的三角比来表示三角形 的三边长. C 解 过 作 径 D, CD : B 直 B 连 a b B D 则B 为 角 角 ∆ CD 直 三 形 O c A ∴∠ = ∠ , D = 2R D A B 在 t∆B 中 R CD a = 2R a = B sin D = 2Rsin A D sin A
2 2 2
b = a + c − 2ac cos B
2 2 2
c = a + b − 2ab cos C
2 2 2
b +c −a cos A = 2bc 2 2 2 c + a −b cos B = 2ca a 2 + b2 − c2 cos C = 2ab
2 2 2
A C 以下的三角关系式, 在 ∆ B 中,以下的三角关系式,在解答有关三角形 问题时经常用到,要记熟并灵活地加以运用: 问题时经常用到,要记熟并灵活地加以运用:
高一数学余弦定理定律
正弦、余弦定理 解斜三角形建构知识网络1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A +(2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c a A bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。
正弦、余弦定理可用向量方法证明。
要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
5.利用余弦定理,可以解决以下两类问题:B(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理、余弦定理和解直角三角形一、基础知识熟练记忆1、 正弦定理推导在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==,A则sin sin sin abccABC=== b c从而在直角三角形ABC 中,sin sin sin abcA B C ==C a B 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB =, C同理可得sin sin cbCB =, b a 从而sin sin ab A B=sin cC =A D B(图1.1-3) 证明二:(等积法)在任意斜△ABC 当中S △ABC =Abc B ac C ab sin 21sin 21sin 21==两边同除以abc21即得:A a sin =B b sin =C c sin 证明三:(外接圆法)如图所示,∠A=∠D∴RCD D aA a 2sin sin === (R 为外接圆的半径)同理 B b sin =2R ,C csin =2R由于涉及边长问题,从而可以考虑用向量来研究这个问题。
类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
从上面的研究过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC =a bcOB C AD(1) 理解定理(1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)sin sin abA B =sin c C =等价于sin sin ab A B =,sin sin cb CB =,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A Bb=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
2、余弦定理的推导过程在△ABC 中,当∠C=90°时,有c 2=a 2+b 2.若a ,b 边的长短不变,变换∠C 的大小时,c 2与a 2+b 2有什么关系呢?如图1,若∠C <90°时,由于AC 与BC 的长度不变,所以AB 的长度变短,即c 2<a 2+b 2.如图2,若∠C >90°时,由于AC 与BC 的长度不变,所以AB 长度变长,即c 2>a 2+b 2.思考:当∠C ≠90°时,c 2≠a 2+b 2,那么c 2与a 2+b 2到底相差多少呢?如图3,当∠C 为锐角时,作BD ⊥AC 于D ,BD 把△ABC 分成两个直角三角形:在Rt △ABD 中,AB 2=AD 2+BD 2; 在Rt △BDC 中,BD=BC ·sinC=asinC ,DC=BC ·cosC=acosC .所以,AB 2=AD 2+BD 2化为可得到:∠C 为锐角时,△ABC 的三边a ,b ,c 具有c 2=a 2+b 2-2abcosC 的关系.如图4,当∠C 为钝角时,作BD ⊥AC ,交AC 的延长线于D .△ACB 是两个直角三角形之差.在Rt △ABD 中,AB 2=AD 2+BD 2.在Rt △BCD 中,∠BCD=π-C . BD=BC ·sin (π-C ),CD=BC ·cos (π-C ).所以AB 2=AD 2+BD 2化为c 2=(AC+CD )2+BD 2=[b+acos (π-C )]2+[asin (π-C )]2=b 2+2abcos (π-C )+a 2cos 2(π-C )+a 2sin 2(π-C ) =b 2+2abcos (π-C )+a 2.因为cos (π-C )=-cosC ,所以c 2=b 2+a 2-2abcosC .这里∠C 为钝角,cosC 为负值,-2abcosC 为正值,所以b 2+a 2-2abcosC >a 2+b 2,即c 2>a 2+b 2.从以上我们可以看出,无论∠C 是锐角还是钝角,△ABC 的三边都满足c 2=a 2+b 2-2abcosC .这就是余弦定理.我们轮换∠A ,∠B ,∠C 的位置可以得到a 2=b 2+c 2-2bccosA . b 2=c 2+a 2-2accosB . 3、知识点归纳()1正弦定理:2sin sin sin a b cR A B C===, )2(面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆)3(余弦定理:222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧⎪=+-+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩()3推论:正余弦定理的边角互换功能① 2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2cC R= ③sin sin sin a b c A B C ===sin sin sin a b cA B C++++=2R ④::sin :sin :sin a b c A B C =⑤222sin sin sin 2sin sin cos A B C B C A =+- 222sin sin sin 2sin sin cos B C A C A B =+-222s i n s i n s i n 2s i n s i nc o s C A B A B C =+-(4).在三角形中大边对大角,反之亦然.(5).射影定理:B c C b a cos cos +=,A c C a b cos cos +=,A b B a c cos cos += (6).三角形内角的诱导公式C B A sin )sin(=+,C B A cos )cos(-=+,)tan(tan B A C +-=,2sin2cosB AC +=,2cos 2sin BA C += 在ABC ∆中,熟记并会证明A CB A tan tan tan tan =++C B tan tan ⋅⋅;三角形的五心重心定理:三角形的三条中线交于一点,这点到顶点的离是它到对边中点距离的2倍。
该点叫做三角形的重心。
外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
垂心定理:三角形的三条高交于一点。
该点叫做三角形的垂心。
内心定理:三角形的三内角平分线交于一点。
该点叫做三角形的内心。
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。
该点叫做三角形的旁心。
三角形有三个旁心。
二、典型例题讲解1、正弦定理的应用例1、在ABC 中,sin sin A B <是A B ∠<∠的 ( ) (A )充分必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件例2、在ABC ∆中,120,30,12=∠=∠=B A b ,求c a 和。
练习:(1) 已知2,2,30===c b B,求A 、C 、a ;(2) 已知45,9,6===B c b ,求C 、a 、A ;(3) 已知030=B ,045=C ,8=c ,求b 和三角形面积S ;2、余弦定理及应用例3.在ABC △中,C B A ∠∠∠、、所对的边长分别为c b a 、、,练习:1.设c b a 、、满足条件222a bc cb =-+和321+=b c ,求A ∠和B tan 的值2.在ABC △中,角A 、B 、C 对边分别为a 、b 、c ,求证:()222sin sin A B a b c C--=3.在ABC △中,,,a b c 分别是三个内角,,A B C 的对边,且274sincos 222B C A +-= ()1求角A 的度数;()2若3, 3.a b c =+=求,b c 的值3、判断ABC 的形状例4、若22tan tan a B b A =,判断ABC 的形状。
例5、若2222sin sin 2cos cos b C c B bc B C +=,是判断ABC 的形状。
例6、已知锐角三角形的边长为1,3,a,则a的取值范围是。
例7、在塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔顶沿直线行走30米,测得塔顶的仰角为2θ,再向前前进103米,又测得塔顶的仰角为4θ,则塔高是米。
例8、将一块圆心角为60 ,半径为20厘米的扇形铁片裁成一个矩形(如图所示),求裁得的矩形的最大面积。
例9、设,,a b c 分别是ABC 中A B C 、、的对边,其外接圆半径为1,且(sin sin sin )(sin sin sin )3sin sin ,B C A B C A B C b c +++-=、是方程234cos 0x x A -+=的两根()b c >。
(1)求A ∠的度数及a b c 、、的值。
(2)判定ABC 的形状,并求其内切圆的半径。
例10、海岛O上有一座海拔1000米高的山,山顶上设有一个观察站A,上午11时测得一轮船在岛北偏东60 的C处,俯角为30 ,11时10分又测得该船在岛的北偏西60 的B处,俯角为60 。
(1)该船的速度为每小时多少千米?(2)若该船以不变的航速继续前进,则它何时到达岛的正西方向?此时所在点E离开岛多少千米?例11、在ABC 中,三个内角A B C ∠∠∠、、的对边分别是a b c 、、,其中10,c =且cos 4cos 3A bB a == 。
(1)求证:ABC 是直角三角形。
(2)设O过A B C 、、三点,点P位于劣弧AC 上,60PAB ∠= 。
求四边形ABCP 的面积。
三、历年高考题解析与应注意的问题例12、(2005年江西高考题)在ABC 中,设命题:sin sin sin a b cp B C A==,命题:q ABC 是等边三角形,那么命题p 是q 的 ( ) (A)充分不必要条件 (B)必要不充分条件(C)充分必要条件 (D)既不充分也不必要条件例13、(2005年江苏高考题)ABC 中,3A π=,3,BC =则ABC 的周长是 ( )(A)43sin()33B π++ (B)43sin()36B π++(C)6sin()33B π++ (D)6sin()36B π++例14、(2009年全国)在ABC 中,内角A B C ∠∠∠、、的对边分别是a b c 、、,已知222a c b -=,且sin cos 3cos sin A C A C =,求b 。