沪教版(五四制)八年级数学下第二学期期末考试试卷
沪教版八年级数学下册期末测试卷(附带答案)
沪教版八年级数学下册期末测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________1. 下列函数中,一次函数是 ( )2. A . y =x 2+2 B . y =1x +1 C . y =2−x D . y =√x −53. 一次函数 y =kx +b 的图象如图所示,那么 ( )4. A . k >0,b >0 B . k >0,b <0 C . k <0,b >0 D . k <0,b <05. 用换元法解方程x x 2−1−3(x 2−1)x =2 时,设 x x 2−1=y ,则原方程化为 y 的整式方程为 ( )A . 3y 2−6y +1=0B . y 2−2y −3=0 6.C . 2y 2−3y +1=0D . y 2−3y −2=0 7. 化简 AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ +DB ⃗⃗⃗⃗⃗⃗ 的结果等于 ( ) 8.A . CB ⃗⃗⃗⃗⃗ B . AC ⃗⃗⃗⃗⃗ C . DB ⃗⃗⃗⃗⃗⃗D . DC ⃗⃗⃗⃗⃗ 9. 下面结论中正确的是 ( )A .对角线相等的四边形是等腰梯形B .一组对边平行,另一组对边相等的四边形是等腰梯形C .两组对角分别互补的四边形是等腰梯形 10.D .等腰梯形是轴对称图形,经过两底中点的直线是它的对称轴11. 如图,已知正方形 ABCD 的边长为 8,点 E 在对角线 BD 上,且 ∠BAE =22.5∘,EF ⊥AB ,垂足为 F ,则 EF 的长为 ( )12.A . 2B . 4C . 8−4√2D . 6√2−813. 直线 y =2x −3 与 x 轴的交点坐标是 .14. 若直线 y =−2x +5 经过点 (a,−1),则 a = .15. 将直线 y =x +3 向下平移 5 个单位后,所得直线的解析式是 .16. 若一次函数 y =(m −2)x +1 的函数值 y 随 x 的增大而减小,那么 m 的取值范围是 .17. 方程 √2x +3=x 的解为 .18. 关于 x 的方程 ax −3=2x (a ≠2) 的解为 .19. 一个多边形的内角和等于 1080∘,则它是 边形.20. 在平行四边形 ABCD 中∠C =∠B +∠D ,则 ∠A = 度.21. 梯形上底长为 6 cm ,中位线长为 12 cm ,那么下底长为 cm .22. 某城市出租汽车收费标准为:3 千米以内(含 3 千米)收 10 元,超出 3 千米的部分,每千米收费 1.4 元.那么车费 y 元与行驶路程 x (x >3) 千米之间的函数关系式为 .23. 在一个盒子中有 4 张形状、大小相同质地均匀的卡片,上面分别标着 1,2,3,4 这四个数字,从盒子里随机抽出两张卡片,则所得卡片上的两数之和是 5 的概率是 .24. 在矩形 ABCD 中AB =3 cm ,BC =4 cm ,AC 的垂直平分线交 BC 于 E ,交 AD 于 F ,那么四边形 AECF 的面积等于 cm 2.25. 解方程:4x 2−4−2=3−xx−2.26. 解方程组:{x 2−2xy −3y 2=0,x +2y =5.27. 小丽的妈妈先用 120 元买某件小商品若干件,后来又用 240 元买同样的小商品,这次比上次多20 件,而且店家给予优惠,每件降价 4 元.请问第一次她买了多少件小商品?28. 如图,已知在梯形 ABCD 中AB ∥CD ,∠D =2∠B ,AD =12,CD =8.(1) 如果 ∠A =60∘,求证:四边形 ABCD 是等腰梯形;29. (2) 求 AB 的长.30. 如图,已知在平行四边形 ABCD 中,点 E ,F 分别是 AB ,CD 的中点,CE ,AF 与对角线 BD分别相交于点 G ,H ,连接 EH 、FG .(1) 求证:四边形EGFH是平行四边形;31.(2) 如果AD⊥BD,求证:四边形EGFH是菱形.32.如图,在矩形OABC中,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点D在边AB上,点D的坐标为(4,8),CD=2√17,点P是射线BC上一个动点,连接OP,DP.(1) 求点B的坐标;(2) 如果点B,P之间的距离为x,△ODP的面积为S,求S与x之间的函数关系式,并写出函数定义域;(3) 在点P运动过程中,△ODP是否有可能为等腰三角形?若有可能,求出点P的坐标;若不可能,请说明理由.参考答案1. 【答案】C2. 【答案】B3. 【答案】B4. 【答案】A5. 【答案】D6. 【答案】C,0)7. 【答案】(328. 【答案】39. 【答案】y=x−210. 【答案】m<211. 【答案】x=312. 【答案】 x =3a−213. 【答案】八 14. 【答案】 120 15. 【答案】 1816. 【答案】 y =5.8+1.4x17. 【答案】 1318. 【答案】 75819. 【答案】原方程的根是 x =−3.20. 【答案】原方程组的解是 {x 1=3,y 1=1;{x 2=−5,y 2=5.21. 【答案】小丽妈妈第一次买了 10 件小商品.22. 【答案】(1) ∵AB ∥CD∴∠A +∠D =180∘∵∠A =60∘∴∠D =120∘∵∠D =2∠B∴∠B =60∘∴∠A =∠B∴ 梯形 ABCD 是等腰梯形.(2) 作 DE ⊥AB 于点 E ,CF ⊥AB 于点 F∵ 梯形 ABCD 为等腰梯形∴AE =BF ,CD =EF =8在 △AED 中∠AED =90∘,∠A =60∘,AD =12∴AE =BF =6∴AB =AE +EF +BF =20.23. 【答案】(1) 连接 EF ,交 BD 于点 O∵AB ∥CD ,AB =CD ,点 E ,F 分别是 AB ,CD 的中点∴FOEO =OD BO =DF BE =12CD 12AB =1∴FO =EO ,DO =BO∵DH =GB∴OH =OG .∴ 四边形 EGFH 是平行四边形.(2) 由(1)知,四边形 EGFH 是平行四边形∵ 点 E ,O 分别是 AB ,BD 的中点∴OE ∥AD∵AD ⊥BD∴EF ⊥GH∴平行四边形HEGF是菱形.24. 【答案】(1) 点B的坐标为(6,8).(2) S=2x+8,函数定义域为x≥0.(3) 点P的坐标为P(6,8−2√19),P(6,−2√11),P(6,2√11),P(6,2).。
完整版沪教版八年级下册数学期末测试卷及含答案
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知□ABCD的周长是26cm,其中△ABC的周长是18cm,则AC的长为( )A.12cmB.10cmC.8cmD.5cm2、已知一个多边形的内角和是外角和的4倍,则这个多边形()A.八边形B.十二边形C.十边形D.九边形3、菱形的一条对角线与它的边相等,则它的锐角等于()A.30°B.45°C.60°D.75°4、)如图,矩形ABCD中,AB=8cm,BC=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为()A.6B.10C.12D.165、图中两直线L1、L2的交点坐标可以看作方程组()的解.A. B. C. D.6、若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.-3,-2,-1,0B.-2,-1,0,1C.-1,0,1,2D.0,1,2,37、小强喜欢玩飞镖游戏,一天他用平行四边形做了一个飞镖盘,如图所示,▱ABCD中,过对角线BD上任一点F分别作FE∥AB,FG∥BC分别交AD,CD于点E,G,连接EG,则小强随机掷一次飞镖,飞镖落在阴影部分的概率是()A. B. C. D.8、如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2,则OC的长为()A.2B.3C.2D.49、下列事件为不可能事件的是()A.某个数的相反数等于它本身B.某个数的倒数是0C.某两个负数积大于0D.某两数的和小于010、如图,在矩形ABCD 中,AB=4,AD=a,点P在AD上,且AP=2,点E是边AB上的动点,以PE为边作直角∠EPF,射线PF交BC于点F,连接EF,给出下列结论:①tan∠PFE= ;②a的最小值为10.则下列说法正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对11、如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD 的两条对角线的和是()A.18B.28C.36D.4612、已知抛一枚均匀硬币正面朝上的概率为,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的13、“翻开华东师大版数学九年级上册,恰好翻到第50页”,这个事件是()A.必然事件B.随机事件C.不可能事件D.确定事件14、甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. =B. =C. =D. =15、下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第一个图形有1个平行四边形,第二个图形有5个平行四边形,第三个图形有11个平行四边形,……,则第六个图形中平行四边形的个数为()A.55B.42C.41D.29二、填空题(共10题,共计30分)16、一次函数 y = kx 和 y = -x + 3 的图象如图所示,则关于 x 的不等式 k ≤ -x + 3的解集是________.17、如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________ ,使ABCD成为菱形(只需添加一个即可)18、从1,2,3这三个数中任选两个组成两位数,在组成的所有数中任意抽取一个数,这个数恰好能被3整除的概率是________.19、如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为________.20、实验中学举行中国古诗词大赛,四道题分别是①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.要求甲乙两选手任选一道题在自己的答题板上写出下一句,他们选取的诗句恰好相同的概率是________.21、如图,正方形ABCD的边长为6,E是边AB的中点,F是边AD上的一个动点,EF=GF,且∠EFG=90°,则GB+GC的最小值为________.22、已知直线y=x+b和y=ax﹣3交于点P(2,1),则关于x的方程x+b=ax ﹣3的解为________.23、梯形的上底长为5cm,将一腰平移到上底的另一端点位置后与另一腰和下底所构成的三角形的周长为20cm,那么梯形的周长为________.24、如图,菱形ABCD,∠A=60°,AB=6,点E,F分别是AB,BC边上沿某一方向运动的点,且DE=DF,当点E从A运动到B时,线段EF的中点O运动的路程为________.25、写出一个经过点(1,-3)且y随x增大而增大的一次函数解析式________ 。
沪教版初二数学题(下册期末试卷及答案)
初二数学(沪教版)一、填空题:(本大题共16题,每题2分,满分32分)1.如果k kx y -=是一次函数,那么k 的取值范围是 k ≠0 .2.已知直线)3(2+=x y ,那么这条直线在y 轴上的截距是 6 .3.函数mx y +=2中的y 随x 的增大而增大,那么m 的取值范围是 m >0 .4.一元二次方程0132=++x x 的根是(-3加减根号5) /25.已知方程0732=+-kx x 的一个根是-1,那么这个方程的另一个根是 -7/36.设方程012=-+x x 的两个实根分别为1x 和2x ,那么2111x x += 1 . 7.二次函数322-+=x x y 图象的对称轴是直线 x=-1 .8.如果二次函数的图象与x 轴没有交点,且与y 轴的交点的纵坐标为-3,那么这个二次函数图象的开口方向是 向下 .9.把抛物线2x y -=向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的距离是 2根号2 .10.用一根长为60米的绳子围成一个矩形,那么这个矩形的面积y (平方米)与一条边长x (米)的函数解析式为 y=-x 2+30x ,定义域为 0<x <30 米.11.已知等边三角形的边长为4cm ,那么它的高等于 2根号3 cm .12.梯形的上底和下底长分别为3cm 、9cm ,那么这个梯形的中位线长为 6 cm .13.已知菱形的周长为20cm ,一条对角线长为5cm ,那么这个菱形的一个较大的内角为 120 度.14.在梯形ABCD 中,AD ∥BC ,S △AOD ∶S △AOB =2∶3,那么S △COD ∶S △BOC = 2:3 .15.如果四边形的两条对角线长都等于14cm ,那么顺次连结这个四边形各边的中点所得四边形的周长等于 28 cm .16.以不在同一条直线上的三点为顶点作平行四边形,最多能作 3 个.二、选择题:(本大题共4题,每题2分,满分8分)17.如果a 、c 异号,那么一元二次方程02=++c bx ax ………………………………( A )(A )有两个不相等的实数根; (B )有两个相等的实数根;(C )没有实数根; (D )根的情况无法确定.18.已知二次函数bx ax y +=2的图象如图所示,那么a 、b 的符号 为…………………………………………………………( C(A )a >0,b >0; (B )a >0,b <0;(C )a <0,b >0; (D )a <0,b <0. 19.下列图形中,是轴对称图形,(A )矩形; (B )菱形; (C )等腰梯形; (D )直角梯形.20.下列命题中,正确的是………………………………………………………………( B )(A )一组对边平行且另一组对边相等的四边形是平行四边形;(B )一组对边平行且相等的四边形是平行四边形;(C )两条对角线相等的四边形是等腰梯形;(D )两条对角线相等的四边形是矩形.三、(本大题共6题,每题6分,满分36分)21.已知一次函数的图象经过点(0,4),并且与直线x y 2-=相交于点(2,m ),求这个一次函数的解析式.解:设一次函数的解析式是y=kx+b (k ≠0).则根据题意,得4=b m=-2×2 m=2k+b ,解得 k=-4 b=4 m=-4 ,∴该一次函数的解析式是:y=-4x+4.22.求证:当0≠k 时,方程02)1(22=-+--k x k kx 有两个不相等的实数根. 证明:∵k ≠0,∴方程kx2-2(k-1)x+k-2=0为一元二次方程,∴△=4(k-1)2-4×k ×(k-2)=4k2-8k+4-4k2+8k=4>0,∴当k ≠0时,方程kx2-2(k-1)x+k-2=0有两个不相等的实数根.23.已知一元二次方程0532=-+x x ,求这个方程两根的平方和.解:设一元二次方程x2+3x-5=0的两根为a 、b ,∴a+b=-3,ab=-5,∴两根的平方和为a2+b2=(a+b )2-2ab=(-3)2-2×(-5)=19.故答案为:19.24.如图,M 是Rt △ABC 斜边AB 上的中点,D 是边BC 延长线上一点,∠B =2∠D ,AB =16cm ,求线段CD 的长.解:连接CM ,∵∠ACB=90°,M 为AB 的中点,∴CM=BM=AM=8cm ,∴∠B=∠MCB=2∠D ,∵∠MCB=∠D+∠DMC ,∴∠D=∠DMC ,∴DC=CM=8cm .答:线段CD 的长是8cm .A B M C D25.如图,在四边形ABCD 中,对角线BD ⊥AB ,AD =20, AB =16,BC =15,CD =9,求证:四边形ABCD 是梯形.解:∵BD ⊥AB ,∴△ABD 是直角三角形, ∴BD2=202-162=12,∵122+92=152,即:BC2=BD2+DC2,∴∠BDC=90°,∴DC ∥AB ,又∵DC ≠AB ,∴四边形ABCD 是梯形.26.如图,某隧道口的横截面是抛物线形,已知路宽AB 为6米, 最高点离地面的距离OC 为5米.以最高点O 为坐标原点, 抛物线的对称轴为y 轴,1米为数轴的单位长度,建立平面直角坐标系,求以这一部分抛物线为图象的函数解析式,并写出x 的取值范围. 解:(1)设所求函数的解析式为y=ax2.由题意,得函数图象经过点B (3,-5),∴-5=9a .∴a=-5 9 .∴所求的二次函数的解析式为y=-5 9 x2.x 的取值范围是-3≤x ≤3;四、(本大题共3题,每题8分,满分24分)27.已知直线4+=kx y 经过点A (-2,0),且与y 轴交于点B .把这条直线向右平移5个单位,得到的直线与x 轴交于点C ,与y 轴交于点D ,求四边形ABCD 的面积. 解:∵直线y=kx+4经过点A (-2,0),∴-2k+4=0,k=2.∴y=2x+4.当x=0时,y=4.∴B 点的坐标为(0,4).把直线y=2x+4向右平移5个单位,得到直线y=2(x-5)+4,即y=2x-6,令y=0,得x=3.∴C 点的坐标为(3,0);令x=0,得y=-6.∴D 点的坐标为(0,-6).∴四边形ABCD 的面积=△ABC 的面积+△ADC 的面积=1 2 AC •OB+1 2 AC •OD=1 2 ×5×4+1 2 ×5×6=25.故四边形ABCD 的面积为2528.如图,在Rt△ABC中,∠C=90°,D、E分别是边AC、ABB的中点,过点B作BF⊥DE,交线段DE的延长线于为点F,过点C作CG⊥AB,交BF于点G,如果AC=2BC,求证:(1)四边形BCDF是正方形;(2)AB=2CG.证明:(1)∵D、E分别是边AC、AB的中点,∴DF∥CB,∴CD垂直于DF,又∵BF垂直于DF,∴DC∥BF,又∵AC=2BC,∴DC=BC,∴四边形BCDF为正方形,(2)根据题意知△CBG≌△ADE,∴CG=AE,又∵E为AB中点,∴AB=2CG.。
沪教版八年级下册数学期末测试卷(完美版)
沪教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、已知函数y=(a﹣1)x的图象过一、三象限,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<02、下列事件为必然事件的是()A.任意买一张电影票,座位号是奇数B.两边及其夹角对应相等的两个三角形全等C.打开电视机,正在播放纪录片D.三根长度为4cm,4cm,8cm的木棒能摆成三角形3、如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM的长为()A.2B.2C.4﹣D.8﹣44、如图,在正方形ABCD中,E、F是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当△PEF是等腰三角形时,下列关于P点个数的说法中,一定正确的是()①当x=0(即E、A两点重合)时,P点有6个②当0<x<4 -2时,P点最多有9个③当P点有8个时,x=2 -2④当△PEF是等边三角形时,P点有4个A.①③B.①④C.②④D.②③5、如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为( )A.2B.C.D.16、下面给出的是四边形ABCD中∠A、∠B、∠C、∠D的度数比,其中能判断出四边形是平行四边形的是()A.4:3:2:1B.3:2:3:2C.3:3:2:2D.3:2:2:17、在函数y=,y=x+5,y=-5x的图像中,是中心对称图形,且对称中心是原点的图像的个数有()A.0B.1C.2D.38、如图,直线与(,a,b为常数)的交点坐标为(3,-1),则关于x的不等式的解集是()A. B. C. D.9、如图,▱ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为()A.12B.15C.16D.1810、有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.11、如图,以两条直线l1,l2的交点坐标为解的方程组是A. B. C. D.12、如图,点A,B,C,D,E,F,G,H为⊙O的八等分点,AD与BH的交点为I,若⊙O的半径为1,则HI的长等于()A.2﹣B.2+C.2D.13、在一个不透明的口袋里,装了只有颜色不同的黄球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到黄球的概率约是()摸球的次数n 100 150 200 500 800 1000摸到黄球的次数m 52 69 96 266 393 507摸到黄球的频率0.52 0.46 0.48 0.532 0.491 0.50714、如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2 ,∠DAO=30°,则FC的长度为( )A.1B.2C. D.15、边长为5的菱形ABCD按如图所示放置在数轴上,其中A点表示数﹣2,C 点表示数6,则BD=()A.4B.6C.8D.10二、填空题(共10题,共计30分)16、如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为________.17、如图,已知正方形,O为对角线与的交点,过点O的直线与直线分别交,,,于点E,F,G,H.若,与相交于点M,当,时,则的长为________.18、如图,正方形OABC的边长为6,点A、C分别在x轴,y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则PA+PD的最小值为________.19、如图,在平面直角坐标系中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1).若过原点的直线将这个图案分成面积相等的两部分,则直线的函数解析式为________.20、如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=________.21、如图,已知AD∥BC,AB∥CD,AB=4,BC=6,EF是AC的垂直平分线,分别交AD、AC于E、F,连结CE,则△CDE的周长是________ .22、如图,正方形中,,点为对角线上的动点,以为边作正方形.点是上一点,且,连接,,则________度,运动变化过程中,的最小值为________.23、在▱ABCD中,AB、BC、CD三条边的长度分别为(a﹣3)cm、(a﹣4)cm、(9﹣a)cm,则这个平行四边形的周长为________cm.24、如图,在菱形ABCD中,AC与BD相交于O,P是AB上一点,PO=PA=3,则菱形ABCD的周长是________.25、下列函数①y=3x,②2x2+1,③y=x﹣1,④y=2,⑤y=,是一次函数的是________ .(填序号)三、解答题(共5题,共计25分)26、解分式方程:27、如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,长为半径的圆与直线AC,EF,CD 的位置关系分别是什么?28、已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF 交于点M.求证:AE=BF29、已知,AC是□A BCD的对角线,BM⊥AC,DN⊥AC,垂足分别是M、N.求证:四边形BMDN是平行四边形.30、广南到那洒高速公路经过两年多的建设,于6月30日24时正式通车运营,全长的广那高速结束了广南县城不通高速公路的历史.它将有力助推全县全面打赢脱贫攻坚战,从广南到那洒还有一条全长的普通公路,某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快,由高速公路从广南到那洒所需要的时间是由普通公路从广南到那洒所需时间的一半,求该客车由高速公路从广南到那洒需要几小时.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、B6、B7、C8、D9、E10、B11、C12、D13、B14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、24、25、三、解答题(共5题,共计25分)26、27、29、。
沪教版八年级下册数学期末测试卷及含答案(考试直接用)
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为()A. B. C.tanα D.12、下列性质中,菱形具有矩形不一定具有的是()A.对角线相等B.对角线互相平分C.邻边互相垂直D.对角线互相垂直3、下列命题中,不正确的是()A.对角线相等且垂直的四边形是正方形B.有一个角是直角的菱形是正方形C.顺次连接菱形各边中点所得的四边形是矩形D.有一个角是的等腰三角形是等边三角形4、已知在平行四边形ABCD中,∠A=36°,则∠C为()A.18°B.36°C.72°D.144°5、如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形6、池塘里,一只青蛙刚从水里钻出来,同学们开始议论:①青蛙可能会再次钻入水底;②青蛙一定会爬上岸;③青蛙可能会飞上天。
这些说法中正确的有()A.1个B.2个C.3个D.4个7、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8、下列四个分式方程中无解的是().A. B. C. D.9、如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH'L、四边形EKE'A、△BGF的周长分别为C1、C2、C3,且G 1=2G2=4G3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.1110、多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有( ).A.7条B.8条C.9条D.10条11、下面关于平行四边形的说法中错误的是()A.平行四边形的两条对角线相等B.平行四边形的两条对角线互相平分 C.平行四边形的对角相等 D.平行四边形的对边相等12、如图,在平行四边形ABCD中,点O是对角线AC上一点,连结BO,DO,△COD,△AOD,△AOB,△BOC的面积分别是S1, S2, S3, S4。
沪教版八年级下册数学期末测试卷及含答案(典型题)
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲B.此规则有利于小丽C.此规则对两人是公平的D.无法判断2、已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为()A.48B.36C.24D.183、如图,△ABC的三个顶点的坐标分别是:A(0,-2),B(-4,0),C(-4,-4)将△ABC沿射线CA的方向平移至△A'B'C'的位置,此时点A'的横坐标为6,则点B'的坐标为( )A.(2,3)B.(2,4)C.(2,2 )D.(4,6)4、若菱形两条对角线的长分别为12cm和16cm,则这个菱形的周长为()A.10cmB.20cmC.28cmD.40cm5、同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x,y,并以此确定点P(x,y),那么点P 落在抛物线y=-x2+3x上的概率为( )A. B. C. D.6、如图,在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD 于F,则PE+PF的值是()A. B.2 C. D.7、一个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为( )A.6B.7C.8D.98、图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=( )度.A.270°B.300°C.360°D.400°9、两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除了颜色外都相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的概率是()A. B. C. D.10、如图,△ABC中,D,E分别为AB,AC的中点,CD⊥BE于点F.当AB=8,AC=6时,BC的长度为()A.4B.C.D.511、张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是()A.正三角形B.正方形C.正六边形D.正八边形12、如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA 平分∠BED,则的值为()A. B. C. D.13、某公司承担了制作600个上海世博会道路交通指引标志的任务,原计划每天制作x个,实际平均每天比原计划多制作了10个,因此提前5天完成任务。
沪教版2018-2019学年八年级数学(五四学制)下学期期末测试卷及答案
x2 1 1
x
x 0 ,如果设 x 2 1
y ,那么原方程可以化为(▲)
( B) y 2 5y 1 0 ;
(C) 5y2 y 1 0;
(D) 5y2 y 1 0;
3.下列四个方程中,有一个根是
(A) 2
x 0;
x2 2x
x 2 的方程是(▲)
( B) x 2 2 x 0 ;
2
x
(C) x 6 2;
(D) 2 x 3 0;
所示.其中,当睡眠时间不超过 4 小时( 0 t 4 )时,眼睛疲劳系数 y 是睡眠时间 t 的反比例
函数;当睡眠时间不少于 4 小时( 4 t 6)时,眼睛疲劳系数 y 是睡眠时间 t 的一次函数,且
当睡眠时间达到 6 小时后,眼睛疲劳系数为 0. 根据图像,回答下列问题:
(1)求当睡眠时间不少于 4 小时( 4 t 6)时,眼睛疲劳系数
▲ 边形. ▲ 度.
16. 矩形 ABCD 的两条对角线 AC、BD 相交于点 O,已知 AC=12,∠ACB =30o,那么△ DOC 的周 长是 ▲ .
17.如果菱形的两条对角线长分别为 6 和 8,那么这个菱形一边上的高是
▲.
18.在 □ABCD 中, AB=5, BC=7,对角线 AC 和 BD 相交于点 O,如果将点 A 绕着点 O 顺时针
考生注意:
2018-2019 学年第二学期八年级数学期末试卷
(测 试时间 100分钟
满分 100分)
1.本试卷含三个大题,共 26题.答题时,考生务必按答题要 草稿纸、本试卷上答题一律无效.
求在答题纸规定的位置上作答,在
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算 的主要步骤.
沪科版八年级数学下册期末考试试卷(含答案)
沪科版八年级数学下册期末考试试卷(含答案)沪科版八年级数学下册期末考试试卷一.选择题(本大题共6题,满分18分)1.下列函数中,一次函数是()A.y=xB.y=kx+bC.y=x^2-2x+1D.y=(x+3)/(x+2)2.下列判断中,错误的是()A.方程x(x-1)=0是一元二次方程B.方程xy+5x=0是二元二次方程C.方程(x+3)/(x+2)=2是分式方程D.方程2x^2-x=0是无理方程3.已知一元二次方程x^2-2x-m=0有两个实数根,那么m 的取值范围是()A.m≤-1B.m≥-1C.m>-1D.m<-14.下列事件中,必然事件是()A.“奉贤人都爱吃___”B.“2018年上海中考,___数学考试成绩是满分150分” C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只” D.“在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分 D.梯形的对角线互相垂直6.等腰梯形ABCD中,AD//BC。
E、F、G、H分别是AB、BC、CD、AD的中点,那么四边形EFGH一定是()A.矩形B.菱形C.正方形D.等腰梯形二.填空题。
(本大题共12题,每小题2分,共24分)7.一次函数y=2x-1的图像在y轴上的截距为-18.方程(1/4)x-8=0的根是89.方程2x+10-x=1的根是310.一次函数y=kx+3的图像不经过第3象限,那么k的取值范围是k>=-3/411.用换元法解方程2y^2-2y-1=0,如果设x=y-1/2,那么原方程化成以“x”为元的方程是4x^2-3=012.化简:(AB-CD)(-AC-BD)=AD^2-BC^213.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:(1+x)^2=179/10014.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=1215.既是轴对称图形有事中心对称图形的四边形为平行四边形16.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8.S四边形ABCD=16,那么对角线BD=419.给定方程19.x=-1.20.给定方程组:y=4,y=-2或者x=8,x=2.21.给定方程组:1) y=14-x2) 1/222.给定几何图形:1) OD,BO2) AC23.解:假设和谐号速度为x km/h,则复兴号列车速度为(x+70) km/h。
沪教版八年级下册数学期末测试卷及含答案(综合)(名师推荐)
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG 于G,下列结论:①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.42、暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A. B. C. D.3、下列说法正确的是()①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;A.①③B.②④C.③④D.①⑤4、如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形 C.当AC⊥BD时,四边形ABCD是菱形 D.当∠DAB=90°时,四边形ABCD是正方形5、如图,在平面直角坐标系中,若点在直线与轴正半轴、轴正半轴围成的三角形内部,则的值可能是()A.-3B.3C.4D.56、在平面直角坐标系中,已知A,B,C,D四点的坐标依次为(0,0),(6,2),(8,8),(2,6),若一次函数y=mx﹣6m+2(m≠0)图象将四边形ABCD的面积分成1:3两部分,则m的值为()A.﹣4B. ,﹣5C.D. ,﹣47、下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地8、如图,在四边形中,与相交于点,,那么下列条件中不能判定四边形是菱形的为()A.∠OAB=∠OBAB.∠OBA=∠OBCC.AD∥BCD.AD=BC9、如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的()A.点CB.点OC.点ED.点F10、四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有().A.3种B.4种C.5种D.6种11、如果一次函数y=mx+n的图象经过第一、二、四象限,则一次函数y=nx+m不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12、如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A. B. C. D.13、如图,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cmB.4cmC.6cmD.8cm14、如图,在ABCD中AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF =2:3,ABCD的周长为40,则AB的长为()A.8B.9C.12D.1515、如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=58°,则∠CAD 的度数是()A.22°B.29°C.32°D.61°二、填空题(共10题,共计30分)16、若一个多边形内角和等于1260°,则该多边形边数是________ .17、八边形的内角和为________;一个多边形的每个内角都是120°,则它是________边形.18、在弹性限度内,弹簧伸长的长度与所挂物体的质量呈正比,某弹簧不挂物体时长15cm,当所挂物体质量为3kg时,弹簧长16.8cm.写出弹簧长度L (cm)与所挂物体质量x(kg)之间的函数表达式________.19、将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为________.20、欧阳修在《卖油翁》中写道:"(翁)乃取一葫芦置于地,以钱覆其囗,徐以杓酌油沥之,自钱孔入,而钱不湿“。
沪教版八年级下册数学期末测试卷及含答案
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式组的解集为( )A. x<1B. x>2C.0<x<2D.0<x<12、下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨 D.打开电视,正在播放新闻3、若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A. B. C. D.4、一次函数y= x+b(b>0)与y= x﹣1图象之间的距离等于3,则b的值为()A.2B.3C.4D.65、如图,在扇形AOB中,∠AOB=90°,= ,点D在OB上,点E在OB 的延长线上,当正方形CDEF的边长为2 时,则阴影部分的面积为()A.2π﹣4B.4π﹣8C.2π﹣8D.4π﹣46、如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A.14B.16C.17D.187、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B. C. D.8、若正多边形的一个外角的度数为40°,则这个正多边形的边数为()A.7B.8C.9D.109、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A. B. C. D.10、已知菱形的两条对角线长分别为4cm和10cm,则菱形的边长为().A.116cmB.29cmC. cmD. cm11、如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2B.4C.6D.812、已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A.4种B.9种C.13种D.15种13、若正多边形的一个外角是,则该正多边形的内角和为()A. B. C. D.14、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=x+2C.y=x-2D.y=-x-215、下列图形中,不能镶嵌成平面图案的()A.正三角形B.正四边形C.正五边形D.正六边形二、填空题(共10题,共计30分)16、如图,两个正方形的边长分别为a、b,如果a+b=7,ab=10,则阴影部分的面积为________.17、如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x 上.已知OA1=1,则OA2017的长为________.18、如果每盒钢笔有10支,总售价100元,那么购买钢笔的总钱数y(元)与所买支数x之间的关系式为________.19、用40cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3:2,则较长边的长度为________ cm.20、如图,l1表示某个公司一种产品一天的销售收入与销售量的关系,l2表示该公司这种产品一天的销售成本与销售量的关系.当销售量=________时,利润为6万元.21、如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A,B,且与直线l1交于点C,则△BDC的面积为________.22、从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合计A 59 151 166 124 500B 50 50 122 278 500C 45 265 167 23 500早高峰期间,乘坐________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.23、已知关于x的方程的增根是2,则a=________.24、为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的和分别表示去年和今年的水费(元)和用水量()之间的函数关系图象.如果小明家今年和去年都是用水150 ,要比去年多交水费________元.25、如图,已知正方形,O为对角线与的交点,过点O的直线与直线分别交,,,于点E,F,G,H.若,与相交于点M,当,时,则的长为________.三、解答题(共5题,共计25分)26、观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:三个角上三个数的和1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商-2÷2=-1(2)请用你发现的规律求出图④中的数y和图⑤中的数x.27、李明和王军相约周末去野生动物园游玩。
沪教版八年级下册数学期末测试卷及含答案
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法正确的是 ( )A.事件“如果a是实数,那么|a|<0”是必然事件;B.在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖;C.随机抛一枚均匀硬币,落地后正面一定朝上;D.在一副52张扑g牌(没有大小王)中任意抽一张,抽到的牌是6的概率是.2、下列说法中,错误的是 ( )A.平行四边形的对角线互相平分B.矩形的对角线互相垂直C.菱形的对角线互相垂直平分D.正方形的对角线相等3、一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是A. B. C. D.4、如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第n个正方形的边长为()A.nB.(n﹣1)C.()nD.()n﹣15、下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定6、如图,小王在山坡上E处,用高1.5米的测角仪EF测得对面铁塔顶端A的仰角为25°,DE平行于地面BC,若DE=2米,BC=10米,山坡CD的坡度i=1:0.75,坡长CD=5米,则铁塔AB的高度约是()(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47 )A.11.1米B.11.8米C.12.0米D.12.6米7、已知一次函数y1=ax+c和反比例函数y2= 的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是()A. B. C. D.8、如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE ≌△CDF,则添加的条件不能为( )A.BE=DFB.BF=DEC.AE=CFD.∠1=∠29、下列说法中正确是()A.四边相等的四边形是菱形B.一组对边相等,另一组对边平行的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相平分的四边形是菱形10、如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条B.4条C.5条D.6条11、要从y=x的图象得到直线y=,就要将直线y=x()A.向上平移2个单位B.向右平移2个单位C.向上平移个单位 D.向下平移个单位12、已知长方形周长为20cm,设长为cm,则宽为()A.20-xB.C.20-2xD.10-x13、如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.不能确定14、将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°15、下列说法正确的是()A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数C.明天我市会下雨是随机事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖二、填空题(共10题,共计30分)16、如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿AD 方向平移8个单位长度到△A'B'C'的位置,则图中阴影部分面积为________.17、将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=________°18、如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为________ .19、如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出________个平行四边形.20、如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N,∠ACB=45°,AN=1,AF=3,则EF=________.21、已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为________.22、如图,菱形的边长为4,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,直线交于点,连接,则的长为________.23、如果方程会产生增根,那么k的值是________.24、将直线向上平移3个单位长度,所得直线的解析式为________.25、在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是________.三、解答题(共5题,共计25分)26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、小张从家出发去距离9千米的婆婆家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,求小张骑自行车的平均速度.28、小明和小丽用形状大小相同、面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封.游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.29、Rt△ABC中,∠ACB=90°,BC=4,如图1,点P从C出发向点B运动,点R 是射线PB上一点,PR=3CP,过点R作QR⊥BC,且QR=aCP,连接PQ,当P点到达B点时停止运动.设CP=x,△ABC与△PQR重合部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m,m<x≤n时,函数的解析式不同).(1)a的值为;(2)求出S关于x的函数关系式,并写出x的取值范围.30、如图,点E,F分别为正方形ABCD边AB和CD上的中点, BE与AF交于点G.求证:AD2=DG·DE参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、D5、C6、D7、B8、C9、A10、D11、C12、D13、B14、B15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
沪教版八年级下册数学期末测试卷及含答案(必刷题)
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A.,B.C. ,, D. ,2、如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,判断下列叙述何者正确()A.O是△AEB的外心,O是△AED的外心B.O是△AEB的外心,O不是△AED的外心C.O不是△AEB的外心,O是△AED的外心D.O不是△AEB的外心,O不是△AED的外心3、如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P运动的时间x (单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为()A.O→B→A→OB.O→A→C→OC.O→C→D→OD.O→B→D→O4、如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A.2个B.4个C.6个D.8个5、函数(a≠0)与y=a(x﹣1)(a≠0)在同一平面直角坐标系中的大致图象是()A. B. C. D.6、把直线y=﹣5x+6向下平移6个单位长度,得到的直线的解析式为()A.y=﹣x+6B.y=﹣5x﹣12C.y=﹣11x+6D.y=﹣5x7、如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S28、已知四边形ABCD,以下有四个条件:(1)AB=AD,AB=BC;(2)∠A=∠B,∠C=∠D;(3)AB∥CD,AB=CD;(4)AB ∥CD,AD∥BC,其中能判定四边形ABCD是平行四边形的有( )个A.1B.2C.3D.49、如图,将一个长为10cm,宽为8cm的矩形纸片横向对折,再纵向对折后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的图形的面积为( )A.10cm 2B.20cm 2C.40cm 2D.80cm 210、如图,四边形ABCD沿直线l对折后重合,如果,则结论①ABCD;②AB=CD;③;④中正确的是()A.1个B.2个C.3个D.4个11、如图,四边形AOBC和四边形CDEF都是正方形,边OA在y轴上,边OB在x轴上,点F在边AC上,反比例函数y=在第一象限的图象经过点E,则正方形AOBC和正方形CDEF的面积之差为()A.12B.10C.6D.412、在下列函数中,其图象与x轴没有交点的是()A.y=2xB.y=﹣3x+1C.y=x 2D.y=13、已知四边形ABCD,有以下四个条件:⑴AB=AD,AB=BC;(2)∠A=∠B,∠C=∠D;(3)AB∥CD,AB=CD;(4)AB∥CD,AD∥BC.其中能判定四边形ABCD是平行四边形的个数为().A.1B.2C.3D.414、在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠B+∠D=120°D.∠C+∠A =120°15、将一次函数y=2x-3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x-5B.y=2x+5C.y=2x+8D.y=2x-8二、填空题(共10题,共计30分)16、如图,在平行四边形ABCD中,点E在DA的延长线上,且,连接CE交BD于点F,交AB于点G,则的值是________.17、菱形ABCD中,对角线AC=6,BD=8,则菱形的面积为________.18、如图,□ABCD的对角线AC在y轴上,原点O为AC的中点,点D在第一象限内,AD∥x轴,当双曲线y=经过点D时,则□ABCD面积为________.19、如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于________20、某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为________.21、如图,在平面直角坐标系xOy中,直线AB经过点A(﹣4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为________.22、把直线绕原点旋转180 ,所得直线的解析式为________.23、在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,则PE和PC的长度之和最小可达到________.24、已知一次函数y=ax+b(a≠0)和y=kx(k≠0)图象交点坐标为(2,﹣3),则二元一次方程组的解是________25、如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1, S2, S3,则S1,S 2, S3之间的关系是 ________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
沪教版八年级下册数学期末测试卷及含答案A4版打印
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时到达M 地,发现汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间不计),乙车到达M地后用20分钟修好甲车,又以原速原路返回,同时甲车以原来1.5倍的速度前往B市.如图时两车相距A市的路程y(单位:千米)与甲车行驶时间(单位:小时)之间的函数图象,下列四中说法:①甲车提速后的速度是60千米/时;②乙车的速度是96千米/时;③点C的坐标是(,80);④当甲车到达B地时,乙车已返回A市小时.其中正确的个数是()A.1个B.2个C.3个D.4个2、函数y=ax﹣a与y= (a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.3、已知点A,B分别在反比例函数y=(x>0),y=(x>0)的图像上且OA⊥OB,则tanB为( )A. B. C. D.4、矩形具有而菱形不具有的性质是()A.对角相等B.对角线互相垂直C.对角线相等D.对边平行5、如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是-1,则对角线AC,BD的交点表示的数()A.5.5 B.5 C.6 D.6.56、已知,平面直角坐标系中,直线y1=x+3与抛物线y=- 的图象如图,点P是y2上的一个动点,则点P到直线y1的最短距离为()A. B. C. D.7、能判定一个四边形是菱形的条件是()A.对角线相等且互相垂直B.对角线相等且互相平分C.对角线互相垂直D.对角线互相垂直平分8、如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP =EF;②∠PFE=∠BAP;③PD= EC;④△APD一定是等腰三角形.其中正确的结论有A.1个B.2个C.3个D.4个9、某林业部门要查某种幼树在一定条件的移植成活率.在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如下表:移植总数(n)成活数(m)成活的频率()10 8 0.8050 47 0.94270 235 0.870400 369 0.923750 662 0.8831500 1335 0.893500 3203 0.9157000 6335 0.9059000 8073 0.89714000 12628 0.902所以可以估计这种幼树移植成活的概率为()A.0.1B.0.2C.0.8D.0.910、清晨,小刚沿着一个五边形广场周围的小路按逆时针方向跑步,他每跑完一圈,身体转过的角度之和是()A. B. C. D.11、矩形具有而菱形不具有的性质是()A.两组对边分别平行且相等B.两组对角分别相等C.相邻两角互补D.对角线相等12、如图,随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡同时发光的概率为()A. B. C. D.13、如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数(k≠0,x>0)的图象上,点D 的坐标为(﹣4,1),则k的值为()A. B. C.4 D.﹣414、若一个多边形每一个内角都是135°,则这个多边形的边数是()A.6B.8C.10D.1215、在下列正多边形组合中,不能铺满地面的是()A.正八边形和正方形B.正五边形和正八边形C.正六边形和正三角形D.正三角形和正方形二、填空题(共10题,共计30分)16、如图,平行四边形ABCD中,∠ABC=72°,AF⊥BC于点F,AF交BD于点E,若DE=2AB, 则∠AED=________.17、平行四边形 ABCD 的两边 AB,AD 的长是关于 x 的方程的两个实数根,当四边形ABCD是菱形,这时菱形的边长为________.18、如图,直角梯形ABCD中,相互平行的直线有________对,相互垂直的直线有________对.19、如图,在梯形ABCD中,AD∥BC,AB=DC,AC⊥BD于点O,过点A作AE⊥BC 于点E,若BC=2AD=8,则tan∠ABE=________20、在正n边形中,若一个内角等于一个外角的3倍,则边数n的值是________.21、在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,连接OD.当∠DOA=∠OBA时,直线CD的解析式为________22、如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为________.23、如图,在三角形ABC中,∠ACB=90°,M,N分别是AB、AC的中点,延长BC至点D,使CD= BD,连结DM、DN、MN。
沪科版八年级下学期期末考试数学试卷含答案
沪科版八年级下学期期末考试数学试卷含答案1、下列根式不是最简二次根式的是()A。
$10$ B。
$a^2+b^2$ C。
$\frac{1}{3}$ D。
$xy$2、化简$x\cdot\frac{-1}{x}$,正确的是()A。
$-x$ B。
$-\frac{x}{1}$ C。
$-\frac{1}{x}$ D。
$--x$3、方程$x(x+1)=x+1$的解是()A。
$x_1=0$,$x_2=-1$ B。
$x=1$ C。
$x_1=x_2=1$ D。
$x_1=1$,$x_2=-1$4、关于$x$的方程$mx^2+(2m+1)x+m=0$,有实数根,则$m$的取值范围是()A。
$m>-\frac{1}{4}$ 且 $m\neq0$ B。
$m\geq-\frac{1}{4}$ C。
$m\geq-\frac{1}{4}$ 且 $m\neq0$ D。
以上答案都不对5、有下列的判断:①$\triangle ABC$中,如果$a^2+b^2\neq c^2$,那么$\triangle ABC$不是直角三角形②$\triangle ABC$中,如果$a^2-b^2=c^2$,那么$\triangle ABC$是直角三角形③如果$\triangle ABC$是直角三角形,那么$a^2+b^2=c^2$以下说法正确的是()A。
①② B。
②③ C。
①③ D。
②6、定义:如果一元二次方程$ax^2+bx+c\neq0$满足$a+b+c=0$,那么我们称这个方程为“和谐”方程;如果一元二次方程$ax^2+bx+c\neq0$满足$a-b+c=0$,那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A。
方程有两个相等的实数根 B。
方程有一根等于$\frac{1}{2}$ C。
方程两根之和等于$-\frac{b}{a}$ D。
方程两根之积等于$\frac{c}{a}$7、三角形两边的长分别是$8$和$6$,第三边的长是方程$x^2-12x+20=0$的一个实数根,则三角形的周长是()A。
【最新】沪教版八年级下册数学期末测试卷及含答案
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A.6或-6B.6C.-6D.6或32、如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=2,则平行四边形ABCD的周长是()A.2B.4C.4D.83、当我们借助模拟试验估计“6个人中有2人生肖相同”这一事件发生的概率时,如果实验工具是一个可以自由转动的转盘,以下哪些问题是必须注意的?()①转盘转动的方向;②转盘是否被平均分成12份;③每转动6次为一组实验;④试验的次数.A.①②B.③④C.②③④D.①②③④4、从五边形的一个顶点出发,可以画出条对角线,它们将五边形分成个三角形.则、的值分别为()A.1,2B.2,3C.3,4D.4,45、如图,一人站在两等高的路灯之间走动,为人在路灯照射下的影子,为人在路灯照射下的影子.当人从点走向点时两段影子之和的变化趋势是()A.先变长后变短B.先变短后变长C.不变D.先变短后变长再变短6、如图,四边形ABCD是平行四边形,点N是AB上一点,且BN=2AN,AC、DN相交于点M,则S△ADM :S四边形CMNB的值为()A.3:11B.1:3C.1:9D.3:107、投一个均匀的正六面体骰子(6个面上分别刻有1点至6点),有下述说法:①朝上一面的点数是奇数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数.将上述事件按可能性大小,从小到大排列为()A.①②③④B.②①③④C.④①③②D.④③①②8、如图,在平面直角坐标系中,四边形是菱形,∠B=60°,反比例函数的图象经过点,若将菱形向下平移2个单位,点恰好落在反比例函数的图象上,则反比例函数的表达式为()A. B. C. D.9、如图,在矩形中,对角线相交于点,且,则图中长度为3的线段有()A.2条B.4条C.5条D.6条10、将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为()A. y=3x+4B. y=3x-4C. y=3(x+4)D. y=3(x-4)11、已知在▱ABCD中,∠A+∠C=100°,则∠A等于()A.40°B.50°C.80°D.100°12、如图,在扇形中,已知,,过的中点C 作,,垂足分别为D、E,则图中阴影部分的面积为()A. B. C. D.13、下列说法中,不正确的是()A.一次函数不一定是正比例函数B.正比例函数是一次函数的特例C.不是正比例函数就不是一次函数D.不是一次函数就不是正比例函数14、直线y=2﹣x与y=﹣x+ 的位置关系是()A.平行B.相交C.重合D.不确定15、过一个多边形的一个顶点可以引9条对角线,那么这个多边形的内角和是()A.1620°B.1800°C.1980°D.2160°二、填空题(共10题,共计30分)16、已知多边形的内角和等于外角和的两倍,则这个多边形的边数为________。
上海市八年级下学期数学期末考试试卷(五四制)
上海市八年级下学期数学期末考试试卷(五四制)姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共11分)1. (1分)定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*3=6,则2*3=________.2. (1分) (2017七下·龙海期中) 方程组的解是,则关于x的不等式bx+3a≥0的非负整数解是________.3. (1分) (2018八上·武汉月考) 如图,已知AC=AD,要证明△ABC≌△ABD,还需添加的一个条件是________.(只添一个条件即可)4. (1分) (2016七上·乳山期末) 如图,AB∥EF,∠C=∠D=85°,CF=BD,若∠A=40°,则∠EFD=________.5. (1分)(2016·太仓模拟) 已知多边形的每个内角都等于135°,求这个多边形的边数是________.(用两种方法解决问题)6. (1分)(2019·北京) 把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为________.7. (1分) (2017八下·无锡期中) 如图,面积为28的平行四边形纸片ABCD中,AB=7,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E 为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC 同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为________.8. (1分) (2019九上·温州开学考) 不等式组有4个整数解,则m的取值范围是________.9. (1分) (2018八上·路南期中) 等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为________.10. (2分) (2017八上·滕州期末) 如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=________.二、单选题 (共10题;共20分)11. (2分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为()A . 13B . 15C . 18D . 13或1812. (2分) (2020八下·龙湖期末) 点P(x, y )在第一象限内,且 x+y =6,点 A (4,0).设的面积为 S ,则下列图像中,能正确反映 S 与之间的函数关系式的图像是()A .B .C .D .13. (2分)在“体育中考”的某次模拟测试中,某校某班10名学生测试成绩统计如图.对于这10名学生的参赛成绩,下列说法中错误的是()A . 众数是28B . 中位数是28C . 平均数是27.5D . 极差是814. (2分)(2019·江汉) 不等式组的解集在数轴上表示正确的是()A .B .C .D .15. (2分)如图,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必须添加一个条件,则下列所添条件不恰当的是().A . BD=CEB . ∠ABD=∠ACEC . ∠BAD=∠CAED . ∠BAC=∠DAE16. (2分)对于数据:80,88,85,85,83,83,84.下列说法中错误的有()(1).这组数据的平均数是84 (2).这组数据的众数是85(3).这组数据的中位数是84 (4).这组数据的方差是36A . 1个B . 2个C . 3个D . 4个17. (2分)下列方程中2x﹣3y=1,x+y2=5,﹣=2,x﹣y=z,不是二元一次方程的有()个.A . 1B . 2C . 3D . 418. (2分)(2016·新疆) 如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A . ∠A=∠DB . BC=EFC . ∠ACB=∠FD . AC=DF19. (2分)(2018·河北) 有三种不同质量的物体“ ”“ ”“ ”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A .B .C .D .20. (2分) (2017八上·老河口期中) 点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列不符合题意的是()A . PQ>5B . PQ≥5C . PQ<5D . PQ≤5三、综合题 (共8题;共66分)21. (10分) (2018七下·钦州期末) 解下列方程组:(1)(2)22. (5分) (2017八下·延庆期末) 2017年6月17日北京国际自行车大会召开,来自世界各地的4000多名骑游爱好者齐聚夏都延庆.各种自行车赛事也带动了延庆的骑游产业.据调查,延庆区某骑游公司每月的租赁自行车数的增长率相同,今年四月份的骑游人数约为9000人,六月份的骑游人数约为16000人,求该骑游公司租赁自行车数的月平均增长率(精确到0.01).23. (11分) (2020八下·横县期末) 音乐老师对歌咏训练队的学生进行唱功,音乐常识,综合知识测试,其中甲,乙两名选手的成绩统计如下:测试项目测试成绩(分)甲乙唱功9586音乐常识8087综合知识8091(1)如果认为唱功,音乐常识,综合知识成绩同等重要,谁的成绩更好?(2)如果对唱功,音乐常识,综合知识分别赋权6,3,1,谁的成绩更好?24. (5分)如图所示,已知AB∥CD,∠AOG=45°,∠CDE=80°,求∠GDE的度数.25. (5分)已知点P(x,y)的坐标满足方程(x+3)2+ =0,求点P分别关于x轴,y轴以及原点的对称点坐标.26. (10分) (2018八上·广东期中) 如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.27. (10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?28. (10分)(2020·定兴模拟) 如图1和图2,矩形ABCD中,E是AD的中点,P是BC上一点,AF∥PD,∠FPE=∠DPE.(1)作射线PE交直线AF于点G,如图1.①求证:AG=DP;②若点F在AD下方,AF=2,PF=7,求DP的长.(2)若点F在AD上方,如图2,直接写出PD,AF,PF的等量关系.参考答案一、填空题 (共10题;共11分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、单选题 (共10题;共20分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、综合题 (共8题;共66分)21-1、21-2、22-1、23-1、23-2、24-1、25-1、26-1、26-2、27-1、27-2、28-1、28-2、第11 页共11 页。
(有一套)沪教版八年级下册数学期末测试卷及含答案
沪教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知的周长为32cm,对角线、相交于点O,若的周长比的周长大4cm,则的长是().A.4cmB.6cmC.8cmD.10cm2、将分别标有“海”、“口”、“美”、“丽”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回,再随机接出一球.两次摸出的球上的汉字能组成“海口”的概率是()A. B. C. D.3、直线y=-2x+a经过(3,y1)和(-2,y2),则y1与y2的大小关系是()A.y1> y2B.y1< y2C.y1= y2D.无法确定4、现有甲,乙两种机器人都被用来搬运某体育馆室内装潢材料甲型机器人比乙型机器人每小时少搬运30kg,甲型机器人搬运600kg所用的时间与乙型机器人搬运800kg所用的时间相同,两种机器人每小时分别搬运多少kg?设甲型机器人每小时搬运xkg,根据题意,可列方程为( )A. =B. =C. =D.=5、如图,在平面直角坐标系中,四边形ABCD是平行四边形,点B的坐标是(5,0),BC=2,∠DOB=45°,则顶点C的坐标是()A.(6,1)B.(6,)C.(5+,1)D.(5+,)6、由图中所表示的已知角的度数,可知∠α的度数为()A.80°B.70°C.60°D.50°7、下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形8、如图,已知直线与的交点的横坐标为,根据图象有下列3个结论:①;②;③是不等式的解集其中正确的个数是()A.0,B.1,C.2,D.39、如图,▱ABCD中,E是边DC上一点,AE交BD于F,若DE=2,EC=3,则△DEF与△BAF的周长之比为()A.3:2B.2:3C.2:5D.3:510、在平面直角坐标系内,A,B,C三点的坐标为(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11、如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A 恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8C.9D.1012、有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积()A.4a 2B.4a 2﹣abC.4a 2+abD.4a 2﹣ab﹣2b 213、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合? AB∥CD BC∥AD AB=CD BC=AD()A.2组B.3组C.4组D.6组14、如图,在平行四边形ABCD中,BC=10,AC=14,BD=8,则△BOC的周长是()A.21B.22C.25D.3215、如图,⊙O是△ABC的内切圆,D,E是切点,∠A=50°,∠C=60°,则∠DOE=()A.70°B.110°C.120°D.130°二、填空题(共10题,共计30分)16、甲箱中装有3个篮球,分别标号为1,2,3;乙箱中装有2个篮球.分别标号为1,2,现分别从每个箱中随机取出1个篮球,则取出的两个篮球的标号之和为3的概率是________.17、如图,将一张等腰直角三角形沿中位线剪成一个三角形与一个梯形后,则这两个图形可能拼成的平面四边形是________.(不许重合、折叠)18、将直线y=2x-5向上平移2个单位,所得直线解析式为________ .19、如图,E是矩形ABCD边AD上一点,以DE为直径向矩形内部作半圆O,AB=4 ,OD=2,点G在矩形内部,且∠GCB=30°,GC=2 ,过半圆弧(含点D,E)上动点P作PF⊥AB于点F.当△PFG是等边三角形时,PF的长是________.20、如图,长方形ABCD中,AB=12, BC= 15,E是BC上一点,且BE=3,F 为AB上一个动点,连接EF,将EF绕着点E顺时针旋转45°,到EG的位置,连接CG,则CG的最小值为________ .21、如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有________(填序号).22、若一个正方形的面积为a2+a+ ,则此正方形的周长为________.23、小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中________的可能性较小.24、如图,已知直线与直线相交于点(2,-2),由图象可得不等式的解集是________。
沪教版八年级下册数学期末测试卷(学生专用)
沪教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有()A.1个B.2个C.3个D.4个2、如图,已知矩形,,,点、分别是,上的点,点、分别是,的中点,当点在上从向移动而点不动时,若,则().A. B. C. D.不能确定3、如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0B.x<0C.x>1D.x<14、如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.4B.6C.8D.95、如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=54°,则∠BCE的度数为()A.54°B.36°C.46°D.126°6、下列关于向量的说法中,不正确的是()A.2( + )=2 +2B.|2 |=2| |C.若=k (k为实数),则∥D.若| |=2| |,则=2 或=-27、如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④8、小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.149、抛掷一枚质地均匀的硬币5000次,正面朝上的次数最有可能为()A.1500B.2000C.2500D.300010、如图,已知在矩形ABCD中,AB=1,BC= ,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1页随之运动。
沪教版八年级下册数学期末测试卷(全优)
沪教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在▱ABCD中,BC=7,CD=5,∠D=50°,BE平分∠ABC,则下列结论中不正确的是()A.∠C=130°B.AE=5C.∠BED=130°D.ED=22、宽和长的比为的矩形称为黄金矩形,如图,黄金矩形中,宽,将黄金矩形沿折叠,使得点C落在点A处,点D落在点处,则的面积为()A. B. C. D.3、如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE =36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A.①②③④B.①④C.②③④D.①②③4、有一个袋子里装有6个红球,5个白球,1个黑球,每个球除了颜色外,其他都相同,任意摸出一个球,则最有可能摸到的是()A.红球B.白球C.黑球D.无法确定5、小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公g的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公g且自备容器,需支付295元;阿嘉购买咖啡豆x公g但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A. B. C. D.6、如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,∠AOD=60°,则AB的长为()A.4B.2C.8D.87、菱形相邻两角的比为1:2,那么它们的较长对角线与边长的比为()A.2:3B.C.2:1D.8、在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有()A.5个B.10个C.15个D.45个9、如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=( )A. B. C.2 D.110、若一个多边形的外角和与它的内角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形11、设M(m,n)在反比例函数y=﹣上,其中m是分式方程﹣1=的根,将M点先向上平移4个单位,再向左平移1个单位,得到点N.若点M,N都在直线y=kx+b上,直线解析式为()A.y=﹣x﹣B.y= x+C.y=4x﹣5D.y=﹣4x+512、若函数y=(a-5)x1-b+b是一次函数,则a、b应满足的条件是().A.a=5且b≠0B.a=5且b=0C.a≠5且b≠0D.a≠5且b=013、如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,若AD=2AB,则下列结论错误的是( )A.四边形EFGH为菱形B.S四边形ABCD =2S四边形EFGHC.D.14、如图,顺次连接四边形ABCD各边中点,得到四边形EFGH,在下列条件中可使四边形EFGH为菱形的是()A.AB=CDB.AC=BDC.AC丄BDD.AD∥BC15、已知A,B,C三点的坐标分别为(3,3),(8,3),(4,6),若以A,B,C,D四点为顶点的四边形是平行四边形,则D点的坐标不可能是()A.(﹣1,6)B.(9,6)C.(7,0)D.(0,﹣6)二、填空题(共10题,共计30分)16、如图,AC、BD是平行四边形ABCD的对角线,设= ,= ,那么向量用向量表示为________.17、如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=________ cm.18、如图是某公司一销售人员的个人月收入y(元)与其每月的销售量x(千件)的函数关系图象,则当此销售人员的销售量为4千件时,月收入是________元.19、如图,正方形ABCD的边长为4cm,点E,F分别是BC,CD的中点,连结BF,DE,则图中阴影部分的面积是________cm2.20、如图以直角三角形ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6 ,则AC=________21、如图,将正方形ABCD沿BM,CN(M,N为边AD上的点)向正方形内翻折,点A与点D均落在P点处,连结AC,AP,则________.22、如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是________.23、在□a2□2ab□b2的三个空格中,顺次填上“+”或“﹣”,恰好能构成完全平方式的概率是________.24、一个多边形从一个顶点向其余各顶点连接对角线有27条,则这个多边形的边数为________ .25、如图,已知△ABC中,∠BAC=90°,AB=AC=6.D为BC边一点,且BD∶DC=1∶2,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为________三、解答题(共5题,共计25分)26、,若方程无解,求m的值27、如图所示,在▱ABCD中,对角线AC与BD相交于点O,过点O任作一条直线分别交AB,CD于点E,F.求证:OE=OF.28、新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,求甲、乙两厂每天能生产口罩多少万只?29、如图,已知E,F分别是▱ABCD的边BC、AD上的点,且BE=DF求证:四边形AECF是平行四边形.30、在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、A5、B6、A7、D8、C9、B10、B11、D12、D13、C14、E15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级第二学期期末考试数学试卷(满分100分,考试时间90分钟) 2011.6题号 一 二 三四 总分 得分一、选择题:(本大题共6题,每题3分,满分18分) 1. 直线3+=x y 与y 轴的交点坐标是( )(A )(0,3); (B )(0,1); (C )(3,0); (D )(1,0). 2. 1=x 是下列哪个方程的根( )(A )05.0)1(=--x x ; (B )0623=-x ; (C )01=+x ; (D )1112+=+x x x . 3. 某校计划修建一条400米长的跑道,开工后每天比原计划多修10米,结果提前2天完成任务. 如果设原计划每天修x 米,那么根据题意可列出方程( )(A )210400400=--x x ; (B )240010400=--x x ;(C )210400400=+-x x ;(D )240010400=-+xx .4. 下列四个命题中,假命题为( ) (A )对角线互相平分的四边形是平行四边形; (B )对角线相等且互相平分的四边形是正方形; (C )对角线互相垂直的平行四边形是菱形; (D )对角线相等的梯形是等腰梯形.5. 下列事件属于必然事件的是( )(A )10只鸟关在3个笼子里,至少有1个笼子里关的鸟超过3只; (B )某种彩票的中奖概率为1001,购买100张彩票一定中奖; (C )掷一枚骰子,点数为6的一面向上;(D )夹在两条互相平行的直线之间的线段相等.6. 已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( )(A )90D =∠; (B )AB CD =; (C )AD BC =; (D )BC CD =. 二、填空题(本大题共12题,每题2分,满分24分) 7. 已知12)(-=x x f ,且3)(=a f ,则=a .8. 已知点)0,2(-A 在直线2+=kx y 上,=k .9. 已知一次函数y kx b =+的图像如图1所示.当2<x 时,y 的取值范围是 .10.如果b a ≠,那么关于x 的方程22)b a x b a -=-(的解为x = . 11.如果关于x 的无理方程x m x =+2有实数根1=x ,那么m 的值为 . 12.如果一个n 边形的内角和等于︒1080,那么n = .13.已知平行四边形ABCD 的面积为4,O 为两条对角线的交点,那么AOB △的面积是 . 14.既是轴对称图形又是中心对称图形的平行四边形为 .(填写一种情况即可) 15.如图2.在矩形ABCD 中,AC 和BD 相交于点O ,AB AC 2=.则AOD ∠的度数等于 .16.如图3.菱形ABCD 中,︒=∠130A ,M 在BD 上,MC MB =.则MCB ∠的度数等于 . 17.一个等腰梯形的三条边的长分别为3cm 、4cm 、11cm ,则其中位线长为 cm . 18.如图4.已知正方形ABCD ,点E 在边DC 上,3=DE ,1=EC .联结AE ,点F 在射线AB 上,且满足AE CF =,则A 、F 两点的距离为 . 三、简答题(本大题共4题,每题8分,满分32分) 19.解方程:02232=----x x x x . 解:20.解方程组:⎪⎩⎪⎨⎧=+-=-.0404222xy x y x ,解:21.如图5.向量a AB =,向量b BC =,c BD =. (1)求作:b a +;(2)求作:c a -. (不写画法,可以在图5的基础上画图) .22.为了帮助小亮学习,小明设计了六张形状、大小、质地都相同的学习卡片:已知在编号为①、②、③、④、⑤、⑥的六张卡片中,有两个命题是假命题.现将这六张卡片背面向上洗匀,摆放在桌子上.请在相应的横线上填写答案.(1)如果从上述六张卡片中随机抽取一张,问小亮抽到假命题的概率是 ; (2)小亮所抽取的假命题卡片的编号可能是 ;(3)如果从上述六张卡片中随机抽取两张,问小亮抽到的命题皆为假命题的概率是 . 四、解答题(本大题共3题,满分26分)23.(本题满分9分)甲车从A 地出发以60km/h 的速度沿公路匀速行驶.5.0小时后,乙车也从A地出发,以80km/h 的速度沿该公路与甲车同向匀速行驶.(1)设乙车出发之后行驶的时间为x (小时),分别写出甲车、乙车行驶路程1y 、2y (千米)与乙车行驶时间x (小时)之间的函数关系式;(2)利用(1)中建立的函数关系式,求乙车出发后几小时追上甲车.24.(本题满分9分)如图6.在平行四边形ABCD 中,O 为对角线的交点,点E 为线段BC 延长线上的一点,且BC CE 21.过点E 作EF ∥CA ,交CD 于点F ,联结OF . (1)求证:OF ∥BC ;(2)如果梯形OBEF 是等腰梯形,判断四边形ABCD 的形状,并给出证明.25.(本题满分8分,第(1)小题2分;第(2)小题各3分;第(3)小题3分)已知:如图7.四边形ABCD 是菱形,6=AB ,︒=∠=∠60MAN B .绕顶点A 逆时针旋转MAN ∠,边AM 与射线BC 相交于点E (点E 与点B 不重合),边AN 与射线CD 相交于点F . (1)当点E 在线段BC 上时,求证:CF BE =;(2)设x BE =,ADF △的面积为y .当点E 在线段BC 上时,求y 与x 之间的函数关系式,写出函数的定义域;(3)联结BD ,如果以A 、B 、F 、D 为顶点的四边形是平行四边形,求线段BE 的长.参考答案一、选择题:(本大题共6题,每题3分,满分18分) 1、A ;2、D ;3、C ;4、B ;5、A ;6、D.二、填空题(本大题共12题,每题2分,满分24分)7、2=a ;8、1=k ;9、0<y ;10、b a x +=;11、1-;12、8;13、1;14、矩形(或菱形或正方形);15、︒120;16、︒25;17、27(若出现215或7,扣1分);18、1或7. 三、简答题(本大题共4题,每题8分,满分32分) 19.解:设y xx =-2,则原方程可化为 023=--y y .………………………………1分两边同时乘以y ,整理得 0322=--y y . ………………………………1分 解这个关于y 的方程,得 31=y ,12-=y . ………………………………2分(1)当3=y 时,得方程32=-xx . 去分母、整理,得 22-=x .解得 1-=x . ………………………………1分(2)当1-=y 时,得方程12-=-xx .去分母、整理,得 22=x .解得 1=x . ………………………………1分 经检验,1=x 和1-=x 都是原方程的根. ………………………………1分所以,原方程的根为11=x ,12-=x . ………………………………1分20.解方程组:⎪⎩⎪⎨⎧=+-=-0404222xy x y x解:由方程①,得02=+y x 或02=-y x . ………………………………2分将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=+-=+04,022xy x y x 或(Ⅱ)⎩⎨⎧=+-=-.04,022xy x y x ………………………………2分方程组(Ⅰ),无实数解; ………………………………1分 解方程组(Ⅱ),得 ⎩⎨⎧==;4,2y x ⎩⎨⎧-=-=.4,2y x ………………………………2分 所以,原方程组的解是⎩⎨⎧==;4,211y x ⎩⎨⎧-=-=.4,222y x ………………………………1分 21. 解:(1)b a AC +=;算式2分,图形2分.①②(2).c a EB -=算式2分,图形2分. 其他作法,参照标准评分. 22.解:(1)31;……………2分 (2)⑤号或⑥号;……………2分 (3)151.……………4分 四、解答题(本大题共3题,满分26分)23.解:(1)甲车行驶路程1y 与乙车行驶时间x (小时)之间的函数关系式为: 30601+=x y ;………………2分乙车行驶路程2y 与乙车行驶时间x (小时)之间的函数关系式为:x y 802=.………2分 (2)依据题意,得 306080+=x x .…………………………2分 解这个方程 得 5.1=x .………………………………1分答:甲车、乙车行驶路程1y 、2y (千米)与乙车行驶时间x (小时)之间的函数关系式分别为30601+=x y ,x y 802=;乙车出发5.1小时后追上甲车.………………1分24.解:(1)方法1:延长EF 交AD 于G (如图1).……………1分 在平行四边形ABCD 中,AD ∥BC ,BC AD =. ∵EF ∥CA ,EG ∥CA , ∴四边形ACEG 是平行四边形. ∴ CE AG =.……………1分又∵BC CE 21=,BC AD =, ∴ GD AD BC CE AG ====2121.……………1分∵AD ∥BC ,∴ECF ADC ∠=∠. 在CEF △和DGF △中,∵DFG CFE ∠=∠,ECF ADC ∠=∠,DG CE =,∴CEF △≌DGF △(A.A.S ). ∴DF CE =.…………………1分 ∵四边形ABCD 是平行四边形,∴OD OB =.∴OF ∥BE . ………………1分方法2:将线段BC 的中点记为G ,联结OG (如图2). ………………1分 ∵四边形ABCD 是平行四边形,∴OD OB =.∴OG ∥CD . …………………1分 ∴FCE OGC ∠=∠.∵EF ∥CA ,∴FEC OCG ∠=∠.∵BC GC 21=,BC CE 21=,∴CE GC =.在OGC △和FCE △中,∵FEC OCG ∠=∠,CE GC =,FCE OGC ∠=∠,∴OGC △≌FCE △(A.S.A ). …………………1分 ∴FC OG =. 又∵OG ∥CF ,∴四边形OGCF 是平行四边形. …………………1分∴OF ∥GC . …………………1分 其他方法,请参照上述标准酌情评分.(2)如果梯形OBEF 是等腰梯形,那么四边形ABCD 是矩形. ……………1分 ∵OF ∥CE ,EF ∥CO ,∴四边形OCEF 是平行四边形. ∴OC EF =.……………1分又∵梯形OBEF 是等腰梯形,∴EF BO =. ∴OC OB =.(备注:使用方法2的同学也可能由OGC △≌FCE △找到解题方法;使用方法1的同学也可能由四边形ACEG 是平行四边形找到解题方法).∵四边形ABCD 是平行四边形,∴OC AC 2=,BO BD 2=. ∴BD AC =.……………1分∴平行四边形ABCD 是矩形. ……………1分 25.解:(1)联结AC (如图1).由四边形ABCD 是菱形,︒=∠60B ,易得: BC BA =,︒=∠=∠60DAC BAC , ︒=∠=∠60ACD ACB . ∴ABC △是等边三角形.∴AC AB =.…………………………1分 又∵︒=∠+∠60MAC BAE ,︒=∠+∠60MAC CAF , ∴ CAF BAE ∠=∠.…………1分 在ABE △和ACF △中,∵CAF BAE ∠=∠,AC AB =,ACF B ∠=∠, ∴ABE △≌ACF △(A.S.A ).∴CF BE =.………………………………1分(2)过点A 作CD AH ⊥,垂足为H (如图2)在ADH △Rt 中,︒=∠60D ,︒=︒-︒=∠306090DAH , ∴362121=⨯==AD DH . 33362222=-=-=DH AD AH .………………1分又x BE CF ==,x DF -=6, ∴)33()6(21⨯-⨯=x y , 即 39233+-=x y (60<<x ).……2分 (3)如图3,联结BD ,易得 ︒=∠=∠3021ADC ADB . 当四边形BDFA 是平行四边形时,AF ∥BD .∴ ︒=∠=∠30ADC FAD .…………………………1分 ∴︒=︒-︒=∠303060DAE ,︒=︒-︒=∠9030120BAE .在ABE △Rt 中,︒=∠60B ,︒=∠30BEA ,6=AB . 易得:12622=⨯==AB BE .…………………………1分初中数学试卷金戈铁骑 制作。