2018-2019衡阳数学押题试卷训练试题(2套)附答案

合集下载

2018年湖南省衡阳市高考数学二模试卷(理科)

2018年湖南省衡阳市高考数学二模试卷(理科)

2018年湖南省衡阳市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z =a2−i+3−4i 5的实部与虚部之和为1,则实数a 的值为( )A.2B.1C.4D.32. 下列说法错误的是( )A.“若x ≠2,则x 2−5x +6≠0”的逆否命题是“若x 2−5x +6=0,则x =2”B.“x >3”是“x 2−5x +6>0”的充分不必要条件C.“∀x ∈R ,x 2−5x +6≠0”的否定是“∃x 0∈R,x 02−5x 0+6=0”D.命题:“在锐角△ABC 中,sinA <cosB ”为真命题3. “今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一颗芦苇生长在池塘的正中央.露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A.1213B.113C.314D.2134. 如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.83B.43C.163D.85. 已知双曲线的两个焦点为F 1(−√10,0)F 2(√10,0),M 是此双曲线上的一点,且满足MF 1→∗MF 2→=0,|MF 1→|∗|MF 2→|=2,则该双曲线的焦点到它的一条渐近线的距离为( )A.3B.13C.12D.16. 已知函数f(x)=12sin2x+√32cos2x,把函数f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得到的曲线向左平移π6各单位长度,得到函数g(x)的图象,则函数g(x)的对称中心是()A.(2kπ+π6,0),k∈ZB.(2kπ+π2,0),k∈ZC.(kπ+π2,0),k∈ZD.(kπ+π4,0),k∈Z7. 泰九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例.若输人n,x的值分別为4,5,则输出υ的值为()A.211B.100C.1048D.10558. 在△ABC中,∠A=120∘,AB→∗AC→=−3,点G是△ABC的重心,则|AG→|的最小值是()A.2 3B.√63C.√23D.539. 若函数f(x)=dax2+bx+c(a, b, c, d∈R)的图象如图所示,则下列说法正确的是()A.a>0,b>0,c>0,d>0B.a>0,b>0,c>0,d<0C.a>0,b<0,c>0,d>0D.a>0,b<0,c>0,d<010. 在△ABC中,已知a2+b2−c2=4S(S为△ABC的面积),若c=√2,则a−√22b 的取值范围是()A.(0,√2)B.(−1, 0)C.(−1,√2)D.(−√2,√2)11.当n为正整数时,定义函数N(n)表示n的最大奇因数.如N(3)=3,N(10)=5,⋅⋅⋅,S(n)=N(1)+N(2)+N(3)+⋅⋅⋅+N(2n),则S(5)=()A.342B.345C.341D.34612. 已知e为自然对数的底数,设函数f(x)=12x2−ax+blnx存在极大值点x0,且对于a的任意可能取值,恒有极大值f(x0)<0,则下列结论中正确的是()A.存在x0=√b,使得f(x0)<−12eB.存在x0=√b,使得f(x0)>−e2C.b的最大值为e3D.b的最大值为2e2二、填空题(每题5分,满分20分,将答案填在答题纸上)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x+x,则f(log25)=________.设0<m≤1,在约束条件{x+2y≤m2x+y≥−1x−y≤0下,目标函数z=3x−2y的最小值为−5,则m的值为________.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C交于A,B两点,p2=0交于C,D两点,若|AB|=3|CD|,则直线l的斜率且直线l与圆x2−px+y2−34为________.在四棱锥S−ABCD中,底面ABCD是边长为4的正方形,侧面SAD是以SD为斜边的等腰直角三角形,若4√2≤SC≤8,则四棱锥S−ABCD的体积取值范围为________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)等差数列{a n}中,a3=1,a7=9,S n为等比数列{b n}的前n项和,且b1=2,若4S1,3S2,2S3成等差数列.(1)求数列{a n},{b n}的通项公式;(2)设C n=|a n|⋅b n,求数列{C n}的前n项和T n.如图,EA⊥平面ABC,DB⊥平面ABC,△ABC是等边三角形,AC=2AE,M是AB的中点.(1)证明:CM⊥DM;,求二面角B−CD−E的正弦值.(2)若直线DM与平面ABC所成角的余弦值为√55某钢管生产车间生产一批钢管,质检员从中抽出若干根对其直径(单位:mm)进行测量,得出这批钢管的直径X服从正态分布N(65, 4.84).(1)当质检员随机抽检时,测得一根钢管的直径为73mm,他立即要求停止生产,检查设备,请你根据所学知识,判断该质检员的决定是否有道理,并说明判断的依据;(2)如果钢管的直径X满足60.6mm−69.4mm为合格品(合格品的概率精确到0.01),现要从60根该种钢管中任意挑选3根,求次品数Y 的分布列和数学期望.(参考数据:若X −N(μ, σ2),则P(μ−σ<X ≤μ+σ)=0.6826;P(μ−2σ<X ≤μ+2σ)=0.9544;P(μ−3σ<X ≤μ+3σ)=0.9974.已知椭圆C:x 2a +y 2b=1(a >b >0)的离心率为√32,倾斜角为30∘的直线l 经过椭圆C 的右焦点且与圆E:x 2+y 2=34相切.(1)求椭圆C 的方程;(2)若直线y =kx +m(k ≠0)与圆E 相切于点P ,且交椭圆C 于A ,B 两点,射线OP 于椭圆C 交于点Q ,设△OAB 的面积于△QAB 的面积分别为S 1,S 2. ①求S 1的最大值;②当S 1取得最大值时,求S 1S 2的值.已知函数f(x)=sinx −x +mx 3(m ∈R). (1)当m =0时,证明:f(x)>−e x ;(2)当x ≥0时,函数f(x)单调递增,求m 的取值范围. [选修4-4:坐标系与参数方程]已知直线l 的参数方程为{x =tcosαy =tsinα (其中t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ2−2mρcosθ−4=0(其中m >0).(1)若点M 的直角坐标为(3, 3),且点M 在曲线C 内,求实数m 的取值范围;(2)若m =3,当α变化时,求直线l 被曲线C 截得的弦长的取值范围. [选修4-5:不等式选讲]已知a >0,b >0,c >0.若函数f(x)=|x +a|+|x −b|+c 的最小值为4. (1)求a +b +c 的值;(2)求1a +1b +1c 的最小值.参考答案与试题解析2018年湖南省衡阳市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【考点】复数的运算【解析】利用复数代数形式的乘除运算化简,再由已知列关于a的方程求解.【解答】∵z=a2−i +3−4i5=a(2+i)(2−i)(2+i)+3−4i5=2a+ai5+3−4i5=2a+35+a−45i,由题意可知,2a+35+a−45=1,解得a=2.2.【答案】D【考点】命题的真假判断与应用【解析】A,根据逆否命题的定义判断命题正确;B,根据充分、必要条件的定义判断即可;C,根据全称命题的否定是特称命题判断即可;D,举例说明该命题是假命题即可.【解答】对于A,根据逆否命题的定义知,命题“若x≠2,则x2−5x+6≠0”,它的逆否命题是“若x2−5x+6=0,则x=2”,∴A正确;对于B,“x2−5x+6>0”的充要条件是“x<2或x>3”,∴“x>3”是“x2−5x+6>0”的充分不必要条件,∴B正确;对于C,根据特称命题的否定定义知,命题“∀x∈R,x2−5x+6≠0”,它的否定是“∃x0∈R,x02−5x0+6=0”,∴C正确;对于D,“锐角△ABC中,sinA<cosB”是假命题,如A=B=π3时,sinπ3>cosπ3,∴D错误.3.【答案】B【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】设水深为x尺,根据勾股定理求出水深12尺,芦苇长13尺,根据几何概型概率公式能求出从芦苇上随机取一点,该点取自水上的概率.【解答】设水深为x 尺,根据勾股定理得:(x +1)2=x 2+52, 解得x =12,∴ 水深12尺,芦苇长13尺, 根据几何概型概率公式得:从芦苇上随机取一点,该点取自水上的概率为p =113. 4.【答案】 A【考点】由三视图求体积 【解析】根据三视图知该几何体是三棱锥,结合图中数据求出它的体积. 【解答】根据三视图知,该几何体是以俯视图为底面的三棱锥,且侧面PAC ⊥底面ABC , 如图所示;结合图中数据,计算该三棱锥的体积为 V =13S △ABC ℎ=13×12×4×2×2=83.5.【答案】 D【考点】 双曲线的特性 【解析】由已知MF 1⊥MF 2,所以(|MF 1|−|MF 2|)2=|MF 1|2−2|MF 1|⋅|MF 2|+|MF 2|2=40−2×2=36,由此得到a =3,即可求出渐近线方程,根据点到直线的距离公式即可求出. 【解答】∵ MF 1→⋅NF 2→=0,∴ MF 1⊥MF 2,∴ |MF 1|2+|MF 2|2=40,∴ (|MF 1|−|MF 2|)2=|MF 1|2−2|MF 1|⋅|MF 2|+|MF 2|2=40−2×2=36, ∴ ||MF 1|−|MF 2||=6=2a ,a =3, 又c =√10,∴ b 2=c 2−a 2=1, ∴ b =1,∴ 双曲线的渐近线方程为y =±13x ,∴ 该双曲线的焦点到它的一条渐近线的距离为√10√1+9=1,6.【答案】 C【考点】三角函数中的恒等变换应用函数y=Asin (ωx+φ)的图象变换 【解析】利用辅助角公式化简,根据平移变换规律可得g(x)的解析式,即可求解函数g(x)的对称中心. 【解答】函数f(x)=12sin2x +√32cos2x =sin(2x +π3);函数f(x)的图象上所有点的横坐标伸长到原来的2倍可得:y =sin(x +π3); 再把所得到的曲线向左平移π6各单位长度,可得y =sin(x +π6+π3)=cosx . 即g(x)=cosx .根据余弦函数的性质可得:其对称中心为(kπ+π2, 0),k ∈Z . 7.【答案】 D【考点】 程序框图 【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量v 的值,模拟程序的运行过程,可得答案. 【解答】模拟程序的运行,可得:x =5,n =4,v =1,i =3,满足进行循环的条件,v =8,i =2, 满足进行循环的条件,v =42,i =1, 满足进行循环的条件,v =211,i =0, 满足进行循环的条件,v =1055,i =−1不满足进行循环的条件,输出的v 值为:1055. 8.【答案】 B【考点】两向量的和或差的模的最值平面向量数量积的性质及其运算律 【解析】根据题意,由AB →⋅AC →=−3结合数量积的计算公式可得|AB →||AC →|=6,又由向量的三角形法则可得AG →=13(AB →+AC →),进而由向量模的计算公式可得|AG →|2=19(AB →+AC →)2=19(|AB →|2+|AC →|2+2AB →⋅AC →)=19(|AB →|2+|AC →|2−6),进而由基本不等式的性质可得|AG →|≥√63,即可得答案. 【解答】根据题意,△ABC 中,∠A =120∘,AB →∗AC →=−3,则有AB →⋅AC →=|AB →||AC →|cos120∘=−3,变形可得|AB →||AC →|=6, 点G 是△ABC 的重心,则AG →=13(AB →+AC →),则|AG →|2=19(AB →+AC →)2=19(|AB →|2+|AC →|2+2AB →⋅AC →)=19(|AB →|2+|AC →|2−6)≥19(2|AB →||AC →|−6)=23, 则|AG →|≥√63|AG →|的最小值是√63; 9.【答案】 D【考点】函数的图象变化 【解析】根据图象可先判断出分母的分解析,然后利用特殊点再求出分子即可. 【解答】由图象可知,x ≠1,5,∴ 分母必定可以分解为k(x −1)(x −5), a =k ,b =−6k ,c =5k , ∵ 在x =3时有y =2, ∴ d =−8k ,∴ a ,c 同号b ,d 同号; 10.【答案】 C【考点】 余弦定理 正弦定理正弦函数的定义域和值域 【解析】利用余弦定理以及三角形的面积求出C ,由正弦定理,通过两角和与差的三角函数以及三角形角A 的范围即可求得范围. 【解答】解:∵ 根据余弦定理得a 2+b 2−c 2=2abcosC ,△ABC 的面积S =12absinC , ∴ 由a 2+b 2−c 2=4S ,得tanC =1, ∵ 0<C <π, ∴ C =π4;∵ 由正弦定理asinA =bsinB =√2√22=2,可得:a =2sinA ,b =2sinB =2sin(3π4−A),∴ a −√22b =2sinA −√2sin(3π4−A)=sinA −cosA =√2sin(A −π4),∵ 0<A <3π4,可得:−π4<A −π4<π2,可得:−√22<sin(A −π4)<1, ∴ a −√22b =√2sin(A −π4)的范围为(−1, √2).故选C .11.【答案】 A【考点】进行简单的合情推理 【解析】 此题暂无解析 【解答】解:∵ N(2n)=N(n),N(2n −1)=2n −1, 而S(n)=N(1)+N(2)+N(3)+⋯+N(2n ),∴ S(n)=N(1)+N(3)+N(5)+⋯+N(2n −1)+[N(2)+N(4)+⋯+N(2n )], ∴ S(n)=1+3+5+⋯+2n −1+[N(1)+B(2)+N(3)+⋯+N(2n−1)], ∴ S(n)=1+2n −12×2n 2+S(n −1)(n ≥2)⇒S(n)−S(n −1)=4n−1,又∵ S(1)=N(1)+N(2)=1+1=2,∴ S(5)−S(1)=[S(5)−S(4)]+[S(4)−S(3)]+⋯+[S(2)−S(1)] =4+42+43+44⇒S(5)=2+4+42+43+44=342. 故选A . 12.【答案】 C【考点】利用导数研究函数的极值 【解析】求函数的导数,根据函数存在极小值等价为f′(x)=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可. 【解答】函数的定义域为(0, +∞), 则函数的导数f′(x)=x −a +bx ,若函数f(x)存在极大值点x 0,则f′(x)=0有解,即x 2−ax +b =0有两个不等的正根, {△=a 2−4b >0x 1+x 2=a >0x 1x 2=b >0⇒a >2√b,b >0. 由f′(x)=0得x 1=a−√a 2−4b 2,x 2=a+√a 2−4b 2,分析易得f(x)的极大值点为x 1=x 0,∵ a >2√b ,(b >0), ∴ x 1=x 0=2∈(0, √b),则f(x)极大值=f(x0)=12x02−ax0+blnx0=12x02−x02−b+blnx0=−12x02+blnx0−b,设g(x)=blnx−12x2−b,x∈(0, √b),f(x)的极大值恒小于0等价为g(x)恒小于0,∵g′(x)=bx −x=b−x2x>0,∴g(x)在(0, √b)上单调递增,故g(x)<g(√b)=bln√b−32b≤0,得ln√b≤32,即b≤e3,故b的最大值为是e3,二、填空题(每题5分,满分20分,将答案填在答题纸上)【答案】135【考点】函数奇偶性的性质【解析】此题暂无解析【解答】解:由f(x)+g(x)=2x+x⇒f(−x)+g(−x)=2−x−x,由函数f(x),g(x)分别是定义在R上的偶函数和奇函数,得f(x)−g(x)=2−x−x,联立方程消元即得f(x)=2x+2−x2,∴f(log25)=5+152=135.故答案为:135.【答案】1【考点】简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,数形结合确定最优解,代入直线方程求得m的值.【解答】作出不等式组对应的平面区域如图所示:由z=3x−2y得y=32x−12z,0<m≤1,∴直线x+2y=m是斜率为−12的一组平行线,平移直线y=32x−12z,由图象可知当直线y=32x−12z,经过点A时,直线y=32x−12z的截距最大,此时z的最小为−5,即3x −2y =−5,由{x +2y =m2x +y =−1 ,解得{x =−2−m3y =2m+13 , 即A(−2−m 3, 2m+13),此时A 也在直线3x −2y =−5上, 则3⋅−2−m 3−2⋅2m+13=−5,解得m =1.故答案为:1.【答案】 ±√22【考点】 圆与圆锥曲线的综合问题 抛物线的应用直线和圆的方程的应用 【解析】设l 斜率为k ,根据弦长公式计算|AB|,根据|CD|=2p 和|AB|=3|CD|列方程计算k . 【解答】解:圆x 2−px +y 2−34p 2=0的圆心为F(p2, 0),半径为p , ∴ |CD|=2p ,设直线l 的斜率为k ,则直线l 的方程为:y =kx −kp 2,代入y 2=2px ,可得:k 2x 2−(k 2p +2p)x +k 2p 24=0,设A(x 1, y 1),B(x 2, y 2),则x 1+x 2=p +2pk 2, ∴ |AB|=x 1+x 2+p =2p(1+k 2)k 2,∴2p(1+k 2)k 2=6p ,解得k =±√22.故答案为:±√22. 【答案】[32√33,643brack【考点】柱体、锥体、台体的体积计算【解析】由题意可知,平面SAB⊥平面ABCD,当SC=4√2时,四棱锥S−ABCD的高最小,当SC=8时,可知SA⊥AC,结合SA⊥AD,可得SA⊥平面ABCD,则四棱锥高最大,分别求出对应的高,则四棱锥S−ABCD的体积取值范围可求.【解答】如图,由题意可知,平面SAB⊥平面ABCD,当SC=4√2时,过S作SO⊥AB,垂足为O,连接AC,OC,设OA=x,在△OAC中,由余弦定理可得OC2=x2+(4√2)2−2×4√2x×√22=x2−8x+32,在Rt△SOA中,有OS2=SA2−x2=16−x2,在Rt△SOC中,有OS2+OC2=SC2,即16−x2+x2−8x+32=32,求得x=2.∴OS=√42−22=2√3.此时(V S−ABCD)min=13×16×2√3=32√33;当SC=4时,∵SA2+AC2=SC2,可知SA⊥AC,结合SA⊥AD,可得SA⊥平面ABCD,则(V S−ABCD)max=13×16×4=643.∴四棱锥S−ABCD的体积取值范围为:[32√33,643brack.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)【答案】在等差数列列中,设公差为d,a7−a3=4d=9−1=8,∴d=2,∴a n=a3+(n−3)d=1+2(n−3)=2n−5.设等比数列{b n}的公比为q,依题有:6S2=4S1+2S3,即6(2+2q)=8+2(2+2q+2q2),解得:q=2,∴b n=2n.∵c n=|2n−5|∗2n.当n=1,T1=|a1|⋅b1=6,n=2,T2=T1+|a2|⋅b2=10.当n≥3时,2n−5>0,T n=10+1×23+3×24+⋯+(2n−7)2n−1+(2n−5)2n,①2T n=20+1×24+3×25+⋯+(2n−7)2n+(2n−5)2n+1,②①-②可得:−T n=−2+2(24+25+...+2n)−(2n−5)⋅2n+1=−34+(7−2n)⋅2n+1.∴T n=34+(2n−7)⋅2n+1.∴T n={6,n=110,n=234+(2n−7)2n+1,n≥3.【考点】 数列的求和 数列递推式 【解析】(1)根据条件求出公差和公比,得出通项公式; (2)讨论a n 的符号,利用错位相减法求和. 【解答】在等差数列列中,设公差为d ,a 7−a 3=4d =9−1=8,∴ d =2, ∴ a n =a 3+(n −3)d =1+2(n −3)=2n −5.设等比数列{b n }的公比为q ,依题有:6S 2=4S 1+2S 3, 即6(2+2q)=8+2(2+2q +2q 2),解得:q =2, ∴ b n =2n .∵ c n =|2n −5|∗2n .当n =1,T 1=|a 1|⋅b 1=6, n =2,T 2=T 1+|a 2|⋅b 2=10.当n ≥3时,2n −5>0,T n =10+1×23+3×24+⋯+(2n −7)2n−1+(2n −5)2n ,①2T n =20+1×24+3×25+⋯+(2n −7)2n +(2n −5)2n+1,②①-②可得:−T n =−2+2(24+25+...+2n )−(2n −5)⋅2n+1=−34+(7−2n)⋅2n+1.∴ T n =34+(2n −7)⋅2n+1. ∴ T n ={6,n =110,n =234+(2n −7)2n+1,n ≥3.【答案】证明:∵ △ABC 是等边三⻆角形,M 是AB 的中点,∴ CM ⊥MB , ∵ DB ⊥平面ABC ,CM ⊂平面ABC ,∴ DB ⊥CM , ∵ DB ∩MB =B ,∴ CM ⊥平面DMB , 又DM ⊂平面DMB ,∴ CM ⊥DM ;以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴,过M 且与直线BD 平行的直线为z 轴, 建⽴立如图所示的空间直⻆角坐标系M −xyz .∵ DB ⊥平面ABC ,∴ ∠DMB 为直线DM 与平面ABC 所成的角. 由题意得cos∠DMB =MB DM=√55,∴ tan∠DMB =BDMB =2,即BD =2MB ,从而BD =AC .不妨设AC =2,又AC =2AE ,则CM =√3,AE =1. 故B(0, 1, 0),C(√3, 0, 0),D(0, 1, 2),E(0, −1, 1).于是BC →=(√3,−1,0),BD →=(0,0,2),CE →=(−√3,−1,1),CD →=(−√3,1,2), 设平面BCD 与平面CDE 的法向量分别为m →=(x 1,y 1,z 1),n →=(x 2,y 2,z 2),由{m →∗BC →=0m →∗BD →=0 ⇒{√3x 1−y 1=02z 1=0 ,令x 1=1,得y 1=√3,∴ m →=(1,√3,0); 由{n →∗CE →=0n →∗CD →=0 ⇒{−√3x 2−y 2+z 2=0−√3x 2+y 2+2z 2=0 ,令x 2=1,得y 2=−√33,z 2=2√33,∴ n →=(1,−√33,2√33).∴ cos <m →,n →>=m →∗n→|m →|∗|n →|=0.故二面角B −CD −E 的正弦值为1.【考点】二面角的平面角及求法 【解析】(1)由△ABC 是等边三⻆角形,M 是AB 的中点,可得CM ⊥MB ,由DB ⊥平面ABC ,得DB ⊥CM ,利用线面垂直的判定可得CM ⊥平面DMB ,从而得到CM ⊥DM ;(2)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴,过M 且与直线BD 平行的直线为z 轴,建⽴立如图所示的空间直⻆角坐标系M −xyz .由已知可得BD =AC .不妨设AC =2,又AC =2AE ,则CM =√3,AE =1.分别求出平面BCD 与平面CDE 的一个法向量,由两法向量所成角的余弦值可得二面角B −CD −E 的正弦值. 【解答】证明:∵ △ABC 是等边三⻆角形,M 是AB 的中点,∴ CM ⊥MB , ∵ DB ⊥平面ABC ,CM ⊂平面ABC ,∴ DB ⊥CM , ∵ DB ∩MB =B ,∴ CM ⊥平面DMB , 又DM ⊂平面DMB ,∴ CM ⊥DM ;以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴,过M 且与直线BD 平行的直线为z 轴, 建⽴立如图所示的空间直⻆角坐标系M −xyz .∵ DB ⊥平面ABC ,∴ ∠DMB 为直线DM 与平面ABC 所成的角. 由题意得cos∠DMB =MB DM=√55,∴ tan∠DMB =BDMB =2,即BD =2MB ,从而BD =AC .不妨设AC =2,又AC =2AE ,则CM =√3,AE =1. 故B(0, 1, 0),C(√3, 0, 0),D(0, 1, 2),E(0, −1, 1).于是BC →=(√3,−1,0),BD →=(0,0,2),CE →=(−√3,−1,1),CD →=(−√3,1,2), 设平面BCD 与平面CDE 的法向量分别为m →=(x 1,y 1,z 1),n →=(x 2,y 2,z 2),由{m →∗BC →=0m →∗BD →=0⇒{√3x 1−y 1=02z 1=0 ,令x 1=1,得y 1=√3,∴ m →=(1,√3,0);由{n →∗CE →=0n →∗CD →=0 ⇒{−√3x 2−y 2+z 2=0−√3x 2+y 2+2z 2=0 ,令x 2=1,得y 2=−√33,z 2=2√33, ∴ n →=(1,−√33,2√33). ∴ cos <m →,n →>=m →∗n→|m →|∗|n →|=0.故二面角B −CD −E 的正弦值为1.【答案】∵ μ=65,σ=2.2,μ−3σ=58.4,μ+3σ=71.6, ∴ P(X >71.6)=1−P(58.4<X≤71.6)2=1−0.99742=0.0013.∴ 测得一根钢管的直径为73mm 为⽴概率事件, 故该质检员的决定有道理.∵ μ=65,σ=2.2,μ−2σ=60.6,μ+2σ=69.4,∴ P(60.6≤X ≤69.6)=0.9544,故该批钢管为合格品的概率约为0.95,∴ Y ∼B(3, 0.05),且P(Y =k)=C 3k ⋅0.05k ⋅0.953−k ,k =0,1,2,3.∴ 次品数Y 的分布列列为:∴ E(Y)=3×0.05=0.15. 【考点】二项分布与n 次独立重复试验的模型两点分布二项分布超几何分布的期望与方差 正态分布的密度曲线 【解析】(1)计算P(X >μ+3σ)的概率,比较73与μ+3σ的大小得出结论; (2)求出合格品的概率,根据二项分布得出分布列和数学期望. 【解答】∵ μ=65,σ=2.2,μ−3σ=58.4,μ+3σ=71.6, ∴ P(X >71.6)=1−P(58.4<X≤71.6)2=1−0.99742=0.0013.∴ 测得一根钢管的直径为73mm 为⽴概率事件, 故该质检员的决定有道理.∵ μ=65,σ=2.2,μ−2σ=60.6,μ+2σ=69.4,∴ P(60.6≤X ≤69.6)=0.9544,故该批钢管为合格品的概率约为0.95,∴ Y ∼B(3, 0.05),且P(Y =k)=C 3k ⋅0.05k ⋅0.953−k ,k =0,1,2,3.∴ 次品数Y 的分布列列为:∴ E(Y)=3×0.05=0.15. 【答案】依题直线l 的斜率k =tan30∘=√33.设直线l 的方程为y =√33(x −c),可得:√12+(√3)2=√32,可得c=√3.又ca =√32,a 2=b 2+c 2,联立解得a =2,b =1. ∴ 椭圆的方程为:x 24+y 2=1.由直线y =kx +m(k ≠0)与圆E 相切得:√1+k2=√32⇒4m 2=3k 2+3.设A(x 1, y 1),B(x 2, y 2).将直线y =kx +m(k ≠0)代入椭圆C 的方程得: (1+4k 2)x 2+8kmx +4m 2−4=0,△=64k 2m 2−4(1+4k 2)(4m 2−4)=4(16k 2−4m 2+4). ∵ 4m 2=3k 2+3.∴ △=4(13k 2+1)>0, 且x 1+x 2=−8km1+4k 2,x 1x 2=4m 2−41+4k 2.∴ |AB|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2 =√(1+k 2)[64k 2m 2(1+4k 2)2−4(4m 2−4)1+4k 2brack =√1+k 2⋅2√13k 2+11+4k 2.①设点O 到直线l 的距离为d =√1+k 2, 故△OAB 的面积为:S 1=12|AB|d =12|m||x 1−x 2|=√(3k 2+3)(13k 2+1)2(3k 2+1)≤(3k 2+3)+(13k 2+1)4(4k 2+1)=1,当3k 2+3=13k 2+1⇒k 2=15.等号成立.故S 1的最大值为1.②设Q(x 3, y 3),由直线y =kx +m(k ≠0)与圆E 相切于点P ,可得OQ ⊥AB , ∴ {y =−1k x x 24+y 2=1 ,可得:x 32=4k 24+k 2,y 32=44+k 2. ∴ |OQ|=√x 32+y 32=√4k 24+k2+44+k2=2√k 2+14+k2=2√147. ∵ |OP|=√32,∴ |PQ|=|OQ|−|OP|=2√47−√32,∴ S 1S2=12|OP||AB|12|PQ||AB|=|OP||PQ|=4√42+2111. 【考点】椭圆的定义 【解析】(1)依题直线l 的斜率k =tan30∘=√33.设直线l 的方程为y =√33(x −c),可得:√12+(√3)2=√32,可得c=√3.又c a =√32,a 2=b 2+c 2,联立解得即可得出.(2)由直线y =kx +m(k ≠0)与圆E 相切得:2=√32⇒4m 2=3k 2+3.设A(x 1, y 1),B(x 2, y 2).将直线y =kx +m(k ≠0)代入椭圆C 的方程得:(1+4k 2)x 2+8kmx +4m 2−4=0,△>0,根据根与系数的关系可得:|AB|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2=√1+k 2⋅2√13k 2+11+4k 2.设点O 到直线l 的距离为d =√1+k 2,可得△OAB 的面积S 1=12|AB|d .②设Q(x 3, y 3),由直线y =kx +m(k ≠0)与圆E 相切于点P ,可得OQ ⊥AB ,{y =−1k x x 24+y 2=1,可得:x 32=4k 24+k 2,y 32=44+k 2.可得|OQ|=√x 32+y 32,由|OP|=√32,|PQ|=|OQ|−|OP|=2√47−√32,即可得出S 1S 2.【解答】依题直线l 的斜率k =tan30∘=√33.设直线l 的方程为y =√33(x −c),可得:√12+(√3)2=√32,可得c=√3.又ca =√32,a 2=b 2+c 2,联立解得a =2,b =1. ∴ 椭圆的方程为:x 24+y 2=1.由直线y =kx +m(k ≠0)与圆E 相切得:2=√32⇒4m 2=3k 2+3.设A(x 1, y 1),B(x 2, y 2).将直线y =kx +m(k ≠0)代入椭圆C 的方程得: (1+4k 2)x 2+8kmx +4m 2−4=0,△=64k 2m 2−4(1+4k 2)(4m 2−4)=4(16k 2−4m 2+4). ∵ 4m 2=3k 2+3.∴ △=4(13k 2+1)>0, 且x 1+x 2=−8km1+4k 2,x 1x 2=4m 2−41+4k 2.∴ |AB|=√1+k 2|x 1−x 2|=√1+k 2√(x 1+x 2)2−4x 1x 2 =√(1+k 2)[64k 2m 2(1+4k 2)2−4(4m 2−4)1+4k 2brack =√1+k 2⋅2√13k 2+11+4k 2.①设点O 到直线l 的距离为d =2, 故△OAB 的面积为:S 1=12|AB|d =12|m||x 1−x 2|=√(3k 2+3)(13k 2+1)2(3k 2+1)≤(3k 2+3)+(13k 2+1)4(4k 2+1)=1,当3k 2+3=13k 2+1⇒k 2=15.等号成立.故S 1的最大值为1.②设Q(x 3, y 3),由直线y =kx +m(k ≠0)与圆E 相切于点P ,可得OQ ⊥AB , ∴ {y =−1k x x 24+y 2=1 ,可得:x 32=4k 24+k ,y 32=44+k 2.∴ |OQ|=√x 32+y 32=√4k 24+k2+44+k2=2√k 2+14+k 2=2√147. ∵ |OP|=√32,∴ |PQ|=|OQ|−|OP|=2√47−√32, ∴ S 1S 2=12|OP||AB|12|PQ||AB|=|OP||PQ|=4√42+2111. 【答案】证明:当m =0时,即证:e x −x +sinx >0,∵ e x −x +sinx ≥e x −x −1,令g(x)=e x −x −1,则g′(x)=e x −1,当x >0时,有g′(x)>0. 当x >0时,g(x)单调递增;当x <0时,有g′(x)<0.当x <0时,g(x)单调递减,∴ g(x)≥g(0)=0. 由于e x −x +sinx ≥e x −x −1与g(x)≥g(0),取等号的条件不一致, ∴ e x −x +sinx >0(此问可以参考如图理解).∴ f(x)>−e x . 依题f′(x)=cosx −1+3mx 2≥0在x ≥0上恒成立,令F(x)=cosx −1+3mx 2,F(0)=0,F′(x)=6mx −sinx ,又令H(x)=x −sinx ⇒H′(x)=1−cosx ≥0,所以当x ≥0时,H(x)在(0, +∞)上单调递增,∴ H(x)≥H(0)=0,因此sinx ≤x(x ≥0)⇒−sinx ≥−x , ∴ F′(x)≥6mx −x =(6m −1)x ,讨论:①当m ≥16,x ≥0时,F′(x)≥0,F(x)单调递增;∴ F(x)≥F(0)=0,符合题意 ③当m ≤0时,F(π2)=−1+3m(π2)2<0,不符合题意,舍去.③当0<m <16,F ″(x)=6m −cosx ,F ″(0)=6m −1<0,$F^{"}(\frac{\pi}{2}) = 6m > 0$,∴ $F^{''}(0) \cdot F^{"}(\frac{\pi}{2}) < 0$.∴ ∃x 1,使得F ″(x 1)=0,当x ∈(0, x 1)时,F ″(x)<0,∴ F′(x)在(0, x 1)时单调递减,当x ∈(0, x 1)时,F′(x)<F′(0)=0,∴ F(x)在(0, x 1)单调递减, ∴ F(x)<F(0)=0,不符合题意舍去. 综上:m ≥16.【考点】利用导数研究函数的单调性 【解析】 (1):当m =0时,即证:e x −x +sinx >0,由于e x −x +sinx ≥e x −x −1,令g(x)=e x −x −1,利用导数研究其单调性即可得出.(2)依题f′(x)=cosx −1+3mx 2≥0在x ≥0上恒成立,令F(x)=cosx −1+3mx 2,F(0)=0,F′(x)=6mx −sinx ,令H(x)=x −sinx ,利用导数研究其单调性可得:sinx ≤x(x ≥0)⇒−sinx ≥−x ,于是F′(x)≥6mx −x =(6m −1)x ,通过对m 分类讨论即可得出. 【解答】证明:当m =0时,即证:e x −x +sinx >0,∵ e x −x +sinx ≥e x −x −1,令g(x)=e x −x −1,则g′(x)=e x −1,当x >0时,有g′(x)>0. 当x >0时,g(x)单调递增;当x <0时,有g′(x)<0.当x <0时,g(x)单调递减,∴ g(x)≥g(0)=0. 由于e x −x +sinx ≥e x −x −1与g(x)≥g(0),取等号的条件不一致, ∴ e x −x +sinx >0(此问可以参考如图理解).∴ f(x)>−e x . 依题f′(x)=cosx −1+3mx 2≥0在x ≥0上恒成立,令F(x)=cosx −1+3mx 2,F(0)=0,F′(x)=6mx −sinx ,又令H(x)=x −sinx ⇒H′(x)=1−cosx ≥0,所以当x ≥0时,H(x)在(0, +∞)上单调递增,∴ H(x)≥H(0)=0,因此sinx ≤x(x ≥0)⇒−sinx ≥−x , ∴ F′(x)≥6mx −x =(6m −1)x ,讨论:①当m ≥16,x ≥0时,F′(x)≥0,F(x)单调递增;∴ F(x)≥F(0)=0,符合题意 ③当m ≤0时,F(π2)=−1+3m(π2)2<0,不符合题意,舍去.③当0<m <16,F ″(x)=6m −cosx ,F ″(0)=6m −1<0,$F^{"}(\frac{\pi}{2}) = 6m > 0$,∴ $F^{''}(0) \cdot F^{"}(\frac{\pi}{2}) < 0$.∴ ∃x 1,使得F ″(x 1)=0,当x ∈(0, x 1)时,F ″(x)<0,∴ F′(x)在(0, x 1)时单调递减,当x ∈(0, x 1)时,F′(x)<F′(0)=0,∴ F(x)在(0, x 1)单调递减, ∴ F(x)<F(0)=0,不符合题意舍去. 综上:m ≥16.[选修4-4:坐标系与参数方程]【答案】曲线C 的极坐标方程为ρ2−2mρcosθ−4=0(其中m >0). 由{x =ρcosθy =ρsinθ, 得:曲线C 对应的直⻆角坐标⽴方程为:(x −m)2+y 2=m 2+4由点M 在曲线C 的内部, ∴ (3−m)2+9<m 2+4, 求得实数m 的取值范围为(73,+∞).直线l 的极坐标⽴方程为θ=α,代入曲线C 的极坐标⽴方程整理理得ρ2−6ρcosα−4=0,设直线l 与曲线C 的两个交点对应的极径分别为ρ1,ρ2,ρ1+ρ2=6cosα,ρ1ρ2=−4, 则直线l 截得曲线C 的弦长为:试卷第21页,总22页 |ρ1−ρ2|=√(ρ1+ρ2)2−4ρ1ρ2=√36cos 2α+16ϵ[4,2√13brack . 即直线l 与曲线C 截得的弦长的取值范围是[4,2√13brack .【考点】参数方程与普通方程的互化【解析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化. (2)利用直线和圆的位置关系建立极径的方程,进一步求出参数的取值范围.【解答】曲线C 的极坐标方程为ρ2−2mρcosθ−4=0(其中m >0).由{x =ρcosθy =ρsinθ, 得:曲线C 对应的直⻆角坐标⽴方程为:(x −m)2+y 2=m 2+4由点M 在曲线C 的内部, ∴ (3−m)2+9<m 2+4,求得实数m 的取值范围为(73,+∞).直线l 的极坐标⽴方程为θ=α,代入曲线C 的极坐标⽴方程整理理得ρ2−6ρcosα−4=0,设直线l 与曲线C 的两个交点对应的极径分别为ρ1,ρ2,ρ1+ρ2=6cosα,ρ1ρ2=−4, 则直线l 截得曲线C 的弦长为:|ρ1−ρ2|=√(ρ1+ρ2)2−4ρ1ρ2=√36cos 2α+16ϵ[4,2√13brack . 即直线l 与曲线C 截得的弦长的取值范围是[4,2√13brack .[选修4-5:不等式选讲]【答案】∵ f(x)=|x +a|+|x −b|+c ≥|(x +a)−(x −b)|+c =|a +b|+c =a +b +c ; 当且仅当−a ≤x ≤b 时,等号成立;∴ f(x)的最小值为a +b +c ;∴ a +b +c =4;(1a +1b +1c )(a +b +c)≥(√1a ∗√a +√1b ∗√b +√1c ∗√c)2=9; ∴ 1a +1b +1c ≥94;∴ 1a +1b +1c 的最小值为94.【考点】基本不等式【解析】(1)可得到|x +a|+|x −b|+c ≥a +b +c ,从而得出a +b +c =4; (2)根据柯西不等式即可求出1a +1b +1c 的最小值.【解答】∵ f(x)=|x +a|+|x −b|+c ≥|(x +a)−(x −b)|+c =|a +b|+c =a +b +c ; 当且仅当−a ≤x ≤b 时,等号成立;∴ f(x)的最小值为a +b +c ;∴ a +b +c =4;(1a +1b +1c )(a +b +c)≥(√1a ∗√a +√1b ∗√b +√1c ∗√c)2=9;∴ 1a +1b +1c ≥94;∴1a +1b+1c的最小值为94.试卷第22页,总22页。

2018-2019年衡阳市小升初数学模拟试卷(共10套)附详细答案附答案

2018-2019年衡阳市小升初数学模拟试卷(共10套)附详细答案附答案

小升初数学综合模拟试卷1一、填空题:3.在下列(1)、(2)、(3)、(4)四个图形中,可以用若干块4.在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数是______.当它们之中有一个开始喝水时.另一个跳了______米.减去的数是______.7.100!=1×2×3×…×99×100,这个乘积的结尾共有______个0.8.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工完,乙工地的工作还需4名工人再做1天,那么这批工人有______人.9.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于______.10.甲、乙、丙三人进行100米赛跑,当甲到达终点时,乙离终点还有8米,丙离终点还有12米.如果甲、乙、丙赛跑时速度不变,那么,当乙到达终点时,丙离终点还有______米.二、解答题:1.有一个四位整数,在它的某位数字前面加上一个小数点,再和这个四位数相加,得数是2016.97,求这个四位整数.2.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,每一个数都是前两个数的和,也就是:l,1,2,3,5,8,13,21,34,55,…,问:这串数的前100个数中(包括第100个数)有多少个偶数?3.在一根木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种刻度线将木棍分成12等份;第三种刻度线将木棍分成15等份.如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?4.有甲、乙两个同样的杯子,甲杯中有半杯清水,乙杯中盛满了含50%酒精的溶液,先将乙杯中酒精溶液的一半倒入甲杯,搅匀后,再将甲杯中酒精溶液的一半倒入乙杯.问这时乙杯中的酒精是溶液的几分之几?答案,仅供参考。

一、填空题:1.1601.因为819=7×9×13,所以,2.1.3.(2).(1)号图形中有11个小方格,11不是3的整数倍,因此,不能用这两种图形拼成.(3)号图形中有15个小方格,15是3的整数倍,但是,左上角和右下角只能用来拼,剩下的图形如图1,显然它不能用这两种图形来拼,只有(2)、(4)号图形可以用这两种图形来拼,具体拼法如图2(有多种拼法,仅举一种).4.258,259,260.先找出两个连续自然数,第一个被3整除,第2个被7整除.例如,找出6和7,下一个连续自然数是8.3和7的最小公倍数是21,考虑8加21的整数倍,使加得的数能被13整除.8+21×12=260能被13整除,那么258,259,260这三个连续自然数,依次分别能被3,7,13整除,又恰好在200至300之间.6.37.画张示意图:(85-减数)是2份,(157-减数)是5份,(157-减数)-(85-减数)=72,它恰好是5-2=3(份),因此, 72÷3=24是每份所表示的数字,减数=85—24×2=37.7.24.结尾0的个数等于2的因子个数和5的因子个数中较小的那个.100!中2的因子个数显然多于5的因子个数,所以结尾0的个数等于100!中的5的因子个数.8.9.14.两数的积可以整除4875,说明这两个数都是4875的约数,我们先把4875分解质因数:4875=3×5×5×5×13用这些因子凑成两个数,使它们的和是64,这两个数只能是3×13=39和5×5=25.所以它们的差是:39—25=14.10. 甲跑100米,乙跑92米,丙跑88米所用时间相同,那么,乙的速度∶二、解答题:1.1997.因为小数点后是97,所以原四位数的最后两位是97;又因为97+19=116,所以小数点前面的两位整数是19,这样才能保证19.97+1997=2016.97.于是这个四位整数是1997.2.33个.因为奇数+奇数是偶数,奇数+偶数是奇数,偶数+奇数是奇数,两个奇数相加又是偶数.这样从左到右第3,6,9……个数都是偶数.所以偶数的个数有99÷3=33(个).3.28段.因为,10等分木棍,中间有9个刻度,12等分木棍中间有11个刻度,15等分木棍中间有14个刻度,若这些刻度都不重合,中间应有34个刻度,可把木棍锯成35段.但是,需要把重合的刻小升初数学综合模拟试卷2一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?答案一、填空题:1.(1/5)2.(44)[1×(1+20%)×(1+20%)-1]÷1×100%=44%3.(偶数)在121+122+…+170中共有奇数(170+1-121)÷2=25(个),所以121+122+…+170是25个奇数之和再加上一些偶数,其和为奇数,同理可求出在41+42+…+98中共有奇数29个,其和为奇数,所以奇数减奇数,其差为偶数.4.(27)(40+7×2)÷2=27(斤)5.(19)淘汰赛每赛一场就要淘汰运动员一名,而且只能淘汰一名.即淘汰掉多少名运动员就恰好进行了多少场比赛.即20名运动员要赛19场.6.(301246)设这六位数是301240+a(a是个一位数),则301240+a=27385×11+(5+a),这个数能被11整除,易知a=6.7.(20)每个小圆的半径未知,但所有小圆直径加起来正好是大圆的直径。

湖南省衡阳县三中2018-2019学年高考最后一模文科数学模拟试题 Word版含答案

湖南省衡阳县三中2018-2019学年高考最后一模文科数学模拟试题 Word版含答案

湖南省衡阳县三中2018-2019学年高考最后一模文科数学模拟试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

满分150分 考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知复数z 满足(1)i z i =-,其中i 为虚数单位,则复数z 所对应的点在( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知集合A={1,2},B={x|ax ﹣1=0},若AB B =,则实数a 的取值个数为( )A .0 B.1 C.2D.33. 已知等差数列{}n a 满足2810a a +=, 且1a ,2a ,4a 成等比数列,则2016a =( ) A.2014 B.2015 C.2016 D.20174.下列中正确的是( )A.“x R ∃∈使得210x x ++<”的否定是“x R ∀∈均有210x x ++<”.B.若p 为真,q 为假,则(¬p)∨q 为真.C.为了了解高考前高三学生每天的学习时间,现要用系统抽样的方法从某班50个学生中抽取一个容量为10的样本,已知50个学生的编号为1,2,3…50,若8号被选出,则18号也会被选出.D.已知m 、n 是两条不同直线,α、β是两个不同平面,α∩β=m,则“n α⊂,n⊥m”是“α⊥β”的充分条件.5. 设P 是△ABC 所在平面内的一点,且4AB AC AP +=,则△PBC 与△ABC 的面积之比是( )A.13 B.12 C.23 D.346.一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧面积是( )A .434+ B.43C .8D .127. 已知不等式组表示的平面区域为D ,若直线2y x a =-+与区域D 有公共点,则a 的取值情况是( )A .有最大值2,无最小值B .有最小值2,无最大值C .有最小值,最大值2D .既无最小值,也无最大值8.已知2log (1),2()(1),2x x f x f x x +>⎧=⎨+≤⎩,执行如图所示的程序框图,若输入A 的值为(1)f ,则输出的P 值为( ) A .2B .3C .4D .59. 已知函数()2sin cos()3f x x x ωωπ=+(0ω>)的图像的相邻两条对称轴之间的距离等于2π,要得到函数3cos(2)32y x π=+-的图象,只需将函数()y f x =的图象( ) A .向右平移2π个单位 B .向左平移2π个单位 C .向右平移4π个单位 D .向左平移个单位10. 已知圆22:(3)(5)5C x y -+-=,过圆心C 的直线l 交圆C 于,A B 两点,交y 轴于点P . 若14PA AB =,则直线l 的方程为( )A. 270x y -+=B. 2130x y +-=或270x y -+= C .2130x y +-= D. 270x y ++=11.已知()f x 为偶函数,且满足()(2)f x f x =-+,方程()0f x =在[0,1]内有且只有一个根12016,则方程()0f x =在区间[-2016,2016]内的根的个数为( ) A .4032 B.4036 C .2016 D.201812.已知双曲线C :22221(0)1x y a a a-=>-的左右焦点分别为12,F F ,若存在k ,使直线(1)y k x =-与双曲线的右支交于P,Q 两点,且1PFQ ∆的周长为8,则双曲线的斜率为正的渐近线的倾斜角的取值范围是( ) A. (,)32ππB. (,)62ππC. (0,)6πD. (0,)3π第Ⅱ卷(13-21为必做题,22-24为选做题)二、填空题(本大题共4个小题,每小题5分,共20分。

湖南省衡阳市2018-2019学年中考数学模拟试卷

湖南省衡阳市2018-2019学年中考数学模拟试卷

湖南省衡阳市2018-2019学年中考数学模拟试卷一、选择题1.2018 的相反数是()A. -2018B. -C. 2018D.2.某网站数据显示,2015年第一季度我国彩电销量为1233万台,将1233万用科学记数法可表示为()A. 12.33×105B. 1.233×103C. 0.1233×108D. 1.233×1073.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是()A. B. C. D.5.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A. 随着抛掷次数的增加,正面朝上的频率越来越小B. 当抛掷的次数很大时,正面朝上的次数一定占总抛掷次数的C. 不同次数的试验,正面朝上的频率可能会不相同D. 连续抛掷11次硬币都是正面朝上,第12次抛掷出现正面朝上的概率小于6.下列各式正确的是( )A. =±3B. =2C. -32=9D. (-2)3=-87.下列运算正确的是()A. 4m﹣m=3B. 2a3﹣3a3=﹣a3C. a2b﹣ab2=0D. yx﹣2xy=xy8.某工厂原计划完成120个零件,每天生产x个,采用新技术后,每天可多生产2个零件,结果提前3天完成.可列方程( )A. B. C. D.9.如图,A,B,C是⊙O上的三个点,若,则的度数为().A.B.C.D.10.不等式组的解集在数轴上表示正确的是( )A.B.C.D.11.如图,A ,B 是反比例函数y= 图象上的两点,过点A 作AC ⊥y 轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,△AOD 的面积为3,则k 的值为( )A. 3 B. 6 C. 4 D. 812.点,, 均在二次函数的图象上,则,,的大小关系是( )A.B.C.D.二、填空题13.如图,在平面直角坐标系中,△DEF 是由△ABC 旋转得到的,则旋转的角度是________°.第13题图 第14题14.把九(1)班第一小组学生在2018年初中体育模拟测试中的成绩统计如下:该小组学生在这次测试中成绩的中位数是________分.15.计算:=________.16.如图,△ABC 中,D ,E 分别在边AB ,AC 上,DE ∥BC .若∠A=60°,∠B=70°,则∠AED 的度数为________.17.在平行四边形ABCD 中,已知AD=10cm ,AB 垂直于BD ,点O 是两条对角线的交点,OD=4cm ,则AB=________cm .18.如图,已知A 1 , A 2 , A 3 , …A n 是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n﹣1A n =1,分别过点A 1 , A 2 , A 3 , …A n 作x 轴的垂线交反比例函数y= (x >0)的图象于点B 1 , B 2 , B 3 , …B n , 过点B 2作B 2P 1⊥A 1B 1于点P 1 , 过点B 3作B 3P 2⊥A 2B 2于点P 2…,记△B 1P 1B 2的面积为S 1 , △B 2P 2B 3成绩(分)38 46 49 51 60人数 1 2 3 2 3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=________.第16题图第17题图第18题图三、解答题19.先化简,再求值:(2a﹣1)2﹣2(a+1)(a﹣1)﹣a(a﹣2),其中1﹣a2+2a=0.20.如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.21.小明和小乐玩猜牌游戏,小明手中有红桃、黑桃、梅花扑克牌共24张,其中红桃8张,黑桃是梅花的2倍少2张.(1)黑桃________张,梅花________张.(2)小乐从小明手中任意抽取一张牌,抽到梅花的概率是多少?抽到哪种花样扑克牌的概率最大?最大概率是多少?22.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC于点D,过点D 作DE⊥AD 交AB 于点E,以AE 为直径作⊙O.(1)求证:BC 是⊙O 的切线;(2)若AC=3,BC=4,求BE 的长.(3)在(2)的条件中,求cos∠EAD 的值.24.利群超市经销某品牌童装,单价为每件40元时,每天销量为60件,当从单价每件40元降了20元时,一天销量为100件,设降x元时,一天的销量为y千克.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?25.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4),一次函数的图象与边OC、AB分别交于点D、E,并且满足OD=BE.点M是线段DE上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.26.如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动.过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N 两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.参考答案一、单选题1. A2. D3. D4. D5. C6. D7. B8. B9.D 10. C 11. D 12.D二、填空题13. 90 14. 49 15.16.50° 17.6 18.三、解答题19.解:原式=4a2﹣4a+1﹣2a2+2﹣a2+2a=a2﹣2a+3,因为1﹣a2+2a=0,所以a2﹣2a=1,则原式=3+1=4.20.(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE(2)解:∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠EFD=15°21.(1)10;6(2)∵抽扑克牌共有24种可能,但抽到梅花扑克牌有6种可能、黑桃扑克牌有10种可能、红桃扑克牌有8种可能∴P梅花=,P黑桃=,P红桃=,∴抽到黑桃的概率最大,最大概率为22. (1)解:该城市会受到台风影响.理由:如图1,过点A作AD⊥BC于D点,则AD即为该城市距离台风中心的最短距离.在Rt△ABD中,因为∠B=30°,AB=240.AD= ×240=120(千米).由题可知,距台风中心在(12﹣4)×25=200(千米)以内时,则会受到台风影响.因为120千米<200千米,因此该城市将会受到“圣帕”影响(2)解:依题(1)可知,当点A距台风中心不超过200千米时,会受台风影响,故在BC上作AE=AF=200;台风中心从点E移动到点F处时,该城市会处在台风影响范围之内.(如图2)DE=160(千米).所以EF=2×160=320(千米).又知“圣帕”中心以20千米/时的速度移动.所以台风影响该城市320÷20=16(小时)(3)解:∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).答:该城市受台风影响最大风力7.2级23.(1)证明:连接OD,如图所示.在Rt△ADE中,点O为AE的中心,∴DO=AO=EO= AE,∴点D在⊙O上,且∠DAO=∠ADO.又∵AD平分∠CAB,∴∠CAD=∠DAO,∴∠ADO=∠CAD,∴AC∥DO.∵∠C=90°,∴∠ODB=90°,即OD⊥BC.又∵OD为半径,∴BC是⊙O的切线(2)解:在Rt△ACB中,∵AC=3,BC=4,∴AB=5.设OD=r,则BO=5﹣r.∵OD∥AC,∴△BDO∽△BCA,∴,即,解得:r= ,∴BE=AB﹣AE=5﹣=(3)解:∵△BDO∽△BCA,∴,即,BD= ,∴CD=BC﹣BD=,∴AD= ,∴cos∠EAD= .24.(1)解:y=kx+b,由题意知,当x=0时,y=60,可得:b=60,所以解析式为y=kx+60,当x=20时,y=100,可得:100=20k+60,解得:k=2,所以y与x之间的关系式为y=2x+60(2)解:由80=2x+60,解得x=10,所以40﹣10=30(元),所以该天童装的单价是每件30元25.(1)解:中,令x=0,解得y=b,则D的坐标是(0,b),OD=b,∵OD=BE,∴BE=b,则E的坐标是(3,4﹣b),把E的坐标代入得4﹣b=﹣2+b,解得:b=3(2)解:S四边形OAED= (OD+AE)•OA= ×(3+1)×3=6,∵三角形ODM的面积与四边形OAEM的面积之比为1:3,∴S△ODM=1.5.设M的横坐标是a,则×3a=1.5,解得:a=1,把x=a=1代入y=﹣x+3得y=﹣× +3= .则M的坐标是(1,)(3)解:当四边形OMDN是菱形时,如图(1),M的纵坐标是,把y= 代入y=﹣x+3,得﹣x+3= ,解得:x= ,则M的坐标是(,),则N的坐标是(﹣,);当四边形OMND是菱形时,如图(2)OM=OD=3,设M的横坐标是m,则纵坐标是﹣m+3,则m2+(﹣m+3)2=9,解得:m= 或0(舍去).则M的坐标是(,).则DM的中点是(,).则N的坐标是(,).故N的坐标是(﹣,)或(,).26.(1)解:在菱形OABC中,∠AOC=60°,∠AOQ=30°,当t=2时,OM=2,PM=2 ,QM= ,PQ=(2)解:当t≤4时,AN=PO=2OM=2t,t=4时,P到达C点,N到达B点,点P,N在边BC上相遇.设t秒时,点P与N重合,则(t-4)+2(t-4)=8,∴t= .即t= 秒时,点P与N重合(3)解:①当0≤t≤4时,PN=OA=8,且PN∥OA,PM= t,S△APN= ·8· t=4 t;②当4<t≤时,PN=8-3(t-4)=20-3t,S△APN= ×4 ×(20-3t)=40 -6 t;③当<t≤8时,PN=3(t-4)-8=3t-20,S△APN= ×4 ×(3t-20)= 6 t -4 ;④8<t≤12时,ON=24-2t,N到OM距离为12 - t,N到CP距离为4 -(12 - t)= t-8 ,CP=t-4,BP=12-t,S△APN=S菱形-S△AON- S△CPN- S△APB=32 - ×8×(12 - t)- (t-4)(t-8 )- (12-t)×4= - t2+12 t-56综上,S与t的函数关系式为:。

湖南省衡阳市2019-2020学年中考数学第三次押题试卷含解析

湖南省衡阳市2019-2020学年中考数学第三次押题试卷含解析

湖南省衡阳市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体中三视图完全相同的是( )A .B .C .D .2.19-的值为( ) A .19 B .-19 C .9 D .-93.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )A .120元B .125元C .135元D .140元4.下列说法正确的是( )A .2a 2b 与–2b 2a 的和为0B .223a b π的系数是23,次数是4次 C .2x 2y –3y 2–1是3次3项式D .3x 2y 3与–3213x y 是同类项 5.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|6.如图,点A 、B 、C 、D 在⊙O 上,∠AOC =120°,点B 是弧AC 的中点,则∠D 的度数是( )A .60°B .35°C .30.5°D .30°7.如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于A .90°B .180°C .210°D .270°8.如图1,点P 从△ABC 的顶点A 出发,沿A ﹣B ﹣C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是( )A .10B .12C .20D .249.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.A .1B .2C .3D .410.如图,已知O e 的周长等于6cm ,则它的内接正六边形ABCDEF 的面积是( )A .93B .273C .273D .27311.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )A .15°B .55°C .65°D .75°12.一个多边形的每个内角均为120°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知直线l :3x ,过点(2,0)作x 轴的垂线交直线l 于点N ,过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x 轴的垂线交直线l 于N 1,过点N 1作直线l 的垂线交x 轴于点M 2,……;按此做法继续下去,则点M 2000的坐标为______________.14.因式分解2242x x -+=______.15.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .16.化简:①16=_____;②2(5)-=_____;③510⨯=_____.17.如图,在ABC V 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN V 为等边三角形,④当ABC 45∠=︒时,CN 2PM =.请将正确结论的序号填在横线上__.18.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别频数(人数) 频率 小说0.5 戏剧4 散文10 0.25 其他6 合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.20.(6分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)21.(6分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C . (1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P 在抛物线上,点Q 在抛物线的对称轴上,若以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是平行四边形,求P 点的坐标;(3)如图2,过点A 作直线BC 的平行线交抛物线于另一点D ,交y 轴于点E ,若AE ﹕ED =1﹕1. 求n 的值.22.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?23.(8分)我们来定义一种新运算:对于任意实数x、y,“※”为a※b=(a+1)(b+1)﹣1.(1)计算(﹣3)※9(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断(正确、错误)(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.24.(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?25.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=23,且OC=4,求BD的长.26.(12分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.27.(12分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.【分析】根据绝对值的意义进行求解即可得. 【详解】19-表示的是19-的绝对值, 数轴上表示19-的点到原点的距离是19,即19-的绝对值是19, 所以19-的值为 19, 故选A.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.3.B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.解:设这种服装每件的成本是x 元,根据题意列方程得:x+15=(x+40%x )×80% 解这个方程得:x=125则这种服装每件的成本是125元.故选B .考点:一元一次方程的应用.4.C【解析】【分析】根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误;B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y-3y 2-1是3次3项式,此选项正确;D x 2y 3与﹣3213x y 相同字母的次数不同,不是同类项,此选项错误; 故选C .【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C 错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.∴选D.6.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理. 7.B【解析】【详解】试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B8.B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM=22AB AM-=3,∴BC=2BM=6,∴S△ABC=1BC?AM2=12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.9.C【解析】分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.详解:解:设2元的共有x张,5元的共有y张,由题意,2x+5y=27∴x=12(27-5y)∵x,y是非负整数,∴15xy⎧⎨⎩==或111xy⎧⎨⎩==或63xy⎧⎨⎩==,∴付款的方式共有3种.故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.10.C【解析】【分析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12 AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=332cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×332=2732(cm2).故选C. 【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.11.D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE ∥AB ,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C ﹣∠A=180°﹣90°﹣15°=75°,故选D .【点睛】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.12.C【解析】由题意得,180°(n-2)=120°n ⨯, 解得n=6.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13. (24001,0)【解析】分析:根据直线l 的解析式求出60MON ∠=︒,从而得到130MNO OM N ,∠=∠=︒根据直角三角形30°角所对的直角边等于斜边的一半求出212OM OM =⋅, 然后表示出n OM 与OM 的关系,再根据点n M 在x轴上,即可求出点M 2000的坐标详解:∵直线l:y =,∴60MON ∠=︒,∵NM ⊥x 轴,M1N ⊥直线l ,∴1906030MNO OM N ,∠=∠=︒-︒=︒∴212,242ON OM OM ON OM OM ====⋅,同理,222212(2)OM OM OM =⋅=⋅, …,22221(2)222n n n OM OM +=⋅=⋅=,所以,点n M 的坐标为21(2,0).n +点M 2000的坐标为(24001,0).故答案为:(24001,0).点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.14.22(1)x -.【解析】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为:22(1)x -. 15.16π【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥; 根据三视图知:该圆锥的母线长为6cm ,底面半径为2cm ,故表面积=πrl+πr 2=π×2×6+π×22=16π(cm 2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16.4 5【解析】【分析】根据二次根式的性质即可求出答案.【详解】①原式=4;②原式=5-=5;③原式,故答案为:①4;②5;③【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.17.①③④【解析】【分析】①根据直角三角形斜边上的中线等于斜边的一半可判断①;②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;④当∠ABC=45°时,∠BCN=45°,进而判断④.【详解】①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=12BC,PN=12BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴AM ANAB AC=,错误;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∵P为BC中点,可得PC,故④正确.所以正确的选项有:①③④故答案为①③④【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.18.113y x=-+【解析】【分析】过C作CD⊥x轴于点D,则可证得△AOB≌△CDA,可求得CD和OD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式.【详解】如图,过C作CD⊥x轴于点D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵ABO CADAOB CDAAB AC∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),设直线BC解析式为y=kx+b,∴321k bb-+=⎧⎨=⎩,解得:131kb⎧=-⎪⎨⎪=⎩,∴直线BC解析式为y13=-x+1.故答案为y13=-x+1.【点睛】本题考查了待定系数法及全等三角形的判定和性质,构造全等三角形求得C点坐标是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)41(2)15%(3)1 6【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P (丙和乙)=212=16. 20.解:作AB 的垂直平分线,以点C 为圆心,以AB 的一半为半径画弧交AB 的垂直平分线于点M 即可.【解析】【详解】易得M 在AB 的垂直平分线上,且到C 的距离等于AB 的一半.21. (1) 2n =;(2) 1139(,)28和(-539,)28;(3) 278n = 【解析】【分析】(1)设1(,0)A x ,2(,0)B x ,再根据根与系数的关系得到122x x n =-,根据勾股定理得到:2221AC x n =+、2222BC x n =+,根据222AC BC AB +=列出方程,解方程即可;(2)求出A 、B 坐标,设出点Q 坐标,利用平行四边形的性质,分类讨论点P 坐标,利用全等的性质得出P 点的横坐标后,分别代入抛物线解析式,求出P 点坐标;(3)过点D 作DH ⊥x 轴于点H ,由AE :1ED =:4,可得AO :1OH =:4.设(0)OA a a =>,可得 A 点坐标为(,0)a -,可得4,5OH a AH a ==.设D 点坐标为2(4,86)a a a n --.可证△DAH ∽△CBO ,利用相似性质列出方程整理可得到 2111220a a n --=①,将(,0)A a -代入抛物线上,可得21322n a a =+②,联立①②解方程组,即可解答. 【详解】解:(1)设1(,0)A x ,2(,0)B x ,则12,x x 是方程213022x x n --=的两根, ∴122x x n =-.∵已知抛物线213(0)22y x x n n =-->与y 轴交于点C . ∴(0,-)C n 在Rt △AOC 中:2221AC x n =+,在Rt △BOC 中:2222BC x n =+,∵△ABC 为直角三角形,由题意可知∠90ACB =°,∴222AC BC AB +=,即222221221()x n x n x x +++=-,∴212n x x =-,∴22n n =,解得:120,2n n ==,又0n >,∴2n =.(2)由(1)可知:213222y x x =--,令0,y =则2132022x x --=, ∴11,x =-24x =, ∴(1,0),(4,0)A B -.①以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBPQ 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点P 作PF ⊥l ,垂足为点F ,即∠90PFQ =°=∠COB . ∵四边形CBPQ 为平行四边形,∴,PQ BC PQ =∥BC ,又l ∥y 轴,∴∠FQP =∠QGB =∠OCB ,∴△PFQ ≌△BOC ,∴4PF BO ==,∴P 点的横坐标为311+4=22, ∴211131139()2,22228y =⨯-⨯-= 即P 点坐标为1139(,)28. ②当以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBQP 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点1P 作11P F ⊥l ,垂足为点1F , 即∠1190=PF Q °=∠COB . ∵四边形11CBQ P 为平行四边形,∴1111,=PQ BC PQ ∥BC ,又l ∥y 轴, ∴∠111=F Q P ∠1Q GB =∠OCB ,∴△111PF Q ≌△BOC ,∴114==PF BO ,∴1P 点的横坐标为35-4=-22, ∴2515339()2,22228⎛⎫ ⎪=⨯--⨯-=⎝⎭y 即1P 点坐标为39(-,25)8∴符合条件的P点坐标为1139 (,) 28和39(-,25)8.(3)过点D作DH⊥x轴于点H,∵AE:1ED=:4,∴AO:1OH=:4.设(0)OA a a=>,则A点坐标为(,0)a-,∴4,5OH a AH a==.∵D点在抛物线213(0)22y x x n n=-->上,∴D点坐标为2(4,86)a a a n--,由(1)知122x x n=-,∴2nOBa=,∵AD∥BC,∴△DAH∽△CBO,∴AH DHBO CO=,∴25862a a a nn na--=,即2111220a a n--=①,又(,0)A a-在抛物线上,∴21322n a a=+②,将②代入①得:221311122()022a a a a--+=,解得10a=(舍去),232a=把32a=代入②得:278n=.【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.22.(1)20%;(2)能.【解析】【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.23.(1)-21;(2)正确;(3)运算“※”满足结合律【解析】【分析】(1)根据新定义运算法则即可求出答案.(2)只需根据整式的运算证明法则a※b=b※a即可判断.(3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.【详解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故满足交换律,故她判断正确;(3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴运算“※”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.24.100或200【解析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+x 50×4)件,列方程得,(8+x50×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.考点:一元二次方程的应用.25.(1)证明见解析;(2)2435【解析】试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.试题解析:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵PA PBPO POOA OB=⎧⎪=⎨⎪=⎩,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO .∵PB 为⊙O 的切线,B 为切点,∴∠PBO=90°,∴∠PAO=90°,即PA ⊥OA ,∴PA 是⊙O 的切线;(2)连结BE .如图2,∵在Rt △AOC 中,tan ∠BAD=tan ∠CAO=23OC AC =,且OC=4, ∴AC=1,则BC=1.在Rt △APO 中,∵AC ⊥OP ,∴△PAC ∽△AOC ,∴AC 2=OC•PC ,解得PC=9,∴OP=PC+OC=2.在Rt △PBC 中,由勾股定理,得22313PC BC +=,∵AC=BC ,OA=OE ,即OC 为△ABE 的中位线.∴OC=12BE ,OC ∥BE ,∴BE=2OC=3. ∵BE ∥OP ,∴△DBE ∽△DPO , ∴BD BE PD OP =813313BD =+,解得2413. 26.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE ≌△BOF .(2)结论:四边形EBFD 是矩形.理由:∵OD=OB ,OE=OF ,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由已知条件易得∠EAG=∠FCG,AG=GC结合∠AGE=∠FGC可得△EAG≌△FCG,从而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,则∠BAC=∠ACB ,AE=CN,从而可得AB=CB,由此可得BE=BN.详解:(1)∵四边形ABCD为平行四四边形边形,∴AB//CD.∴∠EAG=∠FCG.∵点G为对角线AC的中点,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四边形ENFM为平行四边形.(2)∵四边形ENFM为矩形,∴EF=MN,且EG=1EF2,GN=1MN2,∴EG=NG,又∵AG=CG,∠AGE=∠CGN,∴△EAG≌△NCG,∴∠BAC=∠ACB ,AE=CN,∴AB=BC,∴AB-AE=CB-CN,∴BE=BN.点睛:本题是一道考查平行四边形的判定和性质及矩形性质的题目,熟练掌握相关图形的性质和判定是顺利解题的关键.。

湖南省衡阳市2018-2019学年中考数学模拟试卷

湖南省衡阳市2018-2019学年中考数学模拟试卷

湖南省衡阳市2018-2019学年中考数学模拟试卷一、选择题1.2018 的相反数是()A. -2018B. -C. 2018D.2.某网站数据显示,2015年第一季度我国彩电销量为1233万台,将1233万用科学记数法可表示为()A. 12.33×105B. 1.233×103C. 0.1233×108D. 1.233×1073.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是()A. B. C. D.5.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A. 随着抛掷次数的增加,正面朝上的频率越来越小B. 当抛掷的次数很大时,正面朝上的次数一定占总抛掷次数的C. 不同次数的试验,正面朝上的频率可能会不相同D. 连续抛掷11次硬币都是正面朝上,第12次抛掷出现正面朝上的概率小于6.下列各式正确的是( )A. =±3B. =2C. -32=9D. (-2)3=-87.下列运算正确的是()A. 4m﹣m=3B. 2a3﹣3a3=﹣a3C. a2b﹣ab2=0D. yx﹣2xy=xy8.某工厂原计划完成120个零件,每天生产x个,采用新技术后,每天可多生产2个零件,结果提前3天完成.可列方程( )A. B. C. D.9.如图,A,B,C是⊙O上的三个点,若,则的度数为().A. B. C. D.10.不等式组的解集在数轴上表示正确的是()A. B.C. D.11.如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为()A. 3B. 6C. 4D. 812.点,,均在二次函数的图象上,则,,的大小关系是()A. B. C. D.二、填空题13.如图,在平面直角坐标系中,△DEF是由△ABC旋转得到的,则旋转的角度是________°.第13题图第14题14.把九(1)班第一小组学生在2018年初中体育模拟测试中的成绩统计如下:该小组学生在这次测试中成绩的中位数是________分.15.计算:=________.16.如图,△ABC中,D,E分别在边AB,AC上,DE∥BC.若∠A=60°,∠B=70°,则∠AED的度数为________.17.在平行四边形ABCD中,已知AD=10cm,AB垂直于BD,点O是两条对角线的交点,OD=4cm,则AB=________cm.18.如图,已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=…=A n﹣1A n=1,分别过点A1,A2,A3,…A n作x轴的垂线交反比例函数y= (x>0)的图象于点B1,B2,B3,…B n,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=________.第16题图第17题图第18题图三、解答题19.先化简,再求值:(2a﹣1)2﹣2(a+1)(a﹣1)﹣a(a﹣2),其中1﹣a2+2a=0.20.如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.(1)求证:△BCE≌△DCF;(2)若∠BEC=60°,求∠EFD的度数.21.小明和小乐玩猜牌游戏,小明手中有红桃、黑桃、梅花扑克牌共24张,其中红桃8张,黑桃是梅花的2倍少2张.(1)黑桃________张,梅花________张.(2)小乐从小明手中任意抽取一张牌,抽到梅花的概率是多少?抽到哪种花样扑克牌的概率最大?最大概率是多少?22.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC于点D,过点D 作DE⊥AD 交AB于点E,以AE 为直径作⊙O.(1)求证:BC 是⊙O 的切线;(2)若AC=3,BC=4,求BE 的长.(3)在(2)的条件中,求cos∠EAD 的值.24.利群超市经销某品牌童装,单价为每件40元时,每天销量为60件,当从单价每件40元降了20元时,一天销量为100件,设降x元时,一天的销量为y千克.已知y是x的一次函数.(1)求y与x之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少?25.如图,矩形OABC的顶点A、C分别在x、y的正半轴上,点B的坐标为(3,4),一次函数的图象与边OC、AB分别交于点D、E,并且满足OD=BE.点M是线段DE上的一个动点.(1)求b的值;(2)连结OM,若三角形ODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设点N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.26.如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动.过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.参考答案一、单选题1. A2. D3. D4. D5. C6. D7. B8. B9.D 10. C 11. D 12.D二、填空题13. 90 14. 49 15.16.50°17.6 18.三、解答题19.解:原式=4a2﹣4a+1﹣2a2+2﹣a2+2a=a2﹣2a+3,因为1﹣a2+2a=0,所以a2﹣2a=1,则原式=3+1=4.20.(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE(2)解:∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠EFD=15°21.(1)10;6(2)∵抽扑克牌共有24种可能,但抽到梅花扑克牌有6种可能、黑桃扑克牌有10种可能、红桃扑克牌有8种可能∴P梅花=,P黑桃=,P红桃=,∴抽到黑桃的概率最大,最大概率为22. (1)解:该城市会受到台风影响.理由:如图1,过点A作AD⊥BC于D点,则AD即为该城市距离台风中心的最短距离.在Rt△ABD中,因为∠B=30°,AB=240.AD= ×240=120(千米).由题可知,距台风中心在(12﹣4)×25=200(千米)以内时,则会受到台风影响.因为120千米<200千米,因此该城市将会受到“圣帕”影响(2)解:依题(1)可知,当点A距台风中心不超过200千米时,会受台风影响,故在BC上作AE=AF=200;台风中心从点E移动到点F处时,该城市会处在台风影响范围之内.(如图2)DE=160(千米).所以EF=2×160=320(千米).又知“圣帕”中心以20千米/时的速度移动.所以台风影响该城市320÷20=16(小时)(3)解:∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)=7.2(级).答:该城市受台风影响最大风力7.2级23.(1)证明:连接OD,如图所示.在Rt△ADE中,点O为AE的中心,∴DO=AO=EO= AE,∴点D在⊙O上,且∠DAO=∠ADO.又∵AD平分∠CAB,∴∠CAD=∠DAO,∴∠ADO=∠CAD,∴AC∥DO.∵∠C=90°,∴∠ODB=90°,即OD⊥BC.又∵OD为半径,∴BC是⊙O的切线(2)解:在Rt△ACB中,∵AC=3,BC=4,∴AB=5.设OD=r,则BO=5﹣r.∵OD∥AC,∴△BDO∽△BCA,∴,即,解得:r= ,∴BE=AB﹣AE=5﹣=(3)解:∵△BDO∽△BCA,∴,即,BD= ,∴CD=BC﹣BD= ,∴AD= ,∴cos∠EAD= .24.(1)解:y=kx+b,由题意知,当x=0时,y=60,可得:b=60,所以解析式为y=kx+60,当x=20时,y=100,可得:100=20k+60,解得:k=2,所以y与x之间的关系式为y=2x+60(2)解:由80=2x+60,解得x=10,所以40﹣10=30(元),所以该天童装的单价是每件30元25.(1)解:中,令x=0,解得y=b,则D的坐标是(0,b),OD=b,∵OD=BE,∴BE=b,则E的坐标是(3,4﹣b),把E的坐标代入得4﹣b=﹣2+b,解得:b=3(2)解:S四边形OAED= (OD+AE)•OA= ×(3+1)×3=6,∵三角形ODM的面积与四边形OAEM的面积之比为1:3,∴S△ODM=1.5.设M的横坐标是a,则×3a=1.5,解得:a=1,把x=a=1代入y=﹣x+3得y=﹣× +3= .则M的坐标是(1,)(3)解:当四边形OMDN是菱形时,如图(1),M的纵坐标是,把y= 代入y=﹣x+3,得﹣x+3= ,解得:x= ,则M的坐标是(,),则N的坐标是(﹣,);当四边形OMND是菱形时,如图(2)OM=OD=3,设M的横坐标是m,则纵坐标是﹣m+3,则m2+(﹣m+3)2=9,解得:m= 或0(舍去).则M的坐标是(,).则DM的中点是(,).则N的坐标是(,).故N的坐标是(﹣,)或(,).26.(1)解:在菱形OABC中,∠AOC=60°,∠AOQ=30°,当t=2时,OM=2,PM=2 ,QM= ,PQ=(2)解:当t≤4时,AN=PO=2OM=2t,t=4时,P到达C点,N到达B点,点P,N在边BC上相遇.设t秒时,点P与N重合,则(t-4)+2(t-4)=8,∴t= .即t= 秒时,点P与N重合(3)解:①当0≤t≤4时,PN=OA=8,且PN∥OA,PM= t,S△APN= ·8·t=4 t;②当4<t≤ 时,PN=8-3(t-4)=20-3t,S△APN= ×4 ×(20-3t)=40 -6 t;③当<t≤8时,PN=3(t-4)-8=3t-20,S△APN= ×4 ×(3t-20)= 6 t -4 ;④8<t≤12时,ON=24-2t,N到OM距离为12 - t,N到CP距离为4 -(12 - t)= t-8 ,CP=t-4,BP=12-t,S△APN=S菱形-S△AON- S△CPN- S△APB=32 - ×8×(12 - t)- (t-4)(t-8 )- (12-t)×4 = - t2+12 t-56综上,S与t的函数关系式为:。

衡阳实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

衡阳实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

, 解得

【分析】①先用 x 表示 y,再根据 y<1,得到关于 x 的不等式,解不等式求得 x 的取值范围即可;
②先把 m 当作已知数,解方程组 值范围
求得 x,y,再根据
得到关于 m 的不等式组求得 m 的取
三、解答题
19、( 5 分 ) 计算
【答案】解:原式=
=
【考点】算术平方根,立方根
=
=
第 13 页,共 22 页
3、 ( 2 分 ) 2.﹣ 的绝对值是( ), 的算术平方根是( ).
A. - ;
B. ;-
【答案】D
【考点】算术平方根,实数的绝对值
C. - ;-
D. ;
第 2 页,共 22 页
【解析】【解答】解:﹣ 的绝对值是 , 的算术平方根是 【分析】根据绝对值的意义,一个负数的绝对值等于它的相反数,得出- 的绝对值;再根据算数平方根的定
21、( 5 分 ) 计算:
﹣3tan30°﹣ ﹣2 .
【答案】解:原式=3 ﹣3× ﹣4=2 ﹣4
第 14 页,共 22 页
【考点】实数的运算 【解析】【分析】先求出特殊角的三角函数值,再根据实数的运算法则计算即可.
22、( 15 分 ) 南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜、南县农业部门对 2009 年的
【分析】根据立方根的意义,a= 案。
=-2,b=
= ,从而代入代数式根据有理数的混合运算算出答
6、 ( 2 分 ) 二元一次方程组
的解是( )
A.
B.
C.
D.
【答案】B
【考点】解二元一次方程组
【解析】【解答】解: ①﹣②得到 y=2,把 y=2 代入①得到 x=4,

衡阳市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

衡阳市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

衡阳市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在实数0、π、、、中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】B【考点】无理数的认识【解析】【解答】0是一个整数,所以不是无理数,π是一个无限不循环小数,所以是无理数,是一个开方开不尽的数,所以是无理数,,所以不是无理数。

故答案为:B【分析】无限不循环小数包括开方开不尽的数,看似有规律实则没有规律的数及含有π的数,所以题目中π与都是无理数。

2、(2分)下列说法中错误的是()A.中的可以是正数、负数或零B.中的不可能是负数C.数的平方根有两个D.数的立方根有一个【答案】C【考点】平方根,立方根及开立方【解析】【解答】A选项中表示a的立方根,正数,负数和零都有立方根,所以正确;B选项中表示a的算术平方根,正数和零都有算术平方根,而负数没有算术平方根,所以正确;C选项中正数的平方根有两个,零的平方根是零,负数没有平方根,所以数a是非负数时才有两个平方根,所以错误;D选项中任何数都有立方根,所以正确。

故答案为:C【分析】正数有两个平方根,零的平方根是零,负数没有平方根,任何一个数都有一个立方根,A选项中被开方数a可以是正数,负数或零,B选项中的被开方数只能是非负数,不能是负数,C选项中只有非负数才有平方根,而a有可能是负数,D选项中任何一个数都有一个立方根。

3、(2分)如图,在三角形中,=90º,=3,=4,=5,则点到直线的距离等于()A. 3B. 4C. 5D. 以上都不对【答案】A【考点】点到直线的距离【解析】【解答】解:∵∠C=90°∴AC⊥BC∴点A到直线BC的距离就是线段AC的长,即AC=3故答案为:A【分析】根据点到直线的距离的定义求解即可。

4、(2分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A. 2个B. 3个C. 4个D. 5个【答案】D【考点】对顶角、邻补角,平行线的性质【解析】【解答】解:∵DH∥EG∥BC∴∠DCB=∠HDC,∠HDC=∠DME,∵DC∥EF∴∠DCB=∠EFB,∠FEG=∠DME=∠GMC∴与∠DCB相等的角有:∠HDC,∠DME,∠EFB,∠FEG,∠GMC故答案为:D【分析】根据平行线的性质即可求解。

湖南省衡阳市 市第一中学2018-2019学年高一数学理模拟试卷含解析

湖南省衡阳市 市第一中学2018-2019学年高一数学理模拟试卷含解析

湖南省衡阳市市第一中学2018-2019学年高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,是两条不同直线,,是三个不同平面,下列命题中正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则参考答案:D略2. 某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理2017年12个月期间甲、乙两地月接待游客量(单位:万人)的数据的敬业图如下图,则甲、乙两地有课数方差的大小()A.甲比乙小B.乙比甲小C.甲、乙相等D.无法确定参考答案:A3. 已知满足,则()A. B. C. 2 D.参考答案:A【分析】由已知利用两角和与差的正切公式计算即可.【详解】,则,故选:A【点睛】本题考查两角和与差的正切公式,考查特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.4. 已知,,,则等于 ( )A. B. C. D.参考答案:B略5. 已知某产品的总成本y(万元)与产量x(台)之间的函数关系是y=0.1x2-11x+3 000,每台产品的售价为25万元,则生产者为获得最大利润,产量x应定为( )A.55台B.120台C.150台D.180台参考答案:D设利润为S,由题意得,S=25x-y=25x-0.1x2+11x-3 000=-0.1x2+36x-3 000=-0.1 (x-180)2+240,∴当产量x=180台时,生产者获得最大利润,故选D.6. 函数的定义域为().A.R B.C.[1,10] D.(1,10)参考答案:D本题主要考查函数的定义域.对于函数,,且,故定义域为.故选.7. 已知直线和平面,下列推论中错误的是()A、B、C、D、参考答案:D略8. 若直线x=1的倾斜角为α,则α()A.等于0 B.等于C.等于D.不存在参考答案:C【考点】直线的倾斜角.【专题】计算题.【分析】由题意知:由直线方程求斜率,再求倾斜角为α.【解答】解:由题意知直线的斜率不存在,故倾斜角α=,故选C.【点评】本题考查了直线方程、斜率和倾斜角之间的关系,属于基础题.9. 是()A.奇函数B.偶函数C.既是奇函数也是偶函数D.既不是奇函数也不是偶函数参考答案:A略10. 如图,曲线对应的函数是()A.y=|sin x|B.y=sin|x|C.y=-sin|x|D.y=-|sin x|参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11. 阅读如图所示的程序框图,则输出的___________.参考答案:1512. 已知,则__ __. 参考答案:略13. 若,则= .参考答案:3略14. 已知直三棱柱中的每一个顶点都在同一个球面上,如果,,,那么、两点间的球面距离是参考答案:15. 若α∈(0,π),且cos2α=sin(+α),则sin2α的值为.参考答案:﹣1【考点】三角函数的化简求值.【分析】由条件利用两角和的正弦公式、二倍角公式求得,cosα﹣sinα,或cosα+sinα的值,从而求得sin2α的值.【解答】解:∵α∈(0,π),且cos2α=sin(+α),∴cos2α=2sin(+α),∴(cosα+sinα)?(cosα﹣sinα)=(cosα+sinα),∴cosα+sinα=0,或cosα﹣sinα=(不合题意,舍去),∴α=,∴2α=,∴sin2α=sin=﹣1,故答案为:﹣1.16. 《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC为鳖臑,PA⊥平面ABC,,三棱锥P-ABC的四个顶点都在球O的球面上,则球O的表面积为__________.参考答案:【分析】由题意得该四面体的四个面都为直角三角形,且平面,可得,.因为为直角三角形,可得,所以,因此,结合几何关系,可求得外接球的半径,,代入公式即可求球的表面积。

2018(2019衡阳市数学中考数学押题试卷(2套)附答案)-

2018(2019衡阳市数学中考数学押题试卷(2套)附答案)-

2018(2019衡阳市数学中考数学押题试卷(2套)附答案)- 4月25日14时11分,尼泊尔XXXX发生8.1级地震。

当XXXX 15班以“爱国主义教育”为主题召开班会时,该班50名学生在获取钓鱼岛新闻的途中接受了调查(要求每个学生只选择自己最认可的一个),并绘制了如图所示的扇形统计图。

(1)这个班的一些学生选择“报纸”。

在扇形统计图中,“其他”所在的扇形区域的中心角为度。

(直接填写结果)
(2)如果学校七年级有1500名学生,估计大约有1500名七年级学生使用样本选择“网站”。

(直接填写结果)
(3)如果七年级(15)班委将对全校学生进行五种方式中的两种获取方式的调查,找出选择“网站”和“班级”的概率(用树形图或列表法进行分析和回答)
23.(8分)在天水“伏羲文化节”交易会上,一位商人以每9元8元的价格出售了20件纪念品。

他想通过提高售价来增加利润。

经过实验,他发现如果每件纪念品的价格增加1元,这种纪念品的日销售量就会减少4件。

(1)写下日利润y(元)与售价x(元/件)之间的函数关系。

(2)为了在一天内实现利润最大化,每件产品的售价是多少?最大利润是多少?24.(10个点)如图所示,逆比例函数图像上的点A(m,6)和B(n,1 ), ad⊥x轴在点d,BC⊥x轴在点c,DC = 5。

(1)求出m和n的值,写出反比例函数的解析表达式。

(2)在线段CD 上,点e,S△ABE=10,求点e的坐标
25.(12个点)如图所示,AB是直径≦o,BC在b点切割≦o,OC平行于弦AD,交点d是e点的DE⊥AB,在p点连接AC和DE。

帕金森=美联社?不列颠哥伦比亚;(2)PE=PD。

衡阳初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

衡阳初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

衡阳初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分),则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定【答案】C【考点】立方根及开立方【解析】【解答】∵,∴,∴a与b互为相反数.故答案为:C.【分析】立方根的性质是:正数的立方根是正数,负数的立方根是负数,0的立方根是0。

由已知条件和立方根的性质可知,a与b互为相反数。

2、(2分)设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”,“△”这样的物体,按质量由小到大的顺序排列为()A. ○□△B. ○△□C. □○△D. △□○【答案】D【考点】一元一次不等式的应用【解析】【解答】解:由图1可知1个○的质量大于1个□的质量,由图2可知1个□的质量等于2个△的质量,因此1个□质量大于1个△质量.故答案为:D【分析】由图1知:天平左边低于天平右边,可知1个○的质量大于1个□的质量,由图2的天平处于平衡桩体,可知1个□的质量等于2个△的质量,因此1个□质量大于1个△质量,从而得出答案3、(2分)下列各组数中,是方程2x-y=8的解的是()A. B. C. D.【答案】C【考点】二元一次方程的解【解析】【解答】先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4,当x=0.5时,y=-7,当x=5时,y=2.故选:C.【分析】先把原方程化为y=2x-8,然后利用代入法,逐一判断即可。

4、(2分)观察701班学生上学方式统计图,下列关于图中信息描述不正确的是()A. 该班骑车上学的人数不到全班人数的20%B. 该班步行人数超过骑车人数的50%C. 该班共有学生48人D. 该班乘车上学的学生人数超过半数【答案】D【考点】条形统计图【解析】【解答】解:A、由统计图可知,该班学生总数为48人,骑车上学的有9人,所占百分比为18.75%,故选项不符合题意;B、由统计图可知,该班步行人数为14人,骑车人数有9人,该班步行人数超过骑车人数的50%,故选项不符合题意;C、由统计图可知,该班学生总数为14+9+16+9=48人,故选项不符合题意;D、由统计图可知,该班学生总数为48人,该班乘车上学的学生人数16人,没有超过半数,故选项符合题意.故答案为:D【分析】根据统计图中的数据相加可得该班的人数,从而判断C,利用对应的人数除以班级总数可得对应的百分比,从而判断A、B,根据乘车人数与班级人数对比可判断D.5、(2分)下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.【答案】C【考点】图形的旋转,图形的平移【解析】【解答】A、此图案是将左边的图案绕着某一点旋转得到的,故A不符合题意;B、此图案是由一个基本图案旋转60°,120°,180°,240°,300°而得到的,故B不符合题意;C、此图案是由基本图案通过平移得到的,故C符合题意;D、此图案是通过折叠得到的,故D不符合题意;故答案为:C【分析】根据平移和旋转的性质,对各选项逐一判断即可。

衡阳市2018-2019学年八年级上期末数学试卷含答案解析

衡阳市2018-2019学年八年级上期末数学试卷含答案解析

湖南省衡阳市2019-2019学年八年级(上)期末数学试卷(解析版)一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分.每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填在答题卷上相应题号下的方框内)1.在实数、﹣3、0、、3.1415、π、、、2.123122312233…(不循环)中,无理数的个数为()A.2个 B.3个 C.4个 D.5个2.9的算术平方根是()A.3 B.±3 C.﹣3 D.3.下列运算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2b3)3=a5b6D.(a2)3=a64.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC5.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.8、15、17 B.7、24、25 C.3、4、5 D.2、3、46.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣87.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点8.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①9.下列命题是真命题的是()A.如果|a|=1,那么a=1B.三个内角分别对应相等的两个三角形全等C.如果a是有理数,那么a是实数D.两边一角对应相等的两个三角形全等10.如图所示的扇形图是对某班学生知道父母生日情况的调查,A表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道,若该班有40名学生,则只知道母亲生日的人数有()人.A.25% B.10 C.22 D.25二、细心填一填,一锤定音(本大题共8道小题,每小题3分,满分24分)11.因式分解:m2﹣mn=.12.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).13.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.14.若x m=3,x n=2,则x m+n=.15.在Rt△ABC中,∠B=90°,若AB=3,BC=4,则斜边AC上的高BD=.16.已知:y=,则x的取值范围是.17.一个等腰三角形的两边长分别为3和7,这个三角形的周长是.18.已知:x+=3,则x2+=.三、用心做一做,慧眼识金(本大题共4道小题,每小题6分,满分24分)19.(6分)计算:﹣+2.20.(6分)先化简,再求值:(x+1)2﹣(x+1)(x﹣1),其中x=1.21.(6分)如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.22.(6分)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.四、综合用一用,马到成功(本大题共2道小题,每小题7分,满分14分)23.(7分)在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比.初三•三班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:分组频率49.5~59.50.0459.5~69.50.0469.5~79.50.1679.5~89.50.3489.5~99.50.42合计 1.00根据以上信息回答下列问题:(1)该班90分以上(含90分)的调查报告共有篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占%;(3)补全频率分布直方图.24.(7分)如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?五、耐心解一解,再接再厉(本大题共1道小题,满分8分)25.(8分)某学校的操场是一个长方形,长为2x米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.(1)试说明AH=BH(2)求证:BD=CG.(3)探索AE与EF、BF之间的数量关系.27.(10分)如图所示,在长方形ABCD中,AB=6厘米,BC=12厘米,点P沿AB边从点A开始向点B以1厘米/秒的速度移动,点Q沿BC从点B开始向点C 以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)当PB=2厘米时,求点P移动多少秒?(2)t为何值时,△PBQ为等腰直角三角形?(3)求四边形PBQD的面积,并探究一个与计算结果有关的结论.2019-2019学年湖南省衡阳市八年级(上)期末数学试卷参考答案与试题解析一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,满分30分.每道小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填在答题卷上相应题号下的方框内)1.在实数、﹣3、0、、3.1415、π、、、2.123122312233…(不循环)中,无理数的个数为()A.2个 B.3个 C.4个 D.5个【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:=﹣1,=12,所给数据中无理数有:,π,,2.123122312233…(不循环)共4个.故选C.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.9的算术平方根是()A.3 B.±3 C.﹣3 D.【考点】算术平方根.【分析】根据开方运算,可得一个正数的算术平方根.【解答】解:9的算术平方根是3.故选:A.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.3.下列运算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2b3)3=a5b6D.(a2)3=a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别根据同底数幂的乘法、幂的乘方和积的乘方、合并同类项进行计算即可.【解答】解:A、a2与a3不是同类项不能合并,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、应为(a2b3)3=a6b9,故本选项错误;D、(a2)3=a6,正确;故选D.【点评】本题主要考查了幂的乘方法则:底数不变指数相乘;同底数幂的乘法法则:底数不变指数相加;同类项的概念:所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.4.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【考点】全等三角形的判定.【分析】本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,必须是这边和公共边的夹角对应相等,只有符合以上条件,才能根据三角形全等判定定理得出结论.【解答】解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选C.【点评】本题考查了全等三角形的判定方法;三角形全等判定定理中,最易出错的是“边角边”定理,这里强调的是夹角,不是任意一对角.5.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是()A.8、15、17 B.7、24、25 C.3、4、5 D.2、3、4【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A、∵82+152=172,∴能构成直角三角形,故本选项错误;B、∵72+242=252,∴能构成直角三角形,故本选项错误;C、∵32+42=52,∴能构成直角三角形,故本选项错误;D、∵22+32≠42,∴不能构成直角三角形,故本选项正确.故选D.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.6.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【考点】多项式乘多项式.【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x的一次项就是含x项的系数等于0,求解即可.【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据不含某一项就是说这一项的系数等于0得出是解题关键.7.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而求得∠ABD的度数,则可知BD平分∠ABC;可得△BCD的周长等于AB+BC,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选D.【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识.此题综合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换.8.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①【考点】作图—基本作图.【分析】找出依据即可依此画出.【解答】解:角平分线的作法是:在OA和OB上分别截取OD,OE,使OD=OE;分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C;作射线OC.故其顺序为②③①.故选C.【点评】本题很简单,只要找出其作图依据便可解答.9.下列命题是真命题的是()A.如果|a|=1,那么a=1B.三个内角分别对应相等的两个三角形全等C.如果a是有理数,那么a是实数D.两边一角对应相等的两个三角形全等【考点】命题与定理.【分析】根据绝对值的性质,三角形全等的判定方法,对各选项分析判断即可得解.【解答】解:A、如果|a|=1,那么a=1,是假命题,应为:如果|a|=1,那么a=±1,故本选项错误;B、三个内角分别对应相等的两个三角形全等,是假命题,故本选项错误;C、如果a是有理数,那么a是实数,是真命题,故本选项正确;D、两边一角对应相等的两个三角形全等,是假命题,故本选项错误.故选C.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图所示的扇形图是对某班学生知道父母生日情况的调查,A表示只知道父亲生日,B表示只知道母亲生日,C表示知道父母两人的生日,D表示都不知道,若该班有40名学生,则只知道母亲生日的人数有()人.A.25% B.10 C.22 D.25【考点】扇形统计图.【分析】因为B表示只知道母亲生日,所以只知道母亲生日的人数所占百分比为25%,又因为该班有40名学生,则只知道母亲生日的人数可求.【解答】解:∵只知道母亲生日的人数所占百分比为25%,∴只知道母亲生日的人数为40×25%=10(人).故选B.【点评】本题考查扇形统计图及相关计算.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.二、细心填一填,一锤定音(本大题共8道小题,每小题3分,满分24分)11.因式分解:m2﹣mn=m(m﹣n).【考点】因式分解-提公因式法.【分析】提取公因式m,即可将此多项式因式分解.【解答】解:m2﹣mn=m(m﹣n).故答案为:m(m﹣n).【点评】此题考查了提公因式分解因式的知识.此题比较简单,注意准确找到公因式是解此题的关键.12.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是8米.【考点】勾股定理的应用.【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【解答】解:∵一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,∴折断的部分长为=5,∴折断前高度为5+3=8(米).故答案为8.【点评】此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.14.若x m=3,x n=2,则x m+n=6.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变,指数相加,可得答案.【解答】解:x m•x n=x m+n=3×2=6,故答案为:6.【点评】本题考察了同底数幂的乘法,注意底数不变,指数相加.15.在Rt△ABC中,∠B=90°,若AB=3,BC=4,则斜边AC上的高BD= 2.4.【考点】勾股定理.【分析】根据勾股定理即可求AC的长度,根据面积法即可求BD的长度.【解答】解:在Rt△ABC中,∠B=90°,若AB=3,BC=4,AC==5,△ABC的面积S=AB•BC=AC•BD解得BD==2.4,故答案为2.4.【点评】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形面积的计算,本题中正确的计算AC的长是解题的关键.16.已知:y=,则x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.一个等腰三角形的两边长分别为3和7,这个三角形的周长是17.【考点】等腰三角形的性质;三角形三边关系.【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.18.已知:x+=3,则x2+=7.【考点】完全平方公式.【分析】根据完全平方公式解答即可.【解答】解:∵x+=3,∴(x+)2=x2+2+=9,∴x2+=7,故答案为:7.【点评】本题考查了完全平方公式,熟记完全平方公式是解题的关键.三、用心做一做,慧眼识金(本大题共4道小题,每小题6分,满分24分)19.计算:﹣+2.【考点】实数的运算.【分析】原式利用算术平方根、立方根定义计算即可得到结果.【解答】解:原式=5﹣3+1=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(x+1)2﹣(x+1)(x﹣1),其中x=1.【考点】整式的混合运算—化简求值.【分析】先化简题目中的式子,然后将x=1代入化简后的式子即可解答本题.【解答】解:(x+1)2﹣(x+1)(x﹣1)=x2+2x+1﹣x2+1=2x+2,当x=1时,原式=2×1+2=4.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.21.如图,已知AE∥BC,AE平分∠DAC.求证:AB=AC.【考点】等腰三角形的判定与性质;平行线的性质;等腰三角形的判定.【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,同位角相等可得∠1=∠B,两直线平行,内错角相等可得∠2=∠C,从而得到∠B=∠C,然后根据等角对等边即可得证.【解答】证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.【点评】本题考查了等腰三角形的判定,平行线的性质,是基础题,熟记性质是解题的关键.22.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED,求证:AC=CD.【考点】全等三角形的判定与性质.【分析】由全等三角形的判定定理SAS证得△ABC≌△CED,则该全等三角形的对应边相等,即AC=CD.【解答】证明:如图,∵AB∥ED,∴∠ABC=∠CED.∵在△ABC与△CED中,,∴△ABC≌△CED(SAS),∴AC=CD.【点评】本题考查了全等三角形的判定与性质.此题是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明四、综合用一用,马到成功(本大题共2道小题,每小题7分,满分14分)23.在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比.初三•三班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:分组频率49.5~59.50.0459.5~69.50.0469.5~79.50.1679.5~89.50.3489.5~99.50.42合计 1.00根据以上信息回答下列问题:(1)该班90分以上(含90分)的调查报告共有21篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占76%;(3)补全频率分布直方图.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)由频率分布表可知:该班90分以上(含90分)的调查报告的频率=0.42,则由总数=频数÷该组的频率可知:该班90分以上(含90分)的调查报告的频数=总数×该班90分以上(含90分)的调查报告的频数=50×0.42=21;(2)由频率分布表可知:80分及80分以上的调查报告的频率为0.34+0.42=0.76,则该班被评为优秀等级(80分及80分以上)的调查报告占0.76÷1=76%;(3)59.5﹣69.5段的频率为0.04,49.5﹣59.5段的频率也为0.04,则第一组和第二组小长方形的高是相等的;据此可以绘制直方图.【解答】解:(1)该班90分以上(含90分)的调查报告的频率=0.42,90分以上(含90分)的调查报告的频数=50×0.42=21;(2)80分及80分以上的调查报告的频率为0.34+0.42=0.76,则该班被评为优秀等级(80分及80分以上)的调查报告占0.76÷1=76%;(3)图如右边:【点评】本题考查频率及频数的计算,记住公式:频率=频数÷总人数是解决本题的关键.同时还考查了动手绘制频率直方图的能力.24.如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?【考点】勾股定理的应用.【分析】根据题目提供的方位角判定AO⊥BO,然后根据甲轮船的速度和行驶时间求得OB的长,利用勾股定理求得OA的长,除以时间即得到乙轮船的行驶速度.【解答】解:∵甲轮船向东南方向航行,乙轮船向西南方向航行,∴AO⊥BO,∵甲轮船以16海里/小时的速度航行了一个半小时,∴OB=16×1.5=24海里,AB=30海里,∴在Rt△AOB中,AO===18,∴乙轮船航行的速度为:18÷1.5=12海里.【点评】本题考查了勾股定理的应用,解决本题的关键是根据题目提供的方位角判定直角三角形.五、耐心解一解,再接再厉(本大题共1道小题,满分8分)25.某学校的操场是一个长方形,长为2x米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?【考点】列代数式;代数式求值.【分析】(1)根据等式“操场原来的面积=操场的长×宽”列出代数式即可;(2)根据等式“操场增加的面积=(操场的原来的长+4)×(操场原来的宽+4)﹣操场原来的面积”列出代数式,再把x=20代入即可求出.【解答】解:(1)根据题意得:操场原来的面积=2x(2x﹣5);(2)根据题意:操场增加的面积=(2x+4)(2x﹣5+4)﹣2x(2x﹣5)=16x﹣4;则x=20时,16x﹣4=316.答:操场面积增加后比原来多316平方米.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.六、探究试一试,超越自我(本大题共2道小题,每小题10分,满分20分)26.(10分)(2019秋•衡阳期末)如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H 点,交AE于G.(1)试说明AH=BH(2)求证:BD=CG.(3)探索AE与EF、BF之间的数量关系.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据等腰三角形的三线合一证明;(2)证明△ACG≌△CBD,根据全等三角形的性质证明;(3)证明△ACE≌△CBF即可.【解答】证明:(1)∵AC=BC,CH⊥AB,∴AH=BH;(2)∵ABC为等腰直角三角形,CH⊥AB,∴∠ACG=45°,∵∠CAG+∠ACE=90°,∠BCF+∠ACE=90°,∴∠CAG=∠BCF,在△ACG和△CBD中,,∴△ACG≌△CBD(ASA),∴BD=CG;(3)AE=EF+BF,理由如下:在△ACE和△CBF中,,∴△ACE≌△CBF,∴AE=CF,CE=BF,∴AE=CF=CE+EF=BF+EF.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.27.(10分)(2019秋•衡阳期末)如图所示,在长方形ABCD 中,AB=6厘米,BC=12厘米,点P 沿AB 边从点A 开始向点B 以1厘米/秒的速度移动,点Q 沿BC 从点B 开始向点C 以2厘米/秒的速度移动,如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6).(1)当PB=2厘米时,求点P 移动多少秒?(2)t 为何值时,△PBQ 为等腰直角三角形?(3)求四边形PBQD 的面积,并探究一个与计算结果有关的结论.【考点】四边形综合题.【分析】(1)由AB 、PB 的长可求得AP 的长,则可求得t 的值;(2)根据等腰直角三角形的性质可求得PB=BQ ,则可得到关于t 的方程,可求得t 的值;(3)可用t 分别表示出S △APD 、S △QCD ,再利用面积的和差可求得四边形PBQD 的面积,则可求得结论.【解答】解:(1)∵PB=2cm ,AB=6cm ,∴AP=AB ﹣PB=6﹣2=4(秒),即点P 移动4秒;(2)∵△PBQ 为等腰直角三角形,∴PB=BQ ,即6﹣t=2t ,解得t=2∴当t 的值为2秒时,△PBQ 为等腰直角三角形;(3)由题意可知AP=t ,AB=6,BQ=2t ,BC=12,∴PB=6﹣t ,QC=12﹣2t ,CD=6,AD=12,∴S △APD =AP•AD=t ×12=6t ,S △QCD =QC•CD=(12﹣2t )6=36﹣6t ,∴S 四边形PBQD =S 矩形ABCD ﹣S △APD ﹣S △QCD =72﹣6t ﹣(36﹣6t )=36,结论:不论P 、Q 怎样运动总有四边形PBQD 的面积等于长方形ABCD 面积的一半.【点评】本题为四边形的综合应用,涉及等腰三角形的性质、三角形的面积、方程思想及转化思想.用t表示出相应线段的长度,化动为静是解决这类运动型问题的一般思想.本题考查知识点不是太多,难度不大.。

衡阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

衡阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

衡阳市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列各数中3.14,,1.060060006…(每两个6之间依次增加一个0),0,,3.14159是无理数的有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中是无理数的是:,(每两个6之间依次增加一个0)共2个.故答案为:B.【分析】由无理数的定义:“无限不循环小数叫无理数”可知已知数中的无理数的个数。

2、(2分)下列计算不正确的是()A. |-3|=3B.C.D.【答案】D【考点】实数的运算【解析】【解答】A、|-3|=3,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意.故答案为:D.【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=;(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.3、(2分)如图是某同学家拥有DVD碟的碟数统计图,则扇形图中的各部分分别表示哪一类碟片()A. ①影视,②歌曲,③相声小品B. ①相声小品,②影视,③歌曲C. ①歌曲,②相声小品,③影视D. ①歌曲,②影视,③相声小品【答案】A【考点】扇形统计图,条形统计图【解析】【解答】解:由条形统计图可知,影视最少,歌曲最多,相声小品其次,所以,①影视,②歌曲,③相声小品.故答案为:A【分析】根据条形统计图看到影视、歌曲、相声人数的大小关系,从而确定扇形统计图中所占的百分比的大小.4、(2分)下列说法中正确的是()A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解【答案】D【考点】不等式的解及解集【解析】【解答】解:A. 代入不等式得:不是不等式的解.故A不符合题意.B. 不等式的解集是:故B不符合题意.C.不等式的解集是:故C不符合题意.D. 是不等式的解.故D符合题意.故答案为:D.【分析】先解出每个选项中的不等式的解集,根据不等式的解的定义,就能得到使不等式成立的未知数的值,即可作出判断5、(2分)若整数同时满足不等式与,则该整数x是()A.1B.2C.3D.2和3【答案】B【考点】解一元一次不等式组,一元一次不等式组的特殊解【解析】【解答】解:解不等式2x-9<-x得到x<3,解不等式可得x≥2,因此两不等式的公共解集为2≤x<3,因此符合条件的整数解为x=2.故答案为:B.【分析】解这两个不等式组成的不等式,求出解集,再求其中的整数.6、(2分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A. 2个B. 3个C. 4个D. 5个【答案】D【考点】对顶角、邻补角,平行线的性质【解析】【解答】解:∵DH∥EG∥BC∴∠DCB=∠HDC,∠HDC=∠DME,∵DC∥EF∴∠DCB=∠EFB,∠FEG=∠DME=∠GMC∴与∠DCB相等的角有:∠HDC,∠DME,∠EFB,∠FEG,∠GMC故答案为:D【分析】根据平行线的性质即可求解。

衡阳市小学2018-2019学年五年级下学期数学期中模拟试卷含解析

衡阳市小学2018-2019学年五年级下学期数学期中模拟试卷含解析

衡阳市小学2018-2019学年五年级下学期数学期中模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)一个加数增加5.8,另一个加数增加6.7,它们的和增加()。

A. 5.8B. 6.7C. 12.5【答案】C【考点】小数的加法和减法【解析】【解答】5.8+6.7=12.5故答案为:C【分析】一个加数增加的数+另一个加数增加的数=它们的和增加的数2.(2分)a,b是两个非零的整数,8a=b,b是a的().A. 因数B. 合数C. 倍数【答案】C【考点】因数与倍数的关系【解析】【解答】a,b是两个非零的整数,8a=b,b是a的倍数。

故答案为:C。

【分析】如果整数a能被整数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数,根据条件“8a=b”可得:b÷a=8,所以b是a的倍数,据此解答。

3.(2分)下面各算式中,()运用了乘法分配律。

A. 48×25=6×(8×25)B. 48×25=12×(4×25)C. 48×25=40×25+8×25【答案】C【考点】整数乘法分配律【解析】【解答】选项A,48×25=6×(8×25),应用乘法结合律;选项B,48×25=12×(4×25),应用乘法结合律;选项C,48×25=40×25+8×25 ,应用乘法分配律.故答案为:C.【分析】乘法分配律:两个数的和或差与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加或相减,即(a+b)×c=a×c+b×c 或(a-b)×c=a×c-b×c,据此解答.4.(2分)一个三角形中,两个内角之和比第三个内角小2,这个三角形是()。

衡阳小学2018-2019学年五年级下学期数学期中模拟试卷含解析

衡阳小学2018-2019学年五年级下学期数学期中模拟试卷含解析

衡阳小学2018-2019学年五年级下学期数学期中模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)140×(460-390)= ()A. 10500B. 7120C. 9800D. 8120【答案】C【考点】整数四则混合运算【解析】【解答】140×(460-390)=140×70=9800故答案为:C.【分析】观察算式可知,算式中有小括号,先算小括号里面的减法,再算小括号外面的乘法,据此顺序解答. 2.(2分)线上点代表1.3.()A. AB. BC. CD. D【答案】C【考点】小数大小的比较【解析】【解答】解:C点表示的是大于1小于1.5的数。

故答案为:C【分析】图中每一个小格表示0.5,根据点C的位置可知点C表示的数是多少,据此即可得到答案。

3.(2分)下面的竖式计算中,正确的是()。

A. B. C.【答案】C【考点】小数的加法和减法【解析】【解答】解:选项A和B都没有按小数点对齐去列竖式。

故答案为:C 。

【分析】注意在做小数加减法时,列竖式一定要按照数位或小数点对齐,不要与整数加减法的个位对齐法混淆。

4.(2分)如图中有()个面露在外面.A. 18B. 15C. 16D. 17【答案】B【考点】从不同方向观察物体和几何体【解析】【解答】解:根据对组合图形的观察,从前面看有3个面;从后面看有3个面;从右面看有3个面;从左面看有3个面;从上面看有3个面;露在外的正方形有:3×5=15(个).故答案为:B.【分析】分别找出从前面看、从后面看、从右面看、从左面看、从上面看露在外面的正方形的面的个数,相加就可以找出答案.5.(2分)三角形中是轴对称图形的是()。

A. 所有三角形B. 等腰三角形C. 等边三角形和等腰三角形【答案】C【考点】轴对称图形的辨识【解析】【解答】三角形中是轴对称图形的是等边三角形和等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学考前押题试卷1一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.8.如图,在平面直角坐标系中,点P是反比例函数图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数于点M,若,则k的值为A.B.C.D.9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y的值随x值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C:请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:;如图3,将绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且在的下方时,若,求线段AE的长.23.如图1,二次函数的图象过点,顶点B的横坐标为1.求这个二次函数的表达式;点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;如图3,一次函数的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线,垂足为点M,且M在线段OC上不与O、C重合,过点T作直线轴交OC于点若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,当AB为对角线时,根据中点坐标公式得,则有,解得或和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B.,故此题错误;C.,故此题错误;D.,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故错误;抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率事件A可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM 为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第21页,共21页。

相关文档
最新文档