振动测试作业报告

合集下载

振动设计分析实验报告

振动设计分析实验报告

振动设计分析实验报告1. 引言振动设计分析是一门重要的工程学科,广泛应用于机械工程、结构设计以及产品开发等领域。

振动设计分析实验通过对不同振动系统进行测试和分析,以评估系统的振动性能和特性。

本实验旨在通过测量不同振动系统的振幅、频率和相位等参数,以及对系统进行模态分析,并通过分析实验结果来探索振动设计的理论与应用。

2. 实验目的- 学习使用振动测量设备和仪器;- 了解振动设计的基本原理和分析方法;- 熟悉模态分析的操作流程;- 掌握振动设计分析实验的基本技巧。

3. 实验设备和仪器本实验所使用的设备和仪器包括:1. 振动传感器;2. 振动测量仪器;3. 示波器;4. 计算机。

4. 实验步骤1. 配置振动传感器并连接到振动测量仪器;2. 将振动传感器安装在待测试振动系统上,确保其与系统紧密接触;3. 打开振动测量仪器和示波器,并进行仪器校准;4. 调节振动系统的频率和振幅,测量并记录不同参数;5. 进行模态分析实验,记录系统的固有频率和振动模态;6. 将实验数据导入计算机,进行数据处理和分析;7. 分析实验结果,评估振动系统的性能和特点。

5. 实验结果与分析通过实验测量和分析,我们得到了以下结果:1. 不同振动系统的频率和振幅;2. 振动系统的固有频率和振动模态。

根据实验结果,我们可以评估振动系统的性能和特性,并进一步优化设计方案。

例如,通过调整振动系统的频率和振幅,我们可以使系统在工作范围内达到最佳的振动效果。

6. 实验总结本实验通过振动设计分析实验,我们学习了振动设计的基本原理和分析方法,并熟悉了模态分析的操作流程。

同时,我们掌握了使用振动测量设备和仪器的技巧,提高了实验操作的能力。

通过实验结果的分析和评估,我们可以得出结论:振动设计分析是有效评估振动系统性能和特性的方法,能为系统设计和优化提供重要参考。

7. 参考文献[1] 振动设计与分析原理教程, XX出版社, 20XX.[2] 振动工程学, XX出版社, 20XX.[3] 振动设计与控制, XX出版社, 20XX.附录- 实验数据表格;- 模态分析结果图表。

电器产品震动试验报告模板

电器产品震动试验报告模板

电器产品震动试验报告模板1. 实验目的本实验旨在测试电器产品在运输、使用过程中的震动环境下是否能正常工作,评估其抗震能力。

2. 实验设备与材料- 电器产品:[产品名称]- 试验台:固定在工作台上的震动试验台- 加速度传感器:用于测量试验台上的振动加速度- 数据采集系统:记录和分析实验数据3. 实验方法3.1 试验准备1. 将电器产品固定在试验台上,确保其稳定;2. 确保试验台及电器产品未受到任何外界干扰;3. 确保加速度传感器与数据采集系统正常工作。

3.2 试验过程1. 设定试验参数,包括试验台的激振频率、加速度等;2. 启动试验台,使其按照设定参数进行震动;3. 在试验过程中,记录电器产品的工作状况和振动加速度数据。

3.3 实验参数- 激振频率:X Hz- 震动加速度:Y m/s²4. 实验结果与分析4.1 实验数据时间(s)振动加速度(m/s²)-1 52 63 5.5... ...60 44.2 结果分析根据实验数据可以看出,电器产品在试验过程中的振动加速度维持在较稳定的水平。

稳定的振动加速度说明电器产品具备较好的抗震能力,能够在运输和使用过程中保持正常工作。

5. 结论经过本实验的震动试验,电器产品表现出较好的抗震能力,能够在运输和使用过程中保持正常工作。

这为产品的市场推广和使用提供了有力的技术支持。

6. 实验总结本实验采用震动试验台对电器产品进行了抗震能力的评估。

通过实验数据分析,得出了电器产品具备良好的抗震能力的结论。

然而,本实验仅对电器产品的震动抗性进行了评估,未对电器产品进行其他性能指标的测试。

因此,在后续的产品测试中,还需要考虑对其他性能指标进行全面的测试,以进一步提升电器产品的可靠性和稳定性。

备注:以上报告模板仅供参考,具体实验报告根据实际情况进行编写。

隧道爆破震动测试报告

隧道爆破震动测试报告

隧道爆破震动测试报告一、测试背景隧道施工过程中,常常需要进行爆破作业来破坏岩石。

这种爆破作业不可避免地会产生一定的震动,为了确保施工安全,必须对隧道爆破震动进行测试和评估。

因此,我们进行了一次隧道爆破震动测试。

二、测试目的1.测试爆破作业对周围建筑物和地质环境的影响程度;2.评估爆破作业对隧道施工工人的影响;3.分析爆破作业引起的震动对周边环境的影响。

三、测试方法1.选择了距离爆破点相对较远的地点进行测点选取;2.使用了高精度地震仪进行采样;3.设置了多个测试点,分别测量了爆破作业前后的地震波形和震动参数;4.在测试过程中,确保测试设备的准确放置和稳定;5.根据测试结果,通过专业软件分析得出震动参数。

四、测试结果分析1.在测试过程中,共进行了5组爆破作业,每组爆破作业之间间隔时间不少于10分钟;2.对每一组爆破作业前后的地震波形进行了比对,发现爆破作业会产生明显的地震波动;3.通过对震动参数进行分析,得出了每个测试点的峰值加速度、峰值速度和峰值位移,具体数据如下表所示:测试点爆破前峰值加速度(g) 爆破后峰值加速度(g) 爆破前峰值速度(cm/s) 爆破后峰值速度(cm/s) 爆破前峰值位移(cm) 爆破后峰值位移(cm)10.030.210.050.500.030.1420.010.130.030.300.020.1030.020.150.040.350.020.1240.020.180.040.400.020.1350.010.110.030.250.020.09五、测试结论1.隧道爆破作业会在周围产生一定的震动影响,但影响范围较小,对周围建筑物的影响可控;2.爆破作业会产生较大的峰值加速度,需要注意作业人员的安全;3.震动参数的变化与距离爆破点的远近有一定的关联性,距离爆破点越远,震动影响越小。

六、改进措施1.加强施工现场周围建筑物的监测,及时发现并解决可能存在的安全隐患;2.对作业人员进行相关培训,提高安全意识,确保施工过程中的人员安全;3.对爆破作业的时间和频率进行合理控制,降低对周边环境的影响。

振动测试作业报告

振动测试作业报告

振动测试技术期末总结学号:班级:建筑与土木工程(1504班)姓名:杨允宁2016年4月27日目录1 振动测试概述 (1)1.1 振动的分类: (1)1.1.1 按自由度分类: (1)1.1.2 按激励类型分类: (1)1.1.3 振动规律分类: (1)1.1.4 按振动方程分类: (1)1.2 振动基本参量表示方法: (2)1.2.1 振幅(u): (2)1.2.2 周期(T)/频率(f): (2)1.2.3 相位( ): (2)1.2.4 临界阻尼(C cr) (2)1.2.5 结构的阻尼系数(c): (2)1.2.6 对数衰减率(δ): (3)1.3 振动测试仪器分类及配套使用: (3)1.3.1 振动测试仪器分类 (3)1.3.2 振动测试仪器配套使用: (4)1.4 窗函数的分类及用途 (5)1.4.1 矩形窗(Rectangular窗): (5)1.4.2 三角窗(Bartlett或Fejer窗): (5)1.4.3 汉宁窗(Hanning窗): (5)1.4.4 海明窗(Hamming窗) (6)1.4.5 高斯窗(Gauss窗) (6)1.5 信号采集及分析过程中出现的问题及解决方法 (7)1.5.1 信号采集和分析过程中出现的问题 (7)1.5.2 解决方法 (7)2 惯性式速度型与加速度型传感器 (8)2.1 惯性式传感器的分类: (8)2.2 常用加速度计传感器的工作原理及力学模型: (8)2.2.1 电动式(磁电式)传感器: (8)2.2.2 压电式传感器: (9)2.3 非惯性传感器: (11)2.3.1 电涡流式传感器: (11)2.3.2 参量型传感器: (11)3 振动特性参数的常用量测方法 (11)3.1 简谐振动频率的量测: (12)3.1.1 李萨(Lissajous)如图形比较法: (12)3.1.2 录波比较法: (12)3.1.3 直接测频法: (12)3.2 机械系统固有频率的测量 (13)3.2.1 自由振动法: (13)3.2.2 强迫振动法: (13)3.3 简谐振幅值测量 (13)3.3.1 指针式电压表直读法: (13)3.3.2 数字式电压表直读法 (13)3.3.3 光学法 (14)3.4 同频简谐振动相位差的测量 (14)3.4.1 示波器测量法 (14)3.4.2 相位计直接测量法 (14)3.5 衰减系数测量 (14)4 振动测试及动载测试实验报告 (15)4.1 振动测试实验报告 (15)4.1.1 测量梁模型一阶振型的数据处理 (15)4.1.2 模态分析 (17)4.2 动应变实验报告 (18)4.2.1 测量梁模型的数据处理 (18)4.2.2 模态分析 (21)5 概念 (21)5.1 功率谱 (21)5.2 相关函数 (22)5.2.1 自相关函数 (23)5.2.2 互相关函数 (23)5.3 相干函数 (24)5.4 传递函数 (24)6 模态分析 (25)6.1 基本概念 (25)6.2 方法分类和理解 (26)6.2.1 频域法 (26)6.2.2 时域法 (26)6.2.3 时频法 (27)1振动测试概述1.1振动的分类:1.1.1按自由度分类:单自由度系统振动(结构只有一个质点体系);多自由度系统振动(结构具有一个以上的质点体系)。

扫频振动实验作业指导书范文

扫频振动实验作业指导书范文

扫频振动实验作业指导书范文1 目的本试验的目的是测定在规定频率范围内振动对MEMS 器件的影响。

本试验是破坏性试验。

2 设备本试验所需设备包括具有规定强度和所需扫频的振动装置,以及试验后进行测量所必需的光学和电气设备。

3 程序器件应牢固地安置在振动台上,引线或电缆也应适当固定。

使器件作等幅简谐振动,其振幅两倍幅值为1.52mm(±10%),或其峰值加速度按试验条件A、B 或 C 的规定(+20%,-0g)。

在交越频率以下,试验条件应由振幅大小控制,在交越频率以上,试验条件应由峰值加速度值控制。

振动频率在20~2000Hz 范围内近似地按对数变化。

应在不少于4min 的时间内经受从20Hz 到2000Hz 再回到20Hz 的整个频率范围的作用。

在X、Y 和Z 三个方向上各进行四次这样的循环(总共是12 次),从而整个周期运动所需的时间至少约为48min.当有规定时,对其壳体内所含部件或元件在振动时易移动和受到破坏的器件,应用X 射线检查方法或去掉封盖或打开外壳,放大30 倍检查器件,从而揭示是否遭到损坏或有错位。

当本试验作为一个试验组或试验分组的一部分进行时,在本试验结束后不必专门进行试验后测量或检查,而可在该组或分组试验结束时进行一次。

试验条件峰值加速度(m/s2).A 196(20g)..B 490(50g)..C 686(70g).3.1 检查试验后,不放大或放大不超过 3 倍,对标记进行外观检查;放大20~50 倍对封装、引线或密封进行目检。

此项检查和任何附加的特殊测试和检查应在最终周期完成后,或在包括本试验的一个试验组、一个试验序列或一个试验分组完成后进行。

3.2 失效判据本试验后,不符合任何一项规定的测量或检查,封装、引线或密封有缺陷或损坏的迹象,或标记模糊等,都应视为失效。

由于试验时的操作和夹具引起的标志损坏不应成为器件拒收的原因。

叶片振动测量实验报告

叶片振动测量实验报告

叶片振动测量实验报告1. 引言叶片振动是在流体中运动的叶片由于受到流体作用力而发生的振动现象。

叶片振动对于风力发电机、水力发电机等工程应用中的叶片运动控制具有重要意义。

本实验旨在通过测量叶片振动的位移、速度和加速度,探究叶片振动的基本特性和规律。

2. 实验方法2.1 实验装置本实验使用的实验装置包括:振动测量系统、电磁感应位移传感器、信号调理电路和数据采集设备。

2.2 实验步骤1. 将叶片固定在安装架上,确保叶片在安装架上自由振动;2. 在叶片上固定电磁感应位移传感器,并连接到信号调理电路;3. 打开振动测量系统和数据采集设备;4. 开始测量,并记录数据,包括叶片振动的位移、速度和加速度。

3. 实验结果与分析3.1 叶片振动的位移、速度和加速度测量结果使用数据采集设备记录并处理实验数据,得到了叶片振动的位移、速度和加速度曲线。

下图为测得的实验结果示意图。

![实验结果示意图](result.png)3.2 基于实验结果的分析根据实验结果,我们可以观察到叶片振动的周期性特征。

叶片振动的周期由外部作用力和叶片的固有特性共同决定。

通过分析位移、速度和加速度曲线,可以得出以下结论:1. 位移曲线呈现正弦波形,表明叶片振动是一个简谐振动过程;2. 速度曲线呈现谐波形,速度的变化与位移变化相位差90度,速度峰值落在位移波峰或波谷;3. 加速度曲线为谐波的导数形式,加速度的变化与位移变化相位差180度,加速度峰值落在位移波谷或波峰。

叶片振动的位移、速度和加速度特性对于优化叶片运动控制和减小振动引起的能量损失具有重要意义。

4. 实验总结通过本实验,我们成功测量了叶片振动的位移、速度和加速度曲线,并分析了其特性和规律。

实验结果表明,叶片振动呈现周期性变化,具有简谐振动的特点。

这对于工程应用中的叶片运动控制具有重要意义。

同时,本实验还展示了使用振动测量系统进行叶片振动测量的方法和步骤,为后续的研究和应用提供了基础数据和方法。

振动时效报告

振动时效报告

振动时效报告
报告时间:2021年6月30日
报告内容:
为了能够更加保障振动设备的性能和维护,我们进行了振动时效测试。

测试使用了四台振动设备,分别对其进行了24小时的持续振动测试,并在测试结束后进行了数据分析和报告总结。

测试结果表明,四台设备的振动幅值与振动频率均呈现出时效性变化。

具体而言,设备A在测试前的振动幅值为1.2G,振动频率为50Hz。

而在测试结束后,设备A的振动幅值降低至0.8G,振动频率也有所变动,为48.5Hz。

设备B、C、D的变化趋势与设备A大致相似,只是变化幅度略有不同。

进一步分析数据,我们认为设备的振动时效与运行环境、使用频率、设备质量等因素密切相关。

因此,我们建议对设备进行定期的振动测试,并根据测试结果进行相关设备调整和维护,以确保设备的长期性能和可靠性。

结论:
通过本次振动时效测试,我们得出了设备的振动变化规律和时效性变化趋势。

同时也为我们提供了科学、理性的数据支持,以便更好地维护振动设备的长期性能。

报告人:xxx公司技术部
签名:__________。

振动分析诊断报告

振动分析诊断报告

振动分析诊断报告客户信息:客户名称:设备型号:设备编号:安装日期:生产厂家:主要参数:一、问题描述在本次振动分析诊断报告中,根据您提供的设备信息和我们的现场调查,我们对设备在运行过程中出现的问题进行了分析和诊断。

以下是问题描述:设备振动异常噪音增加设备运行不稳定二、振动测试与分析结果根据现场勘测和振动测试的数据,我们得出以下分析结果:1. 振动测试数据分析通过对设备进行振动测试,我们收集了以下数据:频率:振动量:(单位:Hz)(单位:mm/s)通过对振动测试数据的分析,我们发现在频率为XHz处有明显的峰值,表明该频率存在振动异常。

2. 振动特征分析针对设备的振动异常,我们进行了进一步的特征分析,得出以下结论:(1)X频率振动过大,超过了设备正常运行范围。

可能导致该频率振动增大的原因有:轴承损坏、不平衡、松动等。

(2)Y频率振动过大,超过了设备正常运行范围。

可能导致该频率振动增大的原因有:齿轮磨损、偏心等。

(3)Z频率振动过大,超过了设备正常运行范围。

可能导致该频率振动增大的原因有:电机问题、传动系统故障等。

3. 噪音分析针对设备噪音增加的问题,我们进行了噪音分析,得出以下结论:(1)噪音主要来自设备的X部件,可能是由于X部件的磨损、松动或不当安装等原因导致。

4. 运行稳定性分析针对设备运行不稳定的问题,我们进行了运行稳定性分析,得出以下结论:(1)设备运行不稳定的主要原因是由于设备的X部件存在松动。

需要尽快进行检修和维护,以确保设备的正常运行。

三、问题分析与建议在以上振动测试与分析的基础上,我们对问题进行了深入分析,并给出了以下建议:1. 针对频率为XHz的振动异常,建议进行以下处理措施:(1)对轴承进行检修和更换,确保轴承的正常运行。

(2)进行设备的平衡校正,以消除不平衡带来的振动问题。

(3)检查设备的连接件,确保其紧固度。

2. 针对频率为YHz的振动异常,建议进行以下处理措施:(1)对齿轮进行检查和更换,确保齿轮的正常工作。

模态分析试验报告-

模态分析试验报告-

《建筑结构的模态分析试验》实验报告专业土木工程班级学号姓名教师建工实验中心2010年3月振动测试与模态分析实验报告一、实验人员3组:二、试验目的1.培养学生采用实验与理论相结合的方法来处理工程中的振动问题。

2.通过实验使学生掌握振动测试系统的基本组成、了解振动测试的常用测量方法以及模态分析技术。

模态分析技术已发展成为解决工程振动问题的重要手段。

3.了解模态分析软件的使用方法。

三、试验内容1、学习模态分析原理;2、学习模态测试及分析方法。

通过对框架模型的模态试验分析,测定出基础模型的模态参数:固有频率、阻尼比、振型图,并通过实验观察了解框架结构的动力参数,从而掌握模态分析的基本原理及分析方法。

四、试验的基本要求(1)掌握振动测试系统的构成及操作。

(2)了解振动测试的常用测量方法。

激振、锤击(3)了解数据采集系统的操作步骤。

(4)了解对已采集到的数据进行模态分析的方法与步骤。

五、试验仪器(表1)单轴加速度传感器、力锤、动态信号分析仪LMS和计算机等力锤用于激励实验对象。

力传感器用于拾取激励信号并转换成为电荷信号。

加速度计用于拾取响应信号并转换成为电荷信号。

AZ804-A四通道电荷电压放大信号调理仪,用于将电荷信号放大v1.0 可编辑可修改成为适合测量的电压信号。

AZ208数据采集箱信号采集分析系统包括抗混滤波器、A/D变换器、结构动态分析软件、计算机、打印机。

用安装有力传感器的力锤敲击实验对象上的若干个点。

力传感器拾取激励力的信号,安装在实验对象的某测点上的加速度计拾取响应信号.经电荷放大器放大后输入信号采集系统。

实验仪器框图如图1所示。

力信号接入信号采集器的第1通道,响应信号依次接入信号采集器的其他通道。

表1 试验仪器的硬件及软件力锤传感器厂家型号量程频率范围灵敏度美国PCB公司086D20加速度传感器灵敏度厂家型号量程频率范围vm/g 美国PCB公司333B4050g50g50g50g六、试验步骤模态试验基本过程二十年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。

震动分析报告

震动分析报告

震动分析报告1. 引言震动分析是一种用来研究和评估结构或设备在震动环境下的性能和可靠性的方法。

通过对震动信号的采集和分析,可以得到结构或设备在不同工况下的振动特性,进而评估其是否满足设计要求。

本文将通过对某设备的震动分析,来探讨震动对设备性能的影响。

2. 背景我们对某机械设备进行了震动分析,该设备用于制造产品的关键工序。

为了确保该设备在工作过程中的稳定性和可靠性,我们需要通过对其进行震动测试和分析,评估其在震动环境下的性能。

3. 实验设计我们采用了以下实验设计来进行震动分析: - 设备参数记录:记录了设备的结构参数和工作状态,以及与该设备相关的环境参数。

- 震动采集:使用加速度传感器进行震动信号的采集,将信号传输给数据采集卡进行数字化处理。

- 数据分析:对采集到的震动信号进行时域分析、频域分析和时频域分析,获取设备在不同频段下的振动特性。

4. 数据分析结果4.1 时域分析时域分析是指对信号在时间域上的特性进行分析。

通过时域分析,我们可以获取到以下信息: - 设备的振动幅值:通过观察信号的振动幅值大小,可以评估设备在震动环境下的振动程度和结构的稳定性。

- 设备的振动周期:通过观察信号的周期性变化,可以评估设备在震动环境下的工作状态和振动频率。

4.2 频域分析频域分析是指对信号在频率域上的特性进行分析。

通过频域分析,我们可以得到以下信息: - 设备的主要频率成分:通过观察信号的频谱,可以确定设备在震动环境下的主要振动频率成分,评估其与工作频率的匹配程度。

- 设备的频率响应:通过观察信号在不同频率下的幅值响应,可以评估设备的振动特性、共振情况以及是否存在频率失配问题。

4.3 时频域分析时频域分析是指对信号在时域和频域上的特性进行联合分析。

通过时频域分析,我们可以得到以下信息: - 设备的振动时程:通过观察信号在时域上的变化,结合频域分析结果,可以评估设备的振动特性和是否存在异常振动行为。

- 设备的瞬时频率:通过观察信号在时频域上的变化,可以评估设备的振动频率和频率变化情况,进一步分析设备的工作状态和频率匹配情况。

Vibration (振动) 测试规范

Vibration (振动) 测试规范

1. 目的Purpose本项测试之目的在模拟产品在运输过程中是否会造成功能不良。

2. 适用范围Scope本项测试规范之适用范围,凡本公司生产之产品于验証阶段及量产后之测试验証均适用之。

3. 权责Authority and Responsibility无。

4. 名词定义Terms Definition4.1 Un-package:裸机状态下执行测试。

4.2Package :标准出货包装状态执行测试。

5. 作业流程Operation Flow无。

6. 作业内容Operation Description6.1 使用仪器﹕6.1.1 Pattern generator。

6.1.2 Vibration test6.2 设定:依合格实验室之环境。

6.3 规格:依下列规格或依工程规格,包含项目如下振动方式1:Sinusoidal(Un-package)振动方式2:Random(Package)(如有共振﹐则对每一个共振点单独进行30min的测试.)6.4 步骤6.4.1 与委托实验室确认以下项目6.4.1.1实验室仪器能力是否可承受工程规格所订定之测试规格。

6.4.1.2实验室仪器能力是否可承受待测机台体积及重量。

6.4.1.3价格是否公道。

6.4.1.4报告内容(英文or中文、有无照片)送测日期及可完成日期。

6.4.1.5试验内容(是否包含执行Operating 动作、装木模动作等) 。

6.4.1.6是否为有合格証书之实验室。

6.4.2 待测机台须注明测试项目及测试规格。

6.4.3 完成Vibration Test 后做功能与光学测试。

7. 参考资料Concerned Documents7.1 工程规格书。

8. 附录Attachment8.1附录一Vibration Test Report(H3QM036-01)﹐共一页8.2附录二LCD Monitor Status List before&after be Vibrated(H3QM036-02),共一页。

声振检测实验报告

声振检测实验报告

声振检测实验报告1. 引言声振检测是一种常见的无损检测方法,通过检测物体的声音和振动信号来评估其结构的健康状况。

声振检测被广泛应用于工程结构、机械设备以及电子产品等领域。

本实验旨在通过实际的声振检测实验,了解声振检测的原理和方法,并验证其在实际应用中的有效性。

2. 实验目的- 了解声振检测的原理和方法;- 学会使用声振检测仪器进行实验;- 验证声振检测在实际应用中的有效性。

3. 实验设备- 声振检测仪器:包括麦克风、加速度传感器等;- 计算机:用于采集和分析检测信号;- 实验样品:选取不同材料和结构的样品以进行实验。

4. 实验步骤4.1 准备工作- 将实验样品固定在实验台上,并保证其稳定性;- 连接麦克风和加速度传感器到声振检测仪器上;- 打开计算机,启动声振检测软件。

4.2 实验数据采集- 在检测软件中设置相关参数,如采样频率、采样时间等;- 选择要检测的信号类型,如声音或振动;- 开始数据采集,并记录采集的数据。

4.3 数据分析与处理- 将采集的数据导入数据分析软件中,进行初步的信号处理;- 对数据进行滤波、去噪等操作,以提取有用的信号信息;- 对处理后的数据进行频谱分析、时域分析等,得到检测结果。

4.4 结果评估与分析- 根据分析结果,评估实验样品的健康状况;- 分析可能存在的问题,提出改进意见;- 根据实验结果总结声振检测的优缺点及适用范围。

5. 实验结果与讨论在本实验中,我们选择了不同材料和结构的三个样品进行声振检测实验。

通过对采集到的数据进行分析,我们得到了以下结果:- 样品A:在频谱分析中,我们观察到了一个明显的峰值,该峰值频率低且幅度较大,说明样品A存在结构松动或损坏的情况;- 样品B:在时域分析中,我们观察到了样品B振动的周期性变化,该变化与样品的工作状态相一致,表明样品B正常工作,没有明显的结构问题;- 样品C:在声波信号分析中,我们观测到了一个明显的异常声音,该异常声音与样品的预期工作状态不一致,可能存在故障或磨损。

振动分析报告

振动分析报告

振动分析报告1. 引言振动分析是一种用于研究和评估机械系统振动特性和健康状况的方法。

通过分析机械系统的振动数据,可以识别出潜在的故障或异常状态,从而采取相应的维修或改进措施,确保系统的安全性和运行效率。

本报告旨在分析机械系统振动数据,并提供相应的结论和建议。

2. 数据采集与分析方法2.1 数据采集在本次振动分析中,我们采集了机械系统在运行过程中的振动数据。

通过安装振动传感器,可以实时监测机械系统的振动情况,并将数据采集到计算机中进行后续分析。

2.2 数据处理与分析采集到的振动数据可以通过振动分析软件进行处理和分析。

常用的振动参数包括振动加速度、振动速度和振动位移等。

通过分析这些参数的变化趋势和波形图,可以了解机械系统的振动特性。

3. 数据分析结果3.1 频谱分析通过对振动数据进行频谱分析,我们可以得到系统在不同频率下的振动幅值。

根据频谱图,我们可以判断是否存在异常频率分量,进而识别故障或异常情况。

3.2 振动时间历程分析振动时间历程图可以展示系统振动信号的时域波形。

通过观察时间历程图,我们可以判断振动信号是否存在周期性变化或突变现象,从而对机械系统的稳定性和可靠性进行评估。

3.3 振动相位分析振动相位分析可以分析不同频率的振动信号之间的相位关系。

通过观察相位图,我们可以判断不同振动组件之间的相互作用,进而对系统的动态响应进行评估。

4. 结论与建议通过对机械系统振动数据的分析,我们得到以下结论和建议:•在频谱分析中,我们观察到频率为X Hz的异常频率分量,提示机械系统可能存在故障或磨损情况,建议进行维修或更换相关部件。

•振动时间历程图显示系统振动信号存在周期性变化,可能是由于不平衡或轴承故障引起的,建议进行动平衡或轴承维修。

•振动相位分析显示不同频率的振动信号之间存在相位差,可能是由于机械系统的非线性特性引起的,建议进行系统优化或调整。

综上所述,通过振动分析,我们可以评估机械系统的振动特性和健康状况,并提供相应的维修或改进建议,以确保系统的正常运行和安全性。

振动测试技术作业

振动测试技术作业

简支梁振动系统动态特性测试姓名:汪亚彬学号:0214134班级:土木工程(3)班课程:振动测试技术2015年7月21日一、振动测试概述1、振动的分类及描述答: 1、在振动理论中,把物体的振动按自由度分,可分为:单自由度振动、多自由度振动、无限自由度振动;2、按激励类型分,可分为:自由振动、受迫振动、自激振动、固有振动、参数振动;3、从振动特性看,可分为:线性振动和非线性振动;4、按信息与数据的形式分,可分为:确定性振动及随机振动两大类。

其中 确定性振动按响应持续时间,又可分为:瞬态振动、稳态振动;按响应的周期性可分为:周期振动及非周期振动两类;周期振动可用数学表达式 )((nT t y t y +=) 表示,它还可以进一步分为简谐振动及复杂周期振动两类;非周期振动又可分为准周期振动及瞬变振动两类。

一、确定性振动1、简谐振动简谐振动是一种最简单、最基本的振动形式,其时变函数为sin()(A t y =)2sin()00ϕπϕ+=+ft A wt式中:A ----振幅;w ----圆频率,单位:弧度/秒(rad/s );f ----频率,单位:赫兹(Hz );0ϕ----相对于时间原点的初相角,单位:弧度(rad );)(t y ----为t 时刻的瞬时幅值。

2、复杂周期振动复杂周期振动可用如下的周期性时变函数表示),()(nT t y t y ±= =n 1,2,3···,它由与基波成为整倍数的波形所组成。

或者,复杂周期振动是由静态分量0y 项与无穷多个振幅、初相角不相同、频率与基频称整数倍的间谐波分量叠加而成,当然其中有些项的幅值可以为零。

3、准周期振动如果若干个频率不成比例关系的简谐振动叠加在一起,合成后的振动不呈现周期性,称为准周期振动。

例如:)7s i n ()5s i n ()s i n ()(332211ϕϕϕ+++++=t y t y t y t y所表示的振动,表现在时程曲线不呈现周期性。

机械实验之振动参数的测定

机械实验之振动参数的测定

振器能起到隔振作用的最低频率。
2.4 实验操作注意点
1)信号源的输出电流不能太大,一般取在200~300毫安之间,激振头的 最大输入电流为500毫安。
2)由于信号源的粗调旋钮自身比较小,调节比较灵敏,同时信号源显示 又存在一定的迟延,所以很不容易调节,需要特别的耐心
2.5有可能出现的问题
在实验的过程中,有于测振仪自身没有调零功能,因此,有时会出 现零漂较大的情况(达到0.04mm),而主动隔振在加上空气阻尼器的时 候振幅也很小,所以误差相对较大,甚至导致实验失败。
C)绘出振动波形图波峰和波谷的两根包络线,然后设定,并读出个波形所
经历的时间t,量出相距i个周期的两振幅 , 20 。按公式计算 tgx0d/(x•0nx0)和 n/0
2)用强迫振动法测量
tg
x0d

/(x0
nx0)和
n/0
A)加速度传感器置于简支梁上,其输出端接信号采集分析仪,用来测量简支 梁的振动幅值
2.5 实验的其他方法
在测系统的阻尼比时还可以采用放大系数法
在简谐激振力作用
1下,有阻尼单自由度系统的放大系数
为:
共振时, 1/ 2, 1/ 2
即: 1 y静 2 2y动
放大系数 是指激振力作用时的振幅与静力作用时最大位移的比 值,所以有
1
A1 i
3.分析总结
3.1 实验体会
1) 信号发生器在调定到一定的频率微调旋钮由于比较时会发生一些困 难,主要因素如下:
主动隔振效率: 0 2
讨论:1)当 a 1 时, A2 A1 , 1 ,隔振器没有隔振效果
0 时,即 2 共振
2)当
A2 时 A1
,/ 隔0 振器才发生作用

振动测试技术模态实验报告

振动测试技术模态实验报告

研究生课程论文(2013-2014学年第二学期)振动测试技术研究生:模态试验大作业0 模态试验概述模态试验(modal test)又称试验模态分析。

为确定线性振动系统的模态参数所进行的振动试验。

模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。

模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。

由于振动在机械中的应用非常普遍。

振动信号中包含着机械及结构的内在特性和运行状况的信息。

振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。

同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。

模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。

模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。

这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。

为获得系统动态特性,常需要测量系统频响函数。

目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。

单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。

按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。

瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。

高中晶格振动实验设计

高中晶格振动实验设计

高中晶格振动实验设计一、课程目标知识目标:1. 理解晶格振动的概念,掌握晶格振动的基本原理;2. 学会运用实验方法研究晶格振动的特性,掌握相关实验技巧;3. 掌握数据分析方法,能够对实验结果进行合理分析。

技能目标:1. 培养学生动手操作实验设备的能力,提高实验操作技能;2. 培养学生运用物理知识解决实际问题的能力,提高问题分析能力;3. 培养学生团队协作能力,学会与他人共同完成实验任务。

情感态度价值观目标:1. 激发学生对物理学科的兴趣,培养探索自然规律的欲望;2. 培养学生严谨的科学态度,养成实验操作的规范性和安全性意识;3. 引导学生关注科学技术在现实生活中的应用,提高社会责任感和使命感。

课程性质:本课程为高中物理实验课程,以晶格振动为主题,结合课本知识,通过实验设计,让学生深入理解晶格振动的原理和特性。

学生特点:高中学生已具备一定的物理知识基础,具有一定的实验操作能力和问题分析能力,但对晶格振动这一抽象概念的理解还需加强。

教学要求:教师应注重引导学生将理论知识与实验操作相结合,关注实验过程中的细节,培养学生独立思考和团队协作能力。

通过本课程的学习,使学生能够将所学知识应用于实际问题,提高学生的综合素养。

二、教学内容本课程依据课程目标,结合课本相关章节,设计以下教学内容:1. 晶格振动基础知识:介绍晶格振动的概念、分类及基本原理,对应教材第 章 节;2. 实验设备与操作:讲解实验设备的组成、工作原理及操作方法,对应教材第 章 节;3. 实验步骤与技巧:制定详细的实验步骤,强调操作技巧和注意事项,对应教材第 章 节;4. 数据采集与分析:指导学生进行数据采集,教授数据分析方法,对应教材第 章 节;5. 实验结果讨论:组织学生针对实验结果进行讨论,分析实验现象,对应教材第 章 节。

教学进度安排如下:1. 第一周:晶格振动基础知识学习;2. 第二周:实验设备与操作方法学习;3. 第三周:实验步骤与技巧学习,进行实验操作;4. 第四周:数据采集与分析,完成实验报告;5. 第五周:实验结果讨论,总结课程。

振动、跌落性能测试报告

振动、跌落性能测试报告

1.0 目的和范围规范迈科新能源有限公司锂离子二次电池芯的振动、跌落性能的测试。

适用于迈科新能源有限公司锂离子二次电池芯或客户要求的成品电池振动、跌落性能测试。

1.1 变更记录1.2 定义(无)1.3 相关文件和资料(无)2.0测试仪器2.1擎天测试柜(BS-9300R)、振动、跌落台,内阻测试仪(NZY-200)、数显卡尺(分辨率为0.01mm ),秒表。

3.0试验环境3.1温度:15℃~35℃,相对湿度:45%-75%,大气压力:86kPa~106kPa 。

4.0作业内容及方法(客户有特殊要求时,按具体要求的条件测试)4.1取样:当有重大工艺变更(材料改变)或新产品开发时(含新型号)或周期性测试,由测试员或实验员从检测车间新批次或试验批次电池芯中随机抽取4只, 如正常生产批每周抽取2批/每类,将电池芯编号,测试并记录其内阻、电压、厚度。

4.2振动测试:①在环境温度20±5℃,以1C5A 充饱电,将电池芯直接安装或通过夹具安装在振动台上,按下面的振动频率和对应的振幅调整好试验设备,X 、Y 、Z 、三个方向每个方向从10Hz~55Hz 循环扫频振动30min ,扫频速度10ct/min 。

振动频率30-55Hz位移幅值(单振幅):0.19mm振动频率10-30Hz 位移幅值(单振幅):0.38mmMM跌落测试:电池按振动实验要求实验结束后进行跌落实验,将电池由高度为1000mm的位置自由跌落到置于水泥地面上的18-20mm厚的硬木板上,从X、Y、Z、正负方向(六个面)每个方向自由跌落一次.自由跌落结束后,将电池以1C5A电流放电至终止电压,然后按1C5A放电性能测试规定进行充放电循环,放电时间不低于51min,终止放电循环,充放电循环次数应不多于3次.4.3电池芯处理:试验结束后,电池芯按容量档次入库处理。

4.4异常反馈:如果振动、跌落性能测试数据及现象有异常,则在测试完后立即向QE工程师反馈,再补抽4只,按4.2条件和步骤进行测试,仍然不符合时,以书面的形式向技术部、品质部反馈。

有限空间作业振动检测记录

有限空间作业振动检测记录

有限空间作业振动检测记录一、背景信息在进行有限空间作业时,为保障作业人员的安全与健康,振动检测是必不可少的环节。

本文档记录了有限空间作业振动检测的相关信息。

二、检测目的本次振动检测的目的是评估有限空间作业中可能存在的振动风险,以制定适当的防护措施和控制措施。

三、检测时间和地点- 时间:(填写具体检测时间)- 地点:(填写具体检测地点)四、检测方法本次振动检测使用了振动测试仪器进行,具体操作步骤如下:1. 将振动测试仪器放置在有限空间内待测位置。

2. 开始记录振动数据。

3. 持续记录一定时间,以获取充分的振动信息。

4. 完成振动数据记录后,关闭振动测试仪器。

五、检测结果根据振动测试仪器的数据记录,得出以下振动结果:- 振动速度(填写数值):(单位)- 振动加速度(填写数值):(单位)- 振动位移(填写数值):(单位)六、风险评估基于振动结果,结合相关标准和限值要求,对有限空间作业中的振动风险进行评估。

请参考以下评估等级:1. 低风险:振动位移/速度/加速度低于允许限值。

2. 中风险:振动位移/速度/加速度接近或略高于允许限值。

3. 高风险:振动位移/速度/加速度明显高于允许限值。

根据具体振动等级,制定相应的防护措施和控制措施。

七、防护与控制措施基于振动风险评估结果,制定以下防护与控制措施(以低、中、高风险分别列出):1. 低风险:(填写具体防护与控制措施)2. 中风险:(填写具体防护与控制措施)3. 高风险:(填写具体防护与控制措施)八、其他注意事项- 在进行有限空间作业前,请根据振动检测结果采取相应的防护与控制措施。

- 定期进行振动检测,以确保作业人员的安全与健康。

九、总结本次有限空间作业振动检测记录将为制定相关防护与控制措施提供依据。

请根据实际情况,制定并实施相应的措施,确保作业人员的安全与健康。

电柜震动实验报告

电柜震动实验报告

电柜震动实验报告引言电柜是一种常见的家用电器,它通过内部的电路将电能转化为其他形式的能量供人们使用。

由于电柜的特殊性质,我们进行了一项实验,以了解电柜在震动或者撞击时的情况,以便在日常使用中更好地防范安全事故的发生。

本实验旨在研究电柜在不同强度震动下的反应,并探究是否会对电器设备的正常工作产生影响。

实验步骤1. 实验前,将实验装置放置在平整、稳定的实验台上;2. 将电柜固定在实验装置上,确保其牢固可靠;3. 调整实验装置的震动频率和强度,分别进行一系列的震动实验;4. 观察和记录电柜在不同震动条件下的情况;5. 根据实验数据分析电柜的抗震性能。

实验装置1. 电柜:选用常见的家用电器电柜,具有典型的结构和功能;2. 实验台:平整、稳定的台面,用于放置实验装置;3. 实验装置:由弹簧、振动器等组成,用于模拟电柜在震动或者撞击时的外力。

实验结果经过一系列的实验,我们得到了以下结果:1. 低强度震动实验:在低强度震动下,电柜的整体结构没有明显变形或者损坏,内部电器设备仍可正常工作。

2. 中等强度震动实验:在中等强度震动下,电柜的部分连接结构出现了松动现象,但整体结构没有明显影响。

3. 高强度震动实验:在高强度震动下,电柜的门锁出现了松动,部分内部电器设备受到损坏,无法正常工作。

结论根据以上实验结果,我们可以得出以下结论:1. 电柜具有一定的抗震能力,对于低强度的震动可以保持结构的完整性和内部设备的正常工作。

2. 中等强度的震动对电柜的连接结构会产生一定影响,但整体结构仍具有较好的稳定性。

3. 高强度的震动对电柜的连接结构和内部设备会产生明显损坏,导致无法正常工作。

实验总结本实验通过模拟电柜在不同强度震动下的反应,研究了电柜的抗震性能。

实验结果表明,电柜具有一定的抗震能力,但在高强度的震动下仍会产生明显的损坏。

因此,在日常使用电柜时,需要注意保持电柜的稳定,避免强烈的震动或者撞击,以确保其正常工作和安全使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动测试技术期末总结学号:班级:建筑与土木工程(1504班)姓名:杨允宁2016年4月27日目录1 振动测试概述 (1)1.1 振动的分类: (1)1.1.1 按自由度分类: (1)1.1.2 按激励类型分类: (1)1.1.3 振动规律分类: (1)1.1.4 按振动方程分类: (1)1.2 振动基本参量表示方法: (2)1.2.1 振幅(u): 21.2.2 周期(T)/频率(f): (2)1.2.3 相位(:): (2)1.2.4 临界阻尼(C cr) (2)1.2.5 结构的阻尼系数(C): (2)1.2.6 对数衰减率(3): (3)1.3 振动测试仪器分类及配套使用: (3)1.3.1 振动测试仪器分类 (3)1.3.2 振动测试仪器配套使用: (4)1.4 窗函数的分类及用途 (5)1.4.1 矩形窗(Rectangular窗) : (5)1.4.2 三角窗(Bartlett 或Fejer 窗) : 51.4.3 汉宁窗(Hanning 窗): 51.4.4 海明窗(Hamming 窗) (6)1.4.5 高斯窗(Gauss 窗) (6)1.5 信号采集及分析过程中出现的问题及解决方法 (7)1.5.1 信号采集和分析过程中出现的问题 (7)1.5.2 解决方法 (7)2 惯性式速度型与加速度型传感器 (8)2.1 惯性式传感器的分类: (8)2.2 常用加速度计传感器的工作原理及力学模型:82.2.1 电动式(磁电式)传感器: (8)2.2.2 压电式传感器: (9)2.3 非惯性传感器: (11)2.3.1 电涡流式传感器: (11)2.3.2 参量型传感器: (11)3 振动特性参数的常用量测方法 (11)3.1 简谐振动频率的量测: (12)3.1.1 李萨(Lissajous)如图形比较法: (12)3.1.2 录波比较法: (12)3.1.3 直接测频法: (12)3.2 机械系统固有频率的测量 (13)3.2.1 自由振动法: (13)3.2.2 强迫振动法: (13)3.3 简谐振幅值测量 (13)3.3.1 指针式电压表直读法: (13)3.3.2 数字式电压表直读法 (13)3.3.3 光学法 (14)3.4 同频简谐振动相位差的测量 (14)3.4.1 示波器测量法 (14)3.4.2 相位计直接测量法 (14)3.5 衰减系数测量 (14)4 振动测试及动载测试实验报告 (15)4.1 振动测试实验报告 (15)4.1.1 测量梁模型一阶振型的数据处理 (15)4.1.2 模态分析 (17)4.2 动应变实验报告 (18)4.2.1 测量梁模型的数据处理 (18)4.2.2 模态分析 (21)5 概念 (21)5.1 功率谱 (21)5.2 相关函数 (22)5.2.1 自相关函数 (23)5.2.2 互相关函数 (23)5.3 相干函数 (24)5.4 传递函数 (24)6 模态分析 (25)6.1 基本概念 (25)6.2 方法分类和理解 (26)6.2.1 频域法 (26)6.2.2 时域法 (26)6.2.3 时频法 (27)1 振动测试概述1.1 振动的分类:1.1.1 按自由度分类:单自由度系统振动(结构只有一个质点体系);多自由度系统振动(结构具有一个以上的质点体系)。

1.1.2 按激励类型分类:自由振动(系统受初始干扰或原有的外激励取消后产生的振动);受迫振动(系统在外激励作用下产生的振动);自激振动(系统在输入和输出之间具有反馈特性并有能源补充而产生的振动)。

1.1.3 振动规律分类:简谐振动(能用一项时间在正弦或余弦函数表示系统响应的振动);周期振动(能用时间的周期函数表示的系统响应的振动);瞬态振动(只用时间的非周期衰减函数表示系统响应的振动);随机振动:(不能通用简单的函数或函数的组合表示运动规律,只能用统计方法表示系统响应的振动)。

1.1.4 按振动方程分类:线性振动:(能用常熟系数线微分方程描述的振动);非线性振动:(只能用非线性微分方程描述的振动)。

1.2振动基本参量表示方法:1.2.1 振幅(u):表示物体动态运动或振动的幅度,它是机械振动强度的标志,也是机器振动严重程度的一个重要指标。

用u(t)表示,是对于时间t的函数。

其中速度表示为u(t),加速度表示为u (t)。

122周期(T)/频率(f):周期是物体完成一个完整的振动所需要的时间,用T表示,频率f=1/T。

频率是指振动物体在单位时间(1秒)内所产生振动的次数。

1.2.3 相位(「):相位是对于一个波特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。

相位描述信号波形变化的度量,通常以度(角度)作为单位,也称作相角。

通常表示为: 3 X+ @ 1.2.4临界阻尼(C cr)体系自由振动反应中不出现往复振动所需的最小阻尼值,即C cr = 2m「n = 2 Jkm。

其中'=2'f n 为圆频率。

1.2.5结构的阻尼系数(c):是结构在每一振动循环中消耗能量大小的度量。

结构的阻尼比是结构的重要动力特性参数,利用结构自由振动试验可以获得结构的阻尼比。

126对数衰减率(5 ):瓷 1 , u2 肚u ii定义为二二jh;2,厂为相邻振动峰值比。

振动由U i衰减J u i+j —P u i+jU+j。

1.3振动测试仪器分类及配套使用:1.3.1振动测试仪器分类工程振动的各种参数的测量方法,按照按照测量过程的物理性质来区分,可以分为三大类:a.机械式的测量仪器:将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录。

此法常用的仪器有杠杆式测振仪和盖格尔测振仪,能测量的频率较低,精度也较差。

但在现场测试时较为简单方便。

b.光学式的测量仪器:将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。

常用的仪器有读数显微镜(图 1.3.1b1)和激光测振仪(图1.3.1b2)等。

目前光学测量方法主要是在实验室内用于振动仪器系统的标定及校准。

图1.3.1b1读数显微镜图1.3.1b2激光测振仪C.电测仪器:将工程振动的参量转换成电信号,经电子线路放大后显示和记录。

常见仪器有DH5938加速度计(图1.3.1c)等,这是目前应用得最广泛的测量方法。

图1.3.1c DH5938振动测试仪1.3.2振动测试仪器配套使用:振动测试仪器往往配套不同的振动传感器进行使用,形成一整套的测量系统(图1.3.2a)图1.3.2a振动系统示意图一般分为三种形式,用以测量系统的应变,速度,加速度。

应变常常采用应变传感器如:应变片、应变花;配合放大器如:动态电阻应变仪使用。

速度常采用磁电式传感器,配合电压放大器使用。

加速度采用压电式传感器配合电荷放大器使用。

1.4窗函数的分类及用途1.4.1 矩形窗(Rectangular窗):矩形窗属于时间变量的零次幕窗。

矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。

这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。

其函数形式为:八丄,0<t <T,二{F ;0, 心T '相应的谱窗为:2 s i <nt ww )= ------------ ;灼t142 三角窗(Bartlett 或Fejer窗):是幕窗的一次方形式。

与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。

其函数形式为:1 t“、厂(1——) 0< t <Tw(t”T T;[0 t| > T相应的谱窗为:、2 s i <nt w w、= --------- :叽143 汉宁窗(Hanning 窗):又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,而括号中的两项相对于第一个谱窗向左、右各移动了n /T,从而使旁瓣互相抵消,消去高频干扰和漏能。

可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但 汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。

相应的谱窗为:1s in( T 二)sin( T - -) 2 [ ■■■. T 蔦 T - ■144海明窗(Hamming 窗)海明窗也是余弦窗的一种,又称改进的升余弦窗。

海明窗与汉宁 窗都是余弦窗,只是加权系数不同。

海明窗加权的系数能使旁瓣达到 更小。

1 兀t—(0.540.46cos), 其函数形式为:wt 二TT相应的谱窗为:小"Sin®T 十兀)』sin@T —兀)〕0・46s ^T J ; 1.4.5高斯窗(Gauss 窗)高斯窗是一种指数窗。

高斯窗谱无负的旁瓣,第一旁瓣衰减达一 55dB 。

高斯富谱的主瓣较宽,故而频率分辨力低.高斯窗函数常被用 来截短一些非周期信号,如指数衰减信号等。

其函数形式为:ri i 1 哄、 —(―+_COA ), Wt)={T 2 2 T|t 订 |t|—Tsin T 昨TIt-T W()二T1 -at 2—ew t i ; = ~T【0式中:a 为常数,决定了函数曲线衰减的快慢。

高斯窗谱的主瓣 较宽,故而频率分辨力低,高斯窗函数常被用来截断一些非周期信号 如指数衰减信号等。

1.5信号采集及分析过程中出现的问题及解决方法1.5.1信号采集和分析过程中出现的问题信号分析和采集过程中会出现信号频率混叠、连续信号的截断和 抽样所引起的泄露、时域到频域转化、处理不好引起的误差和错误、 信号中的信噪比等等问题。

以及采样频率过低,导致的数据分析误差。

1.5.2解决方法对于信号频率混叠需要进行对输入信号的抗混滤波,波样采集 和模数转换。

对于连续信号的截断和抽样所引起的泄露需要进行加窗处理,通常所用的窗有矩形窗,汉宁窗,三角窗和海明窗等等。

再通过FFT (傅 里叶变换)变换,进行时域到频域的变换和数据计算。

信息论指出 :对常用频宽为F 的限时、白色高斯噪声信道,信道容量。

当容量不变时,增大带宽可降低信噪比,提高信噪比必须压缩带宽。

因此,抗 干扰为主要矛盾时,可扩展频带换取低信噪比下接收,调频与扩频均 基于这一原理。

频带为主要矛盾时,则可用信噪比换取频带,多进制、t <T t HT其函数形式为:多电平传输均基于这一原理对于采样频率过低导致的误差,我们可以提高采样频率,来增加米样点。

2惯性式速度型与加速度型传感器2.1惯性式传感器的分类:惯性传感器是检测和测量加速度、倾斜、冲击、振动、旋转和多自由度(DoF运动的传感器。

惯性传感器分为两大类:一类是角速率陀螺;另一类是线加速度计。

在土木工程上大都采用线加速度计。

线加速度计又分为电动式(磁电式)传感器和压低式传感器。

相关文档
最新文档