九年级数学全册 难点探究专题 抛物线与几何图形的综合(选做) 练习.doc
初中数学抛物线与几何专题训练及答案
全国各地中考试题压轴题精选讲座抛物线与几何问题【知识纵横】抛物线的解析式有下列三种形式:1、一般式:2y ax bx c =++(a ≠0);2、顶点式:y=a(x —h) 2-+k ;3、交点式:y=a(x —x 1)(x —x 2 ) ,这里x 1、x 2 是方程ax 2 +bx+c=0的两个实根。
解函数与几何的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。
【典型例题】【例1】 (浙江杭州) 在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。
平移二 次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B ,C 两点(∣OB ∣<∣OC ∣),连结A ,B 。
(1)是否存在这样的抛物线F ,OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO=23,求抛物线F 对应的二次函数的解析式。
【思路点拨】(1)由关系式OC OB OA ⋅=2来构建关于t 、b 的方程;(2)讨论t 的取值范围,来求抛物线F 对应的二次函数的解析式。
【例2】(江苏常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O,它的顶点为A,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点.(1)求点A 的坐标;(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等 腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;(3)设以点A 、B 、O 、P 为顶点的四边形的面积为S, 点P 的横坐标为x,当46S +≤≤+,求x 的取值范围.【思路点拨】(3)可求得直线l 的函数关系式是y=-2x ,所以应讨论①当点P 在第二象限时,x<0、 ②当点P 在第四象限是,x>0这二种情况。
抛物线与几何图形的综合题型专题复习讲义(含答案)
抛物线与几何图形的综合题型专题复习讲义(含答案)本文是一份关于抛物线与几何图形综合题型的复讲义,旨在帮助读者突破面积及点的存在性问题。
以下将对三种类型的题目进行讲解。
类型一:二次函数与三角形的综合题目1:已知抛物线$y=x^2+bx+c$经过点$(1,-4)$和$(-2,5)$,求解析式并判断是否存在点$D$,使得$\triangleABC$与$\triangle ABD$全等。
解析:根据已知条件,可列出方程组:begin{cases}b+c=-3\\4+b+c=1+4b+c\\4+4b+c=5\end{cases}$$解得$b=-2,c=-1$,因此抛物线的解析式为$y=x^2-2x-1$。
又因为抛物线的对称轴为$x=-\frac{b}{2}=1$,所以$x$轴交点为$(-1,0)$和$(3,0)$,$y$轴交点为$(0,-1)$。
由于$\triangleABC$与$\triangle ABD$全等,所以$BD=AC$,即$x$轴上的交点到对称轴的距离相等,因此存在点$D$,坐标为$(4,-7)$。
类型二:二次函数与平行四边形的综合题目3:已知抛物线$y=ax^2+2ax+c(a>0)$与$y$轴交于点$C$,与$x$轴交于$A,B$两点,$A$点在$B$点左侧。
若点$E$在$x$轴上,点$P$在抛物线上,且以$A,C,E,P$为顶点的四边形是平行四边形,则符合条件的点$P$有()。
解析:根据已知条件,可列出方程组:begin{cases}c=a\\a+2a+c=0\\ae=2a+2ae+c\\ap=ae+2a+2c\end {cases}$$解得$a=-1,c=-1$,因此抛物线的解析式为$y=-x^2-2x-1$。
又因为$A,B$的坐标分别为$(-1,0)$和$(0,-1)$,所以$E$的坐标为$(1,0)$,$C$的坐标为$(0,-1)$。
将$P$的坐标设为$(x,-x^2-2x-1)$,代入四边形是平行四边形的条件可得:x^2+2x+1=0$$解得$x=-1$,因此符合条件的点$P$只有一个,坐标为$(-1,1)$。
初三抛物线试题大全及解析
初三抛物线试题大全及解析一、抛物线的基本概念抛物线是一种重要的几何图形,它在中考数学试题中占有重要地位。
抛物线通常由一条直线和一个二次曲线组成,它可以用来描述一些常见的数学问题,如二次函数、几何问题等。
二、抛物线试题类型1. 已知抛物线解析式求未知量2. 抛物线的性质与应用3. 抛物线的形状与开口方向、对称轴、顶点坐标的关系4. 抛物线与方程的综合题5. 与抛物线有关的实际问题三、抛物线试题解析【例1】(基础题)已知抛物线解析式为y=x²-2x-3,请回答下列问题:(1)求该抛物线的开口方向、对称轴和顶点坐标;(2)当x在什么范围内时,y随x的增大而增大?【解析】(1)因为a=1>0,所以抛物线开口向上。
对称轴为直线x=-b/2a=-(-2)/2=1,顶点坐标为(1,-4)。
(2)因为对称轴为直线x=1,且开口向上,所以当x>1时,y随x的增大而增大。
【例2】(提高题)已知二次函数y=ax²+bx+c的图像经过A(1,0),B(0,-6),C(2,-4)三点,求这个二次函数的解析式。
【解析】由题意可设y=ax²+bx-6,把C(2,-4)代入得4a+2b-6=-4,即b-a=1。
再由点A(1,0)在抛物线上可求c值,即可得到二次函数的解析式。
【答案】解:由题意可设y=ax²+bx-6。
把C(2,-4)代入得4a+2b-6=-4,即b-a=1。
又因为图像经过A(1,0),B(0,-6),所以y=x²+x-6。
【例3】(压轴题)已知二次函数y=ax²+bx+c的图像经过A(0,5),B(1,3),C(-2,7)三点。
求这个二次函数的解析式和图像的对称轴。
【解析】这道题需要用到待定系数法。
首先根据条件确定系数可能取到的值,再代入求出解析式。
然后根据对称性求出对称轴。
【答案】设这个二次函数的解析式为y=a(x-h)²+k,将A(0,5),B(1,3),C(-2,7)三点代入得{c=5a+b+c=39a−2a+k=7解得{a=2k=5∴y=2(x−1)2+3图像的对称轴为直线x=1。
初三上册数学抛物线练习题
初三上册数学抛物线练习题抛物线是数学中的重要概念之一,研究抛物线可以帮助我们更好地理解数学中的曲线和函数。
在初三上册数学课程中,抛物线的相关知识有一定的难度,需要同学们进行充分的练习。
下面将为大家提供一些抛物线的练习题,希望能够对大家的学习有所帮助。
题目一:抛物线的基本形式1. 将抛物线的标准形式 y = ax^2 + bx + c 转化成顶点形式 y = a(x -h)^2 + k。
2. 已知抛物线的顶点为 V(3, -2),求抛物线的标准形式方程。
3. 抛物线的顶点为 V(4, -3),经过点 P(2, 5),求抛物线的方程。
题目二:抛物线的性质及应用1. 抛物线的对称轴是 x = h,如何通过方程的形式确定抛物线的对称轴?2. 已知抛物线的焦点为 F(1, 2),直径所在直线方程为 2x + y - 7 = 0,求抛物线的方程。
3. 一架火箭垂直发射,其运动轨迹形如抛物线。
已知火箭从地面起飞经过点 A(0, 0),最高点为 B(2, 3),点 P 在抛物线上且 x 坐标为 4,求点 P 的纵坐标。
题目三:抛物线的图像与变化1. 已知抛物线的焦点为 F(2, -1),直径所在直线为 x + y - 4 = 0,求抛物线的方程。
2. 如果抛物线的开口向上,顶点在 x 轴上,且焦点为 (0, 4),求抛物线的方程。
3. 抛物线 y = k(x - a)(x - b) 所表示的图像开口向上还是向下?这里 a、b 和 k 均为常数。
题目四:抛物线的解析式1. 已知抛物线的顶点为 V(h, k),过点 P(x1, y1),求抛物线的解析式。
2. 已知抛物线经过两点 A(1, 2) 和 B(3, 4),求抛物线的解析式。
3. 抛物线的顶点为 V(0, 0),过点 P(-3, 4),求抛物线的解析式。
以上就是一些初三上册数学抛物线练习题,希望能够帮助同学们更好地理解和掌握抛物线的相关知识。
通过反复练习和解答这些题目,相信大家能够在数学学习中取得更好的成绩。
人教版九年级数学上册中考专题复习题含答案全套
人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。
九年级数学全册难点探究专题抛物线与几何图形的综合选做练习
难点研究专题:抛物线与几何图形的综合( 选做)◆ 种类一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y= x2+ bx+ c 经过点(1 ,- 4) 和( - 2, 5) ,请解答以下问题:(1)求抛物线的解析式;(2)若抛物线与 x 轴的两个交点为 A,B,与 y 轴交于点 C. 在该抛物线上能否存在点D,使得△ ABC与△ ABD全等?若存在,求出D点的坐标;若不存在,请说明原由.二、线段 ( 或周长 ) 的最值问题及等腰三角形的存在性问题2.(2016 ·凉山州中考) 如图,已知抛物线 y= ax2+ bx+c(a ≠0) 经过A( - 1,0) ,B(3 ,0) ,C(0,- 3) 三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;——代几联合,打破面积及点的存在性问题(2)设点 P 是直线 l 上的一个动点,当点P 到点 A、点 B 的距离之和最短时,求点P的坐标;(3)点 M也是直线 l 上的动点,且△ MAC为等腰三角形,请直接写出全部切合条件的点 M的坐标.◆ 种类二二次函数与平行四边形的综合3.如图,抛物线y=ax2+ 2ax + c(a >0)与 y 轴交于点 C,与 x 轴交于 A,B 两点,A 点在 B点左边.若点 E 在 x 轴上,点P 在抛物线上,且以A, C, E, P 为极点的四边形是平行四边形,则切合条件的点P 有◆ 种类三二次函数与矩形、菱形、正()方形的综合A.1个B.2个C.3个D.4个5.如图,在平面直角坐标系中,点A在抛物线y= x2-2x+ 2 上运动.过点 A 作AC⊥x轴于点 C,以 AC为对角线作矩形ABCD,连接 BD,则对角线 BD的最小值为 ________.1 234.如图,抛物线y=2x + x-2与 x 轴订交于 A,B 两点,极点为P.(1)求点 A, B 的坐标;(2)在抛物线上能否存在点 E,使△ ABP 的面积等于△ ABE 的面积?若存在,求出符合条件的点 E 的坐标;若不存在,请说明理由;(3)坐标平面内能否存在点 F,使得以 A,B, P, F 为极点的四边形为平行四边形?直接写出全部切合条件的点 F 的坐标.第5题图第6题图236.如图,抛物线y= ax - x-与 x 轴正半轴交于点A(3 ,0) .以 OA为边在 x 轴上方作正方形 OABC,延长 CB 交抛物线于点D,再以 BD为边向上作正方形BDEF.则 a=,点 E 的坐标是 _________________.7.(2016 ·新疆中考 ) 如图,对称轴为7直线 x=2的抛物线经过点A(6,0) 和 B(0,-4) .(1)求抛物线的解析式及极点坐标;(2)设点 E(x,y) 是抛物线上一动点,且位于第一象限,四边形 OEAF是以 OA为对角线的平行四边形,求平行四边形OEAF的面积 S 与 x 之间的函数关系式;(3)当(2) 中的平行四边形OEAF的面积为24 时,请判断平行四边形OEAF能否为菱28.(2016 ·百色中考) 正方形 OABC的边长为 4,对角线订交于点P,抛物线 l 经过 O,P,A 三点,点 E 是正方形内的抛物线l 上的动点.(1)建立合适的平面直角坐标系,①直接写出 O,P, A 三点的坐标;②求抛物线 l 的解析式;(2)求△ OAE与△ OCE面积之和的最大值.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点探究专题:抛物线与几何图形的综合(选做)
——代几结合,突破面积及点的存在性问题
◆类型一二次函数与三角形的综合
一、全等三角形的存在性问题
1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:
(1)求抛物线的解析式;
(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.
二、线段(或周长)的最值问题及等腰三角形的存在性问题
2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;
(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.
◆类型二二次函数与平行四边形的综合
3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P在
抛物线上,且以A ,C ,E ,P 为顶点的四边形是平行四边形,则符合条件的点P 有( )
A .1个
B .2个
C .3个
D .4个
4.如图,抛物线y =12x 2+x -3
2与x 轴
相交于A ,B 两点,顶点为P.
(1)求点A ,B 的坐标;
(2)在抛物线上是否存在点E ,使△ABP 的面积等于△ABE 的面积?若存在,求出符合条件的点E 的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F ,使得以A ,B ,P ,F 为顶点的四边形为平行四边形?直接写出所有符合条件的点F 的坐标.
◆类型三 二次函数与矩形、菱形、正方形的综合
5.如图,在平面直角坐标系中,点A 在抛物线y =x 2
-2x +2上运动.过点A 作AC⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,
连接BD ,则对角线BD 的最小值为________.
第5题图 第6题图
6.如图,抛物线y =ax 2
-x -32与x 轴正半
轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.
7. (2016·新疆中考)如图,对称轴为直线x =7
2的抛物线经过点A(6,0)和B(0,
-4).
(1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;
(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.
8.(2016·百色中考)正方形OABC的边长为4,对角线相交于点P,抛物线l经过O,P,A三点,点E是正方形内的抛物线l上的动点.
(1)建立适当的平面直角坐标系,
①直接写出O,P,A三点的坐标;
②求抛物线l的解析式;
(2)求△OAE与△OCE面积之和的最大值.
答案:。