专题23:轴对称变换(含折叠)问题
轴对称应用之折叠问题(人教版)(含答案)
轴对称应用之折叠问题(人教版)一、单选题(共8道,每道12分)1.如图,将长方形ABCD沿EF折叠,点C落在点,点D落在点处.若∠EFC=119°,则为( )A.58°B.45°C.60°D.42°答案:A解题思路:试题难度:三颗星知识点:折叠问题2.如图,把长方形ABCD折叠,使点C落在点A处,点D落在点G处.若∠FED=120°,且DE=2,则边BC的长为( )A.4B.6C.8D.10答案:B解题思路:试题难度:三颗星知识点:折叠问题3.如图,△ABC的周长为15cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC 边于点D,交AC边于点E,连接AD.若AE=2cm,则△ABD的周长是( )A.13cmB.12cmC.11cmD.10cm答案:C解题思路:试题难度:三颗星知识点:折叠问题4.如图,点D,E分别在等边△ABC的边AB,BC上,将△BDE沿直线DE翻折,使点B落在处,,分别交边AC于点F,G.若∠BDE=50°,则∠CGE的度数为( )A.60°B.70°C.80°D.90°答案:C解题思路:试题难度:三颗星知识点:折叠问题5.如图,AD是Rt△ABC斜边BC上的高,将△ADC沿AD所在直线折叠,点C恰好落在BC 的中点E处,则∠B等于( )A.25°B.30°C.45°D.60°答案:B解题思路:试题难度:三颗星知识点:折叠问题6.如图,在三角形纸片ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.若∠BAC=40°,则∠CBD的度数为( )A.9°B.10°C.15°D.20°答案:B解题思路:试题难度:三颗星知识点:折叠问题7.如图,在△ABC中,∠A=30°,沿BE将此三角形对折,又沿再一次对折,点C落在BE上的点处,此时,则原三角形中∠ABC的度数为( )A.60°B.70°C.72°D.75°答案:C解题思路:试题难度:三颗星知识点:折叠问题8.如图,将等腰△ABC沿DE折叠,使顶角顶点A落在其两底角平分线的交点F处.若BF=DF,则∠C的度数是( )A.80°B.75°C.72°D.60°答案:C解题思路:试题难度:三颗星知识点:折叠问题。
备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)
备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)翻折变换(折叠问题)专训单选题:1、(2017长安.中考模拟) 如图,对△ABC纸片进行如下操作:第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1,然后还原纸片;第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2,然后还原纸片;…按上述方法不断操作下去…,经过第n次操作后得到的折痕Dn En到BC的距离记作hn ,若h=1,则hn的值不可能是()A .B .C .D .2、(2019吴兴.中考模拟) 如图,将长BC=8cm,宽AB=4cm的矩形纸片ABCD折叠,使点C与点A重合,则折痕EF的长为()A . 4cmB . cmC . cmD . c3、(2017长清.中考模拟) 如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为()A . 2B .C . 1D .4、(2017武汉.中考模拟) 如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A . 12B . 16C . 18D . 245、(2013百色.中考真卷) 如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA 与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是()A . 1B .C .D . 26、(2015.中考真卷) 如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是()A . (4,8)B . (5,8)C . (,)D . (,)7、(2012遵义.中考真卷) 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A . 3B . 2C . 2D . 28、(2020南岸.中考模拟) △ABC中,∠ACB=45°,D为AC上一点,AD=5 ,连接BD,将△ABD沿BD翻折至△EBD,点A的对应点E点恰好落在边BC上.延长BC至点F,连接DF,若CF=2,tan∠ABD= ,则DF长为()A .B .C . 5D . 79、(2020鄞州.中考模拟) 三角形纸片ABC中,∠C=90°,甲折叠纸片使点A与点B 重合,压平得到的折痕长记为m;乙折叠纸片使得CA与CB所在的直线重合,压平得到的折痕长记为n,则m,n的大小关系是()A . m≤nB . m<nC . m≥nD . m>n10、(2020沙河.中考模拟) 欧几里得在《几何原本》中,记载了用图解法解方程的方法,类似地可以用折纸的方法求方程的一个正根。
几何变换之轴对称
几何变换之轴对称(翻折)翻折和折叠问题其实质就是对称问题,翻折图形的性质就是翻折前后图形是全等的,对应的边和角都是相等的。
以这个性质为基础,结合圆的性质,三角形相似,勾股定理设方程思想来考查。
那么碰到这类题型,我们的思路就要以翻折性质为基础,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题!对于翻折和折叠题型分两个题型来讲,一类题型就是直接计算型,另一类是涉及到分类讨论型,由浅入深难度逐步加大,,掌握好分类讨论型的翻折问题,那么拿下中考数学翻折题型就没问题了!解决翻折题型的策略一:利用翻折的性质:①翻折前后两个图形全等。
对应边相等,对应角相等②对应点连线被对称轴垂直平分二:结合相关图形的性质(三角形,四边形等)三:运用勾股定理或者三角形相似建立方程。
翻折折叠题型(一),直接计算型,运用翻折的性质,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题!一般难度小,我们要多做一些这些题型,熟练翻折的性质,以及常见的解题套路!翻折折叠题型(二),分类讨论型,运用翻的性质,结合题中的条件,或利用三角形相似,或利用勾股定理设方程来解题!般难度较大,需要综合运用题中的条件,多种情况讨论分析,需要准确的画图,才能准确分析!常见的几类类型1. 纸片中的折叠如图,有一条直的宽纸带,按照如图方式折叠,则=.【解答】【解析】,如图所示:∵∠=∠1,∠2=∠1,∴∠=∠2,∴2∠+∠AEB=180º,即2∠+∠30º=180º,解得∠=75º.2. 三角形中的折叠在△ABC中,已知∠A=80°,∠C=30°,现把△CDE沿DE进行不同的折叠得△C’DE,对折叠后产生的夹角进行探究:(1)如图1,把△CDE沿DE折叠在四边形ADEB内,则求∠1+∠2的和;(2)如图2,把△CDE沿DE折叠覆盖∠A,则求∠1+∠2的和;(3)如图3,把△CDE沿DE斜向上折叠,探求∠1、∠2、∠C的关系.【解答】(1)∠1+∠2=60º;(2)∠1+∠2=50º;(3)∠2-∠1=2∠C【解析】(1)由图可得∠1+∠2=180º-2∠CDE+180º-2∠CED=360º-2(∠CDE+∠CED)=360º-2(180º-∠C)=2∠C=60º(2)连接DG,如图所示:∠1+∠2=180º-∠C’-(∠ADG+∠AGD)=180º-30º-(180º-80º)=50º(3)由图可得∠2-∠1=180º-2∠CED-(2∠CDE-180º)=360º-2(∠CDE+∠CED)=360º-2(180º-∠C)=2∠C3. 矩形中的折叠如图,沿矩形ABCD的对角线BD折叠,点C落在点E的位置,已知BC=8,AB=6,求折叠后重合部分的面积.【解答】阴影部分的面积为【解析】∵点C与点E关于直线BD对称,∴∠1=∠2,∵AD∥BC,∴∠1=∠3,∴∠2=∠3,∴FB=FD,设,则,在Rt △BAF 中,,即,解得, ∴阴影部分面积. 4.圆中的折叠 如图,将半径为8的沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB = .【解答】AB = 【解析】延长CO 交AB 于E 点,连接OB ,如图所示:∵CE ⊥AB ,∴E 为AB 的中点,由题意可得CD=4,OD=4,OB=8,DE = 21(8×2 - 4) = 6,OE=6-4=2,在Rt △OEB 中,根据勾股定理可得:AB = .。
【决胜】(预测题)中考数学 专题20 几何三大变换问题之轴对称(折叠)问题(含解析)
专题20 几何三大变换问题之轴对称(折叠)问题轴对称、平移、旋转是平面几何的三大变换。
由一个平面图形变为另一个平面图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换。
轴对称具有这样的重要性质: (1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
中考压轴题中轴对称 (折叠)问题,包括有关三角形的轴对称性问题;有关四边形的轴对称性问题;有关圆的轴对称性问题;有关利用轴对称性求最值问题;有关平面解析几何中图形的轴对称性问题。
一. 有关三角形的轴对称性问题1. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,连接EF ,交AD 于点G ,求证:AD ⊥EF .2. 如图,在Rt △ABC 中,∠C=900,∠B=300,BC=,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE ⊥BC 交AB 边于点E ,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为等腰三角形时,BD 的长为 。
F DCEAB【考点】翻折问题,轴对称的性质,锐角三角函数定义,特殊角的三角函数值,勾股定理,等腰三角形的判定,分类思想的应用。
二. 有关四边形的轴对称性问题3.如图①是3×3菱形格,将其中两个格子涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕菱形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】A.4种 B.5种 C.6种 D.7种【答案】B。
【考点】利用旋转的轴对称设计图案。
【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个。
故选B 。
4. 如图,△ABC 中,已知∠BAC=45°,AD ⊥BC 于D ,BD=2,DC=3,求AD 的长。
小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。
轴对称变换要点全析
教师寄语春来春去,燕离燕归,枝条吐出点点新绿,红花朵朵含苞欲放,杨柳依依书写无悔年华,白云点点唱响人生奋斗的凯歌,微冷的春风淡去了烟尘与伤痛,沉淀在内心的却是缤纷的梦想以及那收获前的耕耘与奋斗。
轴对称变换·要点全析1.变换在《现代汉语词典》中,变换的意思是:事物的一种形式或内容换成另一种,如变换位置、变换手法.在前面学习全等三角形时,学习和介绍了全等变换.所谓全等变换,即把一个图形经过平移、翻折、旋转后,得到另一个图形的过程.在这个过程中,原来图形的形状、大小都没有改变,只是位置、方向发生了改变.如图 14-2-1 中,(1)图是△ ABC平移后得到△ DEF,( 2)图是△ ABC翻折后得到△ DBC,(3)图是△ ABC 旋转一个角(即∠ BAD)后,得到△ ADE,(4)图是△ABC先平移( BE),后翻折,得到△ DEF,以上这几种图形变化的过程都是全等变换.变换前后,两图形全等.2 .轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.例如:图 14-2-2 中,△ DEF与△ ABC成轴对称,同样得到△ ABC的一系列对称图形△GHK、△ PQR、△ LMN等,并且△ ABC≌△ DEF≌△ GHK≌△ PRQ≌△LMN.以上这些图形的变化过程就是轴对称变换.3.轴对称变换的性质(1)变换前后的两个图形的形状、大小完全一样.(2)新图形的每一个点,都是原图形上每一个点关于某直线的对称点.(3)连接任意一对对应点的线段被对称轴垂直平分.【说明】如图 14-2-2 中,以△ ABC与△ DEF关于直线 l 对称为例说明如下:①△ ABC与△ DEF全等,只是图形的位置与方向发生变化,而形状、大小没变.②点 A、B、 C 分别与点 D、E、F 关于直线 l 对称.③线段 AD、 CF被直线 l 垂直平分.(4)①当对称轴平行时,变换一次,方向改变;变换两次,与原图形方向相同.依此类推,当变换奇数次时,方向改变,当变换偶数次时,方向不变.如图 14-2-3 .②当对称不平行时,方向改变的幅度随对称轴的倾斜程度而变化.如图14-2-4 .4.轴对称变换的应用利用轴对称变换可以设计出精美的图案,在许多美术作品和工艺制品中,经常看到轴对称变换的例子.如图 14-2-5 中的设计图:再如图 14-2-6 中的剪纸图:5.如何作一个图形关于某直线的对称图形由轴对称图形的性质可知,对称点的连线被对称轴垂直平分.因此,先把一个几何图形看成由一些点组成,只要作出这些点关于对称轴的对应点,再连接这些对应点,就可得到原图形关于对称轴的对称图形.对于一些由特殊直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可得到原图形关于对称轴的对称图形.例如:如图 14-2-7 中,已知△ ABC和直线 l .作出△ ABC关于直线 l 的对称图形.分析:在( 1)图中,△ ABC的三个顶点已确定,只要作出三个顶点关于直线 l 的对称点,连接这三个对称点,就得△ ABC关于直线 l 对称图形.作法:( 1)图中,(1)过点 A 作直线 l 的垂线,垂足为 G,在垂直线上截取 GA′= GA.则点A′,就是点 A 关于直线 l 的对称点(因 AA′被直线 l 垂直平分).(2)同样道理和方法,分别作出点B、 C 关于直线 l 的对称点 B′、 C′.(3)连接 A′B′、 B′C′、 C′ A′,得到△ A′ B′ C′即为所求.在( 2)图中,作法同( 1)图的作法,图形如( 2)图所示.再如一些几何图形的对称图形的画法,如图 14-2-8 所示.6.应用轴对称,寻找最佳方案问题例如:如图 14-2-9 ,在金水河的同一侧有两个村庄A、 B.要从河边同一点修两条水渠到 A、B 两村浇灌蔬菜,问抽水站应修在金水河MN何处使两条水渠最短?分析:先将具体问题抽象成数学模型.河流为直线MN,在直线 MN的同一侧有 A、B 两点.在直线 MN上找一点 P,使 P 点到 A、B 两点的距离之和为最小.这里就要充分运用轴对称图形的性质加以解决.解:如图 14-2-9 所示,作 B 点关于直线 MN的对称点 B′,连接 AB′与 MN 相交于点 P,则 P 点即为所求.事实上,如果不是 P 点而是 P′点时,则连接 AP′、P′B和 P′B′.由轴对称性可知, P′B=P′B′, PB=PB′,所以 P′到 A、B 的距离之和AP′+P′B=AP′+ P′B′.而 P 到 A、B 的距离之和 AP+ PB=AP+PB′= AB′,在△ AB′P′中,三角形两边之和大于第三边,即 AP′+ P′B′>AB′.所以 P 点即为所求的点.【说明】(1)此题为典型的最佳方案选择问题,问题的核心是如何节省材料,反映在数学上就是寻找最小值问题.(2)与此类型相似,前几节学过的利用角平分线、线段垂直平分线的性质解决等距问题,也是按此方法处理的.(3)解决这类问题时,先把具体问题抽象成数学模型,再用数学中学过的有关法则、定理等去解决.(4)在本例中,充分利用了轴对称的性质.7.轴对称的坐标表示方法点( x, y)关于 x 轴对称点的坐标为( x,- y);点( x, y)关于 y 轴对称点的坐标为(- x,y).如图 14-2-10 中,点 P(2,3)关于 x 轴的对称点为P2(2,- 3),关于 y轴的对称点为 P 1 ,(- 2, 3);点 P 2 关于 y 轴的对称点为 P 3(- 2,- 3);而点 P 3 (- 2,- 3)与点 P 1(- 2, 3)关于 x 轴对称.因此,我们得到规律:关于 x 轴对称的两个点的坐标, 横坐标不变, 纵坐标变成它的相反数; 关于y 轴对称的两个点,纵坐标不变,横坐标变成它的相反数.反过来,也成立.例如:判断下列各点的位置关系: C (- ,- ) D (-,)A (,-)B (,)2 5 2 5 2 5 2 5解:由坐标特点知, A 与 B 关于 x 轴对称, A 与 C 关于 y 轴对称, B 与 D 关于 y 轴对称.8 .点 P ( x , y )关于直线 x =a 的对称点坐标如图 14-2-11中,点 P ( , )关于直线 x = 2 的对称点为 P 1( , );关于1 43 4 直线 x =- 1的对称点为 P 2(- , ).3 4,而 P 1 、P 2 的横坐标发 由此可以看出,点 P 、P 1、P 2 的纵坐标都没变,都是 4生了变化,变化的规律是: P 1 点的横坐标比 A 点横坐标 2 多了一个 AP 1(即 AP ) 的长,而 AP 的长为 - = ,∴ P 1 横坐标为 +( - )= .2 1 1 2 2 1 3同样道理, P 2 点的横坐标是比 B 点横坐标- 1 多了一个 BP 2(即 BP )的长,而 BP 的长为|- - |= ,∴ P 2 横坐标为- +(- - )=- .1 12 1 1 1 3因此,得出规律:点 P (x ,y )关于直线 x = m 的对称点 P 1 的横坐标为 m +( m - x )= m - x ,纵坐标不变,即点 P 1、坐标为(m -x ,y ).2 2P x , y )关于直线 y = m 的对称点 P 2 的纵坐标为 m m y )=同样,点 (+( -m -y ,横坐标不变,即点 P 2 坐标为(x , m - y ).2 2 的对称点坐标为 P 1( × - ,由此可以直接写出点 P ( , )关于直线 x =5 3 2 P 2(,) 2 5 3 2),即 P 1 ( , ),关于 y = 3的对称点 P 2 的坐标为7 2 3 4 例如:写出下列点关于直线 x =4 和直线 y =5 的对称点的坐标. A (2,3) B (4,5)C (- 3, 1)D (- 2,- 1) 解:由上面的式子可知, 点关于直线 x = 4 的对称点和关于直线 y = 5 的对称 点坐标列表如下:A (2,3)B (4,5)C (- 3,1)D (- 2,- 1) 关于直线 x = 4 A 1(,)B 1( ,5)C 1(,1)D 1( ,- )的对称点6 341110 1关于直线 y = 5A 2( ,7)B 2( ,5)C 2(- , )D 2(- , )的对称点243 9 2 11同样,关于 x 轴(y =0)对称的点的坐标中 x 坐标不变, y 坐标为其相反数;关于 y 轴( x=0)对称的点的坐标中, y 坐标不变, x 坐标为其相反数.9.轴对称在生产实际中的应用应用点的对称性质能解决生产实践中遇到的寻求最佳点的问题,看下面两个例子.例 1 :如图 14-2-12 ,EFGH是一个长方形的台球桌面,有黑、白两球分别位于 A、B 位置上.试问:怎样撞击黑球 A,使黑球先撞击台边 EF,反弹后再击中白球 B?试画出黑球 A 的运动路线.画法:( 1)作点 A 关于 EF 的对称点 A′.(2)连接 A′B 交 EF于点 M.点 M就是黑球 A 撞击边框 EF的位置,黑球 A 的运动路线为 AMB.根据物理知识,黑球 A 的入射角∠ AMC只有与黑球 A 撞击边框 EF反弹后的反射角∠ BMC相等,黑球 A 才能击中白球 B.证明:过点 M作垂线 CD.∵EF是线段 A′A 的中垂线,∴MA=MA′,∴ ∠AMF=∠ A′ MF.又∵∠FMC=∠ FMD=90°(已知),∴∠AMC+∠ AMF= 90°,∠ A′MD+∠ A′MF=90°.∴∠AMC=∠ A′MD(等角的余角相等).又∵∠A′MD=∠ BMC(对顶角相等).∴∠AMC=∠ BMC(等量代换).例 2 :如图 14-2-13 ,甲、乙、丙三人做接力游戏.开始时,甲站在∠ AOB 内的 P 点,乙站在 OA上,丙站在 OB上.游戏规则:甲将接力棒传给乙,乙将接力棒传给丙,最后丙跑到终点 P 处.如果甲、乙、丙三个人速度相同,试找出乙、丙站在何处,他们比赛所用的时间最短.画法:( 1)作点 P 关于 OA的对称点 P1.(2)作点 P 关于 OB的对称点 P2.(3)连接 P1P2交 OA于点 M,交 OB于点 N.则点 M是乙所站的位置,点N 是丙所站的位置.证明:若在 OA上取一点 M′,连接 M′P1,M′P.∵P 和 P1关于 OA对称,∴M′ P1= M′ P,同理在 OB上取一点 N′,则 N′P=N′P2.若乙站在 M′位置,丙站在 N′位置,接力棒传递路线为: PM′+ M′N′+ N′P.∵P1M′= PM′, N′ P2=N′P,∴PM′+ M′N′+ N′ P= P1′+ M′N′+ N′P2.∵两点间直线段最短,∴P1M′+ M′N′+ N′P2>P1P2=P1M+MN+NP2=PM+MN+NP.因此,乙站在 M点,丙站在 N 点,甲、乙、丙三人传递接力棒的距离最短.。
七年级数学 轴对称之—翻折问题
轴对称之——翻折问题1.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则AE的长为.2.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A 恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为°.3.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=140°,则∠B+∠C=°.4.如图,将矩形ABCD沿AE向上折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为.5.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=6,求AE的长.6.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.7.如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.8.如图,长方形ABCD中AD∥BC,边AB=4,BC=8.将此长方形沿EF折叠,使点D 与点B重合,点C落在点G处.(1)试判断△BEF的形状,并说明理由;(2)求△BEF的面积.9.如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC的长;(2)求△FGC的面积.。
轴对称变换课件PPT
THANK YOU
感谢聆听
直线的轴对称变换可以用来研 究几何图形的对称性和性质。
05
轴对称变换的应用举例
在几何图形中的应用
总结词:丰富多样
详细描述:轴对称变换在几何图形中有着广泛的应用,如矩形、正方形、菱形、 等腰三角形等都是轴对称图形。通过对这些图形进行对称变换,可以创造出更多 具有美学价值的图案和设计。
在函数图像中的应用
图案设计
在图案设计中,轴对称变换可 以创造出具有美感的图案,如 雪花、蜂巢等。
物理学应用
在物理学中,轴对称变换被应 用于分析物体的平衡和稳定性 问题,如天体运动、机械转动 等。
02
轴对称变换的定义与性质
轴对称变换的定义
轴对称变换是指图形关于某一直线(称为对称轴)对称的变换。
如果图形上任意一点P经过轴对称变换后,其对应点P'与P关于对 称轴对称,则称该变换为轴对称变换。
根据对称轴的方向,轴对称变换可分为正向和反向轴对称变换。正向轴 对称变换是指图形关于水平或垂直的直线进行对称的变换;反向轴对称 变换是指图形关于斜线进行对称的变换。
03
常见的轴对称变换
关于x轴的对称变换
总结词
图像在x轴两侧对称
详细描述
当一个图形关于x轴进行对称变换时,图像在x轴两侧呈现对称状态,即如果某 点坐标为(x, y),则其对称点坐标为(x, -y)。
如果一个点关于某一直线进行 轴对称变换,则该点关于该直 线进行翻转,与原点关于该直 线对称。
点的轴对称变换可以用来研究 几何图形的性质和关系。
轴对称变换与直线的关系
直线是几何图形中的重要元素, 轴对称变换也可以应用于直线。
如果一条直线关于某一直线进 行轴对称变换,则该直线会变 成一条与原直线平行且距离相 等的直线。
轴对称及中心对称变换平移及旋转变换
轴对称及中心对称变换、平移及旋转变换变换是极为重要的数学思维方法,利用几何变换解题在数学竞赛中经常用到,本文介绍几何变换中的基本变换:轴对称及中心对称变换、平移及旋转变换。
一、轴对称变换把一个图形F沿着一直线l折过来,如果它能够与另一个图形F'重合,我们就说图形F和F'关于这条直线l对称。
两个图形中的对应点叫做关于这条直线l的对称点,这条直线l叫做对称轴,如右图。
轴对称图形有以下两条性质:1.对应点的连线被对称轴垂直平分;2.对应点到对称轴上任一点的距离相等。
例1 凸四边形ABCD的对角线AC、BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD。
分析:题中条件比较分散,故考虑“通过反射使条件相对集中”,注意到AC⊥BD,于是以BD(AC)为对称轴,将BC(AD)反射到BC'(AD'),把有关线段集中到△ABO内,利用三角形中两边之和大于第三边易证得结果。
证明:∵AC⊥BD,且OA>OC,OB>OD,于是以BD为对称轴,作C点关于直线BD为对称点C',以AC为对称轴作D点关于AC 的对称点D'。
连结BC',AD'相交于E点,则BC= BC',AD=AD',CD=C'D'。
∴ BE+AE>AB ①EC'+ED'>C'D' ②①+②,得BC'+AD'>AB+C'D'。
∴BC+AD>AB+CD。
注:(1)本题的结论对于凹四边形仍然成立;(2)还可将四边形推广成2n边形,也有类似结论。
其证明思路也完全相同,读者试自证。
二、中心对称变换如果平面上使任意一对对应点A,A'的连线段都通过一个点O,且被这一点所平分,则这个变换叫做中心对称变换(亦称点反射或点对称),点O叫对称中心,点A和A'叫做关于对称中心的对称点,如果一个图形F在中心对称变换下保持不变(还是自身),则这个图形F叫做中心对称图形。
七年级折叠问题知识点
七年级折叠问题知识点折叠问题是数学中的一个经典问题。
在数学竞赛和考试中,被认为是一种基本函数,是考察数学运算能力和思维逻辑的基本题型之一。
而在七年级的数学课中,也会接触到一些折叠问题。
本文将介绍七年级折叠问题的知识点,供大家参考。
一、折纸图形的平移、旋转和对称在折叠问题中,图形的平移、旋转和对称是常见的变换方式。
因此,掌握这些变换的基本概念及性质是十分重要的。
1.平移变换平移变换指的是保持图形形状不变的情况下,将整个图形沿着某一方向移动一定距离后得到的新图形。
平移变换的性质是:对于平面上任意两点A和B,其平移后的位置A'和B'可以由向量AB和A'B'相等得到。
2.旋转变换旋转变换指的是保持图形形状不变的情况下,将整个图形绕给定的点(旋转中心)顺时针或逆时针旋转一定角度后得到的新图形。
旋转变换的性质是:任何平面上的图形旋转一周后均回到原来的位置。
3.对称变换对称变换指的是保持图形形状不变的情况下,将整个图形绕某条直线对称后得到的新图形。
对称变换的性质是:对称变换前后的图形具有相等的形状和大小。
二、折纸图形的叠合和重合折叠问题中,叠合和重合是两个核心概念。
只有掌握了这些概念,才能更好地解决折叠问题。
1.叠合叠合指的是将两个相同的图形重叠在一起,使它们完全重合的过程。
叠合要求两个图形的形状和大小完全相同。
2.重合重合指的是将两个不完全相同但有一定相似之处的图形重合在一起,使它们重合的程度最大。
重合要求两个图形的形状和大小不需要完全相同。
三、折纸图形的解析与构造折叠问题通常需要进行图形的解析和构造。
下面介绍两个基本的解析和构造方法。
1.解析方法解析方法指的是通过观察图形特征,确定图形各个部分的位置、大小和形状的方法。
解析方法的关键在于观察,要将图形各个部分的位置、大小和形状仔细观察、分析和比较,找出它们之间的关系,以便在后续的折叠中更好地处理图形。
2.构造方法构造方法指的是通过折叠纸张的方式,得到所需的图形的方法。
23函数自对称之轴对称
专题23、函数自对称之轴对称【例1】设函数对都满足,方程恰有个不同的实数根,则这6个实根的和为____________.【答案】18【解析】函数()f x 对x ∈R 都满足(3)(3)f x f x +=-,即函数关于3x =对称,方程()0f x =恰有6个不同的实数根,根据对称性知实数根两两相加为6,这6个实根的和为18,故答案为:18。
【例2】已知定义在区间30,2π⎡⎤⎢⎥⎣⎦上的函数()y f x =满足3344f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,当34x π≥时,()cos f x x =,如果关于x 的方程()f x a =有解,记所有解的和为S ,则S 不可能为( )5.A π 3.B π 9.C π .3D π2【例3】若函数2()f x x bx c =++对任意x R ∈都有(1)(3)f x f x -=-,则以下结论正确的是( ).(0)(2)(5)A f f f <-< .(2)(5)(0)B f f f -<<.(2)(0)(5)C f f f -<< .(0)(5)(2)D f f f <<-【答案】A【解析】由2()f x x bx c =++对任意x R ∈都有(1)(3)f x f x -=-知()f x 的图像关于1x =对称,且函数图像开口向上,且函数在(1,)+∞单调递增,又(0)(2)f f =,(2)(4)f f -=,(2)(4)(5)f f f ∴<<,即(0)(2)(5)f f f <-<,故选A 。
【例4】函数()f x 的定义域为{}|1x x ≠,对定义域中任意的x 都有(2)()f x f x -=,且当1x <时,2()2f x x x =-,那么当1x >时,()f x 的单调递增区间为 【解析】对定义域中任意的【例5】已知函数()f x 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图像的交点为1122(,),(,),,(,)m m x y x y x y ,则1mi i x ==∑( )【解析】函数对称,2y x =-对称,当m 为偶数时,其和为。
轴对称(如何处理翻折问题)
轴对称几何三大变化:平移翻折旋转翻折【例1】如图,矩形ABCD沿CE对折,点B落在AD边上的F处,若∠DCF=60°,则∠BCE=_____。
【例2】如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°【例3】如图,把矩形ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处。
若AE =a、AB=b、BF=c ,请写出a、b、c之问的一个等量关系_____。
【例4】如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C′位置,则BC′与BC之间的数量关系为_________。
【例5】如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )A.3cm B.4cm C.5cm D.6cm【例6】如图,矩形纸片ABCD,AB=3,BC=4,沿对角线BD折叠,使点C落在点E处,求△ABD 和△EBD重叠部分的面积。
【例7】矩形纸片ABCD的边长AB=4,AD=2。
将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为( )A.8 B.112C.4 D.52如何处理翻折问题1.全等2.角平分线3.角+平=等(铁三角) 4.勾股定理5.利用勾股定理列方程在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.如图所示图案中有且只有三条对称轴的是( )A .B .C .D .2.如图,将边长为9cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,且CD =3CN ,则线段BE 的长是( )A .6cmB .933-C .3cmD .33BENMFCDA3.如图,在矩形ABCD 中,3AB =,1AD =,点P 在线段AB 上运动,设AP x =,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),再将纸片还原.则当0x =,折痕EF 的长为( ) A .1 B .2 C .3 D .4A B C D EFPO4.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1B .43C .32D .4ABCDGA'5.下列图形中对称轴最多的是( ) A .圆 B .等腰三角形C .正方形D .线段6.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是A .B .C .D .7.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,则下列结论中不一定成立的是( ) A .点A 落在BC 边的中点 B .∠B +∠1+∠C =180° C .△DBA 是等腰三角形 D .DE ∥BCABCD E8.如图,矩形纸片ABCD 中,AD =4cm ,AB =10cm ,E 、F 分别是AB 、AC 的上的点,按如图的方式折叠,使点B 与点D 重合,折痕为EF ,则DE =( ) A .5.6 B .5.7 C .5.8 D .5.9ADBCEF9.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果AB =5,BC =13,则ED 的长为( ) A .2 B .2.6 C .2.4 D .3AD CBFE10.如图,Rt △ABC 中,∠ACB =90°,∠B =60°,将其折叠,使点B 落在边AB 上B '处,折痕为CD ,则∠ACB '=( ) A .50°B .60°C .30°D .40°CABD。
轴对称折叠问题
轴对称折叠问题轴对称折叠问题一、引言轴对称折叠问题是数学中的一个经典难题,旨在探讨平面上的折叠操作,特别是涉及到对称性的折叠方式。
在这个问题中,我们将考虑折纸的形式,以及折纸后图案的变化和对称性的保持。
二、问题描述初步问题可以定义如下:给定一个平面上的任意形状,通过折叠把它完全覆盖,同时保持图案的对称性。
问题的难点在于如何折叠纸张,以及如何处理图案的对称性。
三、基本概念为了更好地理解轴对称折叠问题,我们首先需要明确一些基本概念:1. 轴对称:在平面上,如果一点对折平面的操作保持该点不动并使得平面上的其他点与其关于折线对称,那么这个折线称为轴对称线,也称为对称轴。
2. 折纸:将平面纸张按照一定角度和方向进行交叠和折叠,形成新的平面形状。
3. 对称性:指图案在某个对称操作下保持不变的性质,包括轴对称、中心对称等。
四、问题解答解决轴对称折叠问题的关键是找到合适的折叠方式和对称轴的选择。
以下是一些解答思路:1. 图案识别:首先需要分析给定图案的对称性质,并找到适合的对称轴。
这可以通过观察图案中的对称元素、边界和特征点来实现。
2. 折纸操作:根据找到的对称轴,进行合适的折叠操作。
通常可以选择将平面纸张折叠成多个重叠部分,然后将它们按照对称轴进行对称折叠。
3. 对称性保持:在进行折叠操作时,需要确保图案的对称性得到保持。
这可以通过合理控制折叠过程中纸张的对称性和图案的位置来实现。
五、实例分析为了更具体地说明轴对称折叠问题的解答过程,我们以一个正方形的图案为例。
首先,我们可以选择正方形的中心作为对称轴。
然后,将纸张折叠成两个重叠的半正方形,并将其沿对称轴对称折叠。
最终,我们可以得到一个完全对称的图案。
六、应用领域轴对称折叠问题在很多实际领域都有应用价值,例如纸艺、建筑设计等。
在纸艺中,折纸技巧可以通过轴对称折叠问题得到进一步的发展和应用。
在建筑设计中,轴对称折叠的概念可以引导建筑师实现建筑形式的对称性和美感。
初中数学中的折叠问题
初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积 = 24根据对称的性质得到∠ABE=∠CBE,∠EBF=∠CBF,据此即可求出∠FBC的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD的对角线BD折叠,点C落在点E的位置,已知BC=8cm,AB=6cm,求折叠后重合部分的面积.∵点C与点E关于直线BD对称,∴∠1 = ∠2∵AD∥BC,∴∠1 = ∠3∴∠2 = ∠3∴FB = FD设FD = x,则FB = x,FA = 8 – x在Rt△BAF中,BA2 + AF2 = BF2∴62 + (8 - x)2 = x2解得x = 25 4所以,阴影部分的面积S△FBD =12FD×AB =12×254×6 =754cm2(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α = ∠1,∠2 = ∠1∴∠α = ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5三、三角形中的折叠叠前的△ABC 的面积可以等于?32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CDD重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.24.如图,矩形纸片ABCD中,AB= 6 ,BC=10 .第一次将纸片折叠,使点B与点D折痕是对应点连线的垂直平分线四、圆中的折叠30.如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形的BC边沿EC折叠,点B落在圆上的F点,求BE的长连接OC、OF,则△OCF≌△OCD(SSS),∴∠OFC = ∠ODC = 90°,。
初中数学几何图形中的折叠问题解题思路-word
初中数学几何图形中的折叠问题解题思路折叠问题中的背景图形通常有,三角形、正方形、矩形、梯形等,解决这类问题的关键是一定要灵活运用轴对称和背景图形的性质。
轴对称性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
典型例题:例题1、如图,在Rt△ABC 中,∠ACB=90°,AB=10,AC=8,E、F 分别为 AB、BC 上的点,沿线段 EF 将 ∠B 折叠,使点 B 恰好落在 AC 上的点 D 处,试问当△ADE 恰好为直角三角形时,此时 BE 的长度为多少?解题思路:△ADE 为直角三角形分两种情况:①∠ADE =90°,②∠AED = 90°,此题需要分类讨论,结合三角形的相似、折叠的性质,来求折叠中线段的长度,关键是能画出折叠后的图形。
解答过程:当 ∠ADE = 90°时,如下图所示:证明:先来证明四边形 DEBF 为棱形:∵ 在Rt△ABC 中,∠ACB=90°,∠ADE =90° ,∴ DE∥BC ,∴ ∠DEF = ∠EFB ,又∵ 沿线段 EF 将 ∠B 折叠,∴ DE = BE ,DF = BF ,∠DFE = ∠BFE ,∴ ∠DEF = ∠DFE ,DE = DF = BF ,∴ 四边形 DEBF 为棱形。
(一组对边平行且相等的四边形是平行四边形,邻边相等的平行四边形是棱形)。
再来证明 R t△ADE ∽ Rt△ACB (相似三角形判断图形中的“A”字型)∵ 在三角形 ACB 中,DE∥BC ,∴ Rt△ADE ∽ Rt△ACB ,设棱形 DEBF 的边长为 x , 则有 DE = x , AE = 10 - x ,在Rt△ACB 中,AB = 10 , AC = 8 ,由勾股定理得:BC = 6 。
轴对称与折叠问题
轴对称与折叠问题(适合初一学生)(一)几何作图最值模型模型一:直角坐标系下的几何最值1.两条线段的和差最值问题:(1)如图1-1 ,MN ⊥EF,在MN 上找一点C,使得AC+BC 最小;解析】如图1-1-1 ,连接AB,与MN 交于C 点,则点C为所求。
证明:在MN 上任选其他一点D,连接DA 、DB ,则在△ DAB 中,DA+DB >AB,AB=CA+CB ,∴ CA+CB < DA+DB ;(2)如图1-1 ,MN ⊥ EF ,在EF 上找一点C,使得AC+BC 最小;3)如图 1-1 , MN ⊥ EF ,在 EF 上找一点 C ,使得 AC-BC 最大;解析】如图 1-1-3 ,连接 AB ,延长 AB 与 EF 交于 C 点,则点 C 为所求。
证明:在 EF 上任选其他一点 D ,连接 DA 、DB ,则在△ DAB 中, DA-DB <AB ,而AB=CA-CB ,∴ CA-CB > DA-DB ;4)如图 1-1 , MN ⊥EF ,在 MN 上找一点 C ,使得 AC-BC 最大;【解析】如图 C 为所求。
1-1-2 ,作点 关于 EF 的对称点 B' ,连接 AB' ,与 EF 交于 C 点,则点证明: 在 EF 上任选其他一点 而 DA+DB'=DA+DB , AB'=CA+CB'=CA+CB 说明:如果作 A 关于 EF 的对称点 A ',连接 BA ' ,与 EF 的交点仍然是点D ,连接 DA 、DB 、DB' ,则在△ DAB' ,∴ CA+CB < DA+DB中,DA+DB' > AB' , C 。
【解析】如图 1-1-4 ,作点 A 关于 MN 的对称点 A',连接 A'B ,延长线与 MN 交于 C 点,则点 C 为所求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年江苏省各地中考数学模拟优质试题分项版解析汇编
专题23:轴对称变换(含折叠)问题
一、选择题
1.【昆山市二模】下列图形中既是轴对称图形,又是中心对称图形的是( )
A 、等腰梯形
B 、平行四边形
C 、正方形
D 、正五边形
2.【泰兴市二模】如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )
A 、主视图和俯视图
B 、俯视图
C 、俯视图和左视图
D 、主视图 3.【南京市鼓楼区二模】下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是( )
4.【扬州市宝应县一模】直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )
A 、247
B
C 、724
D 、13 5.【南京市鼓楼区一模】下列图形中,既是轴对称图形又是中心对称图形的是( )
6.【江阴市要塞片二模】如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规
定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()
A、(-2012,2)
B、(-2012,-2)
C、(-2013,-2)
D、(-2013,2)
7.【铜山县】下列图形中,既是中心对称图形又是轴对称图形的是()
8.【苏州市吴江区一模】下列腾讯QQ表情中,不是轴对称图形的是()
9.【南京市浦口区一模】如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为()
A、3或
B、4或
C、3或4
D、
二、填空题
1.【南京市建邺区一模】如图,在矩形ABCD中,AB=8.将矩形的一角折叠,使点B落在边AD上的B′点处,若AB′=4,则折痕EF的长度为.
2.【南京市鼓楼区一模】如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC上的动点,现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E、F,要使折痕始终与边A B、AD有交点,则BP的取值范围是.
3.【徐州市一模】在等腰三角形、平行四边形、矩形、正方形、正五边形中,既是轴对称图形又是中心对称图形的图形有个.
4.【徐州市二模】如图,E的矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F 在矩形ABCD内部,延长AF交DC于G点.若∠AEB=55°,求∠DAF= °.
5.【常州市武进区一模】如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC= .
6.【盐城市大丰市一模】如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A 落在BC上F处,若∠B=50°,则∠BDF= 度.
三、解答题
1.【昆山市一模】如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.
(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.
2.【高邮市二模】数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:(1)如图1,若连接矩形ABCD的对角线A C、BD相交于点O,则Rt△ADC可由Rt△ABC 经过旋转变换得到,这种旋转变换的旋转中心是点、旋转角度是°;(2)如图2,将矩形纸片ABCD沿折痕EF对折、展平.再沿折痕GC折叠,使点B落在EF上的点B′处,这样能得到∠B′G C.求∠B′GC的度数.
(3)如图3,取AD边的中点P,剪下△BPC,将△BPC沿着射线BC的方向依次进行平移变换,每次均移动BC的长度,得到了△CDE、△EFG和△GHI(如图4).若BH=BI,BC=a,则:①证明以B D、BF、BH为三边构成的新三角形的是直角三角形;②若这个新三角形面
积小于a的最大整数值.
3.【徐州市二模】如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-3,0)、
B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.
4.【常州市武进区一模】如图,在平面直角坐标系xOy中,函数y=ax2+bx+1(a≠0)的图象与x的正半轴交于点A,与x的负半轴交于点B,与y轴交于点C.△PAC中,P(1,﹣1),∠P=90°,PA=P C.
(1)求点A的坐标.
(2)将△PAC沿AC翻折,若点P的对应点Q恰好落在函数y=ax2+bx+1(a≠0)的图象上,求a与b的值.
(3)将△ACO绕点A逆时针旋转90°得到△ADE,在x轴上取一点M,将∠PMD沿PM翻折,若点D的对应点F恰好落在x轴上,求点M的坐标.
5.【铜山县】】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.
(1)画出△AOB关于x轴对称的△A1OB1.
(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.
(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.
6.【苏州市吴江区一模】有两张相同的矩形纸片ABCD和A′B′C′D′,其中AB=3,BC=8.(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;
(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.。