高斯投影及换带计算

合集下载

高斯投影的邻带坐标换算

高斯投影的邻带坐标换算
LL0 l
高斯坐标正算实用步骤
1、根据经纬度计算中央子午经度和带号及经度差
(点到中央子午线的距离)
6带: n6

int
L 6

1
3带: n3

int
L 3

0.5
6带中央子午L0线 6n: 63
3带中央子午L0线 3n: 3
经度差(到中的 央距 子离 l午 ) L线 L0
120 5
5、对y的值进行加工 正算公式计算出的自然值+500公里,前面冠以带号
例一 已知某测区四个点平面坐标
A
4074700.925
B
4078073.834
C
4075083.899
D
4069122.263
20763357.427 20236570.978 20690755.754 20277596.488
X 1. 0 1 B o 1 0 1 . 5 6 5 1 s 2 B 2 i 0 1 3 . 8 n 8 s 3 6 3 4 B 3 i 0 . 8 0 n 3 s 6 B 2
3、计算正算公式中的各符号的值
ttanB 2 e'2co2sB
W 1e2si2nB
N a W
Nc V
重复迭代直至 Bif1Bif 为止
3、计算反算公式中的各符号的值
tf tanBf
2 f
e'2co2sBf
Wf 1e2si2nBf
Mf

a(1 e2 Wf3
)
Nf
a Wf
4、代入反算公式计算经度差、纬度
1
l Nf coBsf
1 y6N3coBsf
12t2f 2f

高斯投影换带计算分解

高斯投影换带计算分解
虽计算量稍大,但由于计算机的普及和本法的通用性及计算 的高精度,它自然便成为坐标邻带换算中最基本的方法。
4、算例
某点P在1954北京坐标系6°带平面直角坐标为:
x1 =3589644.286m,y1 =20679136.438m
求P点在3°第40带的平面坐标 x2 , y2 。
➢ 根据 x1, y1 ,利用高斯反算公计算换算 (B, L) ,得到
3. 根据换带后新的中央子午线经度L0‘ ,计算相应的经差;
4. 由高斯投影正算,求得新的高斯投影坐标 x',y'。
反算公式 正算公式
3、高斯换带的优点
本质: 把椭球面上的大地坐标作为过渡坐标:
平面坐标
大地坐标
平面坐标
这种方法,理论上最简明严密,精度最高,通用性最强。不 仅适用于6°-6°带,3°-3°带以及6°-3°带互相之间的邻带坐标换 算,且适用于任意带之间的坐标换算。
1) 3°带与6°带的中央子午 线重合
如图所示, 3°第41带与6° 带的第21带的中央子午线重 合,中央子午线经度均为 123°。既然中央子午线一致, 坐标系统也就一致。所以, 图中P1点在6°带第21带的坐 标,也就是该点在3°带第41 的坐标。在这种情况下, 6° 带与3°带不存在坐标换带的 计算问题。
邻带方里网: 如图所示:
规定:在一定范围内将邻带的坐标延伸到本带的图幅中。
三、换带的分类
当测区跨不同的投影带时,测图时测区中所有 控制点应采用同一投影带的坐标,位于不同投 影带的点应进行同一坐标系统(同一个椭球) 不同投影带之间的坐标换算:具体情况有以下 几种: 6°带坐标→相邻6°带坐标; 6°带坐标→3°带坐标; 3°带坐标→相邻3°带坐标; 6°带或3°带坐标→任意带坐标;

6高斯投影及其计算

6高斯投影及其计算
第一节 地图投影概念和正形投影性质
应用大地测量学
第一节 地图投影概念和正形投影性质
应用大地测量学
第一节 地图投影概念和正形投影性质
应用大地测量学
(二)投影变形 角度变形、长度变形和面积变形三种。 (三)投影长度比与变形指标 投影长度比——投影面上无限小线段 ds与椭球面上该线段实际长度 dS之比,以m表示,m=ds/dS。长度变形—— v= m-1 变形指标:主方向上投影长度比a和b叫变形指标。 若a=b,则为等角投影,既投影后长度比不随方向而变化。 若ab=1,则为等面积投影。 椭球面上微分圆: 投影平面上对应为微分椭圆:
第一节 地图投影概念和正形投影性质
应用大地测量学
二、正形投影特性 1、任一点上,投影长度比m为一常数,不随方向而变,仅与点位置有关。 2、投影后角度不变形。又叫保角映射或叫正形投影。条件是在微小范围内成立。
第一节 地图投影概念和正形投影性质
应用大地测量学
三、正形投影的一般条件 正形投影必要和充分的条件是满足柯西—黎曼方程:
y/(km)
10
20
30
40
50
100
150
200
250
300
长度变形m-1
1/810000
1/202000
1/90000
1/50000
1/32000
1/8000
1/3500
1/2000
1/1300
1/900
第二节 高斯投影与国家平面直角坐标系
应用大地测量学
三、高斯投影的分带 为限制长度投影变形,投影分带有6度分带和3度分带两种方法。
应用大地测量学
三、距离改正计算 距离改正——椭球面上大地线长S改换为平面上投影曲线两端点间的弦长D,要加距离改正△S。

高斯投影坐标计算

高斯投影坐标计算

x m0 m 2 l 2 m 4 l 4 y m1l m3 l 3 m5 l 5
式中m0 , m1 , 是待定系数,它们都是纬度B的函数
2) 由第三个条件即正形投影条件可知
y x x y 和 l q l q
分别对l 和q求偏导数并代入上式得
2、高斯投影坐标反算公式
已知高斯平面坐标(x,y),求椭球面上的大地坐标(B,L)的 问题称高斯投影坐标反算。 B 1 ( x, y) 函数式:
l 2 ( x, y)
同正算一样,对投影函数提出三个条件 (1) x (2) x (3) 正形投影条件。
1) 由第一个条件(x 坐标轴投影成中央子午线,是投 影的对称轴)可知
Bf为x值对应的底点纬度, tf ηf Mf Nf 均为底点纬度 的函数。
当l<3.5°时,
上式换算精度达0.0001″
高斯投影反算公式的几何解释
B B f ( n2 y 2 n4 y 4 = Bf高斯投影坐标正算的数值公式 将75国际椭球参数代入前面推导的高斯计算公式, 经过一些简单变化,可得高斯投影正算公式。 高斯投影正算公式:
B 2 2 2 x 6367452 .1328 (a0 (0.5 (a4 a6l )l )l N ) cos B sin B y (1 (a3 a5l 2 )l 2 )lN cos B
实用公式的系数
N 6399596 .652 [21565 .045 (108.996 0.603cos2 B) cos2 B] cos2 B 2 2 2 a 32144 . 5189 [ 135 . 3646 ( 0 . 7034 0 . 0041 cos B ) cos B ] cos B 0 cos2 B) cos2 B 0.04167 a4 (0.25 0.00253 2 2 a ( 0 . 167 cos B 0 . 083 ) cos B 6 0.001123 cos2 B) cos2 B 0.1666667 a3 (0.3333333 a 0.00878 (0.1702 0.20382cos2 B) cos2 B 5

高斯投影及换带计算

高斯投影及换带计算

测绘学院《大地测量学基础》课件
10
6.2 高斯投影概述(重点)
1、控制测量对地图投影的要求
1)等角投影(又称正形投影)
2)长度和面积变形不大,并能用简单公式计算由变形而引起 的改正数。
3)能很方便地按分带进行,并能按高精度的、简单的、同样 的计算公式和用表把各带联成整体 。
测绘学院《大地测量学基础》课件
8
• 3、中国各种地图投影:
1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方 位投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割 圆锥投影。
• 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正 轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投 影(宽带)。
• 3)中国大比例尺地图的投影:多面体投影(北洋军阀时 期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯克吕格投影(解放以后)。
x F1(L, B) y F2 (L, B)
椭球面是一个凸起的、不可展平的曲面,若将这个曲面上 的元素(比如一段距离、一个角度、一个图形)投影到平 面上,就会和原来的距离、角度、图形呈现差异,这一差 异称作投影的变形
测绘学院《大地测量学基础》课件
4
长度比:
投影面上的边长与原面上的相应长度之比,称为长度比。
(1)该点位于6˚ 带的第几带?
(第19带)
(2)该带中央子午线经度是多少?
(L。=6º×19-3º=111˚)
(3)该点在中央子午线的哪一侧?
(先去掉带号,原来横坐标y=367622.380—500000=-132377.620m,在西侧)
(4)该点距中央子午线和赤道的距离为多少?
(距中央子午线132377.620m,距赤道3102467.280m)

高斯投影及换带计算

高斯投影及换带计算

测绘学院《大地测量学基础》课件
24
高斯平面直角坐标系与数学上的笛卡尔平面直角 坐标系的异同点 :
不同点: 1、 x,y轴互异。 2、 坐标象限不同。 3、表示直线方向的方位角
定义不同。 相同点:
数学计算公式相同。
测绘学院《大地测量学基础》课件
Ⅳx
o

α Ⅰp
D
y

x=Dcosα
y=Dsinα
高斯平面直角坐标系
y3
6N
3 f
cos
Bf
1
2t
2 f
2 f
y5
120N
5 f
cos
Bf
5
28t
2 f
24t
4 f
6
2 f
8
2 f
t
2 f
测绘学院《大地测量学基础》课件
30
3、高斯投影坐 标正反算公式的
几何解释 :
①当B=0时x=X=0,y则随l的变化而变化,这就是说,赤道投影为一直线且 为y轴。当l=0时,则y=0,x=X,这就是说,中央子午线投影亦为直线,且为x轴, 其长度与中央子午线长度相等。两轴的交点为坐标原点。
B B f
tf 2M f N f
y2
tf
24M
f
N
3 f
5
3t
2 f
2 f
9
2 f
t
2 f
y4
过所求点P作中央子午线的垂线,
tf
720M
f
N
5 f
y
61

90t
2 f
45t
4 f
y6
该垂线与中央子午线的交点的纬 度,称垂足纬度。其值由子午线 弧长计算公式反算求得。

高斯投影坐标计算

高斯投影坐标计算
高斯投影坐标计算
本节要点提要
1、高斯投影坐标正算公式 2、高斯投影坐标反算公式 3、高斯投影坐标正算的数值公式 4、高斯投影坐标反算的迭代计算公式
地图投影的分类
• 按投影变形性质分类: 等角投影 等距投影 等积投影
a=b
• 按投影面分类 : 圆锥面 正轴投影 切投影
a=1 or b=1
圆柱(椭圆柱) 面 横轴投影 割投影
(1)中央子午线投影后为直线; (2)中央子午线投影后长度不变; (3)投影具有正形性质,即正形投影 条件。
高斯投影坐标正算
l =3/ρ=0.052
1) 由第一个条件(中央子午线投影后为直线) 可知,由于地球椭球体是一个旋转椭球体,即 中央子午线东西两侧的投影必然对称于中央子 午线。 x 为 l 的偶函数,而y 则为 l 的奇函数。
由恒等式两边对应系数相等,建立求解待定系数的递推公式
d m d m d m 1 1 0 1 m m m = 2 1 2 3 d q 2 d q 3 d q
m0=?
3) 由第二条件(中央子午线投影后长度不变)可 知,位于中央子午线上的点,投影后的纵坐标 x 应 该等于投影前从赤道量至该点的子午弧长。
Байду номын сангаас
a· b=1
平面投影 斜轴投影
• 按投影的中心轴线: • 按椭球面与投影面的切割情况分:
高斯投影特性(三个): – 中央子午线投影后为一直线,且长度不变; 其它经线为凹向中央子午线的曲线,且长 度改变。 – 投影后,赤道为一直线,但长度改变,其 它纬线呈凸向赤道的曲线。 – 投影后,中央子午线与赤道线正交,经线 与纬度也互相垂直,即高斯投影为等角投 影。
将各系数代入,略去高次项,得高斯投影 坐标正算公式精度为0.001m

高斯克里格换带计算中国

高斯克里格换带计算中国

高斯克里格换带计算中国高斯克里格换带计算是地理信息系统(GIS)中常用的一种坐标转换方法,它在中国的应用也非常广泛。

本文将从介绍高斯克里格换带的原理开始,然后探讨其在中国的具体应用。

高斯克里格换带是一种将地理坐标(经纬度)转换为平面坐标(东北坐标)的方法。

它基于大地测量的理论和数学模型,通过将地球表面划分为一系列的高斯投影带,然后在每个投影带内使用克里格插值方法进行坐标转换。

这种方法的优点在于能够实现较高的转换精度,并且适用于各种地理区域。

在中国,高斯克里格换带被广泛应用于测绘、地理信息系统、地质勘探等领域。

中国的地理区域广阔,地形复杂多样,因此需要一种能够适应不同地理环境的坐标转换方法。

高斯克里格换带正好满足了这个需求。

中国的高斯克里格换带采用的是克里格插值方法,该方法是一种基于统计学原理的插值方法,用于根据已知点的属性值推算未知点的属性值。

在高斯克里格换带中,我们可以将中国的地理区域划分为一系列的高斯投影带,在每个投影带内使用克里格插值方法进行坐标转换。

高斯克里格换带的计算需要使用一些数学模型和算法。

其中,高斯投影带的划分需要根据中国的地理范围和投影方式进行确定。

在每个投影带内,需要计算的参数包括中央经线、投影原点、投影坐标系的参数等。

这些参数的计算可以通过一些专业的地理信息系统软件来实现。

在实际应用中,高斯克里格换带可以用于将经纬度坐标转换为东北坐标。

这对于地理信息系统的数据叠加、空间分析等操作非常重要。

例如,在城市规划中,我们可以通过高斯克里格换带将不同地理数据(如地形地貌、道路网络、建筑物分布等)转换为统一的坐标系统,以便进行综合分析和决策。

高斯克里格换带还可以用于地质勘探中的数据处理。

地质勘探需要对地质信息进行精确的定位和分析,而高斯克里格换带可以提供准确的坐标转换,使得地质勘探工作更加高效和精确。

高斯克里格换带是一种在中国广泛应用的坐标转换方法,它通过将地理坐标转换为平面坐标,为地理信息系统、地质勘探等领域的数据处理和分析提供了基础支持。

80椭球高斯投影坐标换带计算编程

80椭球高斯投影坐标换带计算编程

辽宁工程技术大学大地测量基础综合训练二教学单位测绘与地理科学学院专业测绘工程名称 80椭球高斯投影坐标换带计算编程班级测绘14-1学号学生姓名指导教师王佩贤目录一、高斯投影坐标换带的原理 (3)二、高斯投影坐标换带的目的 (6)三、坐标换带的意义 (8)四、程序设计基础 (8)五、程序界面及源码 (11)六、程序验证 (15)七、软件评价 (15)八、软件使用说明 (16)一、高斯投影坐标换带的原理1.1高斯投影基本概念想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。

特点:(1)正形投影(角度不变,a=b:长度比与方向无关);(2)中央子午线投影为纵坐标轴;(3)中央子午线投影后长度不变。

1.2高斯投影邻带换算1.定义:将一个带的高斯平面坐标换算为另一带的高斯平面坐标称为高斯坐标的邻带换算2.内容: 1 )不同六度带和不同三度带之间的化算2 )三度带和六度带之间的化算3.方法: 1 )直接法: 利用相邻两带坐标之间关系式进行坐标互换2 )间接法:通过大地坐标进行高斯正反算互相换算目前广泛采用间接换带计算法,因此下面就此方法作介绍。

如将第一带(东带或西带)的平面坐标换算为第二带(西带或东带)的平面坐标,方法是先根据第一带的平面坐标x,y和中央子午线的经度L。

按高斯投影坐标反算公式求得大地坐标B,L然后根据B,L和第二带的中央子午线经度按高斯投影坐标正算公式求得在第二带中的平面坐标。

由于在换带计算中,把椭球面上的大地坐标作为过渡坐标,因而称为间接换带法。

这种方法理论上是严密的,精度高,而且通用性强,他适用于6°带与6°带,3°带与3°带,6°带与3°带之间的坐标换带。

高斯投影正算与反算的理论方法与实

高斯投影正算与反算的理论方法与实

高斯投影正算与反算的理论方法与实现代码高斯投影是正形投影的一种,同一坐标系中的高斯投影换带计算公式是根据正形投影原理推导出的两个高斯坐标系间的显函数式。

在同一大地坐标系中(例如1954北京坐标系或1980西安坐标系),如果两个高斯坐标系只是主子午线的经度不同,那么显函数式前的系数可以根据坐标系使用的椭球元素和主子午线经度唯一确定。

但如果两个高斯坐标系除了主子午线的经度不同以外,还存在其他线性系,则将线性变换公式代入换带计算的显函数式中,仍然可以得到严密的坐标变换公式。

此时显函数式前的系数等价于使用两个坐标系主子午线的经度和线性变换参数联合求解得到的,可以唯一确定。

//6度带宽 54北京坐标系//高斯投影由大地坐标(Unit:Metres)反算经纬度(Unit:DD)void GaussProjInvCal(double X, double Y, double *longitude, double *latitude) {int ProjNo; int ZoneWide; ////带宽double longitude1,latitude1, longitude0,latitude0, X0,Y0, xval,yval;double e1,e2,f,a, ee, NN, T,C, M, D,R,u,fai, iPI;iPI = 0.0174532925199433; ////3.1415926535898/180.0;a = 6378245.0; f = 1.0/298.3; //54年北京坐标系参数////a=6378140.0; f=1/298.257; //80年西安坐标系参数ZoneWide = 6; ////6度带宽ProjNo = (int)(X/1000000L) ; //查找带号longitude0 = (ProjNo-1) * ZoneWide + ZoneWide / 2;longitude0 = longitude0 * iPI ; //中央经线X0 = ProjNo*1000000L+500000L;Y0 = 0;xval = X-X0; yval = Y-Y0; //带内大地坐标e2 = 2*f-f*f;e1 = (1.0-sqrt(1-e2))/(1.0+sqrt(1-e2));ee = e2/(1-e2);M = yval;u = M/(a*(1-e2/4-3*e2*e2/64-5*e2*e2*e2/256));fai = u+(3*e1/2-27*e1*e1*e1/32)*sin(2*u)+(21*e1*e1/16-55*e1*e1*e1*e1/32)*sin( 4*u)+(151*e1*e1*e1/96)*sin(6*u)+(1097*e1*e1*e1*e1/512)*sin(8*u);C = ee*cos(fai)*cos(fai);T = tan(fai)*tan(fai);NN = a/sqrt(1.0-e2*sin(fai)*sin(fai));R = a*(1-e2)/sqrt((1-e2*sin(fai)*sin(fai))*(1-e2*sin(fai)*sin(fai))*(1-e2*sin (fai)*sin(fai)));D = xval/NN;//计算经度(Longitude) 纬度(Latitude)longitude1 = longitude0+(D-(1+2*T+C)*D*D*D/6+(5-2*C+28*T-3*C*C+8*ee+24*T*T)*D *D*D*D*D/120)/cos(fai);latitude1 = fai -(NN*tan(fai)/R)*(D*D/2-(5+3*T+10*C-4*C*C-9*ee)*D*D*D*D/24+(61+90*T+298*C+45*T*T-256*ee-3*C*C)*D*D*D*D*D*D/720);//转换为度 DD*longitude = longitude1 / iPI;*latitude = latitude1 / iPI;}//高斯投影由经纬度(Unit:DD)正算平面坐标(含带号,Unit:Metres)void GaussProjCal(double longitude, double latitude, double *X, double *Y) {int ProjNo=0; int ZoneWide; ////带宽double longitude1,latitude1, longitude0,latitude0, X0,Y0, xval,yval;double a,f, e2,ee, NN, T,C,A, M, iPI;iPI = 0.0174532925199433; ////3.1415926535898/180.0;ZoneWide = 6; ////6度带宽a=6378245.0; f=1.0/298.3; //54年北京坐标系参数////a=6378140.0; f=1/298.257; //80年西安坐标系参数ProjNo = (int)(longitude / ZoneWide) ;longitude0 = ProjNo * ZoneWide + ZoneWide / 2;longitude0 = longitude0 * iPI ;latitude0=0;longitude1 = longitude * iPI ; //经度转换为弧度latitude1 = latitude * iPI ; //纬度转换为弧度e2=2*f-f*f;ee=e2*(1.0-e2);NN=a/sqrt(1.0-e2*sin(latitude1)*sin(latitude1));T=tan(latitude1)*tan(latitude1);C=ee*cos(latitude1)*cos(latitude1);A=(longitude1-longitude0)*cos(latitude1);M=a*((1-e2/4-3*e2*e2/64-5*e2*e2*e2/256)*latitude1-(3*e2/8+3*e2*e2/32+45*e2*e2 *e2/1024)*sin(2*latitude1)+(15*e2*e2/256+45*e2*e2*e2/1024)*sin(4*latitude1)-(35 *e2*e2*e2/3072)*sin(6*latitude1));xval = NN*(A+(1-T+C)*A*A*A/6+(5-18*T+T*T+72*C-58*ee)*A*A*A*A*A/120);yval = M+NN*tan(latitude1)*(A*A/2+(5-T+9*C+4*C*C)*A*A*A*A/24+(61-58*T+T*T+600*C-330*ee)*A*A*A*A*A*A/720);X0 = 1000000L*(ProjNo+1)+500000L;Y0 = 0;xval = xval+X0; yval = yval+Y0;*X = xval;*Y = yval;}NN卯酉圈曲率半径,测量学里面用N表示M为子午线弧长,测量学里用大X表示fai为底点纬度,由子午弧长反算公式得到,测量学里用Bf表示R为底点所对的曲率半径,测量学里用Nf表示。

坐标换带计算原理

坐标换带计算原理

坐标换带计算原理地球是一个旋转的椭球体、是一个闭合曲面,但是测量上的计算与绘图一般要求在平面上进行,所以必须采用投影的方法建立一个平面直角坐标系统来满足测量要求。

我国主要采用横切圆柱投影,及高斯—克吕格投影的方法建立平面直角坐标系统,称为高斯—克吕格直角坐标系,简称高斯直角坐标系。

高斯投影采用正形投影,及等角投影,保证了投影的角度不变形,但是其长度变形较为严重。

高斯投影平面上的中央子午线投影为直线且长度不变,其余的子午线均为凹向中央子午线的曲线,其长度大于投影前的长度,离中央子午线越远长度变形越大。

为了限制高斯投影的长度变形,必须依据中央子午线进行分带,把投影范围限制在中央子午线东、西两侧一定的狭长带内分别进行。

但这又使得统一的坐标系分割成各带的独立坐标系。

于是,因分带的结果产生了新的矛盾,即在生产建设中提出了各相邻带的互相联系的问题。

这个问题是通过一个带的平面坐标换算到相邻带的平面坐标,简称为“邻带换算”的方法来解决的。

具体来说,在以下情况下需要进行坐标邻带换算:(1)如图1所示,A、B、1、2、3、4、C、D为位于两个相邻带边缘地区并跨越两个投影带(东、西带)的控制网。

假如起算点A、B以及C、D的起始坐标是按两带分别给出的话,那么为了能在同一带内进行平差计算,必须把西带的A、B点起始坐标换算到东带,或者把东带的C、D点的起始坐标换算到西带。

图1(2)在分界子午线附近地区测图时,往往需要用到另一带的三角点作为控制,因此必须将这些点的坐标换算到同一带中;为了实现两邻带地形图的拼接和使用,位于45′(或37.5′)重叠的三角点需具有相邻带的坐标值,如图2所示。

图2(3)当大比例尺(1:1000或更大)测图时,特别是在工程测量中,要求采用3°带、1.5°带或者任意带,而国家控制点通常只有6°带坐标,这时就产生了6°带同3°带(或1.5°带、任意带)之间的相互坐标换算问题。

(完整版)高斯投影正反算

(完整版)高斯投影正反算

高斯投影正反算学院:资源与环境工程工程学院专业:测绘工程学号:X51414012姓名:孙超一、高斯投影概述想象有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线相切,椭圆柱的中心轴通过椭球体的中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。

高斯投影由于是正形投影,故保证了投影的角度不变性,图形的相似性以及在某点各方向上长度比的同一性。

由于采用了同样法则的分带投影,这即限制了长度变形,又保证了在不同投影带中采用相同的简便公式和数表进行变形引起的各项改正的计算,并且带与带间的互相换算也能用相同的公式和方法进行。

高斯投影的这些优点必将使它得到广泛的推广和具有国际意义。

二、高斯投影坐标正算公式1.高斯投影必须满足以下三个条件1)中央子午线投影后为直线2)中央子午线投影后长度不变3)投影具有正形性质,即正形投影条件2.高斯正算公式推导1)由第一个条件可知,由于地球椭球体是一个旋转椭球体,所以高斯投影必然有这样一个性质,即中央子午线东西两侧的投影必然对称于中央子午线。

2)由于高斯投影是换带投影,在每带内经差l是不大的,lρ是一个微小量,所以可以将 X=X (l,q ),Y=Y (l ,q )展开为经差为l 的幂级数,它可写成如下的形式X=m 0+m 2l 2+m 4l 4+…Y=m 1l+m 3l 2+m 5l 5+…式中m 0,m1,m2,…是待定系数,他们都是纬度B 的函数。

3)由第三个条件:∂y ∂l =∂x ∂q 和∂x ∂l =-∂y ∂q ,将上式分别对l 和q 求偏导2340123423401234...........x m m l m l m l m l y n n l n l n l n l =+++++=+++++可得到下式0312123403121234111,,,, 234111,,,,234dm dm dm dm n n n n dq dq dq dq dn dn dn dn m m m m dq dq dq dq ⎧====⎪⎪⎨⎪=-=-=-=-⎪⎩L L 经过计算可以得出232244524632235242225sin cos sin cos (594)224sin cos (6158)720cos cos (1) 6cos (5181458)120N N x X B B l B B t l N B B t t l N y N B l B t l N B t t t l ηηηηη=+⋅+-+++-+=⋅+-++-++-三、高斯投影坐标反算公式推导1.思路:级数展开,应用高斯投影三个条件,待定系数法求解。

高斯投影及换带计算分解课件

高斯投影及换带计算分解课件
高斯投影及换带计算软件 实现
软件需求分析
01
02
03
04
用户需求
提供高斯投影和换带计算的功 能,满足用户对地理信息数据
的处理需求。
功能需求
软件应具备数据导入、高斯投 影转换、换带计算、结果导出
等功能。
性能需求
界面需求
软件应具备高效的数据处理能 力,能够处理大规模的地理信
息数据。
软件界面应简洁明了,操作简 便,提供友好的用户交互体验。
高斯投影及换带计 算分解课件
目 录
• 高斯投影基本概念 • 高斯投影计算方法 • 换带计算分解 • 高斯投影精度分析 • 高斯投影及换带计算软件实现 • 高斯投影及换带计算案例分析
01
高斯投影基本概念
高斯投影的定 义
01
高斯投影是一种将椭球面上的经 纬度坐标转换为平面直角坐标的 数学方法。
02
大地坐标系
以地球椭球体表面某一点的大地 经纬度为基准,建立的坐标系, 通常用于地理空间定位。
高斯投影坐标系
以高斯投影算法为基础,将大地 坐标系中的点投影到平面上的直 角坐标系,用于地图制作和地理 信息系统的数据表示。
坐标转换公式
大地坐标转高斯投影坐标
通过高斯投影的正反解公式,将大地经纬度转换为高斯投影平面直角坐标。
精度检验
对投影变换后的数据进行精度 检验,确保满足地图制作的要求。
03
换带计算分解
换带原因及原则
原因
高斯投影在某些区域可能会产生较大 的变形,为了满足地图制作的精度要 求,需要将投影带进行转换。
原则
选择适当的投影带,使得地图投影变 形最小,同时保持地图的完整性和连 续性。
换带计算公式

高斯投影及换带计算

高斯投影及换带计算
x F1(L, B) y F2 (L, B)
椭球面是一个凸起的、不可展平的曲面,若将这个曲面上 的元素(比如一段距离、一个角度、一个图形)投影到平 面上,就会和原来的距离、角度、图形呈现差异,这一差 异称作投影的变形
测绘学院《大地测量学基础》课件 语言优教资源PPT
44
长度比:
投影面上的边长与原面上的相应长度之比,称为长度比。
y N cos B l N cos3 B(1 t 2 2 )l3
6 3
N
120 5
cos5
B(5
18t 2
t4
14 2
58 2t 2 )l5
t tan B,2 e2 cos2 B
测绘学院《大地测量学基础》课件 语言优教资源PPT
29 29
2、高斯投影坐标反算公式:x,y B,l
满足以下三个条件: ①x坐标轴投影后为中央子午线是投影的对称轴; ② x坐标轴投影后长度不变; ③投影具有正形性质,即正形投影条件。
测绘学院《大地测量学基础》课件 语言优教资源PPT
22
[知识点及学习要求] 1.高斯投影的基本概念; 2.正形投影的一般条件;
3.高斯平面直角坐标与大地坐标的相互转换
—高斯投影的正算与反算 4.椭球面上观测成果归化到高斯平面上的计算; 5.高斯投影的邻带换算; 6.工程测量投影面与投影带的选择。
[难点]在对本章的学习中,首先要理解和掌握高斯投影的
概念。高斯正算和反算计算;方向改化和距离改化计算; 高斯投影带的换算与应用;工程测量中投影面与投影带的 选择。
测绘学院《大地测量学基础》课件 语言优教资源PPT
33
6.1 地图投影概述
1.投影与变形
所谓地图投影,简略说来就是将椭球面各元素(包括坐标、 方向和长度)按一定的数学法则投影到平面上。研究这个 问题的专门学科叫地图投影学。

第16次课 高斯投影正反算与邻带换算

第16次课 高斯投影正反算与邻带换算

预习内容
6.4 高斯投影正反算与邻带换算
6.4 高斯投影正反算与邻带换算
一、高斯投影正算
Direct solution of the Gauss projection
1、公式推导 (Formula derivation)
投影方程
x(中央子午线 L0 )
l L L0
x F1 ( B, L) y F2 ( B, L)
n4
n5
1 dm3 4 dq
1 dm4 5 dq
m4
1 dn3 4 dq
m5
1 dn4 5 dq
一、高斯投影正算
引入高斯投影条件二:中央子午线投影为纵坐标轴
l 0, y 0
n0 m1 n2 m3 n4 m5 ...... m0 n1 m2 n3 m4 n5 ......
(二)、方法:
1 、直接法 2 、间接法
三、高斯坐标的邻带换算
(二)、方法:
1 、直接法: 利用相邻两带坐标之间关系式进行坐标互换(多种公式) 2 、间接法: 通过大地坐标进行高斯正反算互相换算(目前使用多)
东带:1 , y1 ) 反解 L, B) (x ( 对西带中央子午线经差 l ( L L0 ) (西带) (l , B) 正解 西带:(x2,y2)
n0 ?
m0 ?
dm0 n1 dq
1 dm1 n2 2 dq 1 dm2 n3 3 dq
m1
dn0 dq
m2
m3
1 dn1 2 dq
1 dn2 3 dq
n0 m1 n2 m3 n4 m5 ...... m0 n1 m2 n3 m4 n5 ......

高斯投影反算临带换算

高斯投影反算临带换算
Inverse Solution of Gauss Projection
① 公式推导
根据高斯投影的第二
个条件,将q、l展开为
y的幂级数(y值与椭 球的半径相比是一个 相对较小的数值):
q l x y l q x y
q m '0 m '2 y2 m '4 y4 ..... l n '1 y n '3 y3 n '5 y5 ......
n '5

sec B f
120
N
5 f
5
28t
2 f

24t
4 f
2、高斯投影反算公式 (x,y ->L,B)
Inverse Solution of Gauss Projection
① 公式推导
可得q、l的具体表达式:
如何求B
q qf
t f sec Bf
2
N
2 f
y2 t f sec Bf
N
5 f
61
90t
2 f

45t
4 f
y6
''
''
l ''
N f cos Bf
y

6N
3 f
1
2t
2 f


2 f
y3
''

120
N
5 f
cos
Bf
5
28t
2 f

24t
4 f

6
2 f

8
2 f
t

6 高斯投影及其计算

6 高斯投影及其计算

大地测量学基础
第三节 高斯投影坐标计算
一、由(B,L)计算(x,y)--正算
推证过程: 1、高斯投影坐标正算函数式 2、根据正形投影的一般公式 x+iy=f(q+il)以及高斯投影的条件推 导正算公式,可以将一般公式在q处展为il 的台劳级数。 3、根据中央子午线长度比 m=1,有
4、由
求各阶导数
D12=S12+△S
式中△S为距离改正。
4、对于椭球面上三角网的各观测方向和观测边长分别进行方向改正和 距离改正,归算为高斯平面上的直线方向和直线距离。组成平面三角网, 平差计算,推求各控制点的平面直角坐标。
大地测量学基础
第二节 高斯投影与国家平面直角坐标系
高斯投影坐标计算、平面子午线收敛角计算、方向改正计算、距离 改正计算,统称为高斯投影计算。
大地测量学基础
第一节 地图投影概念和正形投影性质
F 0,
E G
2 2 2 2 x y x y q q l l
x y q l x y l q
df (q ) (il ) 2 d 2 f (q ) (il )3 d 3 f (q ) (il ) 4 d 4 f (q ) x iy f (q ) il dq 2! dq 2 3! dq 3 4! dq 4 (il )5 d 5 f (q ) (il ) 6 d 6 f (q ) 5! dq 5 6! dq 6
3 ,
l

为一微小量
l 2 d 2 f (q) l 4 d 4 f (q) l 6 d 6 f (q) x iy f (q ) 2 dq 2 24 dq 4 720 dq 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯投影及换带计算
一、高斯投影概述 (正形投影,高斯坐标正反算及换带计算)
二、把椭球面元素归算到高斯投影面 (方向改化,距离改化)
三、各种投影方法概述
语言优教资源PPT
测绘学院《大地测量学基础》课件
11
本章提要
本章介绍从椭球面上大地坐标系到平面上 直角坐标系的正形投影过程。研究如何将大地 坐标、大地线长度和方向以及大地方位角等向 平面转化的问题。重点讲述高斯投影的原理和 方法,解决由球面到平面的换算问题,解决相 邻带的坐标坐标换算。
66
2)按投影面的形状分类
• (1)方位投影:以平面作为投影面,使平面与球面相切或 相割,将球面上的经纬线投影到平面上而成。
• (2)圆柱投影:以圆柱面作为投影面,使圆柱面与球面相 切或相割,将球面上的经纬线投影到圆柱面上,然后将圆柱 面展为平面而成。
• (3)圆锥投影:以圆锥面作为投影面,使圆锥面与球面相 切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥 面展为平面而成。
测绘学院《大地测量学基础》课件 语言优教资源PPT
12 12
1).高斯投影的原理:
高斯投影采用分带投影。将椭球面按一定经差
分带,分别进行投影。
高斯投影平面
N



午 线
赤道
c
赤道
S
测绘学院《大地测量学基础》课件 语言优教资源PPT
13 13
2)、高斯投影必须满足:
(1)高斯投影为正形投影, 即等角投影;
长度变形比均大于l。
(7)离中央子午线愈远,长度 中央子午线
变形愈大。
测绘学院《大地测量学基础》课件 语言优教资源PPT
概念。高斯正算和反算计算;方向改化和距离改化计算; 高斯投影带的换算与应用;工程测量中投影面与投影带的 选择。
测绘学院《大地测量学基础》课件 语言优教资源PPT
33
6.1 地图投影概述
1.投影与变形
所谓地图投影,简略说来就是将椭球面各元素(包括坐标、 方向和长度)按一定的数学法则投影到平面上。研究这个 问题的专门学科叫地图投影学。
• 3)中国大比例尺地图的投影:多面体投影(北洋军阀时 期)、等角割圆锥投影(兰勃特投影)(解放前)、高斯克吕格投影(解放以后)。
测绘学院《大地测量学基础》课件 语言优教资源PPT
99
4、常用的几种地图投影
从世界范围看,各国大中比例尺地形图所使用 的投影很不统一,据不完全统计有十几种之多,最 常用的有横轴等角椭圆柱投影等。中华人民共和国 成立后,我国大中比例尺地形图一律规定采用以克 拉索夫斯基椭球体元素计算的高斯-克吕格投影。我 国新编1:100万地形图,采用的则是边纬与中纬变 形绝对值相等的正轴等角圆锥投影。
测绘学院《大地测量学基础》课件 语言优教资源PPT
22
[知识点及学习要求] 1.高斯投影的基本概念; 2.正形投影的一般条件;
3.高斯平面直角坐标与大地坐标的相互转换
—高斯投影的正算与反算 4.椭球面上观测成果归化到高斯平面上的计算; 5.高斯投影的邻带换算; 6.工程测量投影面与投影带的选择。
[难点]在对本章的学习中,首先要理解和掌握高斯投影的
x F1(L, B) y F2 (L, B)
椭球面是一个凸起的、不可展平的曲面,若将这个曲面上 的元素(比如一段距离、一个角度、一个图形)投影到平 面上,就会和原来的距离、角度、图形呈现差异,这一差 异称作投影的变形
测绘学院《大地测量学基础》课件 语言优教资源PPT
44
长度比:
投影面上的边长与原面上的相应长度之比,称为长度比。
测绘学院《大地测量学基础》课件 语言优教资源PPT
77
测绘学院《大地测量学基础》课件 语言优教资源PPT
88
• 3、中国各种地图投影:
1)中国全国地图投影:斜轴等面积方位投影、斜轴等角方 位投影、伪方位投影、正轴等面积割圆锥投影、正轴等角割 圆锥投影。
• 2)中国分省(区)地图的投影:正轴等角割圆锥投影、正 轴等面积割圆锥投影、正轴等角圆柱投影、高斯-克吕格投 影(宽带)。
m AB EA
AB
EA
测绘学院《大地测量学基础》课件 语言优教资源PPT
55
2、地图投影的分类
• 1)按变形性质分类
(1)等角投影

又称为正形投影。投影面上某点的任意两方向线夹角与椭球面上相应
两线段夹角相等,即角度变形为零。等角投影在一点上任意方向的长度比
都相等,但在不同地点长度比是不同的。
测绘学院《大地测量学基础》课件 语言优教资源PPT
11 11
2、高斯投影的基本概念
• 高斯投影是等角横切椭圆柱投影。 • 高斯投影是一种等角投影。它是由德国数学家高斯(Gauss,
1777 ~ 1855)提出,后经德国大地测量学家克吕格(Kruger, 1857~1923)加以补充完善,故又称“高斯—克吕格投影”, 简称“高斯投影”。
测绘学院《大地测量学基础》课件 语言优教资源PPT
10 10
6.2 高斯投影概述(重点)
1、控制测量对地图投影的要求
1)等角投影(又称正形投影)
2)长度和面积变形不大,并能用简单公式计算由变形而引起 的改正数。
3)能很方便地按分带进行,并能按高精度的、简单的、同样 的计算公式和用表把各带联成整体 。
午线为对称轴。投影后有长
度变形。 (3) 赤道线Biblioteka 影后为直线,但有长度变形。
中央子午线
测绘学院《大地测量学基础》课件 语言优教资源PPT
15 15
x
(4) 除赤道外的其余纬线,投
影后为凸向赤道的曲线,并以赤 平行圈 道为对称轴。
(5)经线与纬线投影后仍然保 持正交。
赤道
O
y
(6) 所有长度变形的线段,其 子午线
• (2)等积投影

在投影平面上任意一块面积与椭球面上相应的面积相等,即面积变形
等于零。
• (3)等距投影

定义为沿某一特定方向的距离,投影前后保持不变,即沿着该特定方
向长度比为1。在这种投影图上并不是不存在长度变形,它只是在特定方
向上没有长度变形。
测绘学院《大地测量学基础》课件 语言优教资源PPT
(2)中央子午线投影后为直 线,且为投影的对称轴;
(3)中央子午线投影后长度 不变。
测绘学院《大地测量学基础》课件 语言优教资源PPT
14 14
3)、高斯投影的特点:
x
(1)中央子午线投影后为直
线,且长度不变。
平行圈
(2) 除中央子午线外,其余
子午线的投影均为凹向中央
赤道
O
y
子午线的曲线,并以中央子 子午线
相关文档
最新文档