高三第一学期期末数学理科

合集下载

2017-2018年山东省济宁市高三上学期数学期末试卷(理科)与解析

2017-2018年山东省济宁市高三上学期数学期末试卷(理科)与解析

2017-2018学年山东省济宁市高三(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x|x2﹣3x≤0},B={x|y=lg(2﹣x)},则A∩B=()A.{x|0≤x<2}B.{x|1≤x<3}C.{x|2<x≤3}D.{x|0<x≤2}2.(5分)已知,,且,则m=()A.﹣3B.﹣1C.1D.33.(5分)已知函数g(x)=log a(x﹣3)+2(a>0,a≠1)的图象经过定点M,若幂函数f(x)=xα的图象过点M,则α的值等于()A.﹣1B.C.2D.34.(5分)命题p:若a<b,则∀c∈R,ac2<bc2;命题q:∃x0>0,使得lnx0=1﹣x0,则下列命题中为真命题的是()A.p∧q B.p∨(¬q)C.(¬p)∧q D.(¬p)∧(¬q)5.(5分)中国古代数学著作《算法统宗》中记载了这样的一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了378里路,第一天健步行走,从第二天其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第二天走的路程里数为()A.76B.96C.146D.1886.(5分)已知实数x,y满足条件,则的最大值为()A.B.﹣1C.1D.7.(5分)已知,,则=()A.B.C.D.8.(5分)已知a>0,b>0,并且,,成等差数列,则a+9b的最小值为()A.16B.9C.5D.49.(5分)函数y=﹣2cos2x+cosx+1,x∈[﹣,]的图象大致为()A.B.C.D.10.(5分)“a=﹣1”是函数为奇函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11.(5分)已知抛物线C1:y2=2px(p>0)的焦点为F,准线与x轴的交点为E,线段EF被双曲线C2:的顶点三等分,且两曲线C1,C2的交点连线过曲线C1的焦点F,曲线C2的焦距为2,则曲线C2的离心率为()A.B.C.D.12.(5分)设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,e2)上有三个零点,则实数a的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与抛物线C所围成的图形的面积等于.14.(5分)函数f(x)=Asin(ωx+φ)的部分图象如图所示,则将y=f(x)的图象向右平移个单位后,得到的图象对应的函数解析式为.15.(5分)某多面体的三视图,如图所示,则该几何体的外接球的表面积为.16.(5分)设函数,则方程f n (x)=0的根为.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC的内角A,B,C所对的边分别是a,b,c,且.(1)求角A的大小;(2)若b+c=5,,求a的值.18.(12分)已知S n为数列{a n}的前n项和,且3S n=1﹣a n.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=2,E,F分别是CC1,BC的中点.(1)若D是AA1的中点,求证:BD∥平面AEF;(2)若M是线段AE上的任意一点,求直线B1M与平面AEF所成角正弦的最大值.20.(12分)如图,点是圆内的一个定点,点P 是圆A上的任意一点,线段BP的垂直平分线l和半径AP相交于点Q,当点P 在圆A上运动时,点Q的轨迹为曲线C.(1)求曲线C的方程;(2)点E(2,0),F(0,1),直线QE与y轴交于点M,直线QF与x轴交于点N,求|EN|•|FM|的值.21.(12分)设函数f(x)=x+lnx﹣.(1)讨论函数f(x)的单词性;(2)当a=1时,记g(x)=xf(x),是否存在整数t,使得关于x的不等式t≥g (x)有解?若存在,请求出t的最小值;若不存在,请说明理由.22.在直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),曲线C的极坐标方程是ρcos2θ=2sinθ.(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,点M为AB的中点,点P的极坐标为,求|PM|的值.23.(10分)设函数f(x)=|x﹣a|+2x.(1)当a=﹣1时,求不等式f(x)≤0的解集;(2)若x≥﹣1时,恒有f(x)≥0成立,求a的取值范围.2017-2018学年山东省济宁市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)集合A={x|x2﹣3x≤0},B={x|y=lg(2﹣x)},则A∩B=()A.{x|0≤x<2}B.{x|1≤x<3}C.{x|2<x≤3}D.{x|0<x≤2}【解答】解:A={x|x2﹣3x≤0}={x|0≤x≤3},B={x|y=lg(2﹣x)}═{x|2﹣x>0}={x|x<2},则A∩B={x|0≤x<2},故选:A.2.(5分)已知,,且,则m=()A.﹣3B.﹣1C.1D.3【解答】解:∵,,∴﹣=(m+2,1),∵,∴=,即m+2=﹣1,得m=﹣3,故选:A.3.(5分)已知函数g(x)=log a(x﹣3)+2(a>0,a≠1)的图象经过定点M,若幂函数f(x)=xα的图象过点M,则α的值等于()A.﹣1B.C.2D.3【解答】解:∵y=log a(x﹣3)+2(a>0,a≠1)的图象过定点M,∴M(4,2),∵点M(4,2)也在幂函数f(x)=xα的图象上,∴f(4)=4α=2,解得α=,故选:B.4.(5分)命题p:若a<b,则∀c∈R,ac2<bc2;命题q:∃x0>0,使得lnx0=1﹣x0,则下列命题中为真命题的是()A.p∧q B.p∨(¬q)C.(¬p)∧q D.(¬p)∧(¬q)【解答】解:当c=0时,ac2<bc2不成立,则命题p为假命题,当x=1时,ln1=1﹣1=0,则命题q为真命题,则(¬p)∧q为真命题,其余为假命题,故选:C.5.(5分)中国古代数学著作《算法统宗》中记载了这样的一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了378里路,第一天健步行走,从第二天其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第二天走的路程里数为()A.76B.96C.146D.188【解答】解:根据题意,记每天走的路程里数为{a n},可知{a n}是公比q=的等比数列,由S6=378,得S6==378,解可得a1=192,则a2=a1×q=192×=96;即此人第二天走的路程里数为96;故选:B.6.(5分)已知实数x,y满足条件,则的最大值为()A.B.﹣1C.1D.【解答】解:作出不等式组对应的平面区域,设,即y=()x+z,平移曲线y=()x+z,由图象可知当曲线y=()x+z经过点A时,此时z取得最大值,由,解得A(1,1),此时z=1﹣()1=,故选:D.7.(5分)已知,,则=()A.B.C.D.【解答】解:∵,∴,即.∵,∴.∴==.故选:A.8.(5分)已知a>0,b>0,并且,,成等差数列,则a+9b的最小值为()A.16B.9C.5D.4【解答】解:根据题意,a>0,b>0,且,,成等差数列,则+=2×=1;则a+9b=(a+9b)(+)=10++≥10+2=16;即则a+9b的最小值为16;故选:A.9.(5分)函数y=﹣2cos2x+cosx+1,x∈[﹣,]的图象大致为()A.B.C.D.【解答】解:因为函数y=﹣2cos2x+cosx+1,x∈[﹣,],所以函数为偶函数,故排除A,Dy=﹣2cos2x+cosx+1=﹣2(cosx﹣)2+,x∈[﹣,],因为cosx≤1,所以当cosx=时,y max=,当cosx=1时,y min=0,故排除C,故选:B.10.(5分)“a=﹣1”是函数为奇函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:若函数为奇函数,则f(﹣x)=﹣f(x),即f(﹣x)+f(x)=0,则ln(+a)+ln(+a)=0,即ln(+a)(+a)=0,则(+a)(+a)=1,即•=1,则=1即a2﹣(a+2)2x2=1﹣x2,则,得a=﹣1,则“a=﹣1”是函数为奇函数”的充要条件,故选:C.11.(5分)已知抛物线C1:y2=2px(p>0)的焦点为F,准线与x轴的交点为E,线段EF被双曲线C2:的顶点三等分,且两曲线C1,C2的交点连线过曲线C1的焦点F,曲线C2的焦距为2,则曲线C2的离心率为()A.B.C.D.【解答】解:如图,由可线段EF被双曲线C2:的顶点三等分,得2a=,即p=6a∵两曲线C1,C2的交点A连线过曲线C1的焦点,∴A(3a,6a)在双曲线C2:上,∴⇒.∴曲线C2的离心率e满足:e2=,可得e=故选:D.12.(5分)设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,e2)上有三个零点,则实数a的取值范围是()A.B.C.D.【解答】解:∵函数g(x)=f(x)﹣ax在区间(0,e2)上有三个零点,∴y=f(x)与y=ax在区间(0,e2)上有三个交点;由函数y=f(x)与y=ax的图象可知,k1==;f(x)=lnx,(x>1),f′(x)=,设切点坐标为(t,lnt),则=,解得:t=e.∴k2=.则直线y=ax的斜率a∈(,).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与抛物线C所围成的图形的面积等于.【解答】解:方法一:抛物线C:x2=4y的焦点(0,1),直线l过抛物线C:x2=4y 的焦点且与y轴垂直,直线与抛物线的交点(﹣2,1),(2,1),直线l的方程为y=1,如图所示,可知l与C围成的图形的面积等于矩形OABF的面积与函数y=x2的图象和x轴正半轴及直线x﹣=2围成的图形的面积的差的2倍(图中阴影部分的2倍).即l与C所围成的图形的面积S=4﹣2x2dx=4﹣2×x3=4﹣=.故答案为:.方法二:抛物线C:x2=4y的焦点(0,1),直线l过抛物线C:x2=4y的焦点且与y轴垂直,直线与抛物线的交点(﹣2,1),(2,1),则l与抛物线C所围成的图形的面积等于S=2×2dy=2×2×=,∴l与C所围成的图形的面积为,故答案为:.14.(5分)函数f(x)=Asin(ωx+φ)的部分图象如图所示,则将y=f(x)的图象向右平移个单位后,得到的图象对应的函数解析式为.【解答】解:由函数f(x)=Asin(ωx+φ)的部分图象知,A=1,=﹣=,∴T=π,即=π,解得ω=2;由五点法画图知,sin(2×+φ)=1,解得φ=﹣=,∴f(x)=sin(2x+);将y=f(x)的图象向右平移个单位,得到的图象对应的函数解析式为y=sin[2(x﹣)+]=sin(2x﹣).故答案为:y=sin(2x﹣).15.(5分)某多面体的三视图,如图所示,则该几何体的外接球的表面积为.【解答】解:由三视图还原原几何体如图:该几何体是正三棱柱,底面是边长为4的等边三角形,正三棱柱的高是.如图,设底面等腰三角形ABC的外心为G,则CG=,∴直三棱柱外接球的半径R=.∴该几何体的外接球的表面积为4πR2=4π×=.故答案为:.16.(5分)设函数,则方程f n (x)=0的根为﹣1,﹣2,﹣3,…,﹣n.【解答】解:f1(x)=1+x,f2(x)=1+x+=(x+1)(1+),f3(x)=f2(x)+=(x+1)(1+)+=(x+1)[1++]=(x+1)(1+)(1+).…同理可得:f n(x)=(x+1)(1+)(1+)…(1+).∴f n(x)=0解为﹣1,﹣2,﹣3,…,﹣n.故答案为:﹣1,﹣2,﹣3,…,﹣n.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC的内角A,B,C所对的边分别是a,b,c,且.(1)求角A的大小;(2)若b+c=5,,求a的值.【解答】(1)由,得,∵sinC≠0,∴,∴,∴,∵,∴,即.(2)由,∴bc=4,∵,∴.18.(12分)已知S n为数列{a n}的前n项和,且3S n=1﹣a n.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.【解答】解:(1)当n=1时,3S1=1﹣a1,∴3a1=1﹣a1,∴,当n≥2时,因为3S n=1﹣a n①所以3S n=1﹣a n﹣1②﹣1①﹣②得3a n=a n﹣1﹣a n,∴4a n=a n﹣1,∴.所以数列{a n}是首项为,公比为的等比数列.∴;(2),=,∴,=.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=2,E,F分别是CC1,BC的中点.(1)若D是AA1的中点,求证:BD∥平面AEF;(2)若M是线段AE上的任意一点,求直线B1M与平面AEF所成角正弦的最大值.【解答】(1)证明:连接DC1,BC1,∵D,E分别是AA1,CC1的中点,∵AD=C1E,AD∥C1E,∴四边形ADCE是平行四边形,∴AE∥DC,∵E,F分别是CC1,BC的中点,∴EF∥BC1,∴平面AEF∥平面BDC1,又BD⊂平面BDC1,∴BD∥平面AEF.(2)解:以A为坐标原点,AB,AC,AA1分别为x,y,z轴,建立空间直角坐标系,如图所示:可知:A(0,0,0),B1(2,0,2),E(0,2,1),F(1,1,0),∴,,=(﹣2,0,﹣2),设平面AEF的法向量为,由,得,令z=2,得x=1,y=﹣1,即,设,则=+=+λ=(﹣2,0,﹣2)+λ(0,2,1)=(﹣2,2λ,λ﹣2).设直线B1M与平面AEF所成角为θ,则=∴当时,.20.(12分)如图,点是圆内的一个定点,点P 是圆A上的任意一点,线段BP的垂直平分线l和半径AP相交于点Q,当点P在圆A上运动时,点Q的轨迹为曲线C.(1)求曲线C的方程;(2)点E(2,0),F(0,1),直线QE与y轴交于点M,直线QF与x轴交于点N,求|EN|•|FM|的值.【解答】解:(1)因为点Q在BP的垂直平分线上,所以|QB|=|QP|,∴|QA|+|QB|=|QA|+|QP|=4,从而点Q的轨迹是以A,B为焦点的椭圆,这时,a=2,,∴b=1,所以曲线C的方程为.(2)由题设知,直线的斜率存在.设直线QE的方程为y=k(x﹣2),Q(x1,y1),E(x2,y2),由,得(1+4k2)x2﹣16k2x+16k2﹣4=0,因为,x2=2,所以,所以,因为点F,N,Q共线,k FN=k FQ,所以,即,又直线QE与y轴的交点纵坐标为y M=﹣2k,所以,|FM|=|1﹣y M|=|1+2k|,所以|EN|•|FM|=4.21.(12分)设函数f(x)=x+lnx﹣.(1)讨论函数f(x)的单词性;(2)当a=1时,记g(x)=xf(x),是否存在整数t,使得关于x的不等式t≥g (x)有解?若存在,请求出t的最小值;若不存在,请说明理由.【解答】解:(1)f′(x)=当a<0时,x∈(0,﹣a)时,f'(x)<0;x∈(﹣a,+∞)时,f'(x)>0;当0≤a≤1时,x∈(0,+∞)时,f'(x)>0;当a>1时,x∈(0,a﹣1)时,f'(x)<0;x∈(a﹣1,+∞)时,f'(x)>0;综上,当a<0时,函数f(x)的单调减区间是(0,﹣a);单调增区间是(﹣a,+∞);当0≤a≤1时,函数f(x)的单调增区间是(0,+∞);无单调减区间;当a>1时,函数f(x)的单调减区间是(0,a﹣1);单调增区间是(a﹣1,+∞).(2)当a=1时,g(x)=xf(x)=x2+xlnx,g'(x)=2x+lnx+1,可知函数g'(x)单调递增,,,所以存在唯一,使得g'(x0)=0,即g'(x0)=2x0+lnx0+1=0,当x∈(0,x0)时,g'(x)<0;x∈(x0,+∞)时,g'(x)>0;所以,记函数,φ(x0)在上递减.所以,即.由,且t为整数,得t≥0.所以存在整数t满足题意,且t的最小值为0.22.在直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),曲线C的极坐标方程是ρcos2θ=2sinθ.(1)写出直线l的普通方程和曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,点M为AB的中点,点P的极坐标为,求|PM|的值.【解答】解:(1)由,得y=3x+1,由曲线C的极坐标方程ρcos2θ=2sinθ,得ρ2cos2θ=2ρsinθ,所以曲线C的直角坐标方程为x2=2y.(2)由,得x2﹣6x﹣2=0,设A(x1,y1),B(x2,y2),所以x1+x2=6,AB的中点是,所以M (3,10), 点P 的极坐标为,所以点P 的直角坐标为. 则:|PM |=.23.(10分)设函数f (x )=|x ﹣a |+2x .(1)当a=﹣1时,求不等式f (x )≤0的解集;(2)若x ≥﹣1时,恒有f (x )≥0成立,求a 的取值范围.【解答】解:(1)因为|x +1|+2x ≤0, 所以或,即或x <﹣1,则不等式f (x )≤0的解集是 .(2)因为为增函数,当a ≤﹣1时,3×(﹣1)﹣a ≥0,从而a ≤﹣3, 当a ≥﹣1时,﹣1+a ≥0,从而a ≥1, 综上,a ≤﹣3,或a ≥1.赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n a n 是偶数时,正数a 的正的n n a 表示,负的n 次方根用符号n a -0的n 次方根是0;负数a 没有n 次方根.n a n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质 函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =定义域R值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞ 值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=。

2021-2022学年高三理科数学期末试题及答案

2021-2022学年高三理科数学期末试题及答案

2021 — 2022学年度第一学期期末试卷高三数学(理科)第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅,则实数a 的取值范围是( )(A )(,1]-∞- (B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D)y =3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A)16+ (B)16+ (C)20+ (D)20+侧(左)视图正(主)视图俯视图6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14(D )14-7.某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1 (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-FD P C B第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1 该食品在6C 的保鲜时间是8小时;○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少;○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()cos(sin)f x x x x=,x∈R.(Ⅰ)求()f x的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f xα=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下:(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD-中,底面ABCD是平行四边形,135BCD∠=,侧面PAB⊥底面ABCD,90BAP∠=,2AB AC PA===, ,E F分别为,BC AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)若M为PD的中点,求证://ME平面PAB;(Ⅲ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求PMPD的值.18.(本小题满分13分)已知函数2()1f x x=-,函数()2lng x t x=,其中1t≤.FCA DPMB E(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C : 3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.参考答案一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.13i -- 10.7911.12y x =±12 12. 2 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:()cos (sin )f x x x x =+2sin cos 1)x x x =+-1sin 22x x=+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z ,解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分又因为PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以//MF 平面PAB . ………………5分同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面 所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 |22|λ-=, 解得λ=λ=. ………………14分 D18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分 (Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时,令()0h x '=,解得x =.当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x在上单调递减,在)+∞上单调递增,所以当x =时,min()h x h =. ………………11分因为(1)0h =1<,且()h x在)+∞上单调递增,所以(1)0h h <=.又因为存在12e (0,1)t -∈ ,111122()12ln 0t t t t h t ----=--=>e e e e ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分)(Ⅰ)解:由题意,得c a =,222a b c =+, ………………2分又因为点A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,c ,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分 设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分 (Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a ,再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。

2023届江西省临川第一中学高三上学期期末考试数学(理)试题(解析版)

2023届江西省临川第一中学高三上学期期末考试数学(理)试题(解析版)

2023届江西省临川第一中学高三上学期期末考试数学(理)试题一、单选题1.设集合2{|230}A x Z x x =∈--≤,{0,1}B =,则A C B = A .{3,2,1}--- B .{1,2,3}-C .{1,0,1,2,3}-D .{0,1}【答案】B【详解】由题可知{}1,0,1,2,3A =-,则{}1,2,3A B =-.故本题选B .2.在复平面内,复数1z ,2z 对应的向量分别是(1,2)OA =-,(3,1)=-OB ,则复数12z z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】利用复数的几何意义写出复数1z ,2z ,再结合共轭复数、复数的乘法运算求解作答.【详解】因复数1z ,2z 对应的向量分别是(1,2)OA =-,(3,1)=-OB ,则2112i,3i z z =-=-+,23i z =--, 于是得12(12i)(3i)55i z z =---=-+, 所以复数12z z 对应的点(5,5)-位于第二象限. 故选:B3.对于实数x ,条件p :152x x +≠,条件q :2x ≠且12x ≠,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】解分式不等式,得到解集,从而作出判断. 【详解】152x x +≠,解得:2x ≠且12x ≠且0x ≠,故p q ⇒,但q p ⇒/,所以p 是q 的充分不必要条件. 故选:A4.设0a >,0b >,且21a b +=,则12a a a b++( )A .有最小值为4B .有最小值为1C .有最小值为143D .无最小值【答案】B【分析】0a >,0b >,且21a b +=,可得12b a =-.代入12a a a b++,化简整理利用基本不等式的性质即可得出.【详解】0a >,0b >,且21a b +=, 120b a ∴=->,解得102a <<.∴12122(1)1212122(1)()2321111a a a a a a a a b a a a a a a a a ---+=+=+-=+-+-=++-+---- 122111a aa a-+=-,当且仅当1a =,3b =-∴12aa a b++有最小值1. 故选:B .【点睛】本题考查基本不等式的性质、方程的解法,考查推理能力与计算能力. 5.设537535714a ,,log 755b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小顺序是 A .b a c << B .c<a<b C .b<c<a D .c b a <<【答案】D【分析】先利用指数函数的性质比较得a>b>1,再分析得c<1,从而得到a,b,c 的大小关系.【详解】553775577()()()755a b -==>=,30577()()1,55b =>=因为314log 5c =3log 31<=,所以c b a <<. 故答案为D【点睛】(1)本题主要考查指数对数函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比较大小,一般先把所有的数分成正负两个集合,再把正数和1比,负数和-1比.6.已知(0,)4πα∈,4cos25α=,则2sin ()4πα+=( )A .15B .25C .35D .45【答案】D【解析】首先由角(0,)4πα∈知sin20α>,再利用同角三角函数平方关系求sin 2α,二倍角余弦公式以及诱导公式求2sin ()4πα+即可.【详解】(0,)4πα∈,∴2(0,)2πα∈,又4cos25α=,∴3sin 25α=.2311cos(2)1sin 2452sin ()42225παπαα+-++∴+====. 故选:D.7.已知ABC 的内角,,A B C 的对边分别是,,a b c ,且()()222cos cos a b c a B b A abc +-⋅+=,则角C =( ) A .30° B .45° C .60° D .90°【答案】C【分析】根据余弦定理和正弦定理将条件转化为1cos 2C =,由此可得60C =︒. 【详解】由条件及余弦定理得:()2cos cos cos ab C a B b A abc ⋅+= ∴()2cos cos cos C a B b A c ⋅+=,由正弦定理得2cos (sin cos sin cos )sin C A B B A C +=, ∴2cos sin()sin C A B C +=,即2cos sin sin C C C = ∵sin 0C ≠,∴1cos 2C =, 又0180C ︒<<︒,∴60C =︒. 故选:C .8.已知函数()()2log 3a f x x ax =-+在[]0,1上是减函数,则实数a 的取值范围是( )A .()0,1B .()1,4C .()()0,11,4⋃D .[)2,4【答案】D【分析】根据给定的函数,结合对数函数、二次函数单调性,分类讨论求解作答.【详解】函数()()2log 3a f x x ax =-+在[]0,1上是减函数,当01a <<时,22223()330244a a a x ax x -+=-+-≥->恒成立, 而函数23u x ax =-+在区间[]0,1上不单调,因此01a <<,不符合题意,当1a >时,函数log a y u =在(0,)+∞上单调递增,于是得函数23u x ax =-+在区间[]0,1上单调递减, 因此12a≥,并且21130a -⋅+>,解得24a ≤<, 所以实数a 的取值范围是[)2,4. 故选:D9.已知圆C :()()22344x y -+-=和两点(),0A,)(),00Bm >.若圆C 上存在点P ,使得90APB ∠=︒,则m 的最小值为( )ABC .2 D【答案】D【分析】根据点P为半径的圆上和在圆C 上,由两圆有交点求解. 【详解】解:由题意得:点P为半径的圆上, 又因为点P 在圆C 上, 所以只要两圆有交点即可,252-≤≤+,m ≤≤, 所以m故选:D10.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点A 的坐标为,02a ⎛⎫- ⎪⎝⎭,点P 是双曲线在第二象限的部分上一点,且1212∠=∠F PF F PA ,112PF F F ⊥,则双曲线的离心率为( ) A .3 B .2C .32D【答案】B【分析】由角平分线的性质可得1122||||||||PF AF PF AF =及双曲线的定义,化简方程即可求双曲线的离心率. 【详解】如图,因为112PF F F ⊥,所以=-P x c ,由2222(1)ya c b-=-可得21||||b PF y a ==,由双曲线定义可知22||2b PF a a=+,由1212∠=∠F PF F PA 知:PA 平分12F PF ∠,所以1122||||||||PF AF PF AF =,即22222b ac aa b c a a-=++,整理得:222222b c a a b c a -=++, 由222b c a =-,c e a =,可化简为22121121e e e e --=++,即22211121e e -=-++,可得2121e e +=+,解得2e =或1e =(舍去), 故选:B11.在ABC 中,4AB =,3BC =,5CA =,点P 在该三角形的内切圆上运动,若BP mBC nBA =+(m ,n 为实数),则m n +的最小值为( ) A .12B .13C .16D .17【答案】C【分析】设该三角形的内切圆的半径为r ,CA 边上的高为 h ,由BP mBC nBA =+,得到BPm n m nBC BA m n m n+=+++,再利用平行线等比关系求解. 【详解】解:在ABC 中,4AB =,3BC =,5CA =, 设该三角形的内切圆的半径为r , 则()113453422r ⨯++⨯=⨯⨯,解得 1r =, 设CA 边上的高为 h ,则1153422h ⨯⨯=⨯⨯,解得 125h =,因为 BP mBC nBA =+,所以()m n BP m n BC BA m n m n ⎛⎫=++⎪++⎝⎭, 因为点P 在该三角形的内切圆上运动,所以BPm n m nBC BA m n m n+=+++, 设m n BE BC BA m n m n+=++,则 ()BP m n BE =+, 因为1m n m n m n+=++, 则BP m n BE+=,且,,B P E 三点共线,E 在AC 上,由平行线等比关系得:要使m n +,即BP 与BE 之间的比例最小,则点P 内切圆的最高点,如图所示:由222BA BC AC +=,知2B π=,所以()111222ABCS BA BC h AC r BA BC AC =⋅=⋅=⋅++, 由12,5h =所以1r = 所以m n +的最小值为216h r h -=, 故选:C12.若函数()f x 的定义域为R ,且()21f x +偶函数,()31f x -关于点()1,3成中心对称,则下列说法正确的个数为( ) ①()f x 的一个周期为2; ②()()222f x f x =-;③()f x 的一个对称中心为()6,3;④()19157i f i ==∑.A .1B .2C .3D .4【答案】C【分析】由()()2121f x f x +=-+得到()()222f x f x =-+,故②正确;由()31f x -关于点()1,3成中心对称,得到()f x 关于()2,3中心对称,推理出()()4f x f x +=,从而得到周期为4,①错误;由函数的周期及()f x 关于()2,3中心对称,得到一个对称中心为()6,3,③正确;利用函数的周期性及对称性求出函数值的和.【详解】由题意得:()()2121f x f x +=-+,将x 替换为12x -得:11212122f x f x ⎡⎤⎡⎤⎛⎫⎛⎫-+=--+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,即()()222f x f x =-+,②正确;()()2121f x f x +=-+中将x 替换为12x 得:()()11f x f x +=-+,因为()31f x -向左平移13个单位得到()3f x ,而()31f x -关于点()1,3成中心对称,所以()3f x 关于2,33⎛⎫⎪⎝⎭中心对称,故()f x 关于()2,3中心对称,所以()()226f x f x ++-+=,故()()()()()2626116116f x f x f x f x f x +=--+=---=-+-=-⎡⎤⎡⎤⎣⎦⎣⎦, 所以()()()()()46266f x f x f x f x +=-+=--=, 所以()f x 的一个周期为4,①错误;()f x 关于()2,3中心对称,又()f x 的一个周期为4,故()f x 的一个对称中心为()6,3,③正确;()()226f x f x ++-+=中,令1x =得:()()316f f +=,()()226f x f x ++-+=中,令0x =得:()()226f f +=,故()23f =, ()()226f x f x ++-+=中,令2x =得:()()406f f +=,又因为()()04f f =,故()246f =,所以()43f =, 所以()()246f f +=,其中()()()1717441f f f =-⨯=,()()()18181623f f f =-==,()()()1919163f f f =-=,故()()()()()()()()19141234171819i f i f f f f f f f ==++++++⎡⎤⎣⎦∑()()()()466123483657f f f =⨯++++=++=,④正确.故选:C【点睛】若()()f x a f x b c ++-+=,则函数()f x 关于,22a b c +⎛⎫⎪⎝⎭中心对称, 若()()f x a f x b +=-+,则函数()f x 关于2a bx +=对称.二、填空题13.已知P 是椭圆22110036x y +=上一点,1F ,2F 分别是椭圆的左、右焦点,若1260F PF ∠=︒,则12PF F △的面积为________.【答案】【分析】借助韦达定理得1248PF PF ⋅=,再套用面积公式即可. 【详解】易得1212220,216PF PF a F F c +====, 则222121212122cos F F PF PF PF PF F PF =+-⋅∠()21212121222cos PF PF PF PF PF PF F PF =+-⋅-⋅∠,即22121211620222PF PF PF PF =-⋅-⋅⨯,故1248PF PF ⋅=121211sin 604822PF F SPF PF =⋅︒=⨯=,故答案为:14.若(13)n x -展开式中第6项的二项式系数与系数分别为p q 、,则pq=__________. 【答案】1243-【分析】根据二项式定理中二项式系数与项系数的求解即可得. 【详解】有题意可知5C n p =,55C (3)n q =-,所以555C 1C (3)243n n p q ==--.故答案为:1243-.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为26,则模型中九个球的表面积和为__________.【答案】9π【分析】先求出正四面体内切球半径与正四面体棱长和高的关系,再分析大、中、小内切于正四面体的高即可求解.【详解】如图所示正四面体A BCD -,记棱长为a ,高为h ,O 为正四面体A BCD -内切球的球心,延长AO 交底面BCD 于E ,E 是等边三角形BCD △的中心,过A 作AF CD ⊥交CD 于F ,连接BF ,则OE 为正四面体A BCD -内切球的半径, 因为3AF BF ==,233BE BF ==,133EF BF ==, 所以226h AE AF EF ==-, 所以()2222OE BO BE AE OE BE =---614r OE h ===, 由图可知最大球内切于高6264h ==大的正四面体中,最大球半径114r h ==大,中等球内切于高22h h r =-=中大大的正四面体中,中等球半径1142r h ==中中, 最小求内切于高21h h r =-=小中中的正四面体中,最小球半径1144r h ==小小, 所以九个球的表面积之和222114π1449π24V ⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:9π16.若函数()3e 3ln x f x a x x x ⎛⎫=-+ ⎪⎝⎭的极小值点只有一个,则a 的取值范围是_________.【答案】32e e ,49【分析】对()f x 求导,利用导数与函数极值的关系,分类讨论3是否为极值点,结合2e xy x=的图像性质即可求得a 的取值范围.【详解】因为()3e 3()ln 0x f x a x x x x ⎛⎫=-+> ⎪⎝⎭,所以()()4222333e e xx x x x f x a a x x x x -⎛⎫--=-=- ⎪⎝⎭',设2(e )xg x x=(0x >),因为32(e )x x g x x -'=,所以当02x <<时,()0g x '<,当2x >时,()0g x '>, 则2(e )xg x x =在()0,2上单调递减,在()2,+∞上单调递增,①若2e 0x a x -≥恒成立,即2e xa x≤在(0,)+∞上恒成立,因为2222e e e ()24x g x x =≥=,所以22min e e 4x a x ⎛⎫≤= ⎪⎝⎭,此时令()0f x '<,解得03x <<;令0fx,解得3x >;所以()f x 在()0,3单调递减,在(3,)+∞单调递增,有唯一极小值点,满足题意; ②方程2e 0xa x-=有两个不同的根1x ,2x ,且12x x <,当10x x <<和2x x >时,2e 0x a x ->;当12x x x <<时,2e 0xa x-<,因为()f x 只有一个极小值点,所以3是2e 0x a x -=即2e xa x =的一个根,且存在另一个根02m <<,此时3e 9a =;当3e 9a =时,()()3223e e 9x x f x x x -⎛⎫=- ⎪⎝⎭', 令()0f x '<,解得0x m <<;令0fx,解得x >m ;所以()f x 在()0,m 单调递减,在(,)m +∞单调递增,满足题意, 综上:2e 4a ≤或3e 9a =,即32e e 9,4a. 故答案为:32e e ,49. 【点睛】()()223e x x f x ax x-⎛⎫=- ⎝'⎪⎭,因为函数()f x 只有一个极小值点,需对2ex y a x =-的符号进行分类讨论.三、解答题17.已知数列{}n a 满足数列{}1n n a a +-为等比数列,11a =,22a =,且对任意的n *∈N ,2132n n n a a a ++=-. (1)求{}n a 的通项公式;(2)n n b n a =⋅,求数列{}n b 的前n 项和S n .【答案】(1)12n n a -=(2)()121nn -+【分析】(1)利用等比数列的定义以及累加法求通项; (2)利用错位相减法求和.【详解】(1)设{}1n n a a +-的公比为q ,2132n n n a a a ++=-,()2112n n n n a a a a +++-=-又211a a -=,112n n n a a -+∴-=,()()()1211213211211221212n n n n n n a a a a a a a a -----∴=+-+-++-=++++=+=-,又11a =符合上式,所以{}n a 的通项公式为12n n a -=.(2)()1122n n n n b n a n n --=⋅=⋅=⋅,{}n b 的前n 项和为01211222322n n -⋅+⋅+⋅++⋅记01211222322n n S n -=⋅+⋅+⋅++⋅, 则12321222322n n S n =⋅+⋅+⋅++⋅,作差可得01211222222212nn nn n S n n ---++++-⋅=-⋅-=,()121n n S n ∴=-+,因此,数列{}n b 的前n 项和为()121nn -+.18.如图,在直三棱柱111ABC A B C -中,E ,F ,G 分别为线段111,B C B B 及AC 的中点,P 为线段1A B 上的点,1,8,62BG AC AB BC ===,三棱柱111ABC A B C -的体积为240.(1)求点F 到平面1A AE 的距离;(2)试确定动点P 的位置,使直线FP 与平面11A ACC 所成角的正弦值最大. 【答案】2473(2)P 为1BA 中点【分析】(1)由题意,建立空间直线坐标系,求解平面法向量,根据点面距向量计算公式,可得答案;(2)由(1)的空间直角坐标系,求解平面法向量以及直线方向向量,根据线面角与向量夹角的关系,结合二次函数的性质,可得答案. 【详解】(1)在ABC 中,12BG AC =,G 为AC 的中点,=90ABC ∴∠,即AB BC ⊥, 由直三棱柱111ABC A B C -的体积111==2ABC V BB SBB AB BC ⋅⋅⋅⋅,则11×8?6=2402BB ⋅,解得110BB =, 以B 为原点,并分别以1,,BA BC BB 所在直线为,,x y z 轴,建立空间直角坐标系,则()8,0,0A ,()18,0,10A ,()10,0,10B ,()10,6,10C ,()0,0,0B , 由E 为11B C 的中点,则()0,3,10E ,由F 为1BB 的中点,则()0,0,5F ,在平面1AA E 中,取()10,0,10AA =,()=8,3,10AE -,设该平面的法向量为(),,n x y z =, 则1=0=0n AA n AE ⎧⋅⎪⎨⋅⎪⎩,即10=08+3+10=0z x y z ⎧⎨-⎩,令=3x ,则8,0y z ==,故平面1AA E 的一个法向量为()3,8,0n =,取()=8,0,5AF -,由点面距公式,可得F 到平面1AA E 的距离242473==9+64AF n d n⋅-(2)由(1)可知:()8,0,0A ,()18,0,10A ,()0,6,0C ,()10,6,10C ,()0,0,5F , 由1P A B ∈,1A B ⊂平面11AA B B ,则设(),0,P a b ,08,010a b ≤≤≤≤, 设1==(4,0,5)2kBP BA k k ,即()4,0,5P k k ,02k ≤≤,在平面11AA B B 内,取()10,0,10AA =,()=8,6,0AC -,设其法向量(),,m x y z '''=, 则1=0=0m AA m AC ⎧⋅⎪⎨⋅⎪⎩,即10=08+6=0z x y ''-'⎧⎨⎩,令=3x ',则=4,=0y z '',故平面11AA B B 的一个法向量()3,4,0m =,取()=4,0,55FP k k -,设直线FP 与平面11A ACC 所成角为θ,则sin =|cos ,|m FP θ, 则212sin ==53m FP m FP⋅θ⋅⋅ 当=0k 时,P 与B 重合,sin 0θ= 当0k ≠时,12sin =5θ⋅令11=[,)2x k +∞∈,1212sin =55=θ⋅当=1x 时,即=1k ,P 为1BA 中点时,()max 123sin 55θ== 19.在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张. (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列. 【答案】(1)23;(2)分布列见解析.【分析】(1)根据古典概型的概率公式,结合组合数即可求解;(2)求得X 所有可能的取值为(单位:元):0,10,20,50,60,求出对应的概率,即可列出分布列.【详解】(1)记顾客中奖为事件A ,11204646210302()453C C C C P A C ⋅+⋅===,即该顾客中奖的概率为23; (2)X 所有可能的取值为(单位:元):0,10,20,50,60,且02462101(0)3C C P X C ⋅===,11362102(10)5C C P X C ⋅===, 232101(20)15C P X C ===,11162102(50)15C C P X C ⋅===,11132101(60)15C C P X C ⋅===, 故X 的分布列为:20.已知抛物线C :22y px =,抛物线上两动点()11,A x y ,()22,B x y ,12x x ≠且126x x +=(1)若线段AB 过抛物线焦点,且10AB =,求抛物线C 的方程.(2)若2:8C y x =,线段AB 的中垂线与x 轴交于点C ,求ABC 面积的最大值. 【答案】(1)28y x =【分析】(1)假设,02p F ⎛⎫⎪⎝⎭,利用12AF BF x x p +=++辨析即可;(2)先计算AB 方程:()0043y y x y -=-,联立抛物线方程,结合韦达定理得AB ,再计算出d =,进而计算三角形面积.【详解】(1)(1)取抛物线焦点为,02p F ⎛⎫⎪⎝⎭,12p AF x =+,22p BF x =+,126AF BF x x p p +=+=++因为AF BF AB +≥,AB 最大值为10, 所以610p +=,4p =,抛物线方程为28y x =.(2)令()11,A x y ,()22,B x y ,设M 为AB 中点,()00,M x y , 又因为126x x +=,所以03x =,()03,,M y 212112084AB y y k x x y y y -===-+, 所以AB 中垂线方程为:()0034y y y x -=--,令()07,0y C =⇒ 所以AB 方程为:()0043y y x y -=- 与抛物线方程联立()022000243222408y y x y y y y y y x ⎧-=-⎪⇒-+-=⎨⎪=⎩,显然,()22000442240y y y ∆=-->⇒-<<.1202y y y +=,2120224y y y ⋅=-AB,.()C 7,0到AB 的距离为d ,12ABC S AB d =⋅==△≤所以ABC S21.已知()2e x f x x x =+-,()2g x x ax b =--,,a b ∈R(1)若()f x 与()g x 在1x =处的切线重合,分别求a ,b 的值. (2)若b ∀∈R ,()()()()f b f a g b g a -≥-恒成立,求a 的取值范围. 【答案】(1)1a e =-,0b = (2)0a =【分析】(1)求出函数的导函数,依题意可得()()11f g =且()()11f g ''=,即可得到方程组,解得即可;(2)依题意可得()()e e 10b ab a a -+--≥对b ∀∈R 恒成立,令()()()e e 1b a H b b a a =-+--,求出函数的导函数,由()0H a =可得()0H a '=,从而求出a 的值,再验证即可.【详解】(1)解:因为()2e x f x x x =+-,()2g x x ax b =--,所以.()e 21xf x x '=+-,()2g x x a '=-,因为()()11f g =且()()11f g ''=, 即e 212a +-=-且22e 1111a b +-=-⨯-, 解得1a e =-,0b =.(2)解:因为()()()()f b f a g b g a -≥-对b ∀∈R 恒成立,.()()()22222e e b a b b a a b ab b a a b ∴+--+-≥-----对b ∀∈R 恒成立,即()()e e 10b ab a a -+--≥对b ∀∈R 恒成立,令()()()e e 1b a H b b a a =-+--,()e 1bH b a '=+-因为()0H a =,所以a 是()H b 的最小值点,且a 是()H b 的极值点,即()e 10aH a a '=+-=,因为()a H '在R 上单调递增,且()00H '=,所以0a =,下面检验:当0a =时,()e 10bH b b =--≥对b ∀∈R 恒成立,因为()e 1bH b '=-,所以当0x <时()0H b '<,当0x >时()0H b '>,所以()H b 在(),0∞-上单调递减,在()0,∞+上单调递增. 所以()()00H b H ≥=,符合题意, 所以0a =.22.在平面直角坐标系xOy中,已知直线1:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :3sin x C y θθ=+⎧⎨=⎩(θ为参数)相交于,A B 两点.(1)求直线l 及圆C 的普通方程; (2)已知()1,0F ,求FA FB +的值. 【答案】(1) ()2229x y -+=(2)【分析】(1)利用代入消元法可得直线l 普通方程;利用平方关系可得圆C 的普通方程; (2)将直线参数方程代入圆的标准方程得280t -=,再利用参数的几何意义求解.【详解】解:(1)由112x y t ⎧=⎪⎪⎨⎪=⎪⎩,消去t,得10x -=,即直线l的普通方程为10x -=,由23cos 3sin x y θθ=+⎧⎨=⎩,得3cos 23sin x y θθ=-⎧⎨=⎩,两式平方相加得()2229x y -+=, 即圆C 的普通方程为()2229x y -+=.(2)将1:12x l y t ⎧=⎪⎪⎨⎪=⎪⎩代入()2229x y -+=,得280t -=.设方程的两根为12,t t ,则12t t +=128t t =-.所以1212FA FB t t t t +=+=-=23.已知0a >,0b >.(1)求证:3322a b a b ab +≥+; (2)若3a b +=,求14a b+的最小值.【答案】(1)证明见解析;(2)3.【分析】(1)根据条件得33220a b a b ab -+-≥,从而证明不等式成立;(2)根据条件得()141143a b a b a b ⎛⎫+=++ ⎪⎝⎭,然后利用基本不等式,即可求14a b +的最小值,注意等号成立的条件.【详解】(1)证明:∵0a >,0b >.∴()()332222a b a b ab a a b b b a +--=-+-()()()()2220a b a b a b a b =--=-+≥,∴3322a b a b ab +≥+.(2)∵0a >,0b >,3a b +=,∴()1411414455333b a a a b a b a b a b b ⎛⎫⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即1a =,2b =时取等号,∴14a b+的最小值为3.。

高三上学期期末考试(数学理)(附答案)

高三上学期期末考试(数学理)(附答案)

上海市崇明县高三上学期期末考试试卷 高三数学(理科)(满分150分,答题时间120分钟 编辑:刘彦利)注意:在本试卷纸上答题无效,必须在答题纸上的规定位置按照要求答题. 一、填空题(每小题4分,共56分)1、设}5,4,3,2,1{=U ,{}1)43(log 22=+-=x x x M ,那么=M C U .2、若函数)(x f y =是函数x y a log =(1,0≠>a a )的反函数, 且2)1(=-f ,则=)(x f .3、一个三阶行列式按某一列展开等于22113311332232 ba b a ba b a ba ba ++,那么这个三阶行列式可能是 .(答案不唯一) 4、已知6π-=x 是方程3)tan(3=+αx 的一个解,)0(,πα-∈,则=α .5、右图是一个算法的流程图,最后输出的 =W .6、若圆锥的侧面积为π20,且母线与底面所成的角的余弦值为54,则该圆锥的体积为.7、已知二项展开式5522105)1(x a x a x a a ax +⋯+++=-中,803=a ,则5210a a a a +⋯+++等于 .8、复数2)2321(i z -=是实系数方程012=++bx ax 的根,则=⨯b a .9、已知nS 是数列{}n a 前n 项和,2,111+==+n n a a a (*N n ∈),则limnn n na S →∞=。

10、定义在R 上的函数)(x f 满足⎩⎨⎧---=+)1()()4(log )1(2x f x f x x f 0,0,>≤x x ,计算)2010(f 的值等于 .11、如图,在半径为3的球面上有A 、B 、C 三点,︒=∠90ABC ,BC BA =,球心O 到平面ABC 的距离是223,则B 、C 两点的球面距离是 .12、若命题p :34-x ≤1;命题q :)2)((---m x m x ≤0,且p 是q 的充分不必要条件,则实数m 的取值范围是 .13、给定两个长度为1的平面向量OA 和OB ,它们的夹角为︒120.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若OB y OA x OC +=,其中R y x ∈,,则y x + 的取值范围是 . 14、已知函数1)(-=x x f ,关于x 的方程0)()(2=+-k x f x f ,给出下列四个命题:① 存在实数k ,使得方程恰有2个不同的实根; ② 存在实数k ,使得方程恰有4个不同的实根; ③ 存在实数k ,使得方程恰有5个不同的实根; ④ 存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为 .二、选择题(每小题4分,共16分)15、公差不为零的等差数列{}n a 的前n 项和为n S . 若31-=a 且4a 是3a 与7a 的等比中项, 则10S 等于 …………………………………………………………………………………( ) (A )18(B )24(C )60(D )9016、函数⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=4cos 12sin 2ππx x y 的最大值、最小值分别为 …………………………( ) (A )2,2-(B )21,23-(C )21,23(D )23,21- 17、投掷两颗骰子,得到其向上的点数分别为m 和n ,则复数))((mi n ni m -+为实数的概率为 …………………………………………………………………………………………( )((A )31(B )41(C )61(D )12118、定义在R 上的偶函数)(x f 满足:对任意的]0,(,21-∞∈x x )(21x x ≠,有0))()()((1212>--x f x f x x 恒成立. 则当*N n ∈时,有……………………………( )(A ))1()()1(-<-<+n f n f n f (B ))1()()1(+<-<-n f n f n f (C ))1()1()(+<-<-n f n f n f(D ))()1()1(n f n f n f -<-<+三、解答题(本大题共有5题,满分78分,解答下列各题必须写出必要的步骤) 19、(本题满分14分,第1小题6分,第2小题8分) 设函数xx x f 2sin )32cos()(++=π.(1)求函数)(x f 的最大值和最小正周期;(2)设C B A ,,为∆ABC 的三个内角,41)2(-=C f ,且C 为锐角,35=∆ABC S ,4=a , 求c 边的长.20、(本题满分14分,第1小题6分,第2小题8分)如图,在直四棱柱D C B A ABCD ''''-中,底面ABCD 为等腰梯形,AB ∥CD ,4=AB , 2==CD BC ,21=AA ,E 、F 、G 分别是棱11B A 、AB 、11D A 的中点.(1)证明:直线GE ⊥平面1FCC ; (2)求二面角C FC B --1的大小.ABF CDEGA1D1 C1B121、(本题满分16分,第1小题3分,第2小题5分,第3小题8分)某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。

高三上学期期末考试数学(理)试卷含答案

高三上学期期末考试数学(理)试卷含答案

第一学期期末考试试卷高三年级数学(理科) 座位号_____第I卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卡上.)1. 已知M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N等于 ( )A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}2.已知向量a与b的夹角为30°,且|a|=3,|b|=2,则|a-b|的值为( ) A.1 B.3 C.13 D.213.一个几何体的三视图如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.124.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是( )A.(cos θ,sin θ) B.(-cos θ,sin θ)C.(sin θ,cos θ) D.(-sin θ,cos θ)5.若(x-1)8=1+a1x+a2x2+…+a8x8,则a5=( )A.56 B.-56 C.35 D.-356.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程是( )A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=9 7.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)8.要得到2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( ) A .向左平移3π个单位 B .向右平移3π个单位C .向左平移23π个单位D .向右平移23π个单位9.已知△ABC 中,sin A ∶sin B ∶sin C =1∶1( )A .60°B .90°C .120°D .135°10. 已知空间两条不同的直线m ,n 和两个不同的平面α,β,则下列命题中正确的是( )A .若m ∥α,n ∥β,α∥β,则m ∥nB .若m ∥α,n ⊥β,α⊥β,则m ∥nC .若m ⊥α,n ∥β,α⊥β,则m ⊥nD .若m ⊥α,n ⊥β,α⊥β,则m ⊥n 11.在等差数列中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .60012.若定义在R 上的二次函数bax a x f x +-=4)(2[0,2]上是增函数,且f(m)≥f(0),则实数m 的取值范围是( )A .[0,4]B [0,2]C .(-∞,0]D .(-∞,0] [)∞+,4Y第II 卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 13. 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.14如果直线x +y +2a =0和圆x 2+y 2=4相交于A ,B 两点,且弦长|AB |=2,则实数a =________.15.函数223(0)()2ln,(0)x x xf xx x⎧++≤=⎨-+>⎩的零点个数是_____________16.设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为______________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知数列{a n}是等差数列,且a1,a2,a5成等比数列,a3+a4=12.(1)求a1+a2+a3+a4+a5;(2)设b n=10-a n,数列{b n}的前n项和为S n,若b1≠b2,则n为何值时,S n最大?S n最大值是多少?18.(12分如图所示,正四棱锥S-ABCD中,高SO=4,E是BC边的中点,AB=6,求正四棱锥S-ABCD的斜高、侧面积、体积.19.(12分)已知函数()22sin 23sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)求()f x 的最大值及取最大值时x 的集合.20.(12分)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.21.(12分)已知函数f(x)=x+ax+b(x≠0),其中a,b∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;(2)讨论函数f(x)的单调性.22.(12分)已知直线x-my+3=0和圆x2+y2-6x+5=0.(1)当直线与圆相切时,求实数m的值;(2)当直线与圆相交,且所得弦长2为时,求实数m的值.永昌四中2018—2019学年第一学期期末试卷答案高三年级 数学(理科)一、选择题二、填空题13. 45- ; 14. 2626-或 .15. 1 ; 16. (x +1)2+(y 2=1.三、解答题:17. 解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列, ∴(a 1+d )2=a 1(a 1+4d ),解得d =0或d =2a 1.-------- ----------------2 当d =0时,∵a 3+a 4=12,∴a n =6,∴a 1+a 2+a 3+a 4+a 5=30;-----------------4 当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2, ∴a 1+a 2+a 3+a 4+a 5=25.-------------------5 (2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0, 由(1)知a n =2n -1,-----------------7∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25.---------9 ∴当n =5时,S n 取得最大值,最大值为25.------------------10 18. 解:在Rt △SOE 中OE =3,SO =4,所以斜高为:SE ===5.----------------------2 侧面积为:0.5×6×5×4=60.-----------------6体积为:(1/3)×62×4=48. --------------------------1219.解:由已知,()2cos 22sin(2)6f x x x x π=-=- (4)(1)由222262k x k πππππ-≤-≤+,k Z ∈,得增区间为[,]()63k k k Z ππππ-+∈.………8(2)当2262x k πππ-=+,k Z ∈,即sin(2)16x π-=时,()f x 取最大值2, (10)此时x 的集合为{|,}3x x k k Z ππ=+∈ (12)20.解:(1)由抛物线的定义得|AF |=2+p/2.因为|AF |=3,即2+p/2=3,解得p =2,------------------------2 所以抛物线E 的方程为y 2=4x .------------------------------------4 (2)因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±2.由抛物线的对称性,不妨设A (2,2).由A (2,2),F (1,0)可得直线AF 的方程为y =2(x -1).-------------6 由得2x 2-5x +2=0,---------------------------8 解得x =2或x =,从而B . 又G (-1,0),所以k GA ==,------------------------------------------10k GB ==-,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切.-------------------------1221.解:(1)f ′(x )=1-a x2(x ≠0),由已知及导数的几何意义得f ′(2)=3,则a =-8.由切点P (2,f (2))在直线y =3x +1上可得-2+b =7,解得b =9, 所以函数f (x )的解析式为f (x )=x -8x+9.(2)由(1)知f ′(x )=1-a x2(x ≠0).当a ≤0时,显然f ′(x )>0,这时f (x )在(-∞,0),(0,+∞)上是增函数. 当a >0时,令f ′(x )=0,解得x =±a ,当x变化时,f′(x),f(x)的变化情况如下表:a)上是减函数.22.解:(1)∵圆x2+y2-6x+5=0可化为(x-3)2+y2=4,∴圆心为(3,0).--------------------------------------------------------4 ∵直线x-my+3=0与圆相切,r=2,解得m=±2.------------------------------------------------------6(2)圆心(3,0)到直线x-my+3=0的距离d由r=2得, 3+3m2=36,------------------------------------10解得m2=11,故m=±11.-------------------------------------12。

2022-2023学年内蒙古自治区包头市高三年级上册学期期末数学理试题【含答案】

2022-2023学年内蒙古自治区包头市高三年级上册学期期末数学理试题【含答案】

2022-2023学年度第一学期高三年级期末教学质量检测试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考场、座位号写在答题卡上,将条形码粘贴在规定区域.本试卷满分150分,考试时间120分钟.2.做选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则(){}2560A x x x =-->{}10B x x =->A B = A.B.C.D.()6,+∞()1,1-(),1-∞-()1,62. 设,则在复平面内对应的点位于()32i z =-1z A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3. 已知,,,则()31log 4a =322b -=2312c ⎛⎫= ⎪⎝⎭A B. C. D.a b c>>a c b>>b c a>>c b a>>4. 已知A ,B ,C 三人都去同一场所锻炼,其中A 每隔1天去一次,B 每隔2天去一次,C 每隔3天去一次.若3月11日三人都去锻炼,则下一次三人都去锻炼的日期是()A. 3月22日 B. 3月23日C. 3月24日D. 3月25日5. 某公司为了解用户对其产品的满意度,从使用该产品的用户中随机调查了100个用户,根据用户对产品的满意度评分,得到如图所示的用户满意度评分的频率分布直方图.若用户满意度评分的中位数、众数、平均数分别为a ,b ,c ,则()A. B. C. D. a b c <<b a c <<a c b<<b<c<a6. 若函数与都在区间上单调递增,则的最大值()2sin f x x =()cos2g x x=(),m n n m -为()A. B. C. D. π4π3π2π7. 已知,()()4,2AB =()()1,0AC t t =>AB BC ⋅=A B. C. 8 D. 168-16-8. 设为直线,为平面,则的必要不充分条件是()a βa β⊥A. 直线与平面内的两条相交直线垂直a βB. 直线与平面内任意直线都垂直a βC. 直线在与平面垂直的一个平面内a βD. 直线与平面都垂直于同一平面a β9. 记为等差数列的前项和.已知,,则()n S {}n a n 55S =610a =AB.312n a n =+520n a n =-C.D.2314n S n n=-231322n S n n=-10. 已知,,则()π0,2α⎛⎫∈ ⎪⎝⎭22sin2cos21cos ααα=++tan2α=A. B. C. 2 D. 3131211. 已知抛物线,斜率为的直线与的交点为E ,F ,与轴的交点为.2:3C y x =32l C x H 若,()()1EH k HF k =>EF =k =A. 5B. 4C. 3D. 212. 已知三棱锥的四个顶点都在球的球面上,,,E ,F 分-P ABC O 4PA =2PB PC ==别是PA ,AB 的中点,,,,则球的体积为()90CEF ∠=︒PB AC ⊥PC PA ⊥OA. B. C. D. 二、填空题:共4小题,每小题5分,共20分.13. 曲线在点处的切线方程为______.()()224e xf x x x =++()()0,0f 14. 已知数列和满足,,,.{}n a {}n b 11a =12b =134n n n a a b +=-+134n n n b b a +=--则数列的通项______.{}n n a b +n n a b +=15. 甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以获胜的概率是3:1______.16. 已知双曲线的左、右焦点分别为,,过且倾斜角为()2222:10x y C b a a b -=>>1F 2F 1F 的直线与的两条渐近线分别交于A ,B 两点.若,则的离心率为______.4πC 2//BF OA C 三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17∼21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17. 的内角A ,B ,C 的对边分别为a ,b ,c ,设ABC .()22sin sin sin 3sin sin A C B A C+=+(1)求;B (2)若,求.623a b c =+sin A 18. 9年来,某地区第年的第三产业生产总值(单位:百万元)统计图如下图所示.根据x y 该图提供的信息解决下列问题.(1)在所统计的9个生产总值中任选2个,记其中不低于平均值的个数为,求的分X X 布列和数学期望;()E X (2)由统计图可看出,从第6年开始,该地区第三产业生产总值呈直线上升趋势,试从第6年开始用线性回归模型预测该地区第11年的第三产业生产总值.(附:对于一组数据,,…,,其回归直线的斜率和()11,x y ()22,x y (),n nx y ˆˆˆy bx a =+截距的最小二乘法估计分别为:,.()()()1122211ˆn niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑ ˆa y bx =-19. 如图,直四棱柱的底面是平行四边形,,,1111ABCD A B C D -14AA =2AB BC ==,,,分别是,,的中点.60BAD ∠=︒E FH 1A D 1BB BC (1)证明:平面;EF ⊥11BCC B (2)求平面与平面所成二面角的正弦值.1DC H DEF 20. 已知点,,动点满足直线与的斜率之积为,()0,3M -()0,3N (),P x y PM PN 3-记的轨迹为曲线.P C (1)求的方程,并说明是什么曲线;C C (2)过坐标原点的直线交C 于A ,B 两点,点A 在第一象限,轴,垂足为,连AD y ⊥D接并延长交于点.BD C H (i )证明:直线与的斜率之积为定值;AB AH (ii )求面积的最大值.ABD △21. 已知函数.()()ln 11f x x a x =--+(1)若存在极值,求的取值范围;()f x a (2)当时,讨论函数的零点情况.2a =()()sin g x f x x=+(二)选考题:共10分.请考生在第22,23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(s 为参数),直线的参数xOyC 2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩l 方程为(为参数).1cos 2sin x t y t αα=-+⎧⎨=+⎩t (1)求和的直角坐标方程;C l (2)若曲线截直线所得线段的中点坐标为,求的面积.C l AB ()1,2-OAB [选修4-5:不等式选讲]23. 已知()()4f x x m x x x m =-+--(1)当时,求不等式的解集;2m =()0f x ≥(2)若时,,求的取值范围.(),2x ∈-∞()0f x <m2022-2023学年度第一学期高三年级期末教学质量检测试卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考场、座位号写在答题卡上,将条形码粘贴在规定区域.本试卷满分150分,考试时间120分钟.2.做选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则(){}2560A x x x =-->{}10B x x =->A B = A.B.C.D.()6,+∞()1,1-(),1-∞-()1,6【答案】A 【解析】【分析】求出集合中元素范围,再求即可.,A B A B ⋂【详解】或,{}{2560|1A x x x x x =-->=<-}6x >,{}{}101B x x x x =->=>()6,A B ∴=+∞ 故选:A.2. 设,则在复平面内对应的点位于()32i z =-1z A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】求出的代数形式,进而可得其对应的点所在象限.1z 【详解】,()()32i 32i 32i 1i 321321313i z ==--++-=其对应的点为,位于第四象限.32,1313⎛⎫- ⎪⎝⎭故选:D.3. 已知,,,则()31log 4a =322b -=2312c ⎛⎫= ⎪⎝⎭A. B. C. D.a b c>>a c b>>b c a>>c b a>>【答案】D 【解析】【分析】先确定与中间量0的大小关系,再利用指数函数的单调性来比较大小.【详解】,331log log 104a =<=,332232211220c b -⎛⎫⎛⎫=<= ⎪ ⎪⎭=⎝<⎭⎝故c b a >>故选:D.4. 已知A ,B ,C 三人都去同一场所锻炼,其中A 每隔1天去一次,B 每隔2天去一次,C 每隔3天去一次.若3月11日三人都去锻炼,则下一次三人都去锻炼的日期是()A. 3月22日 B. 3月23日C. 3月24日D. 3月25日【答案】B【解析】【分析】三人各自去锻炼的日期实际上是等差数列,利用等差数列知识进行求解.【详解】由题意,三人各自去锻炼的日期分别是等差数列,公差分别为2,3,4,最小公倍数为12,所以下一次三人都去锻炼的日期是3月23日.故选:B.5. 某公司为了解用户对其产品的满意度,从使用该产品的用户中随机调查了100个用户,根据用户对产品的满意度评分,得到如图所示的用户满意度评分的频率分布直方图.若用户满意度评分的中位数、众数、平均数分别为a ,b ,c ,则()A. B. C. D. a b c <<b a c<<a c b<<b<c<a【答案】B 【解析】【分析】根据众数,平均数,中位数的概念和公式,带入数字,求出后比较大小即可.【详解】解:由频率分布直方图可知众数为65,即,65b =由表可知,组距为10,所以平均数为:,450.15550.2650.25750.2850.1950.167⨯+⨯+⨯+⨯+⨯+⨯=故,记中位数为,67c =x 则有:,()100.015100.02600.0250.5x ⨯+⨯+-⨯=解得:,即,66x =66a =所以.b a c <<故选:B.6. 若函数与都在区间上单调递增,则的最大值()2sin f x x=()cos2g x x=(),m n n m -为()A. B. C. D. π4π3π2π【答案】C 【解析】【分析】分析在一个较大区间内的单调性,找出它们的公共增区间,分(),()f xg x (),m n 析出的最大值.n m -【详解】的周期为,的周期为,分析在内两个()2sin f x x=2π()cos2g x x=π5π[0,2函数的单调性,函数在上单调递增,()2sin f x x =π3π5π0,,222⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,函数在上单调递增,()cos2g x x =π3π,π,,2π22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭所以函数与都在区间上单调递增,()2sin f x x =()cos2g x x =3π,2π2⎛⎫⎪⎝⎭且为的最大公共增区间3π,2π2⎛⎫⎪⎝⎭(),()f x g x 所以则,,所以的最大值为.max 2πn =min 3π2m =n m -3ππ2π22-=故选:C.7. 已知,()()4,2AB =()()1,0AC t t =>AB BC ⋅=A. B. C. 8D. 168-16-【答案】A 【解析】,再利用数量积的坐标运算求即可.t AB BC ⋅【详解】由已知()()()1,4,23,2BC AC AB t t =-=-=--=或(舍去,)4t ∴=0=t 0t >()()84,3,21242AB BC ∴=⋅=⋅--+=-故选:A.8. 设为直线,为平面,则的必要不充分条件是()a βa β⊥A. 直线与平面内的两条相交直线垂直a βB. 直线与平面内任意直线都垂直a βC. 直线在与平面垂直的一个平面内a βD. 直线与平面都垂直于同一平面a β【答案】C 【解析】【分析】根据题意知找一个由能推出的但反之不成立的一个结论.a β⊥【详解】根据题意知找一个由能推出的但反之不成立的一个结论.a β⊥对A :根据线面垂直的判定定理,若直线与平面内的两条相交直线垂直,则;a βa β⊥若,则直线与平面内的两条相交直线垂直,故A 错误;a β⊥a β对B :根据线面垂直的定义,直线与平面内任意直线都垂直是的充要条件,故a βa β⊥B 错误;对C :若,设,由面面垂直的判定知,故直线在与平面垂直的一a β⊥a α⊂αβ⊥a β个平面内;若直线在与平面垂直的一个平面内,不妨设平面,若取,则a βγβ⊥a γβ=⋂不成立,故C 正确;a β⊥对D :若,又,则,不可能有平面与平面垂直,故D 错误.a β⊥a α⊥//βαβα故选:C 9. 记为等差数列的前项和.已知,,则()n S {}n a n 55S =610a =A.B.312n a n =+520n a n =-C.D.2314n S n n=-231322n S n n=-【答案】D 【解析】【分析】先利用等差数列的通项公式和求和公式列方程求出,进而可得等差数列的通1,a d 项公式及求和公式,对照选项可得答案.【详解】设等差数列的公差为,{}n a d,解得51615105510S a d a a d =+=⎧∴⎨=+=⎩135d a =⎧⎨=-⎩,()()1153138n a a n d n n ∴=+-=-+-=-,()()2153132221132n S n n n n n n na d n -+=-=+=-⨯-故选:D.10. 已知,,则()π0,2α⎛⎫∈ ⎪⎝⎭22sin2cos21cos ααα=++tan2α=A. B. C. 2 D. 31312【答案】A 【解析】【分析】先利用倍角变形求得,再利用二倍角的正切公式求即可.tan αtan2α【详解】22sin2cos21cosααα=++ 222224sin cos cos sin cos sin cos ααααααα∴=-+++即,24sin cos 3cosααα=,,π0,2α⎛⎫∈ ⎪⎝⎭ cos 0α∴≠,即4sin 3cos αα∴=3tan 4α=,又22tan3241tan 2αα∴=-tan 0α>解得1tan 23α=故选:A.11. 已知抛物线,斜率为的直线与的交点为E ,F ,与轴的交点为.2:3C y x =32l C x H 若,()()1EH k HF k =>EF =k =A. 5 B. 4C. 3D. 2【答案】C 【解析】【分析】直线方程,由值,求得E ,F 的纵坐标,再由l 32y x b=+EF =b 求得值.EH k HF =k 【详解】设直线方程,,l 3:(0)2l y x b b =+<()()1122,,,E x y F x y ,,2,03H b ⎛⎫∴- ⎪⎝⎭112222,,,33EH b x y HF x b y ⎛⎫⎛⎫=---=+ ⎪ ⎪⎝⎭⎝⎭ ,112222,,,33EH k HF b x y k x b y ⎛⎫⎛⎫=∴---=+ ⎪ ⎪⎝⎭⎝⎭ ,12y ky ∴-=由得,,2323y x b y x ⎧=+⎪⎨⎪=⎩2220y y b -+=2(2)420b ∆=--⨯>,12122,2y y yy b ∴+==,||EF ∴===,=,123,32b y y ∴=-∴=-由解得或,12122,3y y y y +==-1213y y =-⎧⎨=⎩1231y y =⎧⎨=-⎩或(舍),3k ∴=13k =故选:C12. 已知三棱锥的四个顶点都在球的球面上,,,E ,F 分-P ABC O 4PA =2PB PC ==别是PA ,AB 的中点,,,,则球的体积为()90CEF ∠=︒PBAC ⊥PC PA ⊥O A.B. C. D.【答案】B 【解析】【分析】先利用线面垂直的判定定理证得面,再推到两两垂直,PB ⊥PAC ,,PB PA PC 进而将三棱锥补形成长方体,从而求得球的半径,由此得解.-P ABC O 【详解】因为E ,F 分别是PA ,AB 的中点,所以,//EF PB 又,即,所以,90CEF ∠=︒EF EC ⊥PB EC ⊥因为,面,所以面,PB AC ⊥,,AC EC C AC EC =⊂ PAC PB ⊥PAC 因为面,所以,,PA PC ⊂PAC ,PB PA PB PC ⊥⊥又,所以两两垂直,PC PA ⊥,,PB PA PC 故将三棱锥补形成长方体,如图,-P ABC -ADHG PCTB 则长方体的外接球与三棱锥的外接球相同,-ADHG PCTB -P ABC O设球的半径为,则,即,O R 2R ===R =所以球的体积为.O 34π3V R ==故选:B..【点睛】方法点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.二、填空题:共4小题,每小题5分,共20分.13. 曲线在点处的切线方程为______.()()224e xf x x x =++()()0,0f 【答案】540x y -+=【解析】【分析】先求导,然后求出和,再利用点斜式求直线方程即可.()0f '()0f 【详解】由已知,()()()()2241e 24e 255e x x xf x x x x x x '+=+++++=,又,()05f '∴=()04f =所以曲线在点处的切线方程为,()()224e xf x x x =++()()0,0f 45y x -=即540x y -+=故答案为:540x y -+=14. 已知数列和满足,,,.{}n a {}n b 11a =12b =134n n n a a b +=-+134n n n b b a +=--则数列的通项______.{}n n a b +n n a b +=【答案】132n -⨯【解析】【分析】将条件中两式相加可得数列为等比数列,利用等比数列的通项公式求解{}n n a b +即可.【详解】,,134n n n a a b +=-+ 134n n n b b a +=--()1134342n n n n n n n n a b a b b a a b ++∴=-++-=++-又,113a b +=所以数列是以3为首项,2为公比的等比数列{}n n a b +132n n n a b -∴+=⨯故答案为:132n -⨯15. 甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以获胜的概率是3:1______.【答案】0.21【解析】【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解.【详解】甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以获胜的概率是:3:1.0.60.50.40.50.60.50.60.50.40.50.60.50.21P =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=故答案为:0.21.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.16. 已知双曲线的左、右焦点分别为,,过且倾斜角为()2222:10x y C b a a b -=>>1F 2F 1F的直线与的两条渐近线分别交于A ,B 两点.若,则的离心率为______.4πC 2//BF OA C【解析】【分析】首先根据题意,设出直线的方程,之后与双曲线的渐近线联立,分别求出A ,B 两点的坐标,之后根据题中条件,得出A 是的中点,根据中点坐标公式,得2//BF OA 1F B 出其坐标间的关系,借助双曲线中的关系,求得该双曲线的离心率.,,a b c 【详解】设直线的方程为,两条渐近线的方程分别为和,l y x c =+b y x a =-by x a =分别联立方程组,求得,(,),(,ac bc ac bcA B a b a b b a b a -++--由,为的中点得A 是的中点,2//BF OA O 12F F 1F B 所以有,整理得,2ac acc b a a b -+=--+3b a =结合双曲线中的关系,可以的到,,,a bc c e a ===.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.第17∼21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17. 的内角A ,B ,C 的对边分别为a ,b ,c ,设ABC .()22sin sin sin 3sin sin A C B A C+=+(1)求;B (2)若,求.623a b c =+sin A 【答案】(1)π3(2【解析】【分析】(1)将条件展开后利用正弦定理角化边,然后利用余弦定理求角;(2)利用正弦定理边化角,然后转化为关于角B 等式,整理得到,再求π1sin 63A ⎛⎫-=⎪⎝⎭出,利用展开求解即可.πcos 6A ⎛⎫- ⎪⎝⎭ππsin sin 66A A ⎛⎫=-+ ⎪⎝⎭【小问1详解】()22sin sin sin 3sin sin A C B A C+=+ 222sin 2sin sin sin sin 3sin sin A A C C B A C∴++=+即222sin sin sin sin sin A C B A C +-=由正弦定理得,222a cb ac +-=,又2221cos 222a c b ac B ac ac +-∴===()0,πB ∈;π3B ∴=【小问2详解】623a b c=+ 所以由正弦定理边化角得,6sin 2sin 3sin A B C =+,有,ππ6sin 2sin3sin 33A A ⎛⎫∴=++ ⎪⎝⎭9sin A A -=化简得,又,π1sin 63A ⎛⎫-= ⎪⎝⎭2π0,3A ⎛⎫∈ ⎪⎝⎭πππ,333A ⎛⎫∴-∈- ⎪⎝⎭,πcos 6A ⎛⎫∴-==⎪⎝⎭ππππππsin sin sin cos cos sin666666A A A A ⎛⎫⎛⎫⎛⎫∴=-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1132==18. 9年来,某地区第年的第三产业生产总值(单位:百万元)统计图如下图所示.根据x y 该图提供的信息解决下列问题.(1)在所统计的9个生产总值中任选2个,记其中不低于平均值的个数为,求的分X X 布列和数学期望;()E X (2)由统计图可看出,从第6年开始,该地区第三产业生产总值呈直线上升趋势,试从第6年开始用线性回归模型预测该地区第11年的第三产业生产总值.(附:对于一组数据,,…,,其回归直线的斜率和()11,x y ()22,x y (),n nx y ˆˆˆy bx a =+截距的最小二乘法估计分别为:,.()()()1122211ˆn niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑ ˆa y bx =-【答案】(1)分布列见解析,数学期望()34E X =(2)该地区第11年的第三产业生产总值约为134.6【解析】【分析】(1)求出平均值,得出不低于平均值的有3个,因此服从超几何分布,由此可X 计算出各概率得分布列,由期望公式可计算出期望;(2)由后面的四个数据求出线性回归直线方程,将代入回归方程即可得出预测值.11x =【小问1详解】依题知,9个生产总值的平均数为:,141620263342607898439++++++++=由此可知,不低于平均值的有3个,所以服从超几何分布,X ,()()23629C C ,0,1,2C k kP X k k -===所以,()0203629C C 11550C 3612P X -⨯====,()1213629C C 3611C 362P X -⨯====,()2223629C C 3112C 3612P X -⨯====分布列为:X 012P51212112所以;()5113013122124E X =⨯+⨯+⨯=【小问2详解】由后面四个数据得:,,67897.54x +++==4260789869.54y +++==,416427608789982178i ii x y==⨯+⨯+⨯+⨯=∑,42222216789230ii x==+++=∑所以,,217847.569.518.623047.57.5b -⨯⨯==-⨯⨯ 69.518.67.570a =-⨯=-所以线性回归方程为,18.670=-y x 当时,,11x =18.61170134.6=⨯-=y 所以该地区第11年的第三产业生产总值约为134.619. 如图,直四棱柱的底面是平行四边形,,,1111ABCD A B C D -14AA =2AB BC ==,,,分别是,,的中点.60BAD ∠=︒E F H 1A D 1BB BC (1)证明:平面;EF ⊥11BCC B (2)求平面与平面所成二面角的正弦值.1DC H DEF 【答案】(1)证明见解析(2【解析】【分析】(1)取的中点,连接、、,即可得到,再证明AD G BG EG BD //EF BG ,由直棱柱的性质证明,即可得到平面,从而得证;BG BC ⊥1BB BG ⊥BG ⊥11BCC B (2)建立空间直角坐标系,利用空间向量法计算可得.【小问1详解】取的中点,连接、、,AD G BG EG BD 又因为,分别是,的中点,E F 1A D 1BB 所以且,且,1//EG AA 112EG AA =1//BF AA 112BF AA =所以且,//EG BF EG BF =所以四边形为平行四边形,所以,BGEF //EF BG 又在直四棱柱的底面是平行四边形,,,1111ABCD A B C D -2AB BC ==60BAD ∠=︒所以为等边三角形,所以,又,所以,ABD △BG AD ⊥//AD BC BG BC ⊥又平面,平面,所以,1BB ⊥ABCD BG ⊂ABCD 1BB BG ⊥,平面,1BC BB B = 1,BC BB ⊂11BCC B 所以平面,BG ⊥11BCC B 所以平面.EF ⊥11BCC B 【小问2详解】如图建立空间直角坐标系,则,,,,()D ()1,0,0H ()12,0,4C ()0,0,2F,()2E所以,,,,()11,4DC =()0,DH =()1,0,2DE =-()1,2DF =-设平面的法向量为,则,令,则1DC H (),,n x y z =1400n DC x z n DH ⎧⋅=+=⎪⎨⋅==⎪⎩1z =,,所以,4x =-0y =()4,0,1n =-设平面的法向量为,则,令,则DEF (),,m a b c =2020n DE a c n DF a c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 1c =,,所以,2a =0b =()2,0,1m =设平面与平面所成二面角为,则,1DC H DEFθcos m n m nθ⋅===⋅ 所以,即平面与平面所成二面角的正弦值为sin θ==1DC H DEF.20. 已知点,,动点满足直线与的斜率之积为,()0,3M -()0,3N (),P x y PM PN 3-记的轨迹为曲线.P C (1)求的方程,并说明是什么曲线;C C (2)过坐标原点的直线交C 于A ,B 两点,点A 在第一象限,轴,垂足为,连AD y ⊥D 接并延长交于点.BD C H(i )证明:直线与的斜率之积为定值;AB AH (ii )求面积的最大值.ABD △【答案】(1)的方程为:,是一个长轴长为6,短轴长为C 22193y x +=()0x ≠C 的椭圆0x ≠(2)(i )证明见解析(ii 【解析】【分析】(1)直接利用斜率公式即可求解;(2)(i )设,根据坐标之间的联系,设直线的方程为()11,A x y ()110,0x y >>BD ,与联立消,运用韦达定理求出的坐标,再利用斜率1y kx y =+22193y x +=y ()22,H x y 公式求出,,然后代入化简即可证明;AH k ABk AB AH k k ⋅(ii )将点代入,利用基本不等式即可求解.()11,A x y ()110,0x y >>22193y x +=()0x ≠【小问1详解】依题知,,,,()0,3M -()0,3N (),P x y 所以,33,PM PN y y k k x x +-==又直线与的斜率之积为,PM PN 3-即,整理得:,333y y x x +-⨯=-22193y x +=()0x ≠因此是一个长轴长为6,短轴长为且的椭圆.C 0x ≠【小问2详解】(i )如图所示:设,,()11,A x y ()110,0x y >>()22,H x y 因为两点关于原点中心对称,所以,,A B ()11,B x y --因为轴,垂足为,所以,AD y ⊥D ()10,D y 所以直线的斜率,AB 11AB k y x =设直线的斜率为,则直线的方程为:,BD k BD 1y kx y =+由消整理得:,122193y kx y y x =+⎧⎪⎨+=⎪⎩y ()222113290k x ky x y +++-=因为点,是直线与的交点,()11,B x y --()22,H x y BD 22193y x +=所以,整理得:,2211193y x +=221193y x -=-由韦达定理得:,221111212222293,333ky y x x x x x k k k ---+=--==+++解得:,代入,12233x x k =+1y kx y =+解得:,即,221y kx y =+121233kx y y k -=+所以直线的斜率AH 1221112112333223AHkx y y x k k ky x x y k-+===---+所以,11113322AB AHy x k k x y ⎛⎫⋅=⋅-=- ⎪⎝⎭所以直线与的斜率之积为定值,其值为:.AB AH 32-(ii )由(i )知,1111122ABD S x y x y =⨯⨯=△因为在上,()11,A x y ()110,0x y >>22193y x +=()0x ≠所以,整理得:22111193x y y =+≥11x y ≤=当且仅当时,等号成立,11y =所以.ABD △【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.(3)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知函数.()()ln 11f x x a x =--+(1)若存在极值,求的取值范围;()f x a (2)当时,讨论函数的零点情况.2a =()()sin g x f x x=+【答案】(1)()1,+∞(2)共有两个零点.()g x 【解析】【分析】(1)先对求导,再分别讨论和两种情况,判断的正负,()f x 1a ≤1a >()f x '可得的单调性,从而得解.()f x (2)构造函数,利用导数判断得的单调性,再结合零()()11cos 0h x x x x =-+>()g x '点存在定理得到在和上各有一个零点;再构造函数,利用导数讨论()g x 21,1e ⎛⎫ ⎪⎝⎭()1,π在和的零点情况,从而得解.()g x (]π,2π()2π,+∞【小问1详解】因为,所以,()()ln 11f x x a x =--+()()11(0)f x a x x '=-->当,即时,,则为单调递增函数,不可能有极值,舍去;10a -≤1a ≤()0f x ¢>()f x 当,即时,令,解得,10a ->1a >()0f x '=11x a =-当时,;当时,;101x a <<-()0f x ¢>11x a >-()0f x '<所以在上单调递增,在上单调递减,()f x 10,1a ⎛⎫ ⎪-⎝⎭1,1a ⎛⎫+∞ ⎪-⎝⎭所以在取得极大值,符合题意;()f x 11x a =-综上:,故实数的取值范围为.1a >a ()1,+∞【小问2详解】当时,,则,2a =()ln 1sin (0)g x x x x x =-++>()11cos g x x x '=-+令,则,()()11cos 0h x x x x =-+>()21sin h x x x '=--(i )当时,,则单调递减,即单调递减,(]0,πx ∈()0h x '<()h x ()g x '注意到,,()cos101g '=>()120ππg '=-<所以存在唯一的使,()01,πx ∈()00g x '=且当时,,单调递增,00x x <<()0g x '>()g x 当时,,单调递减,0πx x <≤()0g x '<()g x 注意到,,,则22211121sin 0e e e g ⎛⎫=--++< ⎪⎝⎭()1sin10g =>2ln πln e 2π1<=<-,()πln ππ10g =-+<所以在和上各有一个零点;()g x 21,1e⎛⎫⎪⎝⎭()1,π(ii )当时,,故,(]π,2πx ∈sin 0x ≤()ln 1g x x x ≤-+令,则,()()ln 1π2πx x x x ϕ=-+<≤()110x x ϕ'=-<所以在上单调递减,故,()x ϕ(]π,2π()()πln ππ10x ϕϕ<=-+<所以,故在上无零点;()()0g x x ϕ≤<()g x (]π,2π(iii )当时,,则,()2π,x ∈+∞sin 1x ≤()ln 2g x x x ≤-+令,则,所以在上单调递()()ln 22πm x x x x =-+>()110m x x =-<'()m x ()2π,+∞减,又,故,3ln 2πln e 32π2<=<-()()2πln 2π2π20m x m <=-+<所以,故在上无零点;()()0g x m x ≤<()g x ()2π,+∞综上:在和上各有一个零点,共有两个零点.()g x 21,1e⎛⎫⎪⎝⎭()1,π【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.(二)选考题:共10分.请考生在第22,23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系中,曲线的参数方程为(s 为参数),直线的参数xOyC 2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩l 方程为(为参数).1cos 2sin x t y t αα=-+⎧⎨=+⎩t (1)求和的直角坐标方程;C l (2)若曲线截直线所得线段的中点坐标为,求的面积.C l AB ()1,2-OAB 【答案】(1);22148x y +=()2x ≠-当时,直线的直角坐标方程为,cos 0α≠l tan 2tan y x αα=++当时,直线的参数方程为.cos 0α=l =1x -(2【解析】【分析】(1)将中的参数s 消去得曲线的直角坐标方程;2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩C 根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与l cos 0α≠两种情况.cos 0α=(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关l C sin ,cos αα系,得的方程,设与轴的交点为,以为底为高求的面积.l l x M OMA By y -OAB 【小问1详解】由得,而,2222,1s x s y ⎧-=⎪⎪+⎨⎪=⎪⎩()()()()2222222221214811s s x ys s -+=+=++24221x s =->-+即曲线的直角坐标方程为,C ()221248x y x +=≠-由为参数),1cos (2sin x t t y t αα=-+⎧⎨=+⎩当时,消去参数,可得直线的直角坐标方程为,cos 0α≠t l tan 2tan y x αα=++当时,可得直线的参数方程为.cos 0α=l =1x -【小问2详解】将直线的参数方程代入曲线的直角坐标方程,l C 整理可得:.①22(1cos )4(sin cos )20t t ααα++--=曲线截直线所得线段的中点在椭圆内,则方程①有两解,设为,,C l (1,2)-1t 2t 则,故,解得.的倾斜角1224cos 4sin 01cos t t ααα-+==+cos sin 0αα-=tan 1α=l ∴为.45所以直线方程,直线与轴的交点为,,3y x =+x ()3,0M -12221cos t t α-=+,21AB t t ==-==,13sin 4522AOB S OM AB =⋅== 故.OAB [选修4-5:不等式选讲]23. 已知()()4f x x m x x x m =-+--(1)当时,求不等式的解集;2m =()0f x ≥(2)若时,,求的取值范围.(),2x ∈-∞()0f x <m 【答案】(1)[)2,+∞(2)[)2,+∞【解析】【分析】(1)根据,将原不等式化为,分别讨论2m =()|2||4|20x x x x -+--≥,,三种情况,即可求出结果;2x <24x ≤<4x ≥(2)分别讨论和两种情况,即可得出结果.2m ≥2m <【小问1详解】解:当时,,2m =()()242f x x x x x =-+--原不等式可化为;()|2||4|20x x x x -+--≥当时,原不等式可化为,即,解得,2x <(2)(4)(2)0x x x x -+--≥22(2)0x -≤2x =此时解集为;∅当时,原不等式可化为,解得,此时解集为24x ≤<(2)(4)(2)0x x x x -+--≥2x ≥;[)2,4当时,原不等式可化为,即,显然成立;此4x ≥(2)(4)(2)0x x x x -+--≥22(2)0x -≥时解集为;[)4,+∞综上,原不等式的解集为;[)2,+∞【小问2详解】解:当时,因为,所以由可得,2m ≥(,2)x ∞∈-()0f x <()(4)()0m x x x x m -+--<即,显然恒成立,所以满足题意;2()(2)0x m x -->2m ≥当时,,2m <4(),2()2()(2),x m m x f x x m x x m -≤<⎧=⎨--<⎩因为时,显然不能成立,所以不满足题意;2m x ≤<()0f x <2m <综上,的取值范围是.m [)2,+∞。

江西省临川第一中学2022-2023学年高三上学期期末考试理科数学试卷

江西省临川第一中学2022-2023学年高三上学期期末考试理科数学试卷

卷面满分:150江西省临川一中2022—2023学年上学期期末考试高三年级数学理科试卷分考试试卷:120分钟命题人:黄维京审题人:上官学辉一、单选题(每题5分,共60分)1.设集合2{|230}A x Z x x =∈-- ,{0,1}B =,则A B =ð()A.{3,2,1}--- B.{1,2,3}- C.{1,0,1,2,3}- D.{0,1}2.在复平面内,复数z 1,z 2对应的向量分别是OA =(1,−2),OB =(−3,1),则复数z 1z 2对应的点位于()A .第一象限B .第二象限C.第三象限D.第四象限3.对于实数,条件G +1≠52,条件G ≠2且≠12,那么是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a >0,b >0,且2a +b =1,则1a +2aa+b ()A.有最小值为4B.有最小值为22+1B.C.有最小值为14D.无最小值5.设a =57,b =c =log 3145,则a ,b ,c 的大小顺序是()A.b <a <cB.c <a <bC.b <c <aD.c <b <a6.已知(0,)4πα∈,4cos 25α=,则2sin (4πα+=()A.15B.25C.35 D.457.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2−c 2)⋅(acosB +bcosA)=abc ,则角C =()A.30°B.45°C.60°D.90°8.已知函数=l 2−B +3在0,1上是减函数,则实数的取值范围是()A.0,1B.1,4C.0,1∪1,4D.2,49.已知圆:(−3)2+(−4)2=4和两点o −3s 0),o 3s 0)(>0).若圆上存在点,使得∠B =90°,则的最小值为()A.6B .5 C.2 D.310.已知双曲线22−22=1>0,>0的左、右焦点分别为1,2,点的坐标为−2,0,点是双曲线在第二象限的部分上一点,且∠1B 2=2∠1B ,B 1⊥12,则双曲线的离心率为()A.3B.2C.32D.211.在△B 中,B =4,B =3,B =5,点在该三角形的内切圆上运动,若B =B+B (s 为实数),则+的最小值为()A.12B.13C.16D.1712.若函数的定义域为,且2+1偶函数,3−1关于点1,3成中心对称,则下列说法正确的个数为()①的一个周期为2②2x =2−2x③的一个对称中心为6,3④J119=57 A.1B.2C.3D.4二、填空题(每题5分,共20分)13.已知2100+236=1上一点,1,2分别是椭圆的左、右焦点,若∠1B 2=60°,则△B 12的面积为________.14.若(1−3x)n 展开式中第6项的二项式系数与系数分别为p 、q ,则pq =_________.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体BB 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体BB 棱长为26,则模型中九个球的表面积和为__________.16.若函数op=3−o3+lnp的极小值点只有一个,则的取值范围是_________.三、解答题17.(12分)已知数列{}满足数列{r1−}为等比数列,1=1,2=2,且对任意的∈∗,r2=3r1−2.(1)求{}的通项公式;(2)=∙,求数列{}的前n项和S.18.(12分)如图,在直三棱柱B−111中,,,分别为线段11,1及B的中点,为线段1上的点,B=12B,B=8,B=6,三棱柱B−111的体积为240.(1)求点到平面1B的距离;(2)试确定动点的位置,使直线B与平面1B1所成角的正弦值最大.19.(12分)在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张.(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列.20(12分)已知抛物线:2=2B,抛物线上两动点A x1,y1,B x2,y2,x1≠x2且x1+x2=6(1)若线段AB过抛物线焦点,且B=10,求抛物线C的方程.(2)若线段AB的中垂线与X轴交于点C,求∆ABC面积的最大值.21(12分)已知op =e+2−s op =2−B −,s ∈(1)若op 与op 在x=1处的切线重合,分别求,的值.(2)若∀∈s op −op ≥op −op 恒成立,求的取值范围.四、选做题(共10分,请考生在22,23题任选一题作答,如果多选,则按所做第一题计分)22.(10分)在平面直角坐标系xOy 中,已知直线312:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :(3sin x C y θθθ=+⎧⎨=⎩为参数)相交于A,B 两点.(1)求直线及圆C 的普通方程;(2)已知(1,0)F ,求||||FA FB +的值.23.(10分)已知0a >,0.b >(1)求证:3+3≥2+B 2;(2)若3a b +=,求14a b+的最小值.。

高三期末数学理科试卷

高三期末数学理科试卷

一、选择题(每题5分,共50分)1. 下列各数中,属于有理数的是()。

A. √2B. πC. 0.1010010001...D. 22. 已知函数f(x) = 2x - 1,若f(2x) = 4x - 3,则x的值为()。

A. 1B. 2C. 3D. 43. 下列各对数中,正确的是()。

A. log23 = 3B. log22 = 1C. log32 = 2D. log42 = 34. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差为()。

A. 1B. 2C. 3D. 45. 下列函数中,在定义域内单调递减的是()。

A. y = 2x + 1B. y = x^2C. y = log2xD. y = 3^x6. 若复数z满足|z - 1| = |z + 1|,则复数z的实部为()。

A. 0B. 1C. -1D. 不存在7. 已知直线l的方程为x - 2y + 1 = 0,则直线l的斜率为()。

A. 1B. -1C. 2D. -28. 若向量a = (1, 2),向量b = (2, 1),则向量a与向量b的点积为()。

A. 3B. 5C. 0D. -39. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的大小为()。

A. 75°B. 105°C. 120°D. 135°10. 已知等比数列{an}的首项为2,公比为3,则该数列的前5项和为()。

A. 62B. 78C. 90D. 105二、填空题(每题5分,共50分)11. 已知函数f(x) = x^2 - 2x + 1,若f(x) = 0,则x的值为______。

12. 若log2(3x - 1) = 3,则x的值为______。

13. 已知等差数列{an}的前三项分别为1,4,7,则该数列的通项公式为______。

14. 若函数f(x) = x^3 - 3x + 2在区间[0, 2]上单调递增,则f(1)的值为______。

山西省太原市2022届高三上学期期末数学(理)试题(解析版)

山西省太原市2022届高三上学期期末数学(理)试题(解析版)
【小问1详解】

令 ,则 ;令 ,则 .
是 的单调递增区间; 是 的单调递减区间.
【小问2详解】
在 恒成立,
即 在 恒成立,
即 在 恒成立,
令 ,
在 上单调递增且 ,
时, , 时, ,
在 上单调递减,在 上单调递增,
在 处取得最小值,即 ,
令 ,
令 , 在 单调递减,
因为 ,当 时, ;当 时, .
D选项, 内的任何直线都与 平行,则 ,D选项正确.
故选:D
4.等比数列 中, ,则 的通项公式为()
A. B.
C 或 D. 或
【答案】C
【解析】
【分析】由已知,结合等比数列的通项公式可得 求公比,进而写出 的通项公式.
【详解】令公比 ,由题设有 ,
所以 ,解得 或 ,经检验符合题设
所以 ,可得 或 .
可取 ,
则 ,
故平面PAB与平面BDM所成锐二面角的余弦值为 .
21.已知函数 .
(1)求函数 的单调区间;
(2)若 恒成立,求实数 的取值范围.
【答案】(1) 单调递增区间是 ,单调递减区间是
(2)
【解析】
【分析】(1)导数后解不等式即可求解;
(2)将问题转化为 在 恒成立,再分别研究 与 的最值,再比较即可.
从1到10这十个数中任取三个数所有的取法,这三个数的和为奇数的取法,由古典概型概率计算公式可得答案.
【详解】设“从1到10这十个数中任取三个,这三个数的和为奇数”为事件 ,
从1到10这十个数中任取三个数有 种取法,
要使这三个数的和为奇数,须取的三个数中有2个偶数一个奇数,或者三个数都为奇数两种情况;1到10这十个数分成偶数一组,奇数一组各有5个,所以

江西省萍乡市2022-2023学年高三上学期期末考试数学理科试卷

江西省萍乡市2022-2023学年高三上学期期末考试数学理科试卷

准考证号姓名(在此卷上答题无效)萍乡市2022-2023学年度高三期末考试试卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人的准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答题无效.3.考试结束后,监考员将试题卷、答题卡一并收回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2A =-,{}2,x B y y x A ==∈,则A B = A .{}1,2B .1,22⎡⎤⎢⎥⎣⎦C .[)1,2-D .{}12.已知i 为虚数单位,则复数11i+的实部与虚部之和为A .1-B .0C .1D .23.在各项均为正数的等差数列{}n a 中,23=a ,若235,1,3++a a a 成等比数列,则公差=d A .1-或2B .2C .1或2-D .14.已知m 和n 是空间中两条不同的直线,α和β是两个不重合的平面,下列命题正确的是A .若⊥m n ,n ⊂α,则α⊥m B .若m ⊂α,n ⊂β, αβ,则m n P C .若m αP ,⊥m n ,则α⊥n D .若α⊥m ,m β,则αβ⊥5.关于某校运动会5000米决赛前三名选手甲、乙、丙有如下命题:“甲得第一”为命题p ;“乙得第二”为命题q ;“丙得第三”为命题r .若∨p q 为真命题,∧p q 为假命题,()⌝∧q r 为假命题,则下列说法一定正确的为A .甲不是第一B .乙不是第二C .丙不是第三D .根据题设能确定甲、乙、丙的顺序6.在二项式6(2)-a x 的展开式中,若3x 的系数为160,则=aA .1-B .1C D .7.函数=y kx 与ln =y x 的图象有且只有一个公共点,则实数k 的取值范围为A .1=k B .1e=k C .1e=k 或0≤k D .1=k 或0≤k 8.分形是由混沌方程组成,其最大的特点是自相似性:当我们拿出图形的一部分时,它与整体的形状完全一样,只是大小不同.谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形,它的构造方法是:将一个正方形均分为9个小正方形,再将中间的正方形去掉,称为一次迭代;然后对余下的8个小正方形做同样操作,直到无限次,如右上图.进行完二次迭代后的谢尔宾斯基地毯如右下图,从正方形ABCD 内随机取一点,该点取自阴影部分的概率为A .19B .1781C .29D .3179.已知()f x 是定义在R 上的奇函数,()'f x 是其导函数.当0≥x 时,()20'->f x x ,且()23=f ,则()()3113≥+f x x 的解集是A .[)2,+∞-B .[]2,2-C .[)2,+∞D .(],2∞--10.下列关于函数1()sin 2cos =+f x x x有关性质的描述,正确的是A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于直线2π=x 对称C .函数()f x 的最小正周期为πD .函数()f x 的图象关于直线=πx 对称11.点M 为抛物线28=y x 上任意一点,点N 为圆22430+-+=x y x 上任意一点,P 为直线10---=ax y a 的定点,则+MP MN 的最小值为A .2B C .3D .2+12.已知函数()ln f x ax a =+,()e ln x g x x x =+-,若关于x 的不等式()()f x g x >在区间(0,)+∞内有且只有两个整数解,则实数a 的取值范围为A .(2e,e ⎤⎦B .2e (e,]2C .(23e ,e ⎤⎦D .23e e (,]23萍乡市2022-2023学年度高三期末考试试卷理科数学第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22,23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系中,角α的顶点在坐标原点,始边与x 轴的非负半轴重合,已知角α终边过点(2,1)-P ,则sin 2α=__________.14.在平面直角坐标系中,向量,a b 满足()()1,1,231,5=+=- a a b ,则⋅= a b __________.15.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若∆ABC 的周长为7,面积为,且828ab c +=,则=c __________.16.已知球O 是棱长为1的正四面体的内切球,AB 为球O 的一条直径,点P 为正四面体表面上的一个动点,则⋅PA PB 的取值范围为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)记n S 为数列1⎧⎫⎨⎬⎩⎭n a 的前n 项和,已知11=a ,()21⋅=-n n a S n n .(1)求数列{}n a 的通项公式;(2)求数列1321+⎧⎫⋅⎪⎪⎨⎬+⎪⎪⎩⎭n n a n 的前n 项和n T .18.(本小题满分12分)如图,在五面体ABCDE 中,ABC ∆为等边三角形,平面ABC ⊥平面ACDE ,且222AC AE ED ===,90∠=∠=︒DEA EAC ,F 为边BC 的中点.(1)证明: DF 平面ABE ;(2)求EF 与平面ABE 所成角的正弦值.19.(本小题满分12分)甲、乙两人参加某知识竞赛对战,甲答对每道题的概率均为12,乙答对每道题的概率均为(01)<<p p ,两人答每道题都相互独立.答题规则:第一轮每人三道必答题,答对得10分,答错不加分也不扣分;第二轮为一道抢答题,每人抢到的概率都为12,若抢到,答对得10分,对方得0分,答错得0分,对方得5分.(1)若乙在第一轮答题中,恰好答对两道必答题的概率为()f p ,求()f p 的最大值和此时乙答对每道题的概率0p ;(2)以(1)中确定的0p 作为p 的值,求乙在第二轮得分X 的数学期望.20.(本小题满分12分)已知椭圆E 的中心在原点,周长为8的∆ABC 的顶点()A 为椭圆E 的左焦点,顶点,B C 在E 上,且边BC 过E 的右焦点.(1)求椭圆E 的标准方程;(2)椭圆E 的上、下顶点分别为,M N ,点(),2P m (),0R ≠∈m m ,若直线,PM PN 与椭圆E 的另一个交点分别为点,S T ,求证:直线ST 过定点,并求该定点坐标.21.(本小题满分12分)已知函数()1ln e +-=x xf x a x.(1)若0=a ,求()f x 的极值;(2)若()1≥f x 恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题做答,只能做所选定的题目.如果多做,则按所做的第一个题记分.做答时用2B 铅笔在答题卡上把所选题号后方框涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线()()0100,,0:πθθθρ=∈≥C 与曲线22:4sin 30ρρθ-+=C 相交于,P Q 两点.(1)写出曲线2C 的直角坐标方程,并求出0θ的取值范围;(2)求11+OP OQ的取值范围.23.(本小题满分10分)选修4—5:不等式选讲已知函数()()10,0=--+>>f x a x b a b 的图象与x 轴围成的封闭图形的面积为1.(1)求实数,a b 满足的关系式;(2)若对任意R ∈x ,不等式()2<-f x x ab恒成立,求实数b 的取值范围.萍乡市2022—2023学年度高三期末考试理科数学参考答案及评分标准一、选择题(12×5=60分):ABBDC ;ACBCC ;AD .二、填空题(4×5=20分):13.45-;14.0;15.3;16.10,3⎡⎤⎢⎥⎣⎦.三、解答题(共70分):17.(1)由(21)n n a S n n =-得,(21)n n n n S a -=,当11(1)(23)2,n n n n n S a ----≥=,………(1分)两式相减得:11(21)(1)(23)n n n n n n n a a a ----=-,化简得:12123n n a n a n -+=-,………………(2分)21234211233212121239754112325275313n n n n n n n a a a a a a n n n n a a a a a a a a n n n -----+---=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=--- ,…(4分)当1n =时,2141113a ⋅-==,符合上式,………………………………………………(5分)故2413n n a -=;……………………………………………………………………………(6分)(2)由(1)知13=(21)321n n n a n n +⋅-⋅+,………………………………………………………(7分)1231133353(23)3(21)3n nn T n n -=⨯+⨯+⨯++-⨯+-⨯ 23413133353(23)3(21)3n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,……………………………(9分)两式相减得1234121323232323(21)3n n n T n +-=⨯+⨯+⨯+⨯++⨯--⨯ 21113(13)32(21)362(1)313n n n n n -++⨯-=+⨯--⨯=-+-⨯-,……………(11分)故13(1)3n n T n +=+-⋅.………………………………………………………………………(12分)18.(1)证明:取AB 的中点为M ,连接ME ,MF ,…………………………………(1分)因为F 为边BC 的中点,所以MF AC ,1=2MF AC ,……………………………………(2分)又DE AC ,12DE AC =,所以MF DE ,且MF DE =,即四边形EDFM 为平行四边形,所以DF EM ,………………………………………(4分)又EM ABE ⊂平面,DF ABE ⊄平面,所以DF ABE 平面;………………………(6分)【用面面平行性质得到线面平行同样给分】(2)平面ABC ⊥平面ACDE ,ABC 平面平面ACDE AC =,EA AC ⊥,EA ⊂平面ACDE ,则EA ⊥平面ABC ,…………………………………(8分)过点F 作FN AB ⊥于N ,则FN EA ⊥,且EA AB A = ,则FN ABE ⊥平面,连接EN ,则EF 与平面ABE 所成角为FEN ∠,………………………………………(10分)由题知,在直角FNE ∆中,有2FN EN EF =,则sin4FN FEN EF ∠=即EF 与平面ABE .…………………(12分)【建立空间直角坐标系求解同样给分】19.(1)由题知,22233()(1)33f p C p p p p =⋅⋅-=-,…………………………………(2分)2()693(23)f p p p p p '=-=-,则()f p 在2(0,)3单调递增,在2(,1)3单调递减,……(4分)故()f p 的最大值为24(39f =,此时,023p =;…………………………………………(6分)(2)由题知,X 的所有可能取值为0,5,10,……………………………………………(7分)11115(0)232212P X ==⨯+⨯=,111(5)224P X ==⨯=,121(10)233P X ==⨯=,……(9分)则X 的分布列为:………………………………………………………………………………………………(10分)乙在第二轮得分X 的数学期望51155()0510124312E X =⨯+⨯+⨯=.…………………(12分)20.(1)根据椭圆定义可知48a =,2a =,……………………………………………(2分)c =,1b ==,…………………………………………………………………(3分)故椭圆E 的标准方程为2214x y +=;………………………………………………………(4分)(2)由题知,(0,1)M ,(0,1)N -,………………………………………………………(5分)直线:1xPM y m =+,与椭圆方程联立、化简得:22(4)80m x mx ++=,则284S m x m -=+,2244S m y m -=+,……………………………………………………………(7分)同理可得22436T m x m =+,223636T m y m -=+,…………………………………………………(8分)()()()22423212121441216192161612T S STT S m m y y m m k x x m m m m m -+---====-++,………………………(9分)直线222221284121:(1644162m m m m ST y x x m m m m ---=⋅++=⋅+++,………………………(11分)故直线ST 过定点1(0,)2.…………………………………………………………………(12分)X 0510P512141321.(1)0a =,1ln ()xf x x -=,22ln ()0x f x x-+'==,得2x e =,…………………(1分)则()()20,,()0,x e f x f x '∈<单调递减;()()2,,()0,x e f x f x '∈+∞>单调递增,……(3分)故()f x 的极小值为221()f e e =-,无极大值;……………………………………………(4分)(2)【法一】由题知,1ln x axe x x +-≥,0x >,令()1ln x g x axe x x =+--,则()1'()1x g x x ae x ⎛⎫=+- ⎪⎝⎭,…………………………………(5分)①当0a ≤时,'()0g x <,(1)0g ae =≤,则1x >时,()(1)0g x g <≤,不合题意;…(7分)②当0a >时,设0x 满足001x ae x =,则()g x 在()00,x 单调递减,在()0,x +∞单调递增,则min 0000()()ln 1x g x g x ax e x x ==--+,……………………………………………………………(9分)001x ae x = ,00001,ln ln x ax e a x x ∴=+=-,………………………………………………(10分)故min 000()()1ln 1ln 20g x g x x a x a ==-+++=+≥,解得21a e≥,…………………………(11分)综上所述,实数a 的取值范围为21[,)e +∞.………………………………………………(12分)【法二】由题知,ln 1xx x a xe +-≥,0x >,………………………………………………(5分)令ln 1()x x x g x xe+-=,则()21(2ln )'()x x x x g x x e+--=,…………………………………………(6分)设0x 满足002ln x x =+,则()g x 在()00,x 单调递增,在()0,x +∞单调递减,…………(8分)故0000max 000ln 11()()x x x x g x g x x e x e +-===,…………………………………………………(9分)002ln x x =+ ,020x x e -∴=,故0max 2011()x g x x e e ==,即21a e ≥,……………………(11分)综上所述,实数a 的取值范围为21[,)e+∞.………………………………………………(12分)【法三】由题知,ln 1xaxe x x ≥+-,即ln ln 1x x ae x x +≥+-,…………………………(6分)令ln t x x =+,t R ∈,即1t ae t ≥-,即1()t t a g t e-≥=,………………………………(8分)2'()t tg t e-= ,()g t ∴在(),2-∞单调递增,在()2,+∞单调递减,…………………(10分)故max 21()(2)a g t g e ≥==,即实数a 的取值范围为21[,)e+∞.…………………………(12分)22.(1)曲线2C 的直角坐标方程为2243x y y +-=-,即()2221x y +-=,……(2分)当02πθ=时,曲线1:0C x =与曲线2C 有两个交点,符合题意,………………………(3分)当02πθ≠时,曲线1C 的直角坐标方程为:0tan y x θ=,设()20,2C 到曲线1C 的距离为d ,则1d r ==,得0tan θ0tan θ<4分)又0(0,)θπ∈ ,02,33ππθ⎛⎫∴∈⎪⎝⎭;…………………………………………………………(5分)(2)将0θθ=代入2C 的极坐标方程得:204sin 30ρθρ-+=,…………………………(6分)设,P Q 两点对应的极径分别为12,ρρ,则120124sin ,3ρρθρρ+==,…………………(7分)1212124sin 111103OP OQ θρρρρρρρ+≥∴+=+== ,……………………………………………(9分)由(1)知02,33ππθ⎛⎫∈ ⎪⎝⎭,则04sin 11433OP OQ θ⎤+=∈⎥⎝⎦.………………………………(10分)23.(1)(),11,1ax a b x f x a x b ax a b x -+≤⎧=--+=⎨-++>⎩,…………………………………………(1分)()y f x = 与x 轴交点坐标分别为1,0,1,0b b a a ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,顶点坐标为()1,b ,……………(3分)21212b b S b a a∴=⨯⨯==,即2b a =;……………………………………………………(5分)(2)对于x R ∀∈,不等式左边=2221()121b x b f x x x b b b b--+==--+<-恒成立,……(6分)即对于x R ∀∈,121x x b b<-+-恒成立,…………………………………………………(7分)222111x x x x b b b-+-≥--+=- …………………………………………………………(8分)∴121b b <-,即211bb->或211b b-<-,…………………………………………………(9分)又0b > ,()()0,13,b ∴∈+∞ .…………………………………………………………(10分)命题:胡斌(市教研室)欧阳丽(芦溪中学)徐敏(莲花中学)江敏(萍乡三中)刘晓君(湘东中学)吕鋆(上栗中学)彭仕海(萍乡中学)审核:胡斌。

河南省南阳市2022-2023学年高三上学期1月期末考试 数学(理)含解析

河南省南阳市2022-2023学年高三上学期1月期末考试 数学(理)含解析

2022年秋期高中三年级期终质量评估 数学试题(理)(答案在最后)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 5.保持卷面清洁,不折叠、不破损.第I 卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{}2230A x x x =--≤∣,{}2log 1B x x =≤∣,则A B ⋃=( ) A .[-1,3]B .(,3]-∞C .(0,2]D .(0,3]2.已知复数z 满足(i 1)2i z -=,则 z ( )A .1BC D .23.从3,4,5,6四个数中任取三个数作为三角形的三边长,则构成的三角形是锐角三角形的概率是( ) A .14B .13C .12D .344.已知向量(4,2a =-,(1,5)b =,则向量b 在向量a 方向上的投影是( )A .B .-1C .1D5.已知x ∈R ,y ∈R ,若:|1||2|1p x y ++-≥,22:2440q x y x y ++-+≥,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F 点M 在C 的右支上,直线1F M 与C 的左支交于点N ,若1F N b =,且2||MF MN =,则双曲线C 的渐近线方程为( ) A .13y x =±B .3y x =±C .12y x =±D .2y x =±7.设f (x )是定义在R 上且周期为4的奇函数,当02x ≤≤时,,01()2,12x x f x x x ≤≤⎧=⎨-<≤⎩,令g (x )=f (x )+f (x +1),则函数y =g (x )的最大值为( ) A .1B .-1C .2D .-28.已知函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭在[]0,π上单调递增,且2()3f x f π⎛⎫≥- ⎪⎝⎭恒成立,则ω的值为( ) A .2B .32C .1D .129.已知抛物线2:4C y x =的焦点为F ,过点F 作直线l 交抛物线C 于点A ,B (A 在x 轴上方),与抛物线准线交于点M .若|BM |=2|BF |,则直线l 的倾斜角为( ) A .60°B .30°或150°C .30°D .60°或120°10.对于函数()sin xf x x x e =+-,[0,]x π∈,下列说法正确的是( ) A .函数f (x )有唯一的极大值点 B .函数f (x )有唯一的极小值点 C .函数f (x )有最大值没有最小值D .函数f (x )有最小值没有最大值11.如图为“杨辉三角”示意图,已知每一行的数字之和构成的数列为等比数列且记该数列前n 项和为n S ,设n b =将数列{}n b 中的整数项依次取出组成新的数列记为{}n c ,则2023c 的值为( )A .5052B .5057C .5058D .506312.十七世纪法国数学家、被誉为业余数学家之王的皮埃尔·德·费马提出的一个著名的几何问题:“已知一个三角形,求作一点,使其与这个三角形的三个顶点的距离之和最小”它的答案是:当三角形的三个角均小于120时,所求的点为三角形的正等角中心,即该点与三角形的三个顶点的连线两两成角120°;当三角形有一内角大于或等于120°时,所求点为三角形最大内角的顶点.在费马问题中所求的点称为费马点.已知a ,b ,c 分别是ABC △三个内角A ,B ,C 的对边,且22()6b a c --=,cos sin 2cos 6A C B π⎛⎫=- ⎪⎝⎭,若点P 为ABC △的费马点,则PA PB PB PC PA PC ⋅+⋅+⋅=( ) A .-6B .-4C .-3D .-2二、填空题(本大题共4小题,全科免费下载公众号《高中僧课堂》每小题5分,共20分)13.上级将5名农业技术员分派去3个村指导农作物种植技术,要求每村至少去一人,一人只能去一个村,则不同的分派种数有______.(数字作答)14.如图,△ABC 内接于椭圆,其中A 与椭圆右顶点重合,边BC 过椭圆中心O ,若AC 边上中线BM 恰好过椭圆右焦点F ,则该椭圆的离心率为______.15.《九章算术》是《算经十书》中最重要的一部,全书总结了战国、泰、汉时期的数学成就,内容十分丰富,在数学史上有其独到的成就.在《九章算术》中,将四个面都是直角三角形的四面体称之为“鳖臑”,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,几何体P -ABCD 为一个阳马,其中PD ⊥平面ABCD ,若DE PA ⊥,DF PB ⊥,DG PC ⊥,且PD =AD =2AB =4,则几何体EFGABCD 的外接球表面积为______.16.已知函数1()ln (0)mx x f x x mx x e+=-+>的值域为[0,)+∞,则实数m 取值范围为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚) 17.(本题满分12分)已知数列{}n a 是各项均为正数..的等差数列, n S 是其前n 项和,且()()122n n n a a S -+=.(1)求数列{}n a 的通项公式;(2)若89nn n b a ⎛⎫=⋅ ⎪⎝⎭,求n b 取得最大值时的n . 18.(本题满分12分)在2022年卡塔尔世界杯亚洲区预选赛十二强赛中,中国男足以1胜3平6负进9球失19球的成绩惨败出局.甲、乙足球爱好者决定加强训练提高球技,两人轮流进行定位球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得-1分;两人都进球或都不进球,两人均得0分,设甲每次踢球命中的概率为12,乙每次踢球命中的概率为23,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率15,且各次踢球互不影响, (1)经过一轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)若经过两轮踢球,用2p 表示经过第2轮踢球后甲累计得分高于乙累计得分的概率,求2p . 19.(本题满分12分)如图,四棱锥P -ABCD 的底面为直角梯形,2ABC BAD π∠=∠=,PB ⊥底面ABCD ,112PB AB AD BC ====,设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面P AB ;(2)设Q 为l 上的动点,求PD 与平面QAB 所成角的正弦值的最大值. 20.(本题满分12分)已知函数2()ln f x a x x ax =-+. (1)当a =1时,求证:()0f x ≤;(2)若函数f (x )有且只有一个零点,求实数a 的取值范围. 21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>,离心率为12,其左右焦点分别为1F ,2F ,点A (1,-1)在椭圆内,P 为椭圆上一个动点,且1||PF PA +的最大值为5. (1)求椭圆C 的方程;(2)在椭圆C 的上半部分取两点M ,N (不包含椭圆左右端点),且122FM F N =,求四边形12F F NM 的面积.选考题:共10分.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.【选修4-4:坐标系与参数方程】(10分) 在平面直角坐标系xOy 中,曲线C 的参数方程为2cos (sin x y ϕϕϕ=⎧⎨=⎩为参数), (1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程;(2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值.23.【选修4-5:不等式选讲】(10分)已知存在0x ∈R ,使得0024x a x b +--≥成立,a ,b +∈R . (1)求a +2b 的取值范围; (2)求22a b +的最小值.2022年秋期高中三年级期终质量评估数学(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4小题,每小题5分,共20分) 13.150 14.13 15.20π 16.21,e ∞⎛⎤- ⎥⎝⎦ 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】(1)当1n =时,()()1111122a a S a -+==,解得:12a =或者11a =-,因为0n a >,故12a =. 方法一:因为()()1222n n n n a a n a S ++==,所以()()()21222n n n n a a a +-+=,又0n a >,即可得1n a n =+. 方法二:当2n =时,()()22221222a a S a -+=+=,易得:23a =.因为数列{}n a 是等差数列,故1n a n =+.(2)由(1)知,()819n n b n ⎛⎫=+⋅ ⎪⎝⎭,故()11829n n b n ++⎛⎫=+⋅ ⎪⎝⎭.18799nn n nb b +-⎛⎫-=⨯ ⎪⎝⎭, 当7n <时,1n n b b +>; 当7n =时,1n n b b +=; 当n >7时,1n n b b +<;故数列{}n b 的最大项为7b ,8b ,即7n =或8 18.【解析】(1)记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立, 由题意得:()1121?255P A ⎛⎫=⨯-= ⎪⎝⎭,()2111323P B ⎛⎫=⨯-= ⎪⎝⎭, 甲的得分X 的可能取值为-1,0,1,()()()()21111535P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()21218011535315P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭ ()()()()214115315P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭, 所以X 的分布列为:所以()411015151515E X =-⨯+⨯+⨯= (2)根据题意,经过第2轮踢球累计得分后甲得分高于乙得分的情况有三种; 分别是:甲两轮中第1轮得0分,第2轮得1分; 或者甲第1轮得1分,第2轮得0分; 或者甲两轮各得1分,于是:()()()()()201101p P X P X P X P X P X ⎡⎤==⋅=+=⋅=+=⎣⎦8448416151515151545⎛⎫=⨯+⨯+= ⎪⎝⎭19.【解析】(1)证明:因为PB ⊥底面ABCD ,所以PB BC ⊥. 又底面ABCD 为直角梯形,且2ABC BAD π∠∠==,所以AB BC ⊥.因此BC ⊥平面PAB .因为BC AD ∥,BC ⊄平面PAD , 所以BC ∥平面PAD .又由题平面PAD 与平面PBC 的交线为l , 所以l BC ∥,故l ⊥平面PAB .(2)以B 为坐标原点,BC 的方向为x 轴正方向,建立如图所示的空间直角坐标系B xyz -, 则()0,0,0B ,()2,0,0C ,()0,1,0A ,()0,0,1P ,由(1)可设(),0,1Q a ,则(),0,1BQ a =.设(),,n x y z =是平面QAB 的法向量,则00n BQ n BA ⎧⋅=⎪⎨⋅=⎪⎩,即00ax z y +=⎧⎨=⎩,可取()1,0,n a =-所以cos ,3n PD n PD n PD⋅-==⋅设PD 与平面QAB 所成角为θ,则sinθ==因此:当0a >时,可得33≤(当且仅当1a =时等号成立) 又当0a ≤时,易知不符合题意.所以PD 与平面QAB 所成角的正弦值的最大值为3.20.【解析】(1)()()()221112121x x x x f x x x x x----++='=-+=故f (x )在(0,1)上是单调增加的,在(1,+∞)上是单调减少的. 所以()()max 10f x f ==,即()0f x ≤ (2)当a =0时,()2f x x =-,不存在零点当0a ≠时,由()0f x =得21ln x xa x+=,()0,x ∞∈+ 设()2ln x x g x x +=,则()312ln x xg x x--'= 令()12ln h x x x =--,易知()h x 在()0,∞+上是单调减少的,且()10h =. 故()g x 在()0,1上是单调增加的,在()1,∞+上是单调减少的.由于211101e g e e -+⎛⎫=< ⎪⎝⎭⎛⎫ ⎪⎝⎭,()11g =,且当1x >时,()0g x > 故若函数()f x 有且只有一个零点,则只须11a=或10a <即当(){},01a ∞∈-⋃时,函数()f x 有且只有一个零点. 21.【解析】 (1)由题意知:12c a =,即2a c =, 又由椭圆定义可得:()122PF PA a PA PF +=+-2225a AF a ≤+==,又∵222a b c =+,且52a ≤, 故可得:2a =,b =1c =.即椭圆C :的方程为:22143x y += (2)延长1F M 交椭圆于点P ,由122FM F N =, 根据椭圆的对称性可得112F M PF =.设()11,M x y ,()22,P x y ,则()22,N x y --.显然,10y >. 设直线PM 的方程为1x my =-,联立221143x my x y =-⎧⎪⎨+=⎪⎩得,()2234690m y my +--=,∴122634my y m +=+① 122934y y m =-+②又112FM PF =,得122y y =-③由①②③得,m =得直线PM的方程为1x y =-20y -+=, 设2F 到直线PM 的距离为d ,则由距离公式得:3d ==,又由弦长公式得:12PM y y =-==将5m =代入上式得278PM =, 设四边形12F F NM 的面积为S ,易知112722838S PM d =⋅⋅=⨯⨯= 【选做题】 22.【解析】 (1)因为2cos sin x y ϕϕ=⎧⎨=⎩,所以曲线C 的直角坐标方程为2214x y +=. 因为cos x ρθ=,sin y ρθ=,所以,曲线C 的极坐标方程为:2243sin 1ρθ=+(2)由于OA OB ⊥,故可设()1,A ρθ,2,2B πρθ⎛⎫+⎪⎝⎭21243sin 1ρθ=+,22243cos 1ρθ=+, 所以2222121111||||OA OB ρρ+=+ ()()223cos 13sin 1544θθ+++==.即2211||||OA OB +为定值5423.【解析】(1)由题知:()()2222x a x b x a x b a b a b +--≤+--=+=+, 因为存在0x R ∈,使得0024x a x b +--≥,所以只需24a b +≥, 即2a b +的取值范围是[)4,∞+. (2)方法一:由(1)知24a b +≥,因为,a b R +∈,不妨设22t a b =+, 当2b ≥时,224t a b =+>,当02b <<时,有222(42)t b a b -=≥-,整理得,2281651616555t b b b ⎛⎫≥-+=-+ ⎪⎝⎭,此时t 的最小值为165;综上:22a b +的最小值为165. 方法二:令222t a b =+,不妨设cos a t θ=,sin b t θ=,因为24a b +≥,所以4cos 2sin t θθ≥≥+2165t ≥,即22a b +的最小值为165.。

高三数学第一学期期末理科试题

高三数学第一学期期末理科试题

五校2021年—2021学年高三第一学期期末联考制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

数学试题〔理科〕本套试卷分选择题和非选择题两局部,一共4页,满分是为150分,考试时间是是120分钟。

考前须知:1.答卷前,所有考生必须用黑色字迹的钢笔或者签字笔将本人的姓名和考号填写上在答题卡上。

2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。

第一局部 选择题〔一共40分〕一、选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一个是符合题目要求的.1.假设集合}1|{2<=x x M ,}1|{xxy x N -==,那么N M = A .M B .N C .φ D .}10|{}01|{<<<<-x x x x 2.在复平面内,复数1+i2021(1-i)2 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.cos 0()(1)10xx f x f x x π->⎧⎪=⎨++≤⎪⎩,那么)34()34(-+f f 的值等于A .2-B .1C .2D .3 4.三条不重合的直线m 、n 、l ,两个不重合的平面βα,,有以下命题①假设αα//,,//m n n m 则⊂; ②假设βαβα//,//,则且m l m l ⊥⊥;③假设βαββαα//,//,//,,则n m n m ⊂⊂; ④假设αββαβα⊥⊥⊂=⊥n m n n m 则,,,, ; 其中正确的命题个数是A .1B .2C .3D .45.数列{}n a 、{}n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且11a +b =5,11a >b ,++11a b N (n N )、∈∈,那么数列nb{a }前10项的和等于A.55B.70C.85D.1006.定义行列式运算1234a a a a =1423a a a a . 将函数3sin ()1cos xf x x的图象向左平移n 〔0n 〕个单位,所得图象对应的函数为偶函数,那么n 的最小值为A.6B.3C.56D .237.定义在R 上的函数()f x 的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x,且(1)1,f (0)2f ,那么(1)(2)(3)(2008)f f f f 的值是A .2B .1C .0D .18.对任意正整数n ,定义n 的双阶乘!!n 如下: 当n 为偶数时,!!(2)(4)642n n n n =--当n 为奇数时,!!(2)(4)531n n n n =--`现有四个命题:①(2007!!)(2006!!)2007!=, ②2006!!21003!=,③2006!!个位数为0, ④2007!!个位数为5其中正确的个数为A.1B.2C.3D.4第二局部 非选择题〔一共110分〕二、填空题:本大题一一共7小题,其中9~12题是必做题,13~15题是选做题. 每一小题5分,满分是30分.9.假设抛物线22y px =的焦点与双曲线22163x y -=的右焦点重合,那么p 的值是 . 10.设a =(sin cos )x x dx π+⎰,那么二项式61()a x x-展开式中含2x 项的系数是11.在Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h 1, 那么2221111CBCA h +=;类比此性质,如图,在四 面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h ,那么得到的正确结论为 ;12.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比拟,提出假设0H :“这种血清不能起到预防感冒的作用〞,利用22⨯列联表计算得2 3.918K ≈,经查对临界值表知2( 3.841)0.05P K ≥≈.对此,四名同学做出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用〞 q :假设某人未使用该血清,那么他在一年中有95%的可能性得感冒 r :这种血清预防感冒的有效率为95% s :这种血清预防感冒的有效率为5%那么以下结论中,正确结论的序号是 .〔把你认为正确的命题序号都填上〕〔1〕 p ∧﹁q ; 〔2〕﹁p ∧q ; (3)〔﹁p ∧﹁q 〕∧〔r ∨s 〕; 〔4〕(p ∨﹁r )∧(﹁q ∨s ) ▲选做题:在下面三道小题中选做两题,三题都选的只计算前两题的得分. 13.〔坐标系与参数方程选做题〕 圆的极坐标方程为2cos ρθ=,那么该圆的圆心到直线FEDCB ADAsin 2cos 1ρθρθ+= 的间隔 是 .14.〔不等式选讲选做题〕 g(x)=|x-1|-|x-2|,那么g(x)的值域为 ;假设关于x 的不等式2()1()g x a a x R ≥++∈的解集为空集,那么实数a 的取值范围是 .15.〔几何证明选讲选做题〕 如图:PA 与圆O 相切于A , PCB 为圆O 的割线,并且不过圆心O ,∠BPA=030,PA=PC=1,那么圆O 的半径等于 .三、解答题:本大题一一共6小题,一共80分.解容许写出文字说明、演算步骤或者推证过程. 16.〔本小题满分是12分〕 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.a+b=5,c =7,且.272cos 2sin 42=-+C B A (1) 求角C 的大小; 〔2〕求△ABC 的面积.17.〔本小题满分是12分〕一个盒子装有六张卡片,上面分别写着如下六个定义域为R 的函数:23123456f(x)=x,f(x)=x ,f(x)=x ,f(x)=sinx,f(x)=cosx,f(x)=2. 〔1〕现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率; 〔2〕现从盒子中进展逐一抽取卡片,且每次取出后均不放回,假设取到一张记有偶函数的卡片那么停顿抽取,否那么继续进展,求抽取次数ξ的分布列和数学期望.18.(本小题满分是14分) 梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE = x ,G 是BC 的中点。

【高三】高三上册数学理科期末试题及答案

【高三】高三上册数学理科期末试题及答案

【高三】高三上册数学理科期末试题及答案【导语】高三的日子是苦的,有刚入高中三年级时的迷茫和压抑,有成绩失意时的沉默不语,有晚上奋战到一两点的精神*双重压力,也有在清晨凛冽的寒风中上学的艰苦经历。

在奋笔疾书中得到知识的快乐,也是一种在巨大压力下显得茫然无助的痛苦。

逍遥右脑为你整理《高三上册数学理科期末试题及答案》希望对你有帮助!第一卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置。

1.如果平面向量已知,且实数的值为a.b.c.d.2.设置,如果,实数的值为a.b.c.d.3.如果直线平面和直线已知,则“为”a.充分不必要条件b.必要不充分条件c.充要条件d.既不充分也不必要条件4.定义:如果满足复数,则等于a.b.c.d.5.函数的切线方程为a.b.c.d.6.程序框图如右图所示。

现在输入以下四个功能:,则可以输出的函数是a、不列颠哥伦比亚省。

7.若函数的图象(部分)如图所示,那么sum的值是a.b.c、 d。

8.若函数的零点与的零点之差的绝对值不超过,则可以是a、不列颠哥伦比亚省。

9.已知,若方程存在三个不等的实根,则的取值范围是a、不列颠哥伦比亚省。

10.已知集合,。

若存在实数使得成立,称点为“£”点,则“£”点在平面区域内的个数是a、 0b。

1c。

2d。

数不清的第二卷(非选择题共100分)二、填空:这个主要问题有5个小问题,每个小问题4分,总共20分填写答题纸上的答案11.已知随机变量,若,则等于******.12.一个几何体的三个视图如下图所示,则该几何体的体积为****************************************************13.已知抛物线的准线与双曲线相切,然后是双曲线的偏心率14.在平面直角坐标系中,不等式组所表示的平面区域的面积是9,则实数的值为******.15.不平等是众所周知的。

第一学期高三年级期末理科数学试题与答案

第一学期高三年级期末理科数学试题与答案

第一学期高三年级期末理科数学试题与答案数学试卷【理科】第Ⅰ卷【选择题 共40分】一、选择题(本大题共8小题.每小题5分.共40分.在每小题列出的四个选项中.选出符合题目要求的一项.) 【1】若集合{}2,1,0,1,2Α=--.{}2|1Βx x =>.则=ΑΒA .{|11}x x x <->或B .{}2,2-C .{}2 D .{0}(2) 下列函数中.在区间(0,)+∞上为增函数的是A.y =1y x =C. 1()2x y =D. 12log y x =(3) 已知两点(0,0),(2,0)O A -.以线段OA 为直径的圆的方程是A .22(1)4x y -+=B .22(1)4x y ++= C .22(1)1x y -+= D .22(1)1x y ++= (4) 在ABC ∆中.3,2,3a c B π===.则b =A .19B .7C .⑸ 某三棱锥的三视图如图所示.则该三 棱锥四个面的面积中最大的是B. 3C.D.【6】已知函数f (x ) 的部分对应值如表所示. 数列{}n a 满足11,a =且对任意*n ∈N .点1(,)n n a a +都在函数()f x 的图象上.则2016a 的值为x1 2 3 4 ()f x3124A . 1 B.2 C. 3 D.4俯视图侧(左)视图正(主)视图⑺ 若,x y 满足0,30,30,y x y kx y ≥⎧⎪-+≥⎨⎪-+≥⎩且2z x y =+的最大值为4.则k 的值为A .32-B . 32C .23-D .23【8】某大学进行自主招生时.需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:逻辑思维成绩排名总成绩排名200200O 甲乙下列叙述一定正确的是A .甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前C .甲、乙、丙三位同学的逻辑思维成绩排名中.甲同学更靠前D .乙同学的总成绩排名比丙同学的总成绩排名更靠前第Ⅱ卷【非选择题 共110分】二、填空题【本大题共6小题.每小题5分.共30分】【9】在261(2)x x -的展开式中.常数项是 【用数字作答】.【10】双曲线22:1916x y C -=的渐近线方程为__________________;某抛物线的焦点与双曲线C 的右焦点重合.则此抛物线的标准方程为____________.【11】执行如图所示的程序框图.逻辑思维成绩排名200200阅读表达成绩排名O 丙输出的S 值为_______.【12】将序号为1.2.3.4的四张电影票全部分给3人.每人至少一张. 要求分给同一人的两张电影票连号.那么不同的分法种数为________________.【用数字作答】 【13】如图.在矩形ABCD 中.3DP PC =.若,PB mAB nAD =+则m =______;n =_________.【14】已知函数2()|3|,.f x x x x =-∈R 若方程()|1|0f x a x -+=恰有4个互异的实数根.则实数a的取值范围是_____________________.三、解答题(本大题共6小题.共80分.解答应写出文字说明.证明过程或演算步骤.) 【15】【本小题满分13分】已知函数2()3sin(π)cos cos f x x x x --.【I 】 求函数()f x 的最小正周期; 【II 】求函数()f x 的单调递减区间.(16)【本小题满分13分】小王为了锻炼身体.每天坚持“健步走”, 并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图【图1】及相应的消耗能量数据表【表1】如下.频数(天)319181716PDCBA图1 表1【Ⅰ】求小王这8天 “健步走”步数的平均数;【Ⅱ】从步数为16千步.17千步.18千步的几天中任选2天.设小王这2天通过健步走消耗的“能量和”为X .求X 的分布列.【17】【本小题满分14分】在四棱锥P ABCD -中.平面PAD ⊥平面ABCD .PAD ∆为等边三角形,12AB AD CD==,AB AD ⊥,//AB CD ,点M 是PC 的中点.【I 】求证://MB 平面PAD ; 【II 】求二面角P BC D --的余弦值; 【III 】在线段PB 上是否存在点N .使得DN ⊥平面PBC ?若存在,请求出PNPB的值;若不存在,请说明理由.【18】【本小题满分13分】已知函数()()2ln 1f x x =+.【Ⅰ】若函数()f x 在点()()00P x f x ,处的切线方程为2y x =.求切点P 的坐标;【Ⅱ】求证:当[0,e 1]x ∈-时.()22f x x x ≥-;【其中e 2.71828=⋅⋅⋅】【Ⅲ】确定非负实数a 的取值范围.使得()()220,x f x x a x ∀≥≥-成立.P MD CBA【19】【本小题满分13分】已知椭圆C 2222:1(0)x y a b a b +=>>的离心率为2,点1)2在椭圆C 上.直线l 过点(1,1).且与椭圆C 交于A .B 两点.线段AB 的中点为M .【I 】求椭圆C 的方程;【Ⅱ】点O 为坐标原点.延长线段OM 与椭圆C 交于点P .四边形OAPB 能否为平行四边形?若能.求出此时直线l 的方程.若不能.说明理由.【20】【本小题满分14分】对于任意的*n ∈N .记集合{1,2,3,,}n E n =⋅⋅⋅.,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭.若集合A 满足下列条件:①nA P ⊆;②12,x x A ∀∈.且12x x ≠.不存在*k ∈N .使212x x k +=.则称A 具有性质Ω.如当2n =时.2{1,2}E =.2{1,P =.122,x x P ∀∈.且12x x ≠.不存在*k ∈N .使212x x k +=.所以2P 具有性质Ω.(Ⅰ) 写出集合35,P P 中的元素个数.并判断3P 是否具有性质Ω.【Ⅱ】证明:不存在,A B 具有性质Ω.且A B =∅.使15E A B =.【Ⅲ】若存在,A B 具有性质Ω.且A B =∅.使n P A B=.求n 的最大值.昌平区2015-2016学年第一学期高三年级期末质量抽测数学试卷参考答案及评分标准 【理科】 2016.1二、选择题(本大题共8小题.每小题5分.共40分.在每小题列出的四个选项中.选出符合题目要求的一项.) 题号 1 2 3 4 5 6 7 8 答案 BA D D CB A C二、填空题【本大题共6小题.每小题5分.共30分】【9】60 【10】24;203y x y x=±= 【11】 52 【12】18 【13】1;14- 【14】 (0,1)(9,)+∞三、解答题(本大题共6小题.共80分.解答应写出文字说明.证明过程或演算步骤.) (15)【本小题满分13分】 解:【I 】2()3sin cos cos f x x x x-311sin 2cos 222x x --π1sin(2)62x --所以 最小正周期2π2ππ.2Tω …………………………..7分(II) 由ππ3π2π22π,,262k x k k ≤≤∈Z得π5πππ,.36k x k k ≤≤∈Z ………………………11分所以函数()f x 的单调递减区间是π5π[π,π],.36k k k ∈Z ……………13分(16)【本小题满分13分】解: (I) 小王这8天 “健步走”步数的平均数为16317218119217.258⨯+⨯+⨯+⨯=【千步】. …………………………..4分【II 】X 的各种取值可能为800.840.880.920.23261(800)5C P X C ===,1132262(840),5C C P X C ===112312264(880),15C C C P X C +=== 1121262(920),15C C P X C === X 的分布列为:X800 840880 920 P 1525 415 215…………………………..13分 【17】【本小题满分14分】【Ⅰ】证明:取PD 中点H ,连结,MH AH . 因为 M 为PC 中点 ,所以 1//,2HM CD HM CD=.因为1//,2AB CD AB CD=.所以//AB HM 且AB HM =. 所以四边形ABMH 为平行四边形,所以 //BM AH .因为 BM PAD ⊄平面,AH ⊂平面PAD ,所以//BM 平面PAD . …………………………..4分【Ⅱ】 取AD 中点O ,连结.PO因为 PA PD =, 所以PO AD ⊥.因为 平面PAD ⊥平面ABCD , 平面PAD平面ABCD AD =,PO ⊂平面PAD ,所以PO ABCD ⊥平面.取BC 中点K ,连结OK ,则//.OK AB 以O 为原点,如图建立空间直角坐标系, 设2,AB = 则(1,0,0),(1,2,0),(1,4,0),(1,0,0),A B C D P --(2,2,0),(1,2,BC PB =-=-. 平面BCD 的法向量(0,0,OP =,设平面PBC 的法向量(,,)n x y z =,由0,0,BC n PB n ⎧⋅=⎪⎨⋅=⎪⎩得220,20.x y x y -+=⎧⎪⎨+-=⎪⎩令1x =.则(1,1,3)n =.15cos ,5||||OP n OP n OP n ⋅<>==.C由图可知.二面角P BC D --是锐二面角.所以二面角P BC D --的余弦值为5. …………………………..9分【Ⅲ】 不存在.设点(,,)N x y z ,且 ,[0,1]PNPB λλ=∈ ,则,PN PB λ=所以(,,(1,2,x y z λ-=.则,2,.x y z λλ⎧=⎪=⎨⎪=⎩所以(,2)N λλ, (1,2)DN λλ=+.若 DN PBC ⊥平面,则//DN n ,即12λλ+==.此方程无解,所以在线段PB 上不存在点N ,使得DN PBC ⊥平面. …………………………..14分【18】【本小题满分13分】 【Ⅰ】解:定义域为(1,)-+∞.()2'1f x x =+.由题意.()0'2f x =.所以()00,00x f ==.即切点P 的坐标为(0,0). ………3分【Ⅱ】证明:当[0,e 1]x ∈-时.()22f x x x ≥-.可转化为当[0,e 1]x ∈-时.()220f x x x -+≥恒成立.设()2()2g x f x x x =-+.所以原问题转化为当[0,e 1]x ∈-时.()min 0g x ≥恒成立.所以2242'()2211xg x x x x -=-+=++. 令'()0g x =.则1x =【舍】.2x =所以()g x .'()g x 变化如下:x1)-e 1-'()g x + 0 - ()g x(0)g↗极大值↘(e 1)g -因为()(0)000g f =-=.2(e 1)2(e 1)2(e 1)2(e 1)(3e)0g -=--+-=+-->.所以min ()0g x =.当[0,e 1]x ∈-时.()22f x x x ≥-成立. ………………..8分【Ⅲ】解:()()20,2x f x a x x ∀≥≥-.可转化为当0x ≥时.()()220f x a x x --≥恒成立.设()()2()2h x f x a x x =--.所以222(1)'()2211ax a h x a ax x x +-=-+=++.⑴当0a =时.对于任意的0x ≥.2'()01h x x =>+.所以()h x 在[0,)+∞上为增函数.所以()min ()00h x h ==.所以命题成立.当0a >时.令'()0h x =.则210ax a +-=.⑵当10a -≥.即01a <≤时.对于任意的0x ≥.'()0h x >.所以()h x 在[0,)+∞上为增函数.所以()min ()00h x h ==. 所以命题成立.⑶当10a -<.即1a >时.则1x =【舍】.20x =>. 所以()h x .'()h x 变化如下:x0 2(0,)x 2x 2(,)x +∞'()h x- 0 + ()h x↘ 极小值↗因为()min2()()00h x h x h =<=.所以.当0x ≥时.命题不成立.综上.非负实数a 的取值范围为[0,1]. …………………………..13分【19】【本小题满分13分】解:【I】由题意得22222311,4.c e a ab a bc ⎧==⎪⎪⎪+=⎨⎪⎪=+⎪⎩ 解得224,1a b ==. 所以椭圆C 的方程为22 1.4x y += …………………………..5分【Ⅱ】四边形OAPB 能为平行四边形.法一:【1】当直线l 与x 轴垂直时.直线l 的方程为1x = 满足题意; 【2】当直线l 与x 轴不垂直时.设直线:l y kx m =+.显然0,0k m ≠≠.11(,)A x y .22(,)B x y .(,)M M M x y .将y kx m =+代入22 1.4x y +=得222(41)8440k x kmx m +++-=. 2221228(8)4(41)(44)0,.41kmkm k m x x k -=-+->+=+故1224241M x x kmx k +==-+.241M M m y kx m k =+=+.于是直线OM 的斜率14M OM M y k x k ==-.即14OM k k ⋅=-. 由直线:l y kx m =+(0,0)k m ≠≠.过点(1,1).得1m k =-.因此24(1)41M k k x k -=+.OM 的方程为14y xk =-.设点P 的横坐标为P x .由221,41,4y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩得2221641Pk x k =+.即P x =. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分.即2P Mx x =24(1)241k k k -=⨯+.由0k ≠.得35,.88k m ==满足0.> 所以直线l 的方程为3588y x =+时.四边形OAPB 为平行四边形. 综上所述:直线l 的方程为3588y x =+或1x = . ………………………….13分 法二:【1】当直线l 与x 轴垂直时.直线l 的方程为1x = 满足题意;【2】当直线l 与x 轴不垂直时.设直线:l y kx m =+.显然0,0k m ≠≠.11(,)A x y .22(,)B x y .(,)M M M x y .将y kx m =+代入22 1.4x y +=得222(41)8440k x kmx m +++-=. 2221228(8)4(41)(44)0,.41km km k m x x k -=-+->+=+ 故1224241M x x km x k +==-+. 241M M my kx m k =+=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分.即2,2.P M P M x x y y =⎧⎨=⎩. 则2222()()82114441km m k k -++=+.由直线:l y kx m =+(0,0)k m ≠≠.过点(1,1).得1m k =-. 则2222(164)(1))1(41k k k +-+=.则2(41)(83)0k k +-= . 则35,.88k m == 满足0.> 所以直线l 的方程为3588y x =+时.四边形OAPB 为平行四边形. 综上所述:直线l 的方程为3588y x =+或1x = . …………………………..13分【20】【本小题满分14分】(Ⅰ) 解:集合35,P P 中的元素个数分别为9.23.3P 不具有性质Ω. ……………..6分【Ⅱ】证明:假设存在,A B 具有性质Ω.且AB =∅.使15E A B =.其中15{1,2,3,,15}E =⋅⋅⋅. 因为151E ∈.所以1A B ∈.不妨设1A ∈.因为2132+=.所以3A ∉.3B ∈.同理6A ∈.10B ∈.15A ∈.因为21154+=.这与A 具有性质Ω矛盾.所以假设不成立.即不存在,A B 具有性质Ω.且A B =∅.使15E A B =.…..10分【Ⅲ】因为当15n ≥时.15n E P ⊆.由【Ⅱ】知.不存在,A B 具有性质Ω.且A B =∅.使n P A B =.若14,n =当1b =时.1414x x a E E ⎧⎫=∈=⎨⎬⎩⎭.取{}11,2,4,6,9,11,13A =.{}13,5,7,8,10,12,14B =.则11,A B 具有性质Ω.且11A B =∅.使1411E A B =.当4b =时.集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外.其余的数组成集合为13513{,,,,}2222⋅⋅⋅.令215911{,,,}2222A =.23713{,,}222B =.则22,A B 具有性质Ω.且22A B =∅.使2213513{,,,,}2222A B ⋅⋅⋅=.当9b =时.集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外.其余的数组成集合12457810111314{,,,,,,,,,}3333333333.令31451013{,,,,}33333A =.32781114{,,,,}33333B =.则33,A B 具有性质Ω.且33A B =∅.使3312457810111314{,,,,,,,,,}3333333333A B =.集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数.它与14P 中的任何其他数之和都不是整数.因此.令123A A A A C =.123B B B B =.则A B =∅.且14P A B =.综上.所求n 的最大值为14. ……………..14分。

高三理科数学第一学期期末考试

高三理科数学第一学期期末考试

高三理科数学第一学期期末考试数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分;共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前;考生务必将自己的姓名、准考证号、考试科目、试卷类型用铅笔涂写在答题卡上。

2.第小题选出答案后;用铅笔把题答卡上对应题目的答案标号涂黑。

如需改动;用橡皮擦干净后;再选涂其他答案标号。

一、选择题:本大题共12小题;每小题5分;共60分。

在每小题给出的四个选项中;只有一项是符合题目要求的。

1.已知集合A C xy x A R U U 则集合},11|{,-=== ( )A .}10|{<≤x xB .}10|{≥<x x x 或C .}1|{≥x xD .}0|{<x x2.已知向量b a b a n b a ⋅=+==||),,2(),1,1(若;则n= ( )A .-3B .-1C .1D .33.有关命题的说法错误的是( )A .命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则” B .“x=1”是“0232=+-x x ”的充分不必要条件 C .若q p ∧为假命题;则p 、q 均为假命题D .对于命题使得R x p ∈∃:012<++x x ;则01,:2≥++∈∀⌝x x R x p 均有4.三视图如右图的几何体的全面积是 ( )A .22+B .21+C .32+D .31+5.已知函数]4,3[)0(sin 2)(ππωω->=在区间x x f上的最大值是2;则ω的最小值等于( )A .32 B .23C .2D .36.设a,b 是两个实数;且a ≠b ;①,322355b a b a b a +>+②)1(222--≥+b a b a ;③ 2>+abb a 。

上述三个式子恒成立的有 ( )A .0个B .1个C .2个D .3个7.各项都是正数的等比数列}{n a 的公比1≠q ;且132,21,a a a 成等差数列;则5443a a a a ++的值为( )A .251- B .215+ C .215- D .215+或215- 8.设)()(,)()(x f y x f y x f x f '=='和将的导函数是函数的图象画在同一个直角坐标系 中;不可能正确的是( )9.已知}02,0,4|),{(},0,0,6|),{(≥-≥≤=≥≥≤+=Ωy x y x y x A y x y x y x ;若向区域Ω上随机投一点P ;则点P 落入区域A 的概率为 ( )A .92B .32 C .31 D .91 10.6个人分乘两辆不同的汽车;每辆车最多坐4人;则不同的乘法方法数为( )A .40种B .50种C .60种D .70种11.已知抛物线1)0(222222=->=by a x p px y 与双曲线有相同的焦点F ;点A 是两曲线的交点;且AF ⊥x 轴;则双曲线的离心率为 ( )A .215+ B .13+ C .12+D .2122+ 12.一次研究性课堂上;老师给出函数)(||1)(R x x xx f ∈+=;甲、乙、丙三位同学在研究此函数时分别给出命题:甲:函数)1,1()(-的值域为x f ; 乙:若21x x ≠则一定有)()(21x f x f ≠;丙:若规定*||1)()),(()(),()(11N n x n xx f x f f x f x f x f n n n ∈+===-对任意则恒成立你认为上述三个命题中正确的个数有( )A .3个B .2个C .1个D .0个第Ⅱ卷(非选择题;共90分)注意事项:1.用0.5mm 的中性笔答在答题纸相应的位置内。

高三上册理科期末数学考试试卷

高三上册理科期末数学考试试卷

高三上册理科期末数学考试试卷一、选择题:本大题共8小题,每小题5分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.“a>4”是“a2>16”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.已知点(2,1)在双曲线C: =1(a>b>0)的渐近线上,则C的离心率为()A. B.2 C. D.3.若“x∈[ , ],cosx≤m”是真命题,则实数m的最小值为()A. B. C. D.4.在边长为1的正三角形ABC中,设D,E分别为AB,AC的中点,则 =()A. B. C. D.05.已知三棱柱ABCA1B1C1的底面是锐角三角形,则存在过点A的平面()A.与直线BC和直线A1B1都平行B.与直线BC和直线A1B1都垂直C.与直线BC平行且直线A1B1垂直D.与直线BC和直线A1B1所成角相等6.设函数f(x)=sinxcos2x,则下列结论中错误的为()A.点(π,0)是函数y=f(x)图象的一个对称中心B.直线x= 是函数y=f(x)图象的一条对称轴C.π是函数y=f(x)的.周期D.函数y=f(x)的最大值为17.已知正实数a,b满足a2b+4≤0,则u= ()A.有最大值为B.有最小值为C.没有最小值D.有最大值为38.设变量x,y满足|xa|+|ya|≤1,若2xy的最大值为5,则实数a的值为()A.0B.1C.2D.3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分.、共36分.9.已知全集为R,集合A={x|x22x>0},B={x|110.( )6的展开式中,常数项为.(用数字作答).11.设等差数列{an}的前n项和Sn=n2+bn+c(b,c为常数,n∈N*),若a2+a3=4,则c=,b=.12.已知函数f(x)= ,则f(f(2))=,不等式f(x3)13.已知,是夹角为的两个单位向量,非零向量 =x +y ,x,y∈R,若x+2y=2,则| |的最小值为.14.平面直角坐标系xOy中,直线y=5与抛物线C:x2=2py(p>0)交于点A,B,若△OAB的垂心为C的焦点,则p的值为.15.若函数f(x)=(2x2ax6a2)ln(xa)的值域是[0,+∞),则实数a=.三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=2 sinxcosx+2cos2x1,在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1.(Ⅰ)求B;(Ⅱ)若 =3,求b的取值范围.17.若a>b>c,且a+2b+c=0,则的取值范围是.18.已知a>0,b∈R,函数f(x)=4ax22bxa+b的定义域为[0,1].(1)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;(2)设f(x)的最大值和最小值分别为M和m,求证:M+m>0.19.设数列{an}是各项均为正数的等比数列,且a1=3,a2+a3=36.(1)求数列{an}的通项公式;(2)若数列{bn}对任意的正整数n都有 + + ++ =2n+1,求b1+b2+b3++b2015的值.20.已知数列{an},a1=a(a∈R),an+1= (n∈N*).(1)若数列{an}从第二项起每一项都大于1,求实数a的取值范围;(2)若a=3,记Sn是数列{an}的前n项和,证明:Sn。

内蒙古阿拉善盟2022-2023学年高三上学期期末考试理科数学试题及答案解析

内蒙古阿拉善盟2022-2023学年高三上学期期末考试理科数学试题及答案解析

内蒙古阿拉善盟第一中学2022-2023学年高三上学期期末考试理科数学试题及答案解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.记集合{|||2}M x x =>,(){}2|ln 3N x y x x==-,则M N = ()A.{}32≤<x x B.{|3x x >或2}x <-C.{}20<≤x x D.{}32≤<-x x 2.已知复数1i z =+(i 是虚数单位),则izzz =+()A.31i 55+ B.11i 55+ C.31i55-+ D.11i 55-+3.命题“2≥∀a ,()2f x x ax =-是奇函数”的否定是()A.2≥∀a ,()2f x x ax =-是偶函数B.2≥∃a ,()2f x x ax =-不是奇函数C.2a ∀<,()2f x x ax =-是偶函数D.2a ∃<,()2f x x ax =-不是奇函数4.若()4sin 5πα+=-,则()cos 2πα-=()A.35B.35-C.725D.725-5.若双曲线2221x y m-=(0m >)的渐近线与圆22610x y y +-+=相切,则m =()A.4C.2D.6.端午节为每年农历五月初五,又称端阳节、午日节、五月节等.端午节是中国汉族人民纪念屈原的传统节日,以围绕才华横溢、遗世独立的楚国大夫屈原而展开,传播至华夏各地,民俗文化共享,屈原之名人尽皆知,追怀华夏民族的高洁情怀.小华的妈妈为小华煮了8个粽子,其中5个甜茶粽和3个艾香粽,小华随机取出两个,事件A “取到的两个为同一种馅”,事件B “取到的两个都是艾香粽”,则()|P B A =()A.35B.313C.58 D.13287.正方体1111ABCD A B C D -中,E 为1CC 的中点,则异面直线1B E 与1C D 所成角的余弦值为()A.1010B.1010-C.104D.104-8.某地锰矿石原有储量为a 万吨,计划每年的开采量为本年年初储量的m (01m <<,且m 为常数)倍,第n (*n ∈N )年开采后剩余储量为(1)na m -,按该计划使用10年时间开采到剩余储量为原有储量的一半.若开采到剩余储量为原有储量的70%,则需开采约(参考数107≈)()A.3年B.4年C.5年D.6年9.在平行四边形ABCD 中,4AB =,3AD =,13AE EB = ,2DF FC = ,且6BF CE ⋅=-,则平行四边形ABCD 的面积为()A.5B.5C.245D.12510.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”,如图是该算法的程序框图,如果输入99a =,231b =,则输出的a 是()A.23 B.33C.37D.4211.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,π0ϕ-<<)的部分图象如图所示,下列说法中错误的是()A.函数()f x 的图象关于点2π,03⎛⎫- ⎪⎝⎭对称B.函数()f x 的图象关于直线11π12x =-对称C.函数()f x 在ππ,42⎡⎤⎢⎥⎣⎦上单调递增D.函数()f x 的图象向右平移π3个单位可得函数2sin2y x =-的图象12.若e 是自然对数的底数,()e ln x x m >+,则整数m 的最大值为()A.0B.1C.2D.3二、填空题:本题共4小题,每小题5分,共20分。

高三上学期理科数学期末试卷及答案

高三上学期理科数学期末试卷及答案

2021高三上册理科数学期末试卷及答案【】大家把理论知识复习好的同时,也应该要多做题,从题中找到自己的缺乏,及时学懂,下面是查字典数学网小编为大家整理的高三上册数学期末试卷及答案,希望对大家有帮助。

第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项符合题目要求。

1.设全集,集合 ,那么 ( )A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}2.假设复数是纯虚数,那么实数 ( )A.1B.C.0D.13. 为等比数列,假设,那么 ( )A.10B.20C.60D.1004.设点是线段BC的中点,点A在直线BC外, ,,那么 ( )A.2B.4C.6D.85.右图的算法中,假设输入A=192,B=22,输出的是( )A.0B.2C.4D.66.给出命题p:直线互相平行的充要条件是 ;命题q:假设平面内不共线的三点到平面的间隔相等,那么∥ 。

对以上两个命题,以下结论中正确的选项是( )A.命题p且q为真B.命题p或q为假C.命题p且┓q为假D.命题p且┓q为真7.假设关于的不等式组表示的区域为三角形,那么实数的取值范围是( )A.(-,1)B.(0,1)C.(-1,1)D.(1,+)8.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有一样标号的盒子中,那么不同的方法有( )A.36种B.45种C.54种D.84种9.设偶函数的局部图像如下图,为等腰直角三角形,=90,| |=1,那么的值为( )A. B. C. D.10.点 ,动圆C与直线切于点B,过与圆C相切的两直线相交于点P,那么P点的轨迹方程为( )A. B.C. D.11.函数有且只有两个不同的零点,那么b的值为( )A. B. C. D.不确定12.三边长分别为4、5、6的△ABC的外接圆恰好是球的一个大圆,P为球面上一点,假设点P到△ABC的三个顶点的间隔相等,那么三棱锥P-ABC的体积为( )A.5B.10C.20D.30第二卷二、填空题:本大题共4小题,每题5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期高三期末理 科 数 学注意事项:1.本试题满分150分,考试时间为120分钟。

2.答卷前,务必将姓名和准考证号填涂在答题纸上。

3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰,超出答题区书出的答案无效;在草稿纸、试题卷上答题无效。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项符合题目要求。

1.已知全集为R ,集合{}{}()2=1124=230R M N x x x M C N ---≤⋂=,,,,,则 A. {}112-,,B. {}12,C. {}4D. {}12x x -≤≤2.已知01b a <<<,则下列不等式成立的是A. 11a b>B. 1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C. ()()22lg lg a b > D.11lg lg a b< 3.已知函数()()()1,0,0sin ,0,2x e x f x f f x x π-⎧>⎪==⎨⎛⎫-≤ ⎪⎪⎝⎭⎩则 A.0B.1C.eD.1e4.已知等差数列{}n a 的前n 项和为n S ,且233215S S -=,则数列{}n a 的公差为 A.3B. 4-C. 5-D.65.若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移()0ϕϕ>个单位长度,所得图象关于原点对称,则ϕ的最小值是 A.8π B.4π C. 38π D.34π6.在区间[]0,π上随机取一个数x ,则事件“2sin cos 2x x +≥”发生的概率为 A.12B.13C.712D.237.函数2cos y x x =-的图象大致为8.在ABC ∆中,已知,1,3,,AB AC AB AC AB AC M N +=-==分别为BC 的三等分点,则AM AN =A.109 B.209C. 89D. 839.已知某几何体的三视图如右图所示,则该几何体的体积等于 A.12 B.18 C.20 D.2410.已知()()12,0,,0F c F c -为双曲线()222210,0x y a b a b -=>>的两个焦点,若双曲线上存在点P 使得2122c PF PF =- ,则双曲线离心率的取值范围为A. ()1,+∞B. [)2,+∞C. )2,⎡+∞⎣D. )3,⎡+∞⎣11.数列{}{},n n a b 的前n 项和分别为(),,n n n n n n n n n S T c a T b S a b n N *=⋅+⋅-⋅∈记,若201820181,2018S T ==,则数列{}n c 的前2018项和为 A.2017B.2018C.2018D.2019212.定义在区间[],a b 上的函数()y f x =,()f x '是函数()f x 的导函数,若存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-,则称ξ为函数()[],f x a b 在上的“中值点”.下列函数:①()sin f x x =②()x f x e =③()()ln 3f x x =+④()31f x x x =-+.其中在区间[]2,2-上至少有两个“中值点”的函数的个数为 A.1B.2C.3D.4二、填空题:本大题共有4个小题,每小题5分,共20分. 13. ()()52x y x y --的展开式中33x y 的系数是(用数字作答)14.设变量,x y 满足约束条件20,23x y y x z x y x y -≥⎧⎪≥=+⎨⎪+≥⎩则的最小值为 15.中国古代数学经典《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bi ē n ào ).若三棱锥P ABC -为鳖臑,且PA ⊥平面ABC ,PA=2,AB=3,AB BC ⊥,该鳖臑的外接球的表面积为29π,则该鳖臑的体积为16.过抛物线()220y px p =>的焦点F 的一条直线交抛物线于()()1122,,,A x y B x y 两点,给出以下结论:①12y y ⋅为定值;②若经过点A 和抛物线的顶点的直线交准线于点C ,则//BC x 轴; ③存在这样的抛物线和直线AB ,使得OA OB ⊥(O 为坐标原点);④若以点A,B 为切点分别作抛物线的切线,则两切线交点的轨迹为抛物线的准线. 写出所有正确的结论的序号三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(12分)已知函数()22133cos sin 242f x x x ππ+⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值及相应x 的值; (2)在ABC ∆中,若()()1,2BCA B f A f B AB<==且,求的值.18. (12分)某食品集团生产的火腿按行业生产标准分成8个等级,等级系数X 依次为1,2,3,…,8,其中5X ≥为标准A ,3X ≥为标准B.已知甲车间执行标准A ,乙执行标准B 生产该产品,且两个车间的产品都符合相应的执行标准.(1)已知甲车间的等级系数1X 的概率分布列如下表:若1X 的数学期望()1 6.4,E X a b =,求的值;(2)为了分析乙车间的等级系数2X ,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7. 用该样本的频率分布估计总体,将频率视为概率,求等级系数2X 的概率分布列和均值; (3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准A 的概率.19. (12分)已知四棱锥S ABCD SA -⊥,平面ABCD ,底面ABCD 为直角梯形,//,90,2,3AB DC DAB AB DC AD DC ∠=== ,M 是SB 的中点.(1)求证:CM//平面SAD ;(2)若直线DM 与平面SAB 所成角的正切值为32,F 是SC 中点,求二面角C AF D --的余弦值.20. (12分)已知点A,B 是椭圆()222210x y L a b a b+=>>:的左右顶点,点C 是椭圆的上顶点,若该椭圆的焦距为23,直线AC,BC 的斜率之积为14-. (1)求椭圆L 的方程;(2)是否存在过点()1,0M 的直线l 与椭圆L 交于两点P ,Q ,使得以PQ 为直径的圆经过点C ?若存在,求出直线l 的方程;若不存在,说明理由.21. (12分)已知函数()()ln 1af x x x a a R x=+-+-∈. (1)求函数()f x 的单调区间; (2)若存在()11xx f x x x->+<,使成立,求整数a 的最小值.(二)选考题:共10分.在第22、23题中任选一题作答.若多做,则按所做的第一题计分. 22. [选修4—4,坐标系与参数的方程](10分)已知曲线C 的参数方程为15cos 25sin x y θθ⎧=+⎪⎨=+⎪⎩(θ为参数),以直角坐标系的原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程,并说明其轨迹; (2)若曲线1C 的极坐标方程为3sin cos θθρ-=,曲线C 与1C 相交于A,B 两点,求线段AB 的长度.23. [选修4—5,不等式选讲](10分)已知函数()()21,123f x x g x a x =+=---. (1)当5a =-时,求()()f x g x ≤的解集;(2)若存在实数x 使得()()f x g x <成立,求实数a 的取值范围.2017-2018学年度第一学期高三期末理科数学参考答案一、 选择题C D B C C C A B D C B B 二、 填空题13.120- 14.4 15.4 16.①②④ 三、 解答题17. 解:(1)()1cos 21cos(2)1323222x x f x ππ⎛⎫-+ ⎪+-+⎝⎭=⋅+-13sin 2cos 2sin 2223x x x π⎛⎫=-=- ⎪⎝⎭. ……………………………4分 由于02x π≤≤,22333x πππ-≤-≤,所以当232x ππ-=即512x π=时, ()f x 取得最大值,最大值为1. ………………………6分(2)由已知,A 、B 是ABC ∆的内角,A B <,且()()12f A f B ==, 可解得4A π=,712B π=. 所以6C A B ππ=--=, ……………………10分得sin 2sin BC AAB C== . ………………………12分 18. 解:(1)1()50.26780.1 6.4E X a b =⨯+++⨯= 即67 4.6a b +=①又0.20.11a b +++=,即0.7a b +=②联立①②得 67 4.60.7a b a b +=⎧⎨+=⎩,解得0.30.4a b =⎧⎨=⎩. ………………………4分(2)由样本的频率分布估计总体分布,可得等级系数2X 的分布列如下:…………………………6分2X3 4 5 6 7 8P0.30.20.20.10.1 0.1z yxSMF DC BA8.41.081.071.062.052.043.03)(2=⨯+⨯+⨯+⨯+⨯+⨯=X E ,即乙车间的等级系数的均值为8.4. ………………………8分(3)3325115()()2216P C =⨯⨯=. …………………………12分 (4)19. (1)证明:取SA 中点N ,连接DN MN ,, 在SAB ∆中,MN //AB ,AB MN 21=,DC NM DC NM =∴,//, ∴四边形CDNM 为平行四边形. ………………2分 ∴DN CM //又⊄CM 平面SAD ,DN ⊂平面SAD∴//CM 平面SAD . …………4分(2)由已知得:,,AB AD AS 两两垂直,以,,AB AD AS 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,,,,⊥⊥=∴⊥ AD SA AD AB SA AB A AD 平面SAB ,∴DMA ∠就是DM 与平面SAB 所成的角. ……………………5分在Rt AMD D 中,3tan 2AMD ∠=,即32AD AM =, 设2=AB ,则3AD =, 1=DC 2=∴AMSAB Rt ∆中,M 为斜边SB 中点,4=∴SB322422=-=∴AS . ……………………6分则(0,0,0),(2,0,0)A B ,(1,3,0),(0,3,0)C D ,(0,0,23)S ,13(,,3)22F 所以(0,3,0),(1,3,0)AD AC ==,13(,,3)22AF = . ………………8分 设111(,,)=x y z m 是平面ACF 的一个法向量,则111113001303022⎧+=⎧=⎪⎪⇒⎨⎨=++=⎪⎪⎩⎩ x y AC AF x y z m m ,令11y =,得(3,1,0)=-m . 设222(,,)=x y z n 是平面ADF 的一个法向量,则22223001303022⎧=⎧=⎪⎪⇒⎨⎨=++=⎪⎪⎩⎩ y AD AF x y z n n ,令21z = ()23,0,1∴=-n . …………………………10分∴6313cos ,13132⋅<>===⋅⋅m n m n m n . ∴二面角E AF C --的余弦值为31313. ……………………12分 20. 解:(1)由题意可知,3c =,,AC BC b b k k a a==-, 有 2214b a -=-, …………………2分即224a b =,又222a b c =+,解得224,1a b ==,所以椭圆C 的方程为2214x y +=. ………………4分 (2)存在;以PQ 为直径的圆经过点C 可得,CP CQ ⊥,若直线l 的斜率为0,则,A B 为点,P Q ,此时222(3)(3)45cos 03233ACB +-∠==-<,此时,CP CQ 不垂直,不满足题意,可设直线l 的方程为:1x my =+,联立22141x y x my ⎧+=⎪⎨⎪=+⎩,消x 可得,22(4)230m y my ++-=,则有1221222434m y y m y y m -⎧+=⎪⎪+⎨-⎪=⎪+⎩. ① …………………8分设1122(,),(,)P x y Q x y ,由题意可知120x x ≠,因为CP CQ ⊥,则1CP CQ k k =-,即1212111y y x x --⋅=-, 整理可得:21212(1)(1)()20m y y m y y ++-++=, ②将①代入②可得:2223(1)2(1)2044m m m m m -+--+=++, 整理得23250m m --=,解得1m =-或者53m =,所以直线l 的方程为:10x y +-=或3530x y --=. (12)分21. 解:(1)由题意可知,0x >,2221()1a x x af x x x x-+-'=--=, 方程20x x a -+-=对应的14a ∆=-,当140a ∆=-≤,即14a ≥时,当(0,)x ∈+∞时,()0f x '≤,∴()f x 在(0,)+∞上单调递减; ……………………2分当104a <<时,方程20x x a -+-=的两根为1142a ±-, 且11402a --<<1142a +-, 此时,()f x 在1141+1422a a ---(,)上()0f x '>,函数()f x 单调递增,在1141140,)22a a --+-+∞(,),(上()0f x '<,函数()f x 单调递减;…………………4分当0a ≤时,11402a --<,11402a+->, 此时当114(0,),()02ax f x +-'∈>,()f x 单调递增, 当114(,)2ax +-∈+∞时,()0f x '<,()f x 单调递减; …………………6分 综上:当0a ≤时,114(0,)2a x +-∈,()f x 单调递增,当114(,)2ax +-∈+∞时, ()f x 单调递减;当104a <<时,()f x 在1141+1422a a---(,)上单调递增,在1141140,)22a a--+-+∞(,),(上单调递减; 当14a ≥时,()f x 在(0,)+∞上单调递减; ………………………7分 (2)原式等价于(1)ln 21x a x x x ->+-,即存在1x >,使ln 211x x x a x +->-成立.设ln 21()1x x x g x x +-=-,1x >,则2ln 2'()(1)x x g x x --=-, …………………9分设()ln 2h x x x =--,则11()10x h x x x-'=-=>,∴()h x 在(1,)+∞上单调递增. 又(3)3ln321ln30,(4)4ln 4222ln 20h h =--=-<=--=->,根据零点存在性定理,可知()h x 在(1,)+∞上有唯一零点,设该零点为0x , 则0(3,4)x ∈,且000()ln 20h x x x =--=,即002ln x x -=,∴000min 00ln 21()11x x x g x x x +-==+- ………………………11分 由题意可知01a x >+,又0(3,4)x ∈,a ∈Z ,∴a 的最小值为5. …………12分22. 解:(1)曲线C 的普通方程为5)2()1(22=-+-y x ① 所以曲线C 是以)2,1(为圆心,5 为半径的圆。

相关文档
最新文档