高三数学不等式复习题4
人教A版数学高三基本不等式精选试卷练习(含答案)4
24.(1) 2 1或 2 1;(2) , 4 .
25.(1) y 200 x 86400 , (0 x 48) ;
3
x
(2)当船速为每小时 36 海里时,船从甲地到乙地所需的总费用最少为 4800 元
26.(1)[9, ) ;(2)[6, )
答案第 1页,总 2页
27. 27 18 2 , x 3 2
96 元,其余航行运作费用(不论速度如何)总计是每小时 150 元.假定运行过程中轮船
以速度 v 匀速航行. (1)求 k 的值; (2)求该轮船航行 100 海里的总费用W (燃料费+航行运作费用)的最小值.
24.已知函数 f x x m 2 ( m R ).
x
(1)若函数 y f x 图象上动点 P 到定点 Q 0, 2 的距离最小值是 2 ,求实数 m 的
8.C
9.C
10.C
11.A
12.B
13.D
14.C
15.A
16.C
17.B
18.B
19.C
20.(1) 0 x 300 (2)5.5
21.长和宽均为 4 m 时,最小值为 64 m2
22.(Ⅰ)证明见解析;(Ⅱ)证明见解析.
23. 1 k 值为 0.96 , 2 该轮船航行 100 海里的总费用 W 的最小值为 240 0 元
(1)试把船从甲地到乙地所需的总费用 y ,表示为船速 x (海里小时)的函数,并指出函数
的定义域; (2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?
26.若 a, b 0 ,且 ab a b 3 ,求 (1) ab 的取值范围;
(2) a b的取值范围。
高三数学不等式的性质试题
高三数学不等式的性质试题1.若为非零实数,且,则下列命题成立的是()A.B.C.D.【答案】D【解析】∵,,,∴由于a,b的正负不确定,所以A,B,C都错,所以D正确.【考点】作差法比较大小.2.已知实数满足,则下面关系是恒成立的是()A.B.C.D.【答案】D【解析】由及指数函数的性质得,所以,,选D.【考点】指数函数的性质,不等式的性质.3.已知关于x的不等式(ax-5)(x2-a)<0的解集为M.(1)当a=4时,求集合M;(2)当3∈M,且5∉M时,求实数a的取值范围.【答案】(1)M={x|x<-2,或<x<2}(2)[1,)∪(9,25]【解析】解:(1)当a=4时,(ax-5)(x2-a)<0⇔(x-)(x-2)(x+2)<0,由数轴标根法得x<-2,或<x<2.故M={x|x<-2,或<x<2}.(2)3∈M,且5∉M⇔⇔⇔⇔1≤a<,或9<a≤25.故实数a的取值范围是[1,)∪(9,25].4. [2014·绵阳周测]设t=a+2b,s=a+b2+1,则下列关于t和s的大小关系中正确的是() A.t>s B.t≥s C.t<s D.t≤s【答案】D【解析】s-t=b2-2b+1=(b-1)2≥0,∴s≥t,选D项.5. [2013·淮南模拟]已知a>0,b>0,给出下列四个不等式:①a+b+≥2;②(a+b)(+)≥4;③≥a+b;④a+≥-2.其中正确的不等式有________(只填序号).【答案】①②③【解析】∵a>0,b>0,∴①a+b+≥2+≥2=2.当且仅当a=b=时取等号.②(a+b)(+)≥4·=4.当且仅当a=b时取等号.③∵≥,∴a2+b2≥=(a+b)·≥(a+b),∴≥a+b.当且仅当a=b 时取等号.④a+=(a+4)+-4≥2-4=-2,当且仅当a+4=,即(a+4)2=1时等号成立,而a>0,∴(a+4)2≠1.∴等号不能取得.综上①②③正确.6.已知且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】或,所以是的必要非充分条件.故选B.【考点】充分必要条件7.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若,则知即所以即;令,满足,但.所以是的充分而不必要条件.选.【考点】充要条件.8.已知a>b>1,c<0,给出下列四个结论:①>;②a c<b c;③logb (a-c)>loga(b-c);④b a-c>a b-c.其中所有正确结论的序号是()A.①②③B.①②④C.①③④D.②③④【答案】A【解析】a>b>1⇒,又c<0,故>,故①正确;由c<0知,y=x c在(0,+∞)上是减函数,故a c<b c.故②正确.由已知得a-c>b-c>1.故logb (a-c)>logb(b-c).由a>b>1得0<loga (b-c)<logb(b-c),故logb (a-c)>loga(b-c).故③正确.9.设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3【答案】D【解析】A.3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B.1>﹣2,但是,故B不正确;C..﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D.∵a>b,∴a3>b3,成立.故选D.10.不等式恒成立,则实数a的取范围是()A.B.C.D.【答案】C【解析】由于函,又显然函数有最大值,,选C.11.函数f(x)=ax2+bx+c(a≠0)的图象如图所示,则不等式<0的解集是()A.(-,3)B.(-∞,0∪(3,+∞)C.(-∞,-3)∪(,+∞)D.(-3,)【答案】A【解析】由题意可知x=1,x=2是方程ax2+bx+c=0的两根,且a>0,∴-=3,=2,即b=-3a,c=2a, 则不等式<0可化为<0,解得-<x<3.故选A.12.若m,n∈N*,则“a>b”是“a m+n+b m+n>a n b m+a m b n”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】a m+n+b m+n>a n b m+a m b n(a m-b m)(a n-b n)>0.当a>b时,由于a,b可能为负值,m,n奇偶不定,因此不能得出(a m-b m)(a n-b n)>0;当(a m-b m)·(a n-b n)>0时,即使在a,b均为正数时也有a<b的可能,因此也得不出a>b.所以“a>b”是“a m+n+b m+n>a n b m+a m b n”的既不充分也不必要条件.【误区警示】不等式性质的使用前提13.设a,b,c∈R,且a>b,则()A.ac>bc B.<C.a2>b2D.a3>b3【答案】D【解析】当c=0时,选项A不成立;当a>0,b<0时,选项B不成立;当a=1,b=-5时,选项C不成立;a3-b3=(a-b)(a2+ab+b2)=(a-b) >0,故选D.14.观察下列不等式:①<1;②+<;③++<;…;则第5个不等式为________.【答案】++++<【解析】不等式左边为++…+,不等式右边为,故第5个不等式为++++<15.设0<a<b,则下列不等式中正确的是().A.a<b<<B.a<<<bC.a<<b<D.<a<<b【答案】B【解析】(特值法):取a=2,b=8,则=4,=5,∴a<<<b.16.如果函数的图像恒在轴上方,则的取值集合为___________.【答案】【解析】因为函数的图像恒在轴上方,也就是求满足的x的取值范围.即或.所以解得或.故填.本小题的关键是绝对值的不等式的解法.【考点】1.转化的思想.2.不等式组的解法.3.绝对值不等式的解法.17.已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式f(x)+a-1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.【答案】(1)(-∞,a+1)∪(3-a,+∞);(2)(-∞,5).【解析】(1)本题是一个含参不等式的求解,需要按a=1,a>1,a<1进行讨论;(2)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|>-|x+3|+m对任意实数x恒成立,分离参数为|x-2|+|x +3|>m恒成立.所以对任意实数x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,于是得m<5.试题解析:(1)不等式f(x)+a-1>0,即|x-2|+a-1>0,当a=1时,解集为x≠2,即(-∞,2)∪(2,+∞);当a>1时,解集为全体实数R;当a<1时,∵|x-2|>1-a,∴x-2>1-a或x-2<a-1,∴x>3-a或x<a+1,故解集为(-∞,a+1)∪(3-a,+∞).(2)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|>-|x+3|+m对任意实数x恒成立,即|x-2|+|x+3|>m恒成立.又对任意实数x恒有|x-2|+|x+3|≥|(x-2)-(x+3)|=5,于是得m<5,即m的取值范围是(-∞,5).【考点】1.含参不等式的求解;2.不等式恒成立问题.18.已知,.(1)求的最小值;(2)证明:.【答案】(1)最小值为3;(2)证明过程详见解析.【解析】本题主要考查利用基本不等式进行不等式的证明问题,考查学生的分析问题的能力和转化能力.第一问,用基本不等式分别对和进行计算,利用不等式的可乘性,将两个式子乘在一起,得到所求的表达式的范围,注意等号成立的条件必须一致;第二问,先用基本不等式将,,变形,再把它们加在一起,得出已知中出现的,从而求出最小值,而所求证的式子的右边,须作差比较大小,只需证出差值小于0即可.试题解析:(Ⅰ)因为,,所以,即,当且仅当时,取最小值3. 5分(Ⅱ).又,所以.【考点】1.基本不等式;2.不等式的性质;3.作差比较大小.19.若不等式,对满足的一切实数恒成立,则实数的取值范围是【答案】或【解析】设,则,由于x,y满足,所以,即,解得,因为不等式,对满足的一切实数恒成立,所以,解得或.【考点】不等式恒成立问题.20.设,,,则()A.B.C.D.【解析】,,,故.【考点】比较大小.21.若椭圆和是焦点相同且的两个椭圆,有以下几个命题:①一定没有公共点;②;③;④,其中,所有真命题的序号为。
高三文科数学专题测试 四(文)不等式与线性规划(试题及详细答案解析)
'
FI
:I
1
& "% +
78)
'9
:
;<
=
'!#, . "&%
(!#&"- . %
)!#&" "&%
*!#&" "- . %
!!!
"
M
7
8)"*"+
B
C)+
,+)*-2*+,+0$"%
N)* +
9 O F G : P ")# -*& ,&++' F G : =
'!#
(!2/
)!&
*!$
456$%&$'#( $) ( $ " *' &" *!7 2859:;< 1!!",##%&UVW= 'XY8"N#"$P",##%
F
G
!8
# )
-
& *
,&++&
[
\
]
6
&!./ )!
1!0 #"$,#0#+,/#0 ##$,#+$8,,#0,#+
-/#D ,,#0,#8##$ 1,#0#+-/#A ,#
.#+,/##"$
0
7,#-+#"!0 #",+A #-+"$
高三数学不等式的性质试题答案及解析
高三数学不等式的性质试题答案及解析1.若,,则一定有()A.B.C.D.【答案】D【解析】,又.选D【考点】不等式的基本性质.2.已知m>1,a=-,b=-,则以下结论正确的是()A.a>b B.a=bC.a<b D.a,b的大小不确定【答案】C【解析】a=-=,b=-=,因为+>+,所以a<b,故选C.3.已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时比较c n与a n+b n的大小.【答案】a n+b n<c n.【解析】解:∵a,b,c∈{正实数},∴a n,b n,c n>0,而=()n+()n.∵a2+b2=c2,则()2+()2=1,∴0<<1,0<<1.∵n∈N,n>2,∴()n<()2,()n<()2,∴=()n+()n<=1,∴a n+b n<c n.4.若,则下列不等式中成立的是( )A.B.C.D.【答案】C【解析】A: ,∴,∴A错误;B:∵,∴,∴B错误;C:,∴C正确;D:,∴D错误.【考点】不等式的性质、作差比较大小.5. [2014·银川质检]当x∈(0,+∞)时可得到不等式x+≥2,x+=++()2≥3,由此可以推广为x+≥n+1,取值p等于 ()A.n n B.n2C.n D.n+1【答案】A【解析】∵x∈(0,+∞)时可得到不等式x+≥2,x+=++()2≥3,∴在p位置出现的数恰好是不等式左边分母x n的指数n的n次方,即p=n n.6. (2014·鄂州模拟)已知函数f(x)=x2,g(x)=-m,当x∈[1,2]时,不等式f(x)≥g(x)恒成立,则实数m的取值范围是()A.B.C.(3,+∞)D.(4,+∞)【答案】B【解析】不等式f(x)≥g(x),即x2≥-m,因此m≥-x2.令h(x)=-x2,由于h(x)在[1,2]上单调递减,所以h(x)的最大值是h(1)=-,因此实数m的取值范围是.7.已知a,b,c,d∈R,用分析法证明:ac+bd≤并指明等号何时成立.【答案】见解析【解析】(1)当ac+bd≤0时,≥0,故不等式显然成立,此时a=b=c=d=0时等号成立.(2)当ac+bd>0时,要证原不等式成立,只需证(ac+bd)2≤(a2+b2)(c2+d2),即证a2c2+2abcd+b2d2≤a2c2+a2d2+b2c2+b2d2.即证2abcd≤a2d2+b2c2,即0≤(bc-ad)2.因为a,b,c,d∈R,所以上式恒成立,故不等式成立,此时等号成立的条件为bc=ad.所以由(1)(2)知原不等式成立.8.已知,则a,b,c的大小关系是()A.a<b<c B.c<a<b C.a<c<b D.b<c<a【答案】A【解析】,∴a<b<c.9.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若,则知即所以即;令,满足,但.所以是的充分而不必要条件.选.【考点】充要条件.10.若不等式x2+ax+1≥0对一切成立,则a的最小值为()A.0B.﹣2C.D.﹣3【答案】C【解析】设f(x)=x2+ax+1,则对称轴为x=若≥,即a≤﹣1时,则f(x)在〔0,〕上是减函数,应有f()≥0⇒﹣≤a≤﹣1若≤0,即a≥0时,则f(x)在〔0,〕上是增函数,应有f(0)=1>0恒成立,故a≥0若0≤≤,即﹣1≤a≤0,则应有f()=恒成立,故﹣1≤a≤0综上,有﹣≤a.故选C11.若当P(m,n)为圆上任意一点时,不等式恒成立,则c的取值范围是()A.B.C.D.【答案】D【解析】由,可以看作是点P(m,n)在直线的右侧,而点P(m,n)在圆上,实质相当于是在直线的右侧并与它相离或相切。
高三数学不等式试题答案及解析
高三数学不等式试题答案及解析1.已知变量满足:,则的最大值为()A.B.C.2D.4【答案】D【解析】由约束条件画出可行域,令,可知在点处取得最大值,所以的最大值为。
【考点】线性规划及指数函数的单调性。
2.若二元一次线性方程组无解,则实数的值是__________.【答案】-2【解析】二元一次线性方程组无解,则直线x+ay=3与ax+4y=6平行,则解得.【考点】二元一次方程组.3.若实数,满足,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出可行域,由图可知,可行域三个顶点分别为,将三个点的坐标分别代入目标函数得,所以目标函数的取值范围为,故选A.【考点】线性规划.4.(本题满分10分)选修4—5:不等式选讲设对于任意实数,不等式≥恒成立.(1)求的取值范围;(2)当取最大值时,解关于的不等式:.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将不等式≥恒成立,转化为,用零点分段法,将转化为分段函数,再每一段分别求最值;第二问,结合第一问的结论,将m的值代入,利用零点分段法将绝对值不等式转化成不等式组,分别求解.试题解析:(1)设,则有当时有最小值8当时有最小值8当时有最小值8综上有最小值8所以(2)当取最大值时原不等式等价于:等价于:或等价于:或所以原不等式的解集为【考点】绝对值不等式的解法、恒成立问题.5.(本小题满分10分)选修4—5:不等式选讲设函数.(1)当时,解不等式;(2)若的解集为,,求证:.【答案】(1);(2)证明详见解析.【解析】本题主要考查绝对值不等式的解法、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用零点分段法去掉绝对值符号,转化为不等式组,解不等式;第二问,先解不等式,再结合的解集为,从而得到a的值,再利用特殊值1将转化为,再利用基本不等式求函数的取值范围.试题解析:(1)当a=2时,不等式为,不等式的解集为;(2)即,解得,而解集是,,解得,所以所以.【考点】绝对值不等式的解法、基本不等式.6.已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是()A.B.C.D.【答案】C【解析】满足约束条件的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式,当时,;当时,;当时,;故取值范围为,故选C.【考点】1.简单的线性规划;2.向量的数量积.7.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.8.若是任意实数,且,则下列不等式成立的是()A.B.C.D.【答案】D【解析】因为函数在上是减函数,又,所以,故选D.【考点】不等式的性质.9.选修4-5:不等式选讲已知x,y为任意实数,有(1)若求的最小值;(2)求三个数中最大数的最小值.【答案】(1);(2).【解析】(1)利用消元法可得关于x的二次三项式,从而用配方法可求得最小值.(2)利用绝对值不等式可求最大值的最小值.试题解析:(1)解:当时,最小值为(2)设,则所以即中最大数的最小值为【考点】配方法,绝对值不等式,最值.10.若实数,满足不等式组.则的最大值是()A.10B.11C.13D.14【答案】D【解析】画出可行域如图:当时,作出目标函数线,平移目标函数线使之经过可行域,当目标函数线过点时纵截距最大同时也最大, 最大值为;当时,作出目标函数线,平移目标函数线使之经过可行域四边形但不包括边,当目标函数线经过点时纵截距最大同时也最大, 的最大值为.综上可得的最大值为14.【考点】简单的线性规划.11.已知函数,.(1)若,解不等式;(3)若,且对任意,方程在总存在两不相等的实数根,求的取值范围.【答案】(1):,:;(2).【解析】(1)根据的取值情况进行分类讨论,将表达式中的绝对值号去掉,再利用二次函数的单调性讨论即可求解;(2)利用二次函数的单调性首先课确定的大致范围,再利根据条件方程在总存在两不相等的实数根,建立关于的不等式组,从而求解.试题解析:(1)∵,∴在单调递增,在单调递减,在单调递增,若:令解得:∴不等式的解为:;若:令,解得:,,根据图象不等式的解为:,综上::不等式的解为;:不等式的解为;(3),∵,∴在单调递增,在单调递减,在单调递增,∴或,∴在单调递增,∴,若:在单调递减,在单调递增,∴必须,即;若:在单调递增,在单调递减,,即;综上实数的取值范围是.【考点】1.二次函数的综合题;2.分类讨论的数学思想.【方法点睛】解决二次函数综合题常见的解题策略有:1.尽可能画图,画图时要关注已知确定的东西,如零点,截距,对称轴,开口方向,判别式等;2.两个变元或以上,学会变换角度抓主元;3.数形结合,务必要保持数形刻画的等价性,不能丢失信息;3.掌握二次函数,二次不等式,二次方程的内在联系,熟练等价转化和准确表述;4.恒成立问题可转化为最值问题.12.设函数.(1)若,解不等式;(2)如果,,求的取值范围.【答案】(1);(2).【解析】(1)当,圆不等式变为,可利用绝对值的集合意义求解,从而得到不等式的解集;(2)求当,,a的取值范围,可先对a进行分类讨论:,对后两种情形,只需求出的最小值,最后“,”的充要条件是,即可求得结果.试题解析:由题意得,(Ⅰ)当时,.由,得,(ⅰ)时,不等式化为,即.不等式组的解集为.(ⅱ)当时,不等式化为,不可能成立.不等式组的解集为.(ⅲ)当时,不等式化为,即.不等式组的解集为.综上得,的解集为.(Ⅱ)若,不满足题设条件.若的最小值为.若的最小值为.所以的充要条件是,从而的取值范围为.【考点】绝对值不等式的求解及其应用.13.变量满足约束条件,当目标函数取得最大值时,其最优解为.【答案】.【解析】作出可行域,画出目标函数的图象,由图知最优解为.【考点】线性规划.14.(1)选修4—4:坐标系与参数方程已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线的参数方程是(为参数),直线和曲线相交于两点,求线段的长.(2)选修4—5:不等式选讲已知正实数满足,求证:.【答案】(1);(2)证明见解析.【解析】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;曲线的参数方程化为直角坐标方程,把直线的参数方程与曲线联立,利用韦达定理求线段的长.(2)利用基本不等式得,,再根据不等式的性质得,因为,得证.试题解析:(1)由直线的极坐标方程是,可得由直线的直角坐标方程是,化为参数方程为(为参数);曲线(为参数)可化为.将直线的参数方程代入,得.设所对应的参数为,,,所以.(2)证明:因为正实数,所以.同理可证:..,.当且仅当时,等号成立.【考点】1、极坐标方程;2、参数方程;3、直线与椭圆;4、基本不等式;5、不等式的性质.【方法点睛】(1)先由直线的极坐标方程得直线的直角坐标方程,再化为参数方程;再把曲线的参数方程化为直角坐标方程,然后把直线的参数方程与曲线联立,利用韦达定理和弦长公式求出线段的长.把直线的参数方程与曲线的直角坐标方程联立能够简化解题过程;(2)利用基本不等式及不等式的性质进行证明.15.已知满足约束条件,若的最大值为4,则()A.3B.2C.-2D.-3【答案】B【解析】将化为,作出可行域(如图所示),当时,当直线向右下方平移时,直线在轴上的截距减少,当直线过原点时,(舍);当时,当直线向右上方平移时,直线在轴上的截距增大,若,即时,当直线过点时,,解得(舍),当,即时,则当直线过点时,,解得;故选B.【考点】1.简单的线性规划;2.数形结合思想.【易错点睛】本题主要考查简单的线性规划与数形结合思想的应用,属于中档题;处理简单的线性规划问题的基本方法是:先画出可行域,再结合目标函数的几何意义进行解决,往往容易忽视的是目标函数基准直线与可行域边界的倾斜程度,如本题中,不仅要讨论斜率的符号,还要讨论斜率与边界直线斜率的大小关系.16.如果实数满足关系,则的最小值是.【答案】2【解析】满足不等式组的平面区域,如图所示,因表示定点到平面区域内的点的距离,由图易知其最小距离为点到直线的距离,即,所以的最小值为2.【考点】1、平面区域;2、点到直线的距离公式.【方法点睛】(1)平面区域的确定,已知,则,表示的区域为直线的右方(右下方或右上方),表示的区域为直线的左方(左下方或左上方);(2)具有一定的几何意义,即几何意义为点到的距离的平方.17.(2014•河南模拟)已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(1)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【答案】(1)原不等式的解集为{x|x≤0,或}.(2)[﹣].【解析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【考点】绝对值不等式的解法.18.不等式的解集是()A.B.C.D.【答案】B【解析】或.故B正确.【考点】一元二次不等式.19.直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,则+的最小值为()A.3+2B.4+2C.6+4D.8【答案】C【解析】根据已知条件得到a+b=,将其代入+,结合基本不等式的性质计算即可.解:∵直线ax﹣2by+1=0(a>0,b>0)平分圆x2+y2+4x﹣2y﹣1=0的面积,∴圆x2+y2+4x﹣2y﹣1=0的圆心(﹣2,1)在直线上,可得﹣2a﹣2b+1=0,即a+b=,因此2(+)(a+b)=2(3++)≥6+4,当且仅当:=时“=”成立,故选:C.【考点】直线与圆的位置关系.20.已知实数满足不等式组,则的最大值为________.【答案】9.【解析】作出不等式组表示的平面区域如下图:由图可知,当直线经过点时,取得最大值为:.故答案应填:9.【考点】线性规划.21.已知.(Ⅰ)求证:;(Ⅱ)若对任意实数都成立,求实数的取值范围.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)利用零点分段讨论法将绝对值符号去掉,得到分段函数,再求各段的值域即可;(Ⅱ)利用基本不等式和不等式恒成立进行求解.试题解析:(Ⅰ)∵,∴的最小值为5,∴.(Ⅱ)解:由(Ⅰ)知:的最大值等于5.∵,“=”成立,即,∴当时,取得最小值5.当时,,又∵对任意实数,都成立,∴.∴的取值范围为.【考点】1.零点分段讨论法;2.基本不等式.22.设函数,其中.(I)当时,解不等式;(II)若对于任意实数,恒有成立,求的取值范围.【答案】(I);(II).【解析】(I)采用零点分区间法求解;(II)先求出的最大值为,把问题转化为求解.试题解析:(Ⅰ)时,就是当时,,得,不成立;当时,,得,所以;当时,,即,恒成立,所以.综上可知,不等式的解集是.(Ⅱ) 因为,所以的最大值为.对于任意实数,恒有成立等价于.当时,,得;当时,,,不成立.综上,所求的取值范围是【考点】.绝对值不等式的解法;不等式恒成立问题23.已知函数.(1)解不等式;(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1) 不等式的解集为;(2) .【解析】(1)分区间去掉绝对值符号,将函数表示成分段函数的形式,在每个区间上分别解不等式,最后再求并集即可;(2) 不等式对任意的恒成立,由(1)求出函数的最小值,解不等式即可.试题解析:(1).当时,由,得,此时无解;当时,由,得,所以;当时,由,得,所以.综上,所求不等式的解集为.(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为不等式对任意的恒成立,即,解得,故的取值范围为.【考点】1.含绝对值不等式的解法;2.函数与不等式.24.设,若对任意的正实数,都存在以为三边长的三角形,则实数的取值范围是()A.B.C.D.以上均不正确【答案】A【解析】因为正实数,则,要使为三边的三角形存在,则,即恒成立,故,令,则,取,递减,所以时,;同理取,递增,可知时,,故实数的取值范围是,故选A.【考点】基本不等式的应用.方法点睛:本题结合三角形的基本性质考查了基本不等式的应用,属于中档题.解答本题应先根据基本不等式求得,再三角形的性质任意两边之和大于第三边,任意两边之差小于第三边得到即得的不等式组,再利用基本不等式结合函数的单调性求出的取值范围.25.已知函数(是常数)和是定义在上的函数,对任意的,存在使得,,且,则在集合上的最大值为()A.B.C.4D.5【答案】D【解析】由题知,易知在上是减函数,在上是增函数,所以,又因为,所以,化简得,再由,可求得,所以,并且可判定在上是减函数,在上是增函数,由于,所以在集合上的最大值为,故选D.【考点】1、导数在函数研究中的应用;2、函数的最值.【思路点睛】本题是一个利用导数研究函数的单调性、最值方面的综合性问题,属于难题.解决本题的基本思路是,首先根据题意判断出的最值关系,再由条件求出函数在定义域上的最小值,进而判断出的最值情况,并据此求出的值,从而得到的解析式,进一步可求出的最大值,问题得以解决.26.已知直线经过点,则的最小值为()A.B.C.D.【答案】B【解析】因为直线经过点,所以,故,当且仅当时,等号成立.【考点】基本不等式.27.已知函数.(1)求不等式的解集;(2)若关于的表达式的解集,求实数的取值范围.【答案】(1);(2)或.【解析】(1)由绝对值的定义可分类讨论去绝对值,再分别解不等式即可;(2)由题意可得的值域为,要,需,解得实数的取值范围是或.试题解析:(1)由题意得:,则不等式等价于或,解得:或,∴不等式的解集.(2)∵,∴的值域为,∴的解集.要,需,即或,∴或,∴实数的取值范围是或.【考点】含绝对值不等式的解法.28.设函数.(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若不等式的解集非空,求实数的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式、存在性问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,解绝对值不等式,先得到与解集对应系数相等,解出的值;第二问,先整理,构造函数,画出函数图象,结合图象,得到,或,从而解出的取值范围.试题解析:(1)∵,∴,∴,∴,因为不等式的解集为,所以,解得.(2)由(1)得.∴,化简整理得:,令,的图象如图所示:要使不等式的解集非空,需,或,∴的取值范围是【考点】本题主要考查:1.绝对值不等式;2.存在性问题.29.若,若的最大值为3,则的值是___________.【答案】【解析】画出可行域如下图所示,为最优解,故.【考点】线性规划.30.选修4-5:不等式选讲若,且.(1)求的最小值;(2)是否存在,使得?并说明理由.【答案】(1)(2)不存在【解析】(1)利用基本不等式得,即,而,等号都是取得,(2)利用基本不等式得,即与矛盾,故不存在试题解析:解:(Ⅰ)由,得,且当时等号成立,故,且当时等号成立,∴的最小值为.(Ⅱ)由,得,又由(Ⅰ)知,二者矛盾,所以不存在,使得成立.【考点】基本不等式【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.31.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.32.已知实数x,y满足,则z=4x+y的最大值为()A.10B.2C.8D.0【答案】C【解析】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当过点时,取最大值8.【考点】简单的线性规划问题.33.若实数满足约束条件,则的最大值为()A.B.1C.D.【答案】A【解析】因画出不等式组表示的区域如图, 的几何意义是区域内的动点与定点连线的斜率,借助图形不难看出区域内的点与定点连线的斜率最大,最大值为,所以的最大值为,应选A.【考点】线性规划的知识及运用.34.已知,使不等式成立.(1)求满足条件的实数的集合;(2)若,对,不等式恒成立,求的最小值.【答案】(1);(2).【解析】(1)运用分类讨论的方法分段求解;(2)借助题设条件及基本不等式求解.试题解析:(1)令,则,由于使不等式成立,有(2)由(1)知,,根据基本不等式,从而,当且仅当时取等号,再根据基本不等式当且仅当时取等号,所以的最小值为6【考点】绝对值不等式、基本不等式及运用.35.设变量满足不等式组则目标函数的最小值是______.【答案】7【解析】不等式组对应的可行域如图,由图可知,,目标函数表示斜率为的一组平行线当目标函数经过图中点时取得最小值.故填:7.【考点】线性规划36.设x,y满足约束条件且的最大值为4,则实数的值为____________.【答案】-4【解析】作出可行域,令得 .结合图象可知目标函数在处取得最大值,代入可得.故本题答案应填.【考点】线性规划.37.已知函数,其中为常数.(1)当时,求不等式的解集;(2)设实数,,满足,若函数的最小值为,证明:.【答案】(1);(2)证明见解析.【解析】(1)由.再由或或解集为;(2)由当且仅当,即时取等号,,则.解法一:由题设.解法二:由题设,,即,.试题解析:(1)当时,由,得或,即或所以不等式的解集为(2)因为,当且仅当,即时取等号,则.由已知,,则解法一:由题设,则,,解法二:由题设,,据柯西不等式,有,即,所以【考点】1、绝对值不等式;2、重要不等式;3、柯西不等式.38.若满足约束条件,则的最大值为.【答案】【解析】作出可行域,如图内部(含边界),,,表示可行域内点与的连线的斜率,,因此最大值为.【考点】简单线性规划的非线性运用.39.已知变量满足约束条件,目标函数的最大值为10,则实数的值等于()A.4B.C.2D.8【答案】A【解析】由不等式组可得可行域(如图),当直线经过点时,取得最大值,且由已知,解得.【考点】简单线性规划.【方法点睛】本题主要考查简单线性规划问题,属于基础题.处理此类问题时,首先应明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围等.40.已知变量满足约束条件,则的最大值为__________.【答案】1【解析】可行域为一个三角形ABC及其内部,其中,直线过点C时取最大值1.【考点】线性规划【易错点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.41.设,则a, b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a【答案】A【解析】,考察函数,该函数在上单调递减,,考察函数,该函数在上单调递增,,故选A.【考点】指数函数的单调性与幂函数的单调性.42.若满足约束条件,则当取最大值时,的值为()A.B.C.D.【答案】D【解析】作出可行域如图中阴影部分所示,的几何意义是:过定点与可行域内的点的直线的斜率,由图可知,当直线过点时,斜率取得最大值,此时的值分别为,所以.故选D.【考点】简单线性规划.43.若,则()A.B.C.D.【答案】A【解析】因为即,,所以,故选A.【考点】指数函数、对数函数的性质.44.已知实数满足不等式组则的最大值是___________.【答案】6【解析】作出不等式组表示的平面区域,如图所示,由图知当目标函数经过点时取得最大值,即.【考点】简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值,正确作出可行域是解答此类问题的前提条件.45.选修4-5:不等式选讲设函数.(1)证明:;(2)若不等式的解集为非空集,求的取值范围.【答案】(1)详见解析;(2)(-1,0)【解析】(1)(当且仅当时取等号);(2)作出函数的图象,由图像可求出结果.试题解析:解:(1)(当且仅当时取等号)(2)函数的图象如图所示.当时,,依题意:,解得,∴的取值范围是(-1,0).【考点】1.绝对值不等式;2.基本不等式.46.选修4—5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若存在实数,使得,求实数的取值范围.【答案】(I);(II).【解析】(I)分,,三种情况讨论,去掉绝对值符号,转化不等式求出解集,取并集即可;(II)移项可得,根据绝对值的几何意义,求出的最大值,即可求得实数的取值范围.试题解析:(I)①当时,,所以②当时,,所以为③当时,,所以综合①②③不等式的解集(II)即由绝对值的几何意义,只需【考点】绝对值不等式的解法和绝对值的几何意义.47.设,满足约束条件则的取值范围为.【答案】【解析】画出可行域如下图所示,由图可知,目标函数在点处取得最小值为,在点处取得最大值为.【考点】线性规划.48.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处的最大值是,在最小值是,所以而,所以的最大值是,故选B.【考点】1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.49.选修4-5:不等式选讲已知函数.(Ⅰ)若,解不等式;(Ⅱ)若存在实数,使得不等式成立,求实数的取值范围.【答案】(I)(II)【解析】(I)先根据绝对值定义将不等式转化为三个不等式组:,或,或,最后求三个不等式组解集的并集得原不等式的解集(II)先化简不等式为,再利用绝对值三角不等式求最值:,再转化解不等式得实数的取值范围.试题解析:不等式化为,则,或,或,……………………3分解得,所以不等式的解集为.……………………5分(2)不等式等价于,即,由绝对值三角不等式知.……………………8分若存在实数,使得不等式成立,则,解得,所以实数的取值范围是.……………………10分【考点】绝对值三角不等式,绝对值定义【名师】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.50.选修4-5:不等式选讲已知函数.(1)解不等式;。
高三数学一轮总复习 第七章 不等式 第四节 基本不等式
课时跟踪检测(三十九) 基本不等式及应用一抓基础,多练小题做到眼疾手快1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为________.解析:∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =12时等号成立,∴ab 的最大值为14.答案:142.(2016·盐城调研)若正数a ,b 满足1a +1b =1,则4a -1+16b -1的最小值为________.解析:因为a >0,b >0,1a +1b =1,所以a +b =ab ,则4a -1+16b -1=4b -1+16a -1a -1b -1=4b +16a -20ab -a +b +1=4b +16a -20.又4b +16a =4(b +4a )⎝ ⎛⎭⎪⎫1a +1b =20+4×⎝ ⎛⎭⎪⎫b a+4a b ≥20+4×2b a ·4a b =36,当且仅当b a=4a b 且1a +1b =1,即a =32,b =3时取等号,所以4a -1+16b -1≥36-20=16. 答案:163.已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t =________. 解析:因为a >0,b >0时,有ab ≤a +b24=t 24,当且仅当a =b =t2时取等号.因为ab的最大值为2,所以t 24=2,t 2=8,所以t =8=2 2.答案:2 24.(2016·常州一模)已知x >0,则xx 2+4的最大值为________.解析:因为x x 2+4=1x +4x,又x >0时,x +4x≥2x ×4x =4,当且仅当x =4x,即x =2时取等号,所以0<1x +4x≤14,即x x 2+4的最大值为14. 答案:145.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________.解析:依题意得a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.答案:20二保高考,全练题型做到高考达标1.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是________.解析:由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.当且仅当a =b =1时取等号. ∴m +n 的最小值是4. 答案:42.(2015·湖南高考改编)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.解析:由1a +2b=ab ,知a >0,b >0,所以ab =1a +2b ≥22ab,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2. 答案:2 23.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.解析:每批生产x 件,则平均每件产品的生产准备费用是800x元,每件产品的仓储费用是x 8元,则800x +x 8≥2 800x ·x 8=20,当且仅当800x =x8,即x =80时“=”成立,∴每批生产产品80件.答案:804.(2016·重庆巴蜀中学模拟)若正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是________.解析:1a +1+4b +1=⎝ ⎛⎭⎪⎫ 1a +1+4b +1 a +1+b +14=14⎝ ⎛⎭⎪⎫1+4+b +1a +1+ 4a +1b +1 ≥14(5+24)=94,当且仅当b +1a +1=4a +1b +1,即a =13,b =53时取等号.所以1a +1+4b +1的最小值是94. 答案:945.若一元二次不等式ax 2+2x +b >0(a >b )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-1a ,则a 2+b 2a -b 的最小值是________.解析:由一元二次不等式ax2+2x +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-1a ,得⎩⎪⎨⎪⎧Δ=4-4ab =0且a >0,a ×1a 2-2a+b =0,所以ab =1且a >0.又已知a >b ,所以a 2+b 2a -b =a -b 2+2aba -b=(a -b )+2a -b ≥22,当且仅当a -b =2a -b 时取等号.所以a 2+b2a -b的最小值是2 2.答案:2 26.已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________. 解析:因为x 2+y 2-xy =1,所以x 2+y 2=1+xy . 所以(x +y )2=1+3xy ≤1+3×⎝⎛⎭⎪⎫x +y 22,即(x +y )2≤4,解得-2≤x +y ≤2. 当且仅当x =y =1时等号成立. 所以x +y 的最大值为2. 答案:27.(2016·青岛模拟)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为________.解析:因为log 2x +log 2y =log 22xy -1≤log 2⎝ ⎛⎭⎪⎫x +2y 2 2-1=2-1=1,当且仅当x =2y =2,即x =2,y =1时等号成立, 所以log 2x +log 2y 的最大值为1. 答案:18.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.解析:1⊗k =k +1+k =3,即k +k -2=0, ∴k =1或k =-2(舍), ∴k =1.∴f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3,当且仅当x =1x,即x =1时等号成立.答案:1 39.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x4-2x 的最大值.解:(1)y =12(2x -3)+82x -3+32=-⎝⎛⎭⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0,∴3-2x 2+83-2x≥2 3-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)∵0<x <2, ∴2-x >0, ∴y =x4-2x =2·x2-x≤ 2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, ∴当x =1时,函数y =x4-2x 的最大值为 2.10.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0, 则1=8x +2y ≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x≥10+22x y·8yx=18.当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18.三上台阶,自主选做志在冲刺名校1.(2016·南京名校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则3a +2b的最小值为________.解析:不等式组在直角坐标系中所表示的平面区域如图中的阴影部分所示.由z =ax +by 得y =-a b x +z b,当z 变化时,它表示经过可行域的一组平行直线,其斜率为-a b ,在y 轴上的截距为z b,由图可知当直线经过点A (4,6)时,在y 轴上的截距最大,从而z 也最大,所以4a +6b =12,即2a +3b =6,所以3a +2b =2a +3b 6·⎝ ⎛⎭⎪⎫3a +2b =16⎝ ⎛⎭⎪⎫6+6+4a b +9b a ≥4,当且仅当a =32,b =1时等号成立.所以3a +4b的最小值为4.答案:42.(2015·南京二模)已知函数f (x )=x 2+ax +11x +1(a ∈R).若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:令f (x )=x 2+ax +11x +1≥3(x ∈N *),则(3-a )x ≤x 2+8,即3-a ≤x +8x .因为x +8x≥28=42,当且仅当x =22时取等号,又x ∈N *,当x =2时,x +8x=6;当x =3时,x+8x =3+83<6,因此x +8x 的最小值为3+83,于是3-a ≤3+83,即a ≥-83. 答案:⎣⎢⎡⎭⎪⎫-83,+∞3.(2016·常州期末调研)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积...为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450, 所以2x +7 200x≥22x ×7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形为区域的总面积最大,最大为676 m 2.。
高三数学热点问题4 基本不等式
热点问题4 基本不等式一、填空题1.已知2()log (2)f x x =-,若实数,m n 满足()(2)3f m f n +=,则m n +的最小值为.2.已知正实数x ,y 满足24xy x y ++=,则x +y 的最小值为.3.函数324()12x x f x x x-=++的最大值为. 4.若不等式x 2+2xy ≤a (x 2+y 2)对于一切正数x ,y 恒成立,则实数a 的最小值为________.5.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ⋅的最大值是.6.已知(),,0,24,x y z x y z x x y z yz >++=+++则的最大值为_________.7.已知00x y >>,,且满足18102y x x y+++=,则2x y +的最大值为. 8.国际上钻石的重量计量单位为克拉.已知某种钻石的价值V 美元与其重量ω克拉的平方成正比,若把一颗钻石切割成重量分别为m ,n (m ≥n )的两颗钻石,且价值损失的百分率=原有价值-现有价值原有价值×100%(切割中重量损耗不计),则价值损失的百分率的最大值为________.二、解答题9.设函数.(1)若不等式的解集.求的值;(2)若(1)2,00f a b =>>、求14a b +的最小值.10.已知数列的前项和为,.(1)求数列的通项公式;(2)设,=,记数列的前项和.若对,恒成立,求实数的取值范围.)0(3)2()(2≠+-+=a x b ax x f 0)(>x f )3,1(-b a ,{}n a n n S 22n n S a =-{}n a 2log n n b a =n c 11n n b b +{}n c n n T n N *∈()4n T k n ≤+k(第11题图) 11.如图,点是椭圆的一个顶点,的长轴是圆的直径..是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点.(1)求椭圆的方程;(2)求面积取最大值时直线的方程.)1,0(-P )0(1:22221>>=+b a b y a x C 1C 4:222=+y x C 21,l l P 1l 2C 2l 1C D 1C ABD ∆1l。
高三数学基本不等式试题
高三数学基本不等式试题1.当x>3时,不等式x+≥恒成立,则实数的取值范围是()A.(-∞,3]B.[3,+∞)C.[,+∞)D.(-∞,]【答案】D【解析】因为当x>3时,不等式x+≥恒成立,所以有,记,设x-1=t,则在上是增函数,所以得,故选D.【考点】函数的恒成立.2.实数x,y满足x+2y=2,则3x+9y的最小值是________________.【答案】6【解析】3x+9y=3x+32y≥2考点:基本不等式3.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出. (1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.4.(2011•浙江)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是_________.【答案】【解析】∵4x2+y2+xy=1∴(2x+y)2﹣3xy=1令t=2x+y则y=t﹣2x∴t2﹣3(t﹣2x)x=1即6x2﹣3tx+t2﹣1=0∴△=9t2﹣24(t2﹣1)=﹣15t2+24≥0解得∴2x+y的最大值是5.若函数f(x)=(b≠1)在x=1处有极值,则ab的最大值等于。
高三复习基本不等式练习题
高三复习基本不等式练习题不等式作为高中数学中的一个重要内容,占据了复习的重要一部分。
本文将提供一些基本不等式的练习题,供高三学生复习使用。
练习题1:解不等式组:{x+2>0, x-3<0}练习题2:求解不等式:(x+1)(x-3)<0练习题3:解不等式组:{x^2 - 4>0, x-1<0}练习题4:求解不等式:x^2 - 5x + 6>0练习题5:解不等式组:{x^2-4x+3>0, x^2+6x+8>0}练习题6:求解不等式:(x-2)(x+3)(x-7)<0练习题7:解不等式组:{x^3-9x^2+20x-12>0, x^2-4x+4>0}练习题8:求解不等式:(x-2)^2(x+4)>0练习题9:解不等式组:{x^3-x^2+4x-4>0, x^2 + 3x + 2>0}练习题10:求解不等式:(x-1)^3+8>0以上是关于高三复习基本不等式的一些练习题。
希望同学们能够认真思考,按照正确的解题步骤解答。
复习不等式时,应重点掌握不等式的基本性质和解不等式的方法,如辨别二次不等式的判别式、区间法等。
在解题过程中,也要注意进行化简和因式分解,以便于对不等式进行分类讨论。
基本不等式是高中数学中一个重要的内容,对于加深对不等式的理解和掌握不等式的解法有着重要的意义。
因此,同学们要多进行基本不等式的练习,理解和掌握不等式的性质和方法,为高考做好充分准备。
希望以上的练习题能够帮助到高三的同学们,祝大家能够在高三阶段取得优异的成绩!。
新教材老高考适用2023高考数学一轮总复习课时规范练4基本不等式北师大版
课时规范练4 基本不等式基础巩固组1.下列不等式正确的是( ) A.x-1+1x -1≥2(x>0) B.(a+4)1a +1≥8(a>0)C.lg x ·lg y ≤[lg(xy)]24(x>1,y>1)D.lg(a 2+1)>lg |2a|(a ≠0)2.(2021河北邯郸高三月考)函数y=4x 2(6-x 2)的最大值为( ) A.36 B.6C.9D.183.(2021广东惠州高三期末)若a<1则a+1a -1的最大值是( ) A.3 B.aC.-1D.2√aa -14.(2021北京西城高三月考)设正实数a ,b 满足a+b=1,则下列说法错误的是( ) A.√ab 有最大值12B.1a+2b+12a+b有最小值3C.a 2+b 2有最小值12D.√a +√b 有最大值√25.(2021浙江丽水高三模拟)设x ,y>1,z>0,z 为x 与y 的等比中项,则lgz 2lgx+lgz 4lgy的最小值为( )A.38+√24 B.2√2+12C.43+√22D.2√26.下列不等式一定成立的是( ) A.x+1x ≥2B.2x(1-x)≤14C.x2+3x2+1>2√3-1D.√x√x≥27.若非负实数a,b满足a+b2=1,则下列不等式不成立的是()A.ab2≤14B.a2+b4≥12C.√a+b≥√2D.a2+b2≥348.已知x>0,y>0,且x2+xy-x+5y=30,则()A.xy的最大值为9B.1x +1y的最小值为1C.x-1y的最小值为4 D.x2+y2的最小值为209.(2021湖北黄冈高三期中)当x>1时不等式x 2+3x-1>m2+1恒成立,则实数m的取值范围是.10.(2021天津耀华中学高三二模)如果a>b>0,那么a 4+1b(a-b)的最小值是.综合提升组11.(2021天津高三一模)已知a>0,b>0,且ab=a+b+3,则a+b的最小值为()A.4B.8C.7D.612.(2021贵州贵阳高三月考)若圆x2+y2-4x+2y+1=0被直线ax-2by-2=0(a>0,b>0)截得的弦长为4,则1a +1b的最小值是()A.9B.4C.12D.1413.(2021浙江镇海中学高三模拟)已知a,b,c是不同时为0的实数,则2ab+bca2+4b2+c2的最大值为.创新应用组14.(2021江苏南京高三期中)已知α,β∈0,π2,sin(2α+β)=2sin β,则tan β的最大值为()A.√33B.23C.1D.√32课时规范练4 基本不等式1.C 解析:当x>1,y>1时,lg x>0,lg y>0,所以lg x ·lg y ≤lgx+lgy22=lg(xy)22=[lg(xy)]24,当且仅当x=y 时,不等式中的等号成立,故C 正确.2.A 解析:由基本不等式可得y=4x 2(6-x 2)≤4·x 2+6-x 222=36,当且仅当x 2=6-x 2,即x=±√3时,等号成立,函数取得最大值36.3.C 解析:因为a<1,所以a-1<0,因此a+1a -1=a-1+1a -1+1≤-2√(1-a)·11-a +1=-1,当且仅当1-a=11-a ,即a=0时,等号成立,故a+1a -1(a<1)的最大值是-1,故选C .4.B 解析:对于A,由基本不等式可得√ab ≤a+b 2=12,当且仅当a=b=12时,等号成立,故A 正确;对于B,由基本不等式可得1a+2b +12a+b=13[(a+2b )+(2a+b )]1a+2b+12a+b=132+2a+b a+2b +a+2b 2a+b ≥132+2√a+2b 2a+b·2a+b a+2b=43,当且仅当a=b=12时,等号成立,故B 错误;对于C,因为1=(a+b )2=a 2+b 2+2ab ≤2(a 2+b 2),所以a 2+b 2≥12,当且仅当a=b=12时,等号成立,故C 正确;对于D,(√a +√b )2=a+b+2√ab ≤2(a+b )=2,则√a +√b ≤√2,当且仅当a=b=12时,等号成立,故D 正确.故选B . 5.A 解析:因为x ,y>1,z>0,且z 为x 和y 的等比中项,所以z 2=xy ,lgz 2lgx +lgz4lgy =12lg(xy)2lgx+12lg(xy)4lgy=lgx+lgy 4lgx+lgx+lgy 8lgy=38+lgy 4lgx +lgx 8lgy ≥38+2√lgy 4lgx ·lgx 8lgy =38+√24当且仅当lgy 4lgx =lgx8lgy ,即lg x=√2lg y 时,等号成立,故选A .6.D 解析:对于A,当x<0时,x+1x<0,故A 错误;对于B,2x (1-x )=-2x 2+2x=-2x-122+12≤12,故B 错误;对于C,x 2+3x 2+1=x 2+1+3x 2+1-1≥2√(x 2+1)·3x 2+1-1=2√3-1,当且仅当x 2=√3-1时,等号成立,故C 错误;对于D,√x +1√x≥2√√x ·1√x=2,当且仅当x=1时,等号成立,故D 正确.故选D .7.C 解析:对于A,利用基本不等式可得ab 2≤a+b 222=14,当且仅当a=b 2=12时,等号成立,故A 正确;对于B,1=(a+b 2)2=a 2+b 4+2ab 2≤2(a 2+b 4),所以a 2+b 4≥12,当且仅当a=b 2=12时,等号成立,故B 正确;对于C,(√a +b )2=a+b 2+2√ab 2≤2(a+b 2)=2,即√a +b ≤√2,当且仅当a=b 2=12时,等号成立,故C 错误;对于D,因为a+b 2=1≥a ,又a ≥0,所以0≤a ≤1,所以a 2+b 2=a 2+1-a=a-122+34≥34,当且仅当a=12时,等号成立,故D 正确.故选C .8.A 解析:由题可得(x 2-x-30)+(xy+5y )=0,整理得(x+5)·(x+y-6)=0,因为x>0,所以x+y=6.对于A,x+y ≥2√xy ,所以xy ≤9,当且仅当x=y=3时,等号成立,故A 正确;对于B,1x+1y=16(x+y )1x+1y=162+yx +xy ≥23,当且仅当x=y=3时,等号成立,故B 错误;对于C,x-1y =6-y-1y =6-y+1y ≤6-2=4,当且仅当x=5,y=1时,等号成立,故C 错误;对于D,x 2+y 2=(x+y )2-2xy=36-2xy ≥36-2x+y 22=18,当且仅当x=y=3时,等号成立,故D 错误.故选A . 9.(-√5,√5) 解析:因为x 2+3x -1=(x -1)2+2(x -1)+4x -1=(x-1)+4x -1+2≥2√4+2=6,当且仅当x=3时,等号成立,所以要使不等式恒成立,应有m 2+1<6,解得-√5<m<√5. 10.8 解析:因为a>b>0,所以a-b>0,所以b (a-b )≤b+a -b 22=a 24,当且仅当b=a-b ,即a=2b 时,等号成立.所以a 4+1b(a -b)≥4(a 4+1)a 2=4a 2+1a 2≥8,当且仅当a=1,b=12时,等号成立.故a 4+1b(a -b)的最小值是8.11.D 解析:∵ab=a+b+3,a>0,b>0,∴a+b+3≤a+b 22,当且仅当a=b ,即a=b=3时,等号成立,解得a+b ≥6或a+b ≤-2(舍去),∴a+b 的最小值为6,故选D .12.B 解析:圆x 2+y 2-4x+2y+1=0的标准方程为(x-2)2+(y+1)2=4,它表示以(2,-1)为圆心,以2为半径的圆.设弦心距为d ,由题意可得22+d 2=4,求得d=0,可得直线经过圆心,故有2a+2b=2,即a+b=1.再由a>0,b>0,可得1a+1b =1a+1b(a+b )=2+b a+a b≥2+2√b a·a b=4,当且仅当a=b=12时,等号成立,故1a+1b的最小值是4,故选B .13.√54 解析:由于a 2+4b 2+c 2=a 2+165b 2+c 2+45b 2,又a 2+165b 2≥2a ×4√5b=8√55ab ,当且仅当a=4√5b 时,等号成立,c 2+45b 2≥2c ×2b√5=4√55bc ,当且仅当c=2√5b 时,等号成立,所以a 2+4b 2+c 2≥8√55ab+4√55bc=4√55(2ab+bc ),当且仅当a=2c=4√5b 时,等号成立,所以2ab+bca 2+4b 2+c 2≤2ab+bc 4√55(2ab+bc)=√54,当且仅当a=2c=4√5b 时,等号成立.14.A 解析:∵sin(2α+β)=sin2αcos β+cos2αsin β, ∴sin2αcos β=2sin β-cos2αsin β=sin β(1+2sin 2α). ∵α,β∈0,π2,∴tan β=sin2α1+2sin 2α=2sinαcosαcos 2α+3sin 2α=2tanα1+3tan 2α=21tanα+3tanα,且tan α∈(0,+∞),∴tan β=21tanα+3tanα≤2√1tanα·3tanα=√33,当且仅当tan α=√33时,等号成立,故选A .。
高考数学《基本不等式》真题练习含答案
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
高三数学二轮复习高考不等式题型总结
高考冲刺篇、---不等式(αωξ)题型1:恶心配凑法1.若,112160022=+b a b a ,>,>则bb a a −+−634最小值为 .2.已知,>,>,>000c b a 则()ac bc c b a ++++252222的最小值为 . 3.已知,>,>,>200c b a 且2=+b a ,则252−+−+c c ab c b ac 的最小值为 .4.已知,>>0,0y x 且1=+y x ,则xy y x ++22的最大值为 .5.若[]1,1−∈x ,则()2214x x x−+−的最大值为 . 6.已知,>>0,0y x 则()()75211222++++y x y x 的最小值为 .7.已知R c b a ∈,,,5222=++c b a ,则2786c bc ab +−的最大值为 .8.已知,>,>00b a ,4=+b a 则111122+++b a 的最大值为 .9.已知,>>0,0y x ,213213=+++y x y x 则yx 1−的最小值为 .10.已知,>,>21b a 则()41222−+−+b a b a 的最小值为 . 11.已知,>>0,0y x ,26421=+++yy x x 则xy 的最大值为 .12.若00,0>,>>z y x ,且1222=++z y x ,则zxy z 11++的最小值为 .13.若,>,>00b a ()()324ab b a =−,则ba 11+的最小值为 .题型2:配积消元法和换元法1.已知,>>0,0y x 且14522=−+y xy x ,则22812y xy x −+的最小值为 .2.若12,,22=−+∈∈y xy x R y R x ,则222252yxy x y x +−−的最大值为 .3.已知()()()()y x P C B A ,,1,3,2,1,1,2−−满足()()1−=⋅⨯⋅OB OP OA OP ,则2OP OCOP ⋅的最大值为 .4.若,>,>10b a 且2=+b a ,则1221−+b b a 的最小值为 . 5.已知,>>0,0y x 则yx y y x x 23+++的最大值为 . 题型3:导数法和函数法1.已知00,0>,>>z y x ,且,63=++z y x 则z y x 323++的最小值为 .2.已知00,0>,>>z y x ,且,2=++z y x 则z y x ++2331的最小值为 . 3.若,4,0,⎥⎦⎤⎢⎣⎡∈πβα则()()βαβα++−sin 2sin 的最大值为 .题型4:设值左右法1.已知,>,>00b a 且b a b a 13612+≤++,则ba ab 3+的最大值为 .题型5:费马点1.00,0>,>>z y x ,且()92=−+xy y x ,,()162=−+yz z y ,()252=−+zx x z ,则=++zx yz xy .题型6:设比例关系法1.已知,>,>00b a ,333b a b a −=+若122≤+kb a 恒成立,则k 的最大值为 .2.设[]2,1,∈b a ,则abb a 22+的最大值为 .3.已知,>>0,0y x 则2222282yx xy y x xy +++的最大值为 .题型7:参数法1.已知,>,>,>000c b a 且222c b a =+,则abc c b a 333++的最小值为 .2.x x 3154−+−的最大值为 .3.若,,R b a ∈,6222=+b a 则3−a b 的最大值为 . 题型8:万能k 法和主元法1.若,>,>00b a 且对于任意的b a ,,()2223442a ab b k a ab ++≤+恒成立,则k 的最大值为 . 2.若,>>0,0y x xy yx y x 4344=+−,则y 的最大值为 .3.已知,>,>,>000c b a (),bc c b a a =++则cb a +的最大值为 .4.若,14,,22=++∈∈y xy x R y R x 则y x +2的最大值为 .5.若()b a b b a +≥+γ228对任意R b a ∈,恒成立,则γ的最大值为 .6.若,>>0,0y x 则()yx y x 2122+++的最小值为 .7.若,>>0,0y x ()4=−y x xy ,则y x +的最小值为 .8.若,>>0,0y x ()4=+y x xy ,则y x +2的最小值为 .9.若,>>0,0y x ()422=+y x y x ,则y x +的最小值为 .答案:题型1 1.4 2.4 3.105+ 4.89 5.2 6.21 7.45 8.452+ 9.21− 10.6 11.4 12.223+ 13.22题型2 1.37 2.42 3.425 4.213 5.53题型3 1.437 2.1213 3.5题型4 1.91题型5 1.38题型6 1.6 2.25 3.32题型7 1.22+ 2.2 3.1题型8 1.22 2.31 3.212− 4.5102 5.4 6.552 7.32 8.32 9.2。
新高考数学一轮复习考点知识专题讲解与练习 4 基本不等式
新高考数学一轮复习考点知识专题讲解与练习考点知识总结4基本不等式高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中等难度考纲研读1.了解基本不等式的证明过程2.会用基本不等式解决简单的最大(小)值问题一、基础小题1.若0<a<12,则a(1-2a)的最大值是()A.18B.14C.12D.1答案 A解析由0<a<12,得1-2a>0,则a(1-2a)=12·2a(1-2a)≤12⎣⎢⎡⎦⎥⎤2a+(1-2a)22=18,当且仅当a=14时取等号.故选A.2.已知m>0,n>0,2m+n=1,则14m+2n的最小值为()A.4 B.22C.92D.16答案 C解析 由于m >0,n >0,2m +n =1,则14m +2n =(2m +n )⎝ ⎛⎭⎪⎫14m +2n =52+n 4m +4m n ≥52+2n 4m ·4m n =92,当且仅当n =23,m =16时取等号.故选C. 3.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1 D .32 答案 A解析 由于x >0,则y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数y 的最小值为0.故选A.4.已知a >0,b >0,若不等式2a +1b ≥n2a +b 恒成立,则n 的最大值为( )A .9B .12C .16D .20 答案 A解析 因为a >0,b >0,所以2a +b >0,2a +1b ≥n 2a +b⇒(2a +b )⎝ ⎛⎭⎪⎫2a +1b ≥n ,(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+22a b ·2b a =9(当且仅当a =b 时,取等号),要想不等式2a +1b≥n2a +b恒成立,只需n ≤9,即n 的最大值为9.故选A. 5.若3x +2y =2,则8x +4y 的最小值为( ) A .4 B .42 C .2 D .2 2解析∵3x+2y=2,∴8x+4y=23x+22y≥223x·22y=223x+2y=4,当且仅当3x=2y,即x=13,y=12时等号成立,∴8x+4y的最小值为4.故选A.6.已知向量a=(1,x-1),b=(y,2),其中x>0,y>0.若a⊥b,则xy的最大值为()A.14B.12C.1 D.2答案 B解析因为a=(1,x-1),b=(y,2),a⊥b,所以a·b=y+2(x-1)=0,即2x+y=2.又因为x>0,y>0,所以2x+y≥22xy,当且仅当x=12,y=1时等号成立,即22xy≤2,所以xy≤12,所以当且仅当x=12,y=1时,xy取到最大值,最大值为12.故选B.7.若a>0,b>0,且1a+1b=ab,则a2+b2的最小值为()A.2 B.22C.4 D.4 2 答案 C解析∵a>0,b>0,∴1a +1b=ab≥21ab,∴ab≥2,当且仅当a=b=2时等号成立,∴a2+b2≥2ab≥4,当且仅当a=b=2时等号成立.综上,a2+b2的最小值为4.故选C.8.已知函数f(x)=cosπx(0<x<2),若a≠b,且f(a)=f(b),则1a+4b的最小值为()A.92B.9 C.18 D.36解析函数f(x)=cosπx(0<x<2)的图象的对称轴为直线x=1.因为a≠b,且f(a)=f(b),所以a+b=2,所以1a +4b=⎝⎛⎭⎪⎫1a+4b(a+b)×12=12⎝⎛⎭⎪⎫5+ba+4ab≥12×⎝⎛⎭⎪⎫5+2ba·4ab=92,当且仅当a=23,b=43时取等号,故1a+4b的最小值为92.故选A.9.(多选)设x∈(0,+∞),y∈(0,+∞),S=x+y,P=xy,以下四个命题中正确的是()A.若P=1,则S有最小值2 B.若S+P=3,则P有最大值1C.若S=2P,则S有最小值4 D.若S+P=3,则S有最大值2答案AB解析对于A,若xy=1,则S=x+y≥2xy=2(当且仅当x=y=1时取等号),故A 正确;对于B,若x+y+xy=3,则3=x+y+xy≥2xy+xy,解得0<xy≤1(当且仅当x=y=1时取等号),故B正确;对于C,若x+y=2xy,则x+y=2xy≤(x+y)22,可得x+y≥2(当且仅当x=y=1时取等号),故C错误;对于D,若x+y+xy=3,则3=x+y+xy≤x+y+(x+y)24,解得x+y≥2(当且仅当x=y=1时取等号),故D错误.10.(多选)下列说法正确的是()A.x+1x(x>0)的最小值是2 B.x2+2x2+2的最小值是 2C.x2+5x2+4的最小值是2 D.2-3x-4x的最大值是2-4 3解析 当x >0时,x +1x ≥2x ·1x =2⎝ ⎛⎭⎪⎫当且仅当x =1x ,即x =1时取等号,A 正确;∵x 2≥0,∴x 2+2x 2+2=x 2+2≥2,B 正确;x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4,令t =x 2+4,则t ∈[2,+∞),∵y =t +1t 在[2,+∞)上单调递增,∴t +1t ≥2+12=52,即x 2+5x 2+4≥52,C 错误;当x <0时,2-3x -4x 无最大值,D 错误.故选AB.11.若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为________. 答案 4解析 ∵正实数x ,y 满足x +2y +2xy -8=0,∴x +2y +⎝⎛⎭⎪⎫x +2y 22-8≥0.设x +2y =t >0,∴t +14t 2-8≥0,∴t 2+4t -32≥0,即(t +8)(t -4)≥0,∴t ≥4,即x +2y ≥4,当且仅当x =2,y =1时取等号,故x +2y 的最小值为4.12.正项等比数列{a n }中,存在两项a m ,a n ,使得a m a n =2a 1,且a 6=a 5+2a 4,则m +n =________,1m +9n 的最小值是________.答案 4 4解析 由于数列{a n }是正项等比数列,由a 6=a 5+2a 4得q 2=q +2,解得q =2(负根舍去).由a m a n =2a 1,得2m +n -2=22,m +n =4.故1m +9n =14⎝ ⎛⎭⎪⎫1m +9n (m +n )=14⎝ ⎛⎭⎪⎫1+9+n m +9m n ≥14⎝⎛⎭⎪⎫10+2n m ·9m n =14×(10+6)=4,当且仅当m =1,n =3时,1m +9n取得最小值4.二、高考小题13.(2022·全国乙卷)下列函数中最小值为4的是()A.y=x2+2x+4 B.y=|sin x|+4 |sin x|C.y=2x+22-x D.y=ln x+4 ln x答案 C解析对于A,因为y=x2+2x+4=(x+1)2+3,所以当x=-1时,y取得最小值,且y min=3,所以A不符合题意;对于B,因为y=|sin x|+4|sin x|≥2|sin x|·4|sin x|=4,所以y≥4,当且仅当|sin x|=4|sin x|,即|sin x|=2时取等号,但是根据正弦函数的性质可知|sin x|=2不可能成立,因此可知y>4,所以B不符合题意;对于C,因为y=2x+22-x ≥22x·22-x=4,当且仅当2x=22-x,即x=2-x,x=1时取等号,所以y min=4,所以C符合题意;对于D,当0<x<1时,ln x<0,y=ln x+4ln x<0,所以D不符合题意.14.(2022·浙江高考)已知α,β,γ是互不相同的锐角,则在sin αcos β,sin βcos γ,sin γcos α三个值中,大于12的个数的最大值是()A.0 B.1 C.2 D.3答案 C解析因为α,β,γ是互不相同的锐角,所以sinα,cos β,sin β,cos γ,sin γ,cosα均为正数.由基本不等式可知sin αcos β≤sin2α+cos2β2,sinβcos γ≤sin2β+cos2γ2,sinγcosα≤sin 2γ+cos 2α2.三式相加可得sin αcos β+sin βcos γ+sin γcos α≤32,当且仅当sin α=cos β,sin β=cos γ,sin γ=cos α,即α=β=γ=π4时取等号,因为α,β,γ是互不相同的锐角,所以sin αcos β+sin βcos γ+sin γcos α<32,所以这三个值不会都大于12.若取α=π6,β=π3,γ=π4,则sin π6cos π3=12×12=14<12,sin π3cos π4=32×22=64>24=12,sin π4cos π6=22×32=64>12,所以这三个值中大于12的个数的最大值为2.故选C.15.(2022·上海高考)下列不等式恒成立的是( ) A .a 2+b 2≤2ab B .a 2+b 2≥-2ab C .a +b ≥2|ab | D .a 2+b 2≤-2ab 答案 B解析 显然当a <0,b >0时,不等式a 2+b 2≤2ab 不成立,故A 错误;∵(a +b )2≥0,∴a 2+b 2+2ab ≥0,∴a 2+b 2≥-2ab ,故B 正确;显然当a <0,b <0时,不等式a +b ≥2|ab |不成立,故C 错误;显然当a >0,b >0时,不等式a 2+b 2≤-2ab 不成立,故D 错误.故选B.16.(多选)(2022·新高考Ⅰ卷)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12 B .2a -b >12 C .log 2a +log 2b ≥-2 D .a +b ≤ 2 答案 ABD解析 对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2⎝ ⎛⎭⎪⎫a -122+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2⎝⎛⎭⎪⎫a +b 22=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.17.(2022·天津高考)若a >0,b >0,则1a +ab 2+b 的最小值为________. 答案 2 2解析 ∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b+b ≥22b ·b =22,当且仅当1a =a b 2且2b =b ,即a =b =2时等号成立,∴1a +ab2+b 的最小值为2 2. 三、模拟小题18.(2022·浙江杭州富阳中学高三上第一次二校联考)已知正实数a ,b 满足1a +9b =6,则(a +1)(b +9)的最小值是( )A .8B .16C .32D .36 答案 B解析 因为正实数a ,b 满足1a +9b =6,所以6=1a +9b ≥29ab ,即ab ≥1,当且仅当1a =9b 时,即a =13,b =3时取等号.因为1a +9b =6,所以b +9a =6ab ,所以(a +1)(b +9)=9a +b +ab +9=7ab +9≥7+9=16.故(a +1)(b +9)的最小值是16.故选B.19.(2022·湖北新高考联考协作体高三上新起点考试)已知a >0,b >0且a +b =1,若不等式1a +1b >m 恒成立,m ∈N *,则m 的最大值为( )A .3B .4C .5D .6 答案 A解析 ∵不等式1a +1b >m 恒成立,∴⎝ ⎛⎭⎪⎫1a +1b min >m ,又a +b =1,a >0,b >0∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=1+b a +a b +1≥2+2b a ·a b =4,当且仅当a =b =12时等号成立,∴⎝ ⎛⎭⎪⎫1a +1b min=4,∴m <4,又m ∈N *,∴m =3.故选A.20.(2022·河北省“五个一”名校联盟高三第一次联考)已知x >0,y >0,且x +4y -xy =0,若不等式a ≤x +y 恒成立,则a 的取值范围是( )A .(-∞,6]B .(-∞,7]C .(-∞,8]D .(-∞,9] 答案 D解析 ∵x >0,y >0,x +4y -xy =0,∴4x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫4x +1y =5+x y +4y x .∵x y+4yx≥2x y ·4y x =4(当且仅当x y =4yx,即x =2y =6时取等号),∴x +y ≥5+4=9.又不等式a ≤x +y 恒成立,∴a ≤9.21.(2022·辽宁六校高三上学期期初联考)已知定义在R 上的偶函数f (x )=|x -m +1|-2,若正实数a ,b 满足f (a )+f (2b )=m ,则2a +3b 的最小值为( )A .85B .8+435 C .835D .2105 答案 B解析 ∵f (x )为R 上的偶函数,∴f (-x )=f (x ),即|-x -m +1|-2=|x -m +1|-2,即(-x -m +1)2=(x -m +1)2,整理得2(m -1)x =-2(m -1)x ,∴m =1,∴f (x )=|x |-2.∴f (a )+f (2b )=a -2+2b -2=1,即a +2b =5.∴2a +3b =15⎝ ⎛⎭⎪⎫2a +3b (a +2b )=15⎝ ⎛⎭⎪⎫8+4b a +3a b ≥15⎝ ⎛⎭⎪⎫8+24b a ·3a b =8+435(当且仅当4b a =3a b ,即2b =3a 时取等号),∴2a +3b 的最小值为8+435.故选B.22.(多选)(2022·湖南省长沙市长郡中学上学期适应性调查考试)小王从甲地到乙地往返的速度分别为a 和b (a <b ),其全程的平均速度为v ,则( )A .a <v < abB .v =abC .ab <v <a +b 2D .v =2ab a +b答案 AD解析 设甲、乙两地之间的距离为s ,则全程所需的时间为s a +s b ,∴v =2ss a +s b =2ab a +b .∵b >a >0,∴v =2ab a +b <2ab 2ab =ab ;另一方面,v =2ab a +b <2⎝⎛⎭⎪⎫a +b 22a +b=a +b 2,v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a ,则a <v <ab .故选AD. 23.(多选)(2022·河北石家庄第一中学高三上教学质量检测(一))以下结论正确的是( )A .x 2+1x 2≥2B .x 2+3+1x 2+3的最小值为2 C .若a 2+2b 2=1,则1a 2+1b 2≥3+2 2 D .若a +b =1,则1a +1b≥4 答案 AC解析 对于A ,x 2+1x 2≥2x 2·1x 2=2,当且仅当x 2=1时等号成立,故A 正确;对于B ,x 2+3+1x 2+3≥2x 2+3·1x 2+3=2,当且仅当x 2+3=1时等号成立,但x 2+3≥3≠1,故B 错误;对于C ,1a 2+1b 2=⎝ ⎛⎭⎪⎫1a 2+1b 2·(a 2+2b 2)=3+2b 2a 2+a 2b 2≥3+22,当且仅当a 2=2-1,b 2=2-22时等号成立,故C 正确;对于D ,当a >0,b >0,a +b =1时,1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+a b +b a ≥4,但当a +b =1时,不一定有a >0,b >0,故D 错误.故选AC.24.(多选)(2022·辽宁葫芦岛协作校高三上第一次考试)下列函数中,最小值为9的是( )A .y =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫x +4x B .y =1sin 2x +4cos 2xC .y =lg x +4lg x -5D .y =(2x 2+1)(4x 2+8)(x 2+1)2答案 AB解析 y =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫x +4x =5+x 2+4x 2≥5+24=9,当且仅当x 2=2时,等号成立.y =1sin 2x +4cos 2x =⎝ ⎛⎭⎪⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=5+cos 2x sin 2x +4sin 2x cos 2x ≥5+24=9,当且仅当tan 2x =12时,等号成立.当lg x -5小于0时,y =lg x +4lg x -5无最小值.y =(2x 2+1)(4x 2+8)(x 2+1)2=4(2x 2+1)(x 2+2)(x 2+1)2≤4×⎣⎢⎡⎦⎥⎤(2x 2+1)+(x 2+2)22(x 2+1)2=9,当且仅当x 2=1时,等号成立,则y =(2x 2+1)(4x 2+8)(x 2+1)2的最大值为9.故选AB. 25.(2022·福建晋江磁灶中学高三上阶段测试(一))若lg x +lg y =0,则4x +9y 的最小值为________.答案 12解析 因为lg x +lg y =0,所以xy =1(x >0,y >0),所以4x +9y ≥24x ·9y =12.等号成立的条件为4x =9y ,即x =32,y =23时取得最小值.26.(2022·河北正定中学高三开学考试)已知x ,y >0,且1x +3+1y =12,则x +y 的最小值为________.答案 5解析x +y =2[(x +3)+y ]⎝ ⎛⎭⎪⎫1x +3+1y -3=2⎝ ⎛⎭⎪⎫2+y x +3+x +3y -3≥2⎝ ⎛⎭⎪⎫2+2y x +3·x +3y -3=5,当且仅当y x +3=x +3y ,即x =1,y =4时,等号成立,所以x +y 的最小值为5.一、高考大题1.(2022·全国Ⅲ卷)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34.证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2). 由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0.∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a≥34,即max{a,b,c}≥34.2.(2022·全国Ⅰ卷)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1,故有a2+b2+c2≥ab+bc+ca=ab+bc+caabc =1a+1b+1c.当且仅当a=b=c=1时,等号成立.所以1a +1b+1c≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥33(a+b)3(b+c)3(c+a)3=3(a+b)(b+c)(c+a)≥3×(2ab)×(2bc)×(2ca)=24.当且仅当a=b=c=1时,等号成立.所以(a+b)3+(b+c)3+(c+a)3≥24.二、模拟大题3.(2022·福建龙岩高三检测)已知x,y∈(0,+∞),x2+y2=x+y.(1)求1x +1y 的最小值;(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解 (1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x+1y 的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以0<x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4,当且仅当x =y =1时,等号成立. 因此不存在x ,y 满足(x +1)(y +1)=5.4.(2022·广东省珠海市高三模拟)某商场预计全年分批购入电视机3600台,其中每台价值2000元,每批购入的台数相同,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入的电视机的总价值(不含运费)成正比,比例系数为k ,若每批购入400台,则全年需要支付运费和保管费共43600元.(1)求k 的值;(2)请问如何安排每批进货的数量,使支付运费与保管费的和最少?并求出相应的最少费用.解 (1)由题意,当每批购入400台时,全年的运费为400×3600400=3600(元),每批购入的电视机的总价值为400×2000=800000(元),所以保管费为k·800000(元).因为全年需要支付运费和保管费共43600元,所以3600+k·800000=43600,解得k=0.05.(2)设每批进货x台,则运费为400×3600x =1440000x,保管费为0.05×2000x=100x.所以支付运费与保管费的和为1440000x+100x,因为1440000x +100x≥21440000x×100x=24000,当且仅当1440000x=100x,即x=120时取到等号,所以每批进货120台,支付运费与保管费的和最少,最少费用为24000元.5.(2022·江苏镇江模拟)某校为丰富师生课余活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且点P在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为37kS元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为12kS元(k为正常数).(1)试用x 表示S ,并求S 的取值范围;(2)写出总造价T 与面积S 的函数关系式;(3)如何选取|AM |,才能使总造价T 最低(不要求求出最低造价)?解 (1)在Rt △PMC 中,显然|MC |=30-x ,∠PCM =60°,|PM |=|MC |tan ∠PCM =3(30-x ),∴矩形AMPN 的面积S =|PM |·|AM |=3x (30-x ),x ∈[10,20],由x (30-x )≤⎝ ⎛⎭⎪⎫x +30-x 22=225, 可知当x =15时,S 取得最大值,为2253,当x =10或20时,S 取得最小值,为2003,∴2003≤S ≤2253,即S 的取值范围为[2003,2253].(2)矩形AMPN 健身场地造价T 1=37k S ,又△ABC 的面积为12×30×303=4503,∴草坪造价T 2=12k S(4503-S ). ∴总造价T =T 1+T 2=25k ⎝⎛⎭⎪⎫S +2163S , 2003≤S ≤225 3.(3)∵S +2163S≥1263,当且仅当S=2163,S即S=2163时等号成立,此时3x(30-x)=2163,解得x=12或x=18.∴选取|AM|为12米或18米时,能使总造价T最低.。
高考数学一轮复习课时过关检测四基本不等式含解析
课时过关检测(四) 基本不等式A 级——基础达标1.(2022·扬州市高三联考)设x >0,则y =3-3x -1x的最大值为( )A .3B .3-3 2C .3-2 3D .-1解析:C ∵x >0,∴y =3-3x -1x≤3-23x ·1x =3-23,当3x =1x ,即x =33时,等号成立.故选C .2.已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A .14 B .12 C .22D .1解析:A 根据题意,圆x 2+y 2=1的圆心为(0,0),半径r =1,若直线ax +2by -1=0和x 2+y 2=1相切,则有|-1|a 2+4b2=1,变形可得a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,变形可得ab ≤14,当且仅当a =2b 时等号成立,故ab 的最大值是14,故选A .3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:C 由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4xm ,又设总造价是y 元,则y =20×4+10×⎝ ⎛⎭⎪⎫2x +8x ≥80+202x ·8x =160,当且仅当2x =8x,即x =2时取得等号.4.已知x >0,y >0,且x +2y =1,若不等式2x +1y≥m 2+7m 恒成立,则实数m 的取值范围是( )A .-8≤m ≤1B .m ≤-8或m ≥1C .-1≤m ≤8D .m ≤-1或m ≥8解析:A ∵x >0,y >0,x +2y =1,∴2x +1y=(x +2y )·⎝ ⎛⎭⎪⎫2x +1y =4y x +xy+4≥4+24=8⎝ ⎛⎭⎪⎫当4y x =x y ,即x =2y =12时取等号,∵不等式2x +1y ≥m 2+7m 恒成立,∴m 2+7m ≤8,解得-8≤m ≤1.故选A .5.已知双曲线x 2m -y 2n =1(m >0,n >0)和椭圆x 25+y 22=1有相同的焦点,则4m +1n的最小值为( )A .2B .3C .4D .5解析:B 由题意双曲线x 2m -y 2n =1(m >0,n >0)和椭圆x 25+y 22=1有相同的焦点,∴m +n =5-2=3,∴4m +1n =13(m +n )⎝ ⎛⎭⎪⎫4m +1n =13⎝⎛⎭⎪⎫5+4n m +m n ≥13·⎝ ⎛⎭⎪⎫5+24n m·m n =3,当且仅当4n m=m n ,即m =2n 时等号成立,故4m +1n的最小值为3,故选B . 6.(多选)下列不等式一定成立的有( ) A .x +1x≥2B .2x (1-x )≤14C .x 2+3x 2+1≥23-1 D .x +1x≥2解析:CD 对于A ,当x <0时,x +1x<0,故A 错误;对于B,2x (1-x )=-2x 2+2x =-2⎝ ⎛⎭⎪⎫x -122+12≤12,故B 错误;对于C ,x 2+3x 2+1=x 2+1+3x 2+1-1≥2 x 2+1·3x 2+1-1=23-1,当且仅当x 2=3-1时取等号,故C 正确;对于D ,x +1x≥2x ·1x=2,当且仅当x =1时取等号,故D 正确,故选C 、D .7.(多选)已知x >0,y >0,且2x +y =2,则下列说法中正确的是( ) A .xy 的最大值为12B .4x 2+y 2的最大值为2 C .4x+2y的最小值为4D .2x +xy的最小值为4解析:ACD 由2=2x +y ≥22x ×y ⇒xy ≤12,当2x =y 时等号成立,所以A 正确;4x 2+y 2=(2x +y )2-4xy =4-4xy ≥2,所以4x 2+y 2的最小值为2,故B 不正确; 由2=2x +y ,得4x+2y=4x+22-2x=4x+44x ≥4,当x =12时等号成立,故C 正确;由2=2x +y ,得2x +x y =2x +y x +x y =2+y x +xy≥4,当x =y 时等号成立,故D 正确.故选A 、C 、D .8.若log 2m +log 2n =1,那么m +n 的最小值是________.解析:∵log 2m +log 2n =1,即log 2(mn )=1,∴mn =2,由基本不等式可得m +n ≥2mn =22,当且仅当m =n 时,等号成立,故m +n 的最小值是22.答案:2 29.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:∵对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1 ≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *,则g (x )=x +8x≥42,当且仅当x =22时等号成立,又g (2)=6,g (3)=173,g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞. 答案:⎣⎢⎡⎭⎪⎫-83,+∞10.(2022·临汾二模)已知a ,b 为正实数,且满足a +b =1.证明: (1)a 2+b 2≥12;(2)1a +2b≥1+2.证明:(1)因为a +b =1,a >0,b >0,所以a 2+b 2=12(a 2+b 2+a 2+b 2)≥12(a 2+b 2+2ab )=12(a +b )2=12(当且仅当a =b 取等号).(2)1a+2b=⎝ ⎛⎭⎪⎫1a +2b (a +b )=3+2a b +b a≥3+22a b ×ba=3+22=(1+2)2⎝⎛⎭⎪⎫当且仅当2a b=b a,即a =2-1,b =2-2时等号成立,所以1a +2b≥1+2.B 级——综合应用11.函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m ,n 均大于0,则1m +2n的最小值为( )A .2B .4C .8D .16解析:B 因为函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A (-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,所以1m +2n =12⎝ ⎛⎭⎪⎫1m +2n (2m +n )=12⎝ ⎛⎭⎪⎫4+n m +4m n ≥12⎝⎛⎭⎪⎫4+2n m ·4m n =4,当且仅当⎩⎪⎨⎪⎧2m +n =2,n m =4m n,即⎩⎪⎨⎪⎧m =12,n =1取等号,所以1m +2n的最小值为4,故选B .12.(2022·重庆一模)中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =pp -a p -b p -c 求得,其中p 为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足a =3,b +c =5,则此三角形面积的最大值为( )A .32 B .3 C .7D .11解析:B 由题意p =12×(3+5)=4,S =44-a4-b4-c=44-b4-c =24-b 4-c ≤8-(b +c )=3,当且仅当4-b =4-c ,即b=c =52时等号成立,∴此三角形面积的最大值为3.故选B .13.写出一个关于a 与b 的等式,使1a 2+9b2是一个变量,且它的最小值为16,则该等式为__________.解析:该等式可为a 2+b 2=1,下面证明该等式符合条件.1a 2+9b2=⎝ ⎛⎭⎪⎫1a 2+9b 2(a 2+b 2)=1+9+9a 2b 2+b2a2≥10+29a2b 2·b 2a 2=16,当且仅当b 2=3a 2时取等号,所以1a 2+9b2是一个变量,且它的最小值为16.答案:a 2+b 2=1(答案不唯一)14.(2022·湘东联考)已知f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0)在x =1处取得极值,求2a +1b的最小值.解:因为f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0),所以f ′(x )=x 2+2ax +b -4.因为f (x )在x =1处取得极值,所以f ′(1)=0,所以1+2a +b -4=0,可得2a +b =3.所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·13·(2a +b )=13⎝ ⎛⎭⎪⎫5+2b a +2a b ≥13⎝ ⎛⎭⎪⎫5+22b a·2a b =3(当且仅当a =b =1时取等号).C 级——迁移创新15.(多选)(2022·临沂高三模拟)已知a >0,b >0,c >0,a +b +c =1,则( ) A .a 2+b 2+c 2≥13B .ab +bc +ac ≥13C .⎝ ⎛⎭⎪⎫a -13⎝ ⎛⎭⎪⎫b -13⎝ ⎛⎭⎪⎫c -13≤0 D .⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8 解析:AD a >0,b >0,c >0,a +b +c =1.A 项,1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ≤a 2+b 2+c 2+(a 2+b 2)+(b 2+c 2)+(a 2+c 2),所以a 2+b 2+c 2≥13,当且仅当a =b =c=13时取等号,故正确;B 项,a 2+b 2≥2ab ,c 2+b 2≥2bc ,a 2+c 2≥2ac ,所以a 2+b 2+c 2≥ab +bc +ac ,由1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ≥3ab +3bc +3ac ,即ab +bc +ac ≤13,当且仅当a =b =c =13时取等号,故错误;C 项,当a =12,b =14,c =14时,⎝⎛⎭⎪⎫a -13⎝⎛⎭⎪⎫b -13⎝ ⎛⎭⎪⎫c -13>0,故错误;D 项,⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1=b +c a ·a +c b ·a +b c =⎝ ⎛⎭⎪⎫b a +c a ·⎝ ⎛⎭⎪⎫a b +c b ·⎝ ⎛⎭⎪⎫a c +b c ≥2b a ·c a ·2 a b ·c b ·2 a c ·b c =8.当且仅当a =b =c =13时取等号,故正确.故选A 、D .16.甲、乙两地相距1 000 km ,货车从甲地匀速行驶到乙地,速度不得超过80 km/h ,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的14,固定成本为a 元. (1)将全程运输成本y (单位:元)表示为速度v (单位:km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?解:(1)由题意,得可变成本为14v 2元,固定成本为a 元,所用时间为1 000v ,所以y =1 000v ⎝ ⎛⎭⎪⎫14v 2+a =1 000⎝ ⎛⎭⎪⎫14v +a v ,定义域为(0,80]. (2)y =1 000⎝ ⎛⎭⎪⎫14v +a v ≥1 000×2a4=1 000a (元),当14v =av时,得v =2a ,因为0<v ≤80,所以当0<a ≤1 600时,货车以v =2a km/h 的速度行驶,全程运输成本最小; 当a ≥1 600时,货车以80 km/h 的速度行驶,全程运输成本最小.。
高三数学不等式试题答案及解析
高三数学不等式试题答案及解析1.已知实数满足,则的取值范围是( )A.B.C.D.【答案】C【解析】即,由,,,所以,即,当且仅当时取等号,综上所述,的取值范围是.故答案选【考点】基本不等式.2.(本小题满分10分)(选修4—5,:不等式选讲)(Ⅰ)证明柯西不等式:;(Ⅱ)若且,用柯西不等式求+的最大值.【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)利用做差法,即可证明结果;(Ⅱ)由柯西不等式可得,又即可求出结果.试题解析:解:(Ⅰ)证明:∴(Ⅱ)由柯西不等式可得∵∴∴【考点】1.不等式的性质;2.柯西不等式.3.(本小题满分10分)选修4-5:不等式选讲设实数,满足.(1)若,求的取值范围;(2)求最小值.【答案】(1);(2)【解析】第一问根据题中的等量关系式,不等式可以化为,从而求得的取值范围是,第二问将代入上式,得到利用三角不等式求得其最小值为.试题解析:(1)由得,即,所以可化为,即,解得,所以的取值范围是(2)代入,当且仅当,时,等号成立(或)的最小值为【考点】解绝对值不等式,三角不等式求最值.4.设实数满足则的最大值为.【答案】4【解析】不等式组表示的平面区域如图三角形及其内部,且A(4,0).目标函数可看作直线在y轴上的截距的-2倍,显然当截距越小时,z越大.易知,当直线过点A时,z最大,且最大值为4-2×0=4.【考点】线性规划求最值.5.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.【答案】(Ⅰ);(Ⅱ)证明见解析.(Ⅱ)【解析】(Ⅰ)这是含绝对值的不等式工,解法是由绝对值的定义对变量的范围进行分类讨论以去掉绝对值符号,化为普通的不等式(不含绝对值);(Ⅱ)不等式为,可两边平方去掉绝对值符号,再作差可证.试题解析:(Ⅰ)由题意,原不等式等价为,令 3分不等式的解集是 5分(Ⅱ)要证,只需证,只需证而,从而原不等式成立. 10分【考点】含绝对值不等式的解法,绝对值不等式的证明,分析法.6.下列结论:①函数有最大值;②函数有最大值10;③若,则.正确的序号是A.①B.①③C.②③D.①②③【答案】B【解析】对于①;对于②因为,所以;对于③因为,所以.故应选.【考点】1、基本不等式的应用.【方法点睛】本题主要考查了运用基本不等式求其最值,属中档题.其解题的一般方法有两大类:其一是针对和为定值,求其积的最大值问题,如选项①;其二是针对积为定值,和有最小值问题,如选项②、③.在运用基本不等式求最值的过程中,应注意其适用的条件:一正二定三相等,特别应注意等号成立的条件,并检验其是否能够取得到,尤其针对多次运算基本不等式时应验证等号是否能够同时取得.7.选修4-5:不等式选讲.设函数;(Ⅰ)当a=1时,解不等式.(Ⅱ)证明:.【答案】(Ⅰ)当a=1时,不等式的解集为;(Ⅱ)证明过程详见解析.【解析】(Ⅰ)解绝对值不等式的思路是运用零点分段法去绝对值,然后求解每一种情况的解集,最后对几种情况的解集求并集即可;(Ⅱ)求得,,然后利用绝对值不等式缩小为,最后运用均值不等式即可证明.试题解析:(Ⅰ)解:当a=1时,由,得,当时,得,解得,∴;当时,得2≥4不成立,∴不等式无解;当时,由,解得,∴.综上所述,当a=1时,不等式的解集为.(Ⅱ)证明:∵∴.【考点】①解绝对值不等式;②证明不等式.8.选修4-5:不等式选讲已知函数(1)解不等式;(2)若函数的图象恒在函数的图象的上方,求实数的取值范围.【答案】(1);(2)【解析】(1)运用分类讨论的思想方法,去绝对值,即可得到不等式组,即可得到所求解集;(2)由题意可得不等式恒成立,由绝对值不等式的性质,可得右边函数的最大值,进而得到的范围.试题解析:(1)不等式化为,所以不等式的解集为(2)由于函数的图象恒在函数的图象的上方即不等式恒成立令由,得所以实数的取值范围【考点】1.函数的性质及应用;2.绝对值不等式的解法及应用.9.设x,y满足约束条件,若z=x+3y的最大值与最小值的差为7,则实数m=()A.B.C.D.【答案】C【解析】由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(m﹣1,m),化z=x+3y,得.由图可知,当直线过A时,z有最大值为7,当直线过B时,z有最大值为4m﹣1,由题意,7﹣(4m﹣1)=7,解得:m=.故选:C.【考点】简单线性规划.10.已知函数,不等式的解集为.(Ⅰ)求实数的值;(Ⅱ)若关于的不等式恒成立,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)或【解析】(Ⅰ)问题转化为,从而得到且,基础即可;(Ⅱ)问题转化为恒成立,根据绝对值的意义解出的范围即可.试题解析:解:(1)∵,∴不等式,即,∴,而不等式的解集为,∴且,解得:;(2)关于的不等式恒成立关于的不等式恒成立恒成立恒成立,由或,解得:或.【考点】1.绝对值不等式的解法;2.分段函数的应用.11.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值【答案】B【解析】在平面直角坐标系中作出不等式组所表示的平面区域,利用线性规划知识可得,在处,无最大值.【考点】线性规划.12.设变量满足约束条件,则目标函数的最小值为______.【答案】【解析】画出变量满足的约束条件所表示的可行域,如图所示,可求得可行域内点,则目标函数经过点是取得最小值,此时最小值为.【考点】线性规划求最值.13.已知函数.(1)求不等式的解集;(2)若关于x的不等式恒成立,求实数a的取值范围.【答案】(1);(2).【解析】(1)通过讨论的取值范围,即可求出每个不等式的解集,取并集即可;(2)不等式等价于,转化为绝对值三角不等式求解出函数的最小值,列出关于的不等式组,即可求解的取值范围.试题解析:(1)原不等式等价于:解得,不等式的解集为.(2)不等式因为,所以的最小值为4.于是,所以【考点】绝对值不等式的求解;函数的恒成立问题.14.设对任意恒成立,其中是整数,则的取值的集合为________.【答案】【解析】当时,直线单调递增且过定点,而抛物线的开口向上,不等式在不恒成立,故,此时,否则不合题设,所以欲使不等式在恒成立(当且仅当,即时才能满足),注意到是整数,所以当或时,成立,故或,答案应填:.【考点】1、一次函数、二次函数的图象和性质;2、不等式恒成立的转化与化归;3、分类整合的思想、推理证明的思想和意识.【易错点晴】本题借助不等式恒成立考查的是分类整合的数学思想和函数的图象与性质,属于较难的问题.解题时一定要充分借助一次函数、二次函数的图象,并对参数进行合理的分类,从而将问题进行分析和转化.解题过程中还运用了题设中为整数这一条件,并以此为基点建立关于的等式求出了参数的值.解本题的关键是如何理解题设中“对任意不等式恒成立”,并能建立与此等价的关于的等式.15.若变量满足约束条件,则的最小值是()A.3B.1C.-3D.不存在【答案】B【解析】作出不等式组对应的平面区域如图(阴影部分),由得,平移直线,由图象可知当直线,过点时,直线的截距最大,此时最小,由,解得,即,代入目标函数,得,即目标函数的最小值为,故选B.【考点】简单的线性规划.16.设函数.(1)求不等式的解集;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)分,及三段讨论去掉绝对值符号,分别求出的解,求并集即得不等式的解集;(2)若恒成立,则求出函数的最小值解得关于的一元二次不等式从而求得实数的取值范围.试题解析:(1)当当当,综上所述(2)易得,若恒成立,则只需综上所述.【考点】绝对值不等式、一元二次不等式的解法及分区间讨论、转化的数学思想.17.设函数.(1)求不等式的解集;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)分,及三段讨论去掉绝对值符号,分别求出的解,求并集即得不等式的解集;(2)若恒成立,则求出函数的最小值解得关于的一元二次不等式从而求得实数的取值范围.试题解析:(1)当当当,综上所述(2)易得,若恒成立,则只需综上所述.【考点】绝对值不等式、一元二次不等式的解法及分区间讨论、转化的数学思想.18.设均为正数,且,则的最小值为()A.16B.15C.10D.9【答案】D【解析】因为均为正数,且,所以,整理可得:,由基本不等式可得,整理可得,解得或(舍去),所以,当且仅当时取等号,故的最小值为,故选D.【考点】基本不等式.【方法点睛】本题主要考查了利用基本不等式求最值,属于中档题.本题解答的关键是根据条件中整理得到,根据基本不等式,把上述关系转化为关于的一元二次不等式,通过解不等式得到的范围,再利用不等式的性质变形得到的范围,得其最小值.19.选修4-5:不等式选讲已知为非零实数,且,.(1)求证:;(2)求实数的取值范围.【答案】(1)证明见解析;(2).【解析】(1)根据柯西不等式可证得,整理即得所证的不等式;(2)根据(1)的结论可得,解不等式求得或,再根据已知条件和不等式的性质可得,取交集即得实数的取值范围.试题解析:(1)证明:由柯西不等式得,即,所以.(2)解:由已知得:,.所以,即,解得或.又,,所以,即实数的取值范围是.【考点】不等式的证明与解法.20.设函数.(1)当时,求函数的定义域;(2)当时,证明:.【答案】(1);(2)【解析】(1)当时,,由;原不等式等价于或或,即可解除不等式的解;(2)当时,即,所以,所以,即可证明结果.试题解析:解:(1)当时,,由原不等式等价于或或则不等式的解集为(2)当时,即,所以,所以,即.【考点】1.绝对值不等式;2.不等式证明.21.已知满足约束条件,若目标函数的最大值为1,则m的值是()A.B.1C.2D. 5【答案】B.【解析】如下图所示,画出不等式组所表示的区域,作直线:,,则可知当,时,,故选B.【考点】本题主要考查线性规划.22.已知函数.(I)解关于的不等式;(II)若关于的不等式恒成立,求实数的取值范围.【答案】(I)或;(II)或.【解析】(I)化简可得,根据绝对值不等式解的基本模型可得或,由不等式的性质即可求得的范围;(II)要使不等式恒成立,则,按照,分别讨论得到,构造关于的不等式,即可求得实数的取值范围.试题解析:(I),或(II)当时,作出图象可知的最小值为,则此时;当时,,作出图象可知的最小值为,则此时综上:或【考点】绝对值不等式的解法与分段和函数的最值和恒成立问题.23.选修4-5: 不等式选讲设函数.(1)求不等式的解集;(2)求函数的最小值.【答案】(1);(2).【解析】(1)根据绝对值的代数意义,去掉函数中的绝对值符号,求解不等式;(2)画出函数函数的图象,根据图象求得函数的最小值.试题解析:(1)①由解得;②解得;③解得;综上可知不等式的解集为(2)可知则【考点】绝对值的代数意义;分类讨论思想.24.已知x、y满足,那么z=3x+2y的最大值为 .【答案】【解析】由题意得,作出不等式组表示平面区域,如图所示,可得平面区域为一个三角形,当目标函数经过点时,目标函数取得最大值,此时最大值为.【考点】简单的线性规划.25.已知实数满足,且最大值是最小值的倍,则.【答案】【解析】由数形结合得,直线经过点时,有最小值,经过点时,有最大值,所以.【考点】线性规划.26.在直角坐标系中,曲线的参数方程为为参数.以点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(Ⅰ)将曲线和直线化为直角坐标方程;(Ⅱ)设点是曲线上的一个动点,求它到直线的距离的最大值.【答案】(Ⅰ) ,;(Ⅱ) .【解析】(Ⅰ)利用同角三角基本关系关系消参可得的直角坐标方程;利用两角和的正弦公式和极坐标与直角坐标的转化公式可得的直角坐标方程;(Ⅱ)用参数法设出点的坐标,代入点到直线的距离公式,可得距离的最大值.试题解析:(Ⅰ)解:由得,∴曲线的直角坐标方程为.由,得化简得,,∴∴直线的直角坐标方程为.(Ⅱ)解:由于点是曲线上的点,则可设点的坐标为,点到直线的距离为当时,.∴点到直线的距离的最大值为.【考点】极坐标与普通方程的转化;参数方程与普通方程的转化;点到直线的距离.27.若变量满足约束条件,则的最大值是()A.B.0C.D.【答案】C【解析】作出不等式组满足的平面区域,如图所示,由图知,当目标函数经过点时取得最大值,即,故选C.【考点】简单的线性规划问题.28.选修4-5:不等式选讲已知,不等式的解集为。
高三数学具体的不等式试题答案及解析
高三数学具体的不等式试题答案及解析1.设函数.(Ⅰ)解不等式;(Ⅱ)若不等式的解集为,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】本题考查绝对值不等式的解法和不等式的恒成立问题.考查学生的分类讨论思想和转化能力.第一问利用零点分段法进行求解;第二问利用绝对值的运算性质求出的最大值,证明恒成立问题.试题解析:(Ⅰ) 2分当时,不成立;当时,由,得,解得;当时,恒成立.所以不等式的解集为. 5分(Ⅱ)因为,所以,解得,或,所以的取值范围是. 10分【考点】1.绝对值不等式的解法;2.绝对值的运算性质.2.已知不等式的解集为,是二项式的展开式的常数项,那么A.B.C.D.【答案】D【解析】因为不等式的解集为,所以a<0且,a=-b;的展开式通项为=,令6-3r=0得,r=2,所以m=,,故选D。
【考点】本题主要考查二项式展开式的通项公式,简单分式不等式的解集,有理指数幂的运算法则。
点评:小综合题,拼凑而成,解的思路明确。
记忆公式要准确,计算要细心。
3.已知函数(I)求不等式的解集;(II)设,若关于的不等式的解集非空,求实数的取值范围.【答案】(Ⅰ)原不等式的解为;(Ⅱ) .【解析】(Ⅰ)原不等式可化为:即:2分由得由得综上原不等式的解为 5分(Ⅱ)原不等式等价于令,即, 8分由,所以,所以. 10分【考点】本题主要考查简单绝对值不等式的解法,绝对值的几何意义。
点评:中档题,解简单绝对值不等式,一般要考虑去绝对值的符号。
有时利用绝对值的几何意义则更为简单。
(II)转化成的解集非空后,通过构造函数,确定函数的最小值,使问题得解。
4.不等式对任意实数恒成立,则实数的取值范围是()A.B.C.D.【答案】C【解析】要使不等式恒成立,需f(x)=|x+3|+|x-1|的最小值大于a,问题转化为求f(x)的最小值.解:(1)设f(x)=|x+3|+|x-1|,则有f(x)=当x<-3时,f(x)有最小值4;当-3≤x≤1时,f(x)有最小值4;当x>1时,f(x)>4.综上f(x)有最小值-4,所以,a<4.故答案为C.【考点】绝对值不等式点评:本题考查绝对值不等式的解法,体现了等价转化的数学思想.5.若存在实数满足,则实数的取值范围是.【答案】【解析】令f(x)=,若存在实数x∈[1,2]满足,则f(1)>0或f(2)>0,即4-a>0或10-2a>0,即a<4或a<5,故a<5,即实数a的取值范围是(-∞,5)【考点】本题考查了函数图象的运用点评:构造函数,将存在性问题转化为不等式问题是解答的关键6.若不等式在上恒成立,则的取值范围是()A.B.C.D.【答案】C【解析】因为不等式在上恒成立,所以且,因为,所以,所以的取值范围是.【考点】本小题主要考查利用基本不等式、对数函数和二次函数求函数的最值,考查学生的转化能力和运算求解能力.点评:恒成立问题一般转化成最值问题解决,而此小题求最值时,一定要注意变量的范围,当用基本不等式取不到等号时,要转化成对号函数求解.7.若关于x的不等式的解集为空集,则实数a的取值范围是 .【答案】【解析】因为x的不等式的解集为空集,那么可知,解得实数a的范围是。
高三数学复习—基本不等式(导学试题)
题型1:不等式的性质及其应用 【典型例题】 [例1](1)若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D .a d <b c (2)已知a ,b 为非零实数且a <b ,则下列不等式一定成立的是( ) A.a 2<b 2 B.ab 2<a 2b C.1ab 2<1a 2b D.b a <a b [例2](1)已知0<a <b <1,则( ) A.1b >1a B.()12a <()12b C.(lg a )2<(lg b )2 D .1lg a >1lg b(2)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B.ln(x 2+1)>ln(y 2+1)C.sin x >sin y D .x 3>y 3 (3)已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a ,比较A ,B ,C 的大小关系为( ) A.A <B <C B .B <A <C C.A <C <BD.B <C <A 【变式训练】 1.若a ,b 为实数,则a >b >0是“a 2>b 2”的() A .充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定成立的是( ) A.c a <b a B.b -a c >0 C .b 2c <a 2c D.a -c ac <0 3.若1a <1b <0,则下列不等式中:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2中,正确的不等式是________.(填正确不等式的序号) ★题型2:基本不等式及其应用 【典型例题】 [例1](1)已知54x <,则14245y x x =-+-的最大值 . (2)函数2710(1)1x x y x x ++=>-+的值域 . (3)当时,函数(82)y x x =-的最大值 . (4)设230<<x ,则函数)23(4x x y -=的最大值 . (5)函数2254x y x +=+的值域 . [例2](1)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________. (2)设x ,y ∈R ,且xy ≠0,则()x 2+1y 2·()1x 2+4y 2的最小值为________. (3)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为______. (4)已知x ,y 为正实数,且x 2+y 22 =1,则x 1+y 2 的最大值 .[例3](1)已知0,0x y >>,且191x y +=,则x y +的最小值为 . (2)已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A.72 B.4 C .92 D.5 (3)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5 D.6 [例4](1)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是 A.43 B.53 C .2 D.54 (2)设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为( ) A.4 B.4 3 C.9 D .16(3)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A.3 B .4 C.92 D.112[例5](1)已知a 、b 、c R +∈,且1a b c ++=.求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 第四讲时间:60分钟 满分:100分一、选择题(8×5=40分)1.下列各组不等式中,同解的是( )A .x >6与x (x -5)2>6(x -5)2B .(x -2)2x +1≥0与x ≥2C .x 2-3x +3+1x -3>x -2x -3与x 2-3x +2>0D.x -2(x -1)(x +1)2>0与x 2-3x +2>0 答案:A解析:B 中不等式的解为x ≥2或x =-12;C 中x 2-3x +3+1x -3>x -2x -3的解为x >2且x ≠3或x <1,D 中x -2(x -1)(x +1)2>0的解为x >2或x <1且x ≠-1,故选A.2.(2018·天津模拟)不等式1-x 2x 2+5x +6≥0的解集是( ) A .(-3,1)B .(-∞,-3)∪[-2,-1]∪(1,+∞)C .[-3,-2]∪[-1,1]D .(-3,-2)∪[-1,1] 答案:D解析:原不等式化为(x +1)(x -1)(x +2)(x +3)≤0,它等价于⎩⎪⎨⎪⎧(x +1)(x -1)(x +2)(x +3)≤0(x +2)(x +3)≠0,如图,由数轴标根法,得不等式的解集为(-3,-2)∪[-1,1].3.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x的不等式ax -bx -2>0的解集是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(2,+∞) 答案:A解析:由ax +b >0的解集是(1,+∞)得a >0, 且b =-a ,故ax -bx -2>0⇔⎩⎪⎨⎪⎧ ax -b >0x -2>0或⎩⎪⎨⎪⎧ax -b <0,x -2<0,解得:x >2或x <-1,故选A.4.不等式x +2x +1>2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞) 答案:A解析:法一:x +2x +1-2>0⇔x 2+x +2-2x -2x +1>0⇔(x 2-x )(x +1)>0⇔x (x -1)(x +1)>0,解集为(-1,0)∪(1,+∞),故选A 项. 法二:当x >-1时,x 2+x +2>2x +2⇒x 2-x >0⇒x <0或x >1, ∴x >1或-1<x <0. 当x <-1时,x 2+x +2<2x +2⇒x 2-x <0⇒0<x <1,无解, 综合得解集为(-1,0)∪(1,+∞),故选A 项.5.已知关于x 的不等式(x -a )(x -b )x -c≥0的解为-3≤x ≤-2或x>4.则点(b +c ,a )位于坐标平面内 ( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解析:由题意知:c =4,a =-3,b =-2或a =-2,b =-3,点(b +c ,a )有两种(1,-2)和(2,-3).6.(2018·山东,5)在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( ) A .(0,2) B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2) 答案:B解析:根据题意得:x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2,∴解x 2+x -2<0得-2<x <1.故选B.7.(2018·天津,8)设函数f (x )= ⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是 ( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3) 答案:A解析:解法一:f (1)=12-4×1+6=3, ⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3,⇒⎩⎪⎨⎪⎧x ≥0,x <1或x >3,⇒0≤x <1或x >3; ⎩⎪⎨⎪⎧ x <0,x +6>3⇒⎩⎪⎨⎪⎧x <0,x >-3⇒-3<x <0. 所以f (x )>f (1)的解集为(-3,1)∪(3,+∞),故选A. 解法二:∵f (1)=3.画出f (x )的图象如图,易知f (x )=3时,x =-3,1,3.故f (x )>f (1)⇔-3<x <1或x >3. 8.(2018·湖南十二校联考一,7)已知函数f (x )=log a x (a >0且a ≠1)满足f (2a )>f (3a ),则f (1-1x )>1的解是 ( )A .1<x <11-aB .1<x <1aC .0<x <1aD .0<x <11-a答案:A解析:函数f (x )=log a x (a >0且a ≠1)满足f (2a )>f (3a ),则0<a <1,f (1-1x )>1,即0<1-1x <a ,不等式的解集是1<x <11-a,故选A.二、填空题(4×5=20分) 9.(2018·浙江台州一模)已知不等式x 2-2x -3<0的整数解构成等差数列{a n },则数列{a n }的第四项为________.答案:3或-1解析:解x 2-2x -3<0得-1<x <3, ∴整数解是0,1,2.∴d =1或d =-1,∴a 4=3或a 4=-1.10.不等式x +3x -2≤0的解集是________.答案:[-3,2)解析:x +3x -2≤0⇔⎩⎪⎨⎪⎧(x +3)(x -2)≤0x -2≠0⇒-3≤x <2.11.关于x 的不等式ax 2+bx +2>0的解集为{x |-1<x <2},则关于x 的不等式bx 2-ax -2>0的解集为____.答案:{x |x <-2或x >1}解析:∵ax 2+bx +2>0的解集为{x |-1<x <2},∴⎩⎪⎨⎪⎧2a =-2-b a =1⇒⎩⎪⎨⎪⎧a =-1b =1,∴bx 2-ax -2>0即x 2+x -2>0. 解得x >1或x <-2. 12.(2018·湖南名校一模)已知y =f (x )是定义在R 上的奇函数,当x >0时,f (x )=x -2,则不等式f (x )<12的解集是________.答案:{x |x <-32或0≤x <52} 解析:∵f (x )在R 上是奇函数,∴f (x )=⎩⎪⎨⎪⎧x -2,x >0,0, x =0,x +2,x <0,则f (x )<12即⎩⎨⎧x >0,x -2<12,或⎩⎨⎧x =0,0<12,或⎩⎨⎧x <0,x +2<12.所以f (x )<12的解集为{x |x <-32或0≤x <52}. 三、解答题(4×10=40分) 13.解下列不等式:(1)(-3x +2)(4x +2)2(x -1)3(x -3)≤0; (2)x (x -3)9-x2≤0. 解析:(1)∵不等式(-3x +2)(4x +2)2(x -1)3(x -3)≤0,∴方程(-3x +2)(4x +2)2(x -1)3(x -3)=0的根为23,-12,1,3,这些根把数轴分为5个区间(如图所示).故原不等式的解集为{x |x =-12或23≤x ≤1或x ≥3}. (2)x (x -3)9-x 2≤0⇔⎩⎨⎧x ≠3xx +3≥0⇔⎩⎪⎨⎪⎧x (x +3)≥0x ≠±3⇔x <-3或x ≥0且x ≠3.∴原不等式的解集为{x |x <-3或x ≥0且x ≠3}.14.已知f (x )=x 2+px +q ,若f (x )<0的解集为(2,5),试求不等式4xf (x )≤1的解集.解析:由韦达定理得⎩⎪⎨⎪⎧-p =2+5q =2×5解得p =-7,q =10 ∴4x f (x )≤1即为4x x 2-7x +10≤1-x 2+11x -10x 2-7x +10≤0即⎩⎪⎨⎪⎧(x 2-11x +10)(x 2-7x +10)≥0x 2-7x +10≠0, ⎩⎪⎨⎪⎧(x -1)(x -2)(x -5)(x -10)≥0x ≠2且x ≠5,解得:x ≤1或2<x <5或x ≥10∴不等式4xf (x )≤1的解集为(-∞,1]∪(2,5)∪[10,+∞). 15.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式x -cax -b>0(c 为常数).解析:(1)由已知,1,b 是方程ax 2-3x +2=0的两根,∴⎩⎪⎨⎪⎧b =2a 1+b =3a⇒⎩⎪⎨⎪⎧a =1b =2.(2)原不等式为x -cx -2>0,等价于(x -c )(x -2)>0,当c <2时,解集为{x |x <c 或x >2}; 当c =2时,解集为{x |x ∈R 且x ≠2}; 当c >2时,解集为{x |x <2或x >c }.16.(2018·石家庄模拟)已知函数f (x )=x 2ax +b(a ,b 为常数),且方程f (x )-x +12=0有两个实根为x 1=3,x 2=4.(1)求函数f (x )的解析式;(2)设k >1,解关于x 的不等式f (x )<(k +1)x -k2-x .解析:(1)将x 1=3,x 2=4分别代入方程x 2ax +b-x +12=0,得⎩⎨⎧93a +b=-9164a +b =-8,解得⎩⎪⎨⎪⎧a =-1b =2,∴f (x )=-x 2x -2(x ≠2).(2)不等式即为x 22-x <(k +1)x -k 2-x,可化为x 2-(k +1)x +k 2-x<0,即(x-2)(x-1)(x-k)>0.①当1<k<2时,解集为(1,k)∪(2,+∞);②当k=2时,不等式为(x-2)2(x-1)>0,解集为(1,2)∪(2,+∞);③当k>2时,解集为(1,2)∪(k,+∞).。