电压互感器接线方式
电压互感器常见接线图 (图文) 民熔
电压互感器接线图电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。
但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。
民熔电压互感器简介:JDZ-10高压电压互感器10kv半封闭式0.5级羊角型特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片电压互感器的电力系统通常有四种接线方式。
电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。
1、单相电压互感器接线方式一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。
二、两个单相电压互感器互V/V型的接线方式两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。
广泛应用于20kV以下中性点不接地或经消弧图接地的电网。
3、三台单相电压互感器Y0/Y0接线方式三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型三台单相三绕组电压互感器或一台三相五柱三绕组电压互感器接Y0/Y0/Δ型,接Y0型二次线圈,向仪表、继电器和绝缘监测电压表供电。
辅助次级线圈连接成一个开放的三角形,为绝缘监测电压继电器供电。
三相系统正常工作时,三相电压平衡,开三角形两端电压为零。
当一相接地时,开三角形两端出现零序电压,使绝缘监测电压继电器动作并发出信号。
电压互感器的接线方式
电压互感器的接线方式留意:电压互感器的接线方式和极性有很大关系,假如极性错误会造成接线错误。
1、电压互感器的极性实际接线时,必需满意“电压脚标规章”。
例如,电能表上需要电压,则电压互感器与电能表的接线方式如图1所示。
图 1 电压互感器与电能表接线示意图2、电压互感器的接线方式(1)电压互感器Vv开口三角形接线方式,如图2(a)所示。
广泛用于中性点不接地或经消弧线圈接地的35Kv及以下的高压三相系统,特殊是10kV三相系统。
(b)图2 电压互感器Vv接线图接线图(b)一次、二次电压相量图即电压互感器一次绕组上承受的电压相量和在相量图中构成V形,二次绕组输出的电压和也如此;并且一次和二次对应的电压相量在相量图中犹如钟表的长针与短针重合12点处,故称此种接线方法为Vv12接法。
这种接法的优点是既能节约一台电压互感器,又可满意三相有功、无功电能表和三相功率表所需的线电压(仪表电压线圈一般是接于二次侧的a、b间和c、b 间)。
接法的缺点是:不能测量相电压,不能接入监视系统绝缘状况的电压表。
(2)电压互感器的Yyn星形接线方式,如图3(a)所示。
图3 电压互感器Yyn接线图Yyn接法用一台三铁芯柱三相电压互感器,也用三台单相电压互感器构成一台三相电压互感器。
该接法多用于小电流接地的高压三相系统,一般是将二次侧中性线引出,接成Yyn0接法。
从过电压爱护观点动身,常要求高压端不接地。
这种接法的缺点是:①当二次负载不平衡时,可能引起较大误差;②为防止高压端单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。
(3)电压互感器的Yy星形接线方式,如图4所示。
图4 电压互感器Yy接线图和相量图常采纳三台单相TV构成一台三相电压互感器组,其优点是:①高压侧中性点接地,可降低绝缘水平,使成本下降;②互感器绕组的额定电压按相电压设计,既可测量相电压也可测量线电压。
该接法适用于高压侧中性点直接接地系统,也适用于中性点不接地系统,但低压侧中性点必需接地。
电压互感器接线图和常见问题
校验线路见图:
1.双级电压互感器校电压互感器接线图
2.电压互感器校电压互感器接线图
3.电压互感器自校接线图
4.电压互感器校电压互感器接线图
35kV,0.05级以下电压互感器,可用于校验0.1级以下电压互感器,校验变化,35 kV /100V、35kV/3/100/3 V。
常见异常
(1)三相电压指示不平衡:一相降低(可为零),另两相正常,线电压不正常,或伴有声、光信号,可能是互感器高压或低压熔断器熔断;
(2)中性点非有效接地系统,三相电压指示不平衡:一相降低(可为零),另两相升高(可达线电压)或指针摆动,可能是单相接地故障或基频谐振,如三相电压同时升高,并超过线电压(指针可摆到头),则可能是分频或高频谐振;
(3)高压熔断器多次熔断,可能是内部绝缘严重损坏,如绕组层间或匝间短路故障;
(4)中性点有效接地系统,母线倒闸操作时,出现相电压升高并以低频摆动,一般为串联谐振现象;若无任何操作,突然出现相电压异常升高或降低,则可能是互感器内部绝缘损坏,如绝缘支架绕、绕组层间或匝间短路故障;
(5)中性点有效接地系统,电压互感器投运时出现电压表指示不稳定,可能
是高压绕组N(X)端接地接触不良。
(6)悬浮电位放电,可能是穿芯螺栓和铁芯连接松动,造成螺栓处于悬浮电位;金属异物处于悬浮电位放电;绝缘支架螺母电位悬浮;
(7)电弧放电,可以是串级绕组对铁芯放电,绝缘支持架不良而放电;绝缘进水受潮;一次绕组末端未接地;
(8)过热性故障。
VV接线
v-v接法:两个电压互感器高压侧首尾相连,相连处接B相,A端接A相,X端接C相,二次侧相对应的引出二次电压,并在B相接地,用于测量三相相电压。
三相五线接法:三个电压互感器A端分别接A、B、C三相,X端短接接地,二次侧da、dx绕组同一次侧一样接法,用于测量三相相电压和线电压,a0、x0绕组首尾相连形成一个开口三角形,用于测量零序电压。
电网正常运行时,三相电压对称,开口三角绕组引出端子上的电压Ua1,x1为三相二次电压之相量和,其值为零,但实际上因漏磁等因素的影响,Ua1,x1一般不为零,而有几伏的不平衡电压。
当电网发生单相接地故障时,电压互感器一次侧的零序电压也感应到二次侧,因三相零序电压大小相等、相位相同,故开口三角绕组输出的电压Ua1,x1=
3U0/Kμ(Kμ为电压互感器变比)。
1)把这种接线用于中性点非直接接地电网中,在电网发生单相(如A相)接地故障时,开口三角绕组两端的3倍零序电压Ua1,x1为3倍相电压。
为使此时的Ua1,x1=100V,开口三角绕组每相的电压为100/3V。
因此,电压互感器的变比为(UN/√3)/(100/√3)/(100/3)V(UN为一次系统的额定电压)。
2)把这种接线用于中性点直接接地电网中,在电网发生单相(如A相)接地故障时,故障相A相的电压为零,非故障相B、C相的电压大小和相位均与故障前的相同,开口三角绕组两端的3倍零序电压Ua1,x1为相电压。
为使此时的Ua1,x1=100V,故电压互感器的变比为(UN/√3)/(100/√3)/(100)V。
电流互感器和电压互感器的接线方式
电力系统中的二次设备——继电保护及全自动装置等绝大多数是根据发生故障时电增大、电压降低的特点而工作的,这些电气一般都是通过电流互感器和电压互感器的副圈加到二次设备上.故在此将电流互感器、电压互感器的接线方式加以说明。
一、电流互感器的接线方式在继电保护装置中电流互感器的接线方主要有四种:三相完全星形接线方式;两相完全星形接线方式;两相差接线方式;两相继电器式接线方式。
1.三相完全星形接线方式三相星形接线方式的电流保护装置对各故障(如三相短路、两相短路、两相短路并地、单相接地短路)都能使保护装置起动,足切除故障的要求,而且具有相同的灵敏度如图2-l。
当发生三相短路时,各相都有短路电讯即A相İDA,B相İBD,C相İDC.反应到电流互感器二次例的短路电流分别为İa、İb、İc,它们分别流径A相、B相、C相继电器的线圈,使三只继电器(如图2一1中的a、b、c)动作.当发生A、B两相短路时A、B两相分别有短路电流İDA、İDB,它们流径电流互感器后,反应到其二次测分别为İa、İb,又分别将电流继电器a、b起动,去切除故障.当发生出接地故障好,则A相继电器a起动,切除故障。
电流互感器接成三相完全星形接线方式,适用于大电流接地系统的线路继电保护装置5变压器的保护装置。
1.两相不完全星形接线方式此种接线是用两只电流互感器与两只电流继电器在A、C两相上对应连接起来。
此种接线方式只适用于小电流接地系统中的线路继电保护装置,如6~35KV的线路保护均应采用此种接线方式。
此种接线方式,对各种相间短路故障均能满足继电保护装置的要求.但是此种接线方式不能反应B相接地短路电流,(因B相未装电流互感器和继电器)所以对B相起不到保护作用,故只适用小电流接地系统。
由于此种接线方式较三相完全星形接线方式少了三分之一的设备,节约了投资,又可提高供电可靠性,故得到了广泛的应用。
不完全星形接线方式不装电流互感器的一根规定为B相。
如果在变电站或发电厂出线断路器的电流保护使用的电流互感器两相装的不统一,则当发生不同地点又不相同的两点接他故障时,会造成保护装置的拒动而越级掉闸,如图2-3所示。
电流互感器及电压互感器接线方式
电流互感器接线方法:1、三相完全星形接线可以准确反映三相中每一相的真实电流。
该方式应用在大电流接地系统中,保护线路的三相短路、两相短路和单相接地短路。
2、两相两继电器不完全星形接线可以准确反映两相的真实电流。
该方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路和两相短路。
3、两相差接反映两相差电流。
该接线方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路、两相短路、小容量电动机保护、小容量变压器保护。
4、单相接线在三相电流平衡时,可以用单相电流反映三相电流值,主要用于测量回路。
5、两相三继电器完全星形接线,流入第三个继电器的电流是Ij=Iu+Iw=-Iv。
该接线方式应用在大电流接地系统中,保护线路的三相短路和两相短路。
电压互感器的接线方式很多,常见的有以下几种:(1)一台单相电压互感器,当用于110KV及以上中性点接地系统时,可测量某一相对地电压;当用于35KV及以下中性点不接地系统时,只能采用测量相间电压的接线方式,不能测量相对地电压(2)用两台单相互感器分别跨接于电网的UAB及UBC的线间电压上,接成不完全三角形接线(也称V,v接线),广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中测量三个相间电压,但不能测相对地电压。
这种不完全三角形接线,用于测量两个线电压UAB与UBC,当互感器的主要二次负荷是电能表和功率表时,这种接线方式最为恰当。
(3)三台单相三绕组电压互感器构成YN,yn,d11或YN,y,d11的接线形式(二次侧星形绕组中性点不直接接地,而采用b相接地),广泛应用于各级电压系统中,而3~15KV电压级广泛采用三相式电压互感器。
其二次绕组用于测量相间电压或相对地电压,辅助二次绕组接成开口三角形,供接入中性点不接地电网绝缘监视仪表、继电器使用,或供中性点直接接地系统的接地保护。
(4)电容式电压互感器接线形式:在中性点不接地或经消弧线圈接地的系统中,为了测量相对地电压,PT一次绕组必须接成星形接地的方式。
电压互感器4种接线方式
电压互感器4种接线方式
电压互感器电力系统中通常有四种接线方式,电压互感器接线接地、相位等必须按严格的接法,并且电压互感器二次侧严禁短路。
一、一个单相电压互感器接线方式
一个单相电压互感器接线方式
一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。
二、两个单相电压互感器互V/V型的接线方式
两个单相电压互感器互V/V型的接线方式
两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
三、三个单相电压互感器Y0/Y0型的接线方式
三个单相电压互感器Y0/Y0型的接线方式
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型
三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
用于3~220kV系统(110kV及以上无高压熔断器),供接入交流电网绝缘监视仪表和继电器用。
电压互感器的三种常见接地方式
电压互感器的接地方式通常有三种:一次侧中性点接地二次侧线圈接地互感器铁芯接地三种接地的作用不尽相同,如下:1)一次侧中性点接地。
由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。
如下图所示。
因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。
电压互感器当系统中发生单相接地时,系统中会出现零序电流。
如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。
对于三相五柱式电压互感器,其一次侧中性点同样要接地。
由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。
而应在二次中性点接地,如下图所示。
电压互感器2)二次侧接地。
电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。
当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。
另外,通过接地,可以给绝缘监视装置提供相电压。
二次侧的接地方式通常有中性点接地和V相接地两种,如下图所示。
电压互感器根据继电保护等具体要求加以选用。
采用V相接地时,中性点不能再直接接地。
为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。
当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用。
二次侧接地点按规程规定,均应选在主控室保护屏经端子排接地,而在配电装置处只设置试验检修时的安全接地点。
3)铁心接地,在电压互感器外壳上有一个接地桩头,这是铁心和外壳的接地点,起安全保护作用。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
电压互感器vv接法 二次三相通的
电压互感器VV接法二次三相通的一、电压互感器(Voltage Transformer)简介电压互感器,又称电压互感器或电压互感器,是一种将高压系统的电压降到安全、便于测量的电压互感器。
它是电气系统中常用的一种电气测量设备,用于变换电压,将高压电器的电压降低到特定值,便于测量仪表或继电保护装置使用。
在电力系统中,电压互感器的作用是十分重要的,它直接关系到电力系统的安全和稳定运行。
二、电压互感器的VV接法在电力系统中,电压互感器的接线方式有很多种,其中比较常用的一种是VV接法。
VV接法是指将两台电压互感器的二次绕组分别接到两台继电保护装置的绕组上,即一台电压互感器的高压侧接到继电保护装置的A相绕组,另一台电压互感器的高压侧接到继电保护装置的C 相绕组,这样可以使得继电保护装置在三相不平衡时仍能正常工作,保证电力系统的安全和稳定运行。
VV接法可以有效地提高继电保护装置的鲁棒性,保证在系统故障发生时,继电保护装置能够及时准确地动作,保护系统设备,避免事故扩大,确保电网的安全稳定运行。
三、电压互感器的二次三相通另外,对于三相系统来说,电压互感器的二次侧一般是三相通的,即三相电压互感器的二次绕组之间是三相对称的,这样可以保证测量的准确性,同时也能够满足三相继电保护装置的要求,保证系统的安全可靠运行。
电压互感器的二次三相通也使得继电保护装置可以全面、准确地获取系统的电压信息,为继电保护装置的运行提供了可靠的数据支持。
四、电压互感器VV接法二次三相通在实际工程中的应用在实际的电力系统工程中,电压互感器VV接法和二次三相通都是非常重要的,它们可以保证继电保护装置在各种异常工作条件下仍能正常、稳定地运行,为电力系统提供了可靠的安全保护。
值得注意的是,在应用过程中,电压互感器的VV接法和二次三相通也需要根据具体的系统结构和工作要求进行合理的选择和设计,以保证系统的可靠性和安全性。
五、个人观点和理解作为电力系统中的重要组成部分,电压互感器的VV接法和二次三相通对于电力系统的安全和稳定运行有着重要的影响。
互感器的接线方法
互感器的接线方法互感器是一种用于测量电流和电压的电器设备。
它通常由两个线圈构成,其中一个线圈被称为主线圈,另一个线圈被称为次级线圈。
主线圈中传输的电流或电压会引起次级线圈中的电磁感应,从而导致次级线圈中的电流或电压发生变化。
因此,互感器可以被用于转换电流或电压信号。
在本文中,我们将介绍互感器的接线方法。
1.线圈接法互感器可以通过两种方式接线:串联和并联。
串联方式是将互感器的主线圈与电路中的负载串联,以测量电流。
主线圈所测量的电流会经过互感器传输到次级线圈,次级线圈的输出电流可以被测量或被记录。
串联方式常用于测量高电流。
但是,它需要断电安装,并且测量电路的电阻需要尽可能小,否则会影响性能。
串联方式的接线图如下图所示:并联方式是将互感器的主线圈与电路中的负载并联,以测量电压。
主线圈所测量的电压会经过互感器传输到次级线圈,次级线圈的输出电压可以被测量或被记录。
并联方式常用于测量高电压。
但是,与串联方式相比,它需要更复杂的电路,而且需要注意主线圈和负载之间的电容耦合。
并联方式的接线图如下图所示:2.互感器连接到变压器变压器是一种电气设备,用于转换电压或电流。
它通常由永磁体、铁芯和绕组构成。
变压器的基本原理是在铁芯中产生磁场,该磁场会在绕组中形成电流。
互感器可以与变压器合作以实现更复杂的测量任务。
例如,将互感器连接到变压器的次级侧,可以将变压器的输出电压传输到互感器的输出端。
这种连接方式对于测量变压器的输出电压或电流非常有用。
3.互感器接地在某些情况下,互感器的金属外壳需要被接地,以保护人员和设备不受电流侵害。
如果互感器的金属外壳没有被接地,电气设备的外壳可能会形成悬浮电位,从而可能威胁人员的安全。
因此,金属外壳需要连接到地线上,以保护所有人的安全。
总的来说,互感器在现代电力系统中起着至关重要的作用。
因此,在正确的方式下连接互感器至少应该遵循上述原则,以确保设备的使用安全和有效测量。
电压互感器常用接线方式
电压互感器在三相电路中常用的接线方式电压互感器在三相电路中常用的接线方式有四种一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中三个单相电压互感器接成YO/YO形,可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
一台三相五芯柱电压互感器接成YO/YO/ △(开口三角形),接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。
当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。
另外,通过接地,可以给绝缘监视装置提供相电压。
二次侧的接地方式通常有中性点接地和V相接地两种采用V相接地时,中性点不能再直接接地。
为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。
当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用你说的闭口三角没见过,你再仔细看看吧(闭口三角当三相不平衡有零序电压时,不是短路了么)请问:为什么进线电压互感器都是V/V 式,而母线电压互感器都是三相五柱式(其一次线圈及二次线圈均接成星形,附加二次线圈接成开口三角形)?如果进线和母线都采用三相五柱式可以吗?为什么?电压互感器一般有单相接线、V-V 接线、Y-Y 接线、Y0/Y0/ △这四种接线方式。
其中由两个单相互感器接线成不完全星形就是V-V 接法,它是用来测量各相间电压,但不能测量相对地电压,它广泛应用在20kV 以下中性点不接地或经消弧线图接地的电网中。
电压互感器接线方法 图文 民熔
1、电压互感器V/V接法
V/V接法原理图
V/V接法3D示意图
2、电压互感器Y/Y接法Y/Y接法3D示意图
3、电流互感器不完全星型接法
电流互感器不完全星型接法原理图
电流互感器不完全星型接法3D示意图
4、电流互感器星型接法
星型接法原理图(适用10kV以上)
星型接法原理图(适用400V)
星型接法3D示意图(400V)5、电能表接线示意图
三相三线电能表组合接线示意图
(3*100V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图
(3*57.7V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图
(3*220V电能表+3*220V专变采集终端)。
电压互感器4种接线方式
电压互感器4种接线方式电压互感器是一种重要的电力测量仪器,用于测量电网或者电气设备中的电压信号,实现电力系统的保护和控制。
不同的设备和场景需要使用不同的电压互感器接线方式。
本文将介绍电压互感器的4种常见接线方式及其特点。
1. 调压式接线调压式接线也称为平衡式接线,是最常用的电压互感器接线方式之一。
其原理是通过变压器对电网中的高压进行降压处理,使得输出的信号电压符合测量要求,并将降压后的电压输出给仪表进行测量。
调压式接线的优点在于输出电压稳定,误差小,适用于更高精度的测量要求。
但缺点是受限于仪表的输入电阻,导致输出电流较小。
2. 非调压式接线非调压式接线也称为不平衡式接线,主要用于电压比较低、要求不高的场景,如称重设备、电力仪表等。
其原理是在电网中直接接入电压互感器,根据比例关系将电网的电压信号转化为输出信号。
由于不需要进行降压处理,输出电流相对较大,适合较长传输距离的场景。
非调压式接线的优点在于输出电流较大、适用于传输距离较远的场景,但相对来说精度较差,存在输出误差。
3. 双绕组接线双绕组接线是一种特殊的电压互感器接线方式,其原理是在电网中接入具有两个绕组的变压器,将电压信号从高压侧通过变比关系降压到输出端,实现测量。
双绕组接线的优点在于输出电压稳定、精度高、应用范围广泛。
双绕组接线的缺点在于无法自动补偿频率变化或短暂的电压变化,当电网中存在这种不稳定因素时,需要进行人工校正或选用其他的接线方式。
4. 统一接地式接线统一接地式接线是在电网中采用构成三相平衡的三个电压互感器,通过测量三个相位电压来计算电压值,以达到提高测量精度、减小误差的目的。
统一接地式接线的优点在于精度高、能够自动补偿频率变化以及短暂的电压变化,但需要较高的技术水平和较高的成本。
结论针对不同的场景和应用需求,现有的电压互感器有多种接线方式可供选择。
在选择接线方式时,需要根据具体需要考虑测量精度、相位错误、信号抗干扰能力、安装和维护成本等多种因素,并根据实际情况选择最合适的接线方式。
电压互感器vv接线原理
电压互感器vv接线原理
电压互感器的VV接线是一种常见的接线方式,广泛用于中性点绝缘系统或经消弧线圈接地的35kV及以下的高压三相系统中,特别是在10kV三相系统中。
以下是电压互感器VV 接线的工作原理:
电压互感器VV接线是将两台全绝缘单相电压互感器的高低压绕组分别接于相与相之间,构成不完全三角形。
这种接线方式可以节省一台电压互感器,满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。
具体来说,在电压互感器的VV接线中,两个单相电压互感器的高压绕组分别接在三相高压线的A相和B相上,而低压绕组则通过仪表继电器等设备接入测量仪表、保护装置等二次回路中。
这种接线方式的好处是可以利用两个单相电压互感器来代替一个三相电压互感器,从而节省了投资。
然而,电压互感器的VV接线也有一些局限性。
由于一次侧是两个单相电压互感器,因此在二次侧需要接入开口三角形等装置来测量零序电压。
此外,当系统发生单相接地故障时,非接地相的电压会升高,这可能会导致电压互感器铁芯饱和,引起铁磁谐振等问题。
因此,在使用电压互感器的VV接线时,需要考虑消谐等问题。
总之,电压互感器的VV接线是一种经济、实用的接线方式,适用于一些特定的电力系统。
在使用时需要注意其局限性,并采取相应的措施来保证系统的安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言,电压互感器电力系统中通常有四种接线方式,电压互感器接线接地、相位等必须按严格的接法,并且电压互感器二次侧严禁短路。
1)Vv接线方式:广泛用于中性点绝缘系统或经消弧线圈接地的
35KV及以下的高压三相系统,特别是10KV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。
(2)Y,yn接线方式:主要采用三铁芯柱三相电压互感器,多用于小电流接地的高压三相系统,二次侧中性接线引出接地,此接线为了防止高压侧单相接地故障,高压侧中性点不允许接地,故不能测量对地电压。
信息请登录:输配电设备网
(3)YN,yn接线方式:多用于大电流接地系统。
(4)YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定,但此接线方式在10KV及以下的系统中不采用。
一、一个单相电压互感器接线方式
一个单相电压互感器接线方式
一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。
二、两个单相电压互感器互V/V型的接线方式
两个单相电压互感器互V/V型的接线方式
两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。
电压互感器接线图之vv接法实物图:
JDZ-10电压互感器JDZJ-10电压互感器接线实物图
JDZX9-10G电压互感器、JDZ9-10电压互感器实物接线图
三、三个单相电压互感器Y0/Y0型的接线方式
三个单相电压互感器Y0/Y0型的接线方式
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型
三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成
Y0/Y0/Δ型
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。
用于3~220kV 系统(110kV及以上无高压熔断器),供接入交流电网绝缘监视仪表和继电器用。
电压互感器端子标示
1一般规则
本电压互感器端子标示适用于单相电压互感器,也适用于单相互感器装配为一台整体的三相接线的互感器或具有三相共用铁心的三相电压互感器。
2标志内容
电压互感器端子标示应按照下节图示选取适当的标志。
电压互感器端子标示大写字母A、B、C和N表示一次绕组端子,而小写字母a、b、c和n则表示相应的二次绕组端子。
电压互感器端子标示大写字母A、B和C表示全绝缘端子,而字母N则表示接地端子,其绝缘性能比其他端子低。
电压互感器端子标示复合字母da和dn表示提供剩余电压的绕组端子。
2标志内容
电压互感器端子标示中标有同一字母大写或小写的端子,在同一瞬间具有同一极性。
1、
A、B为一次绕组端子;a、b为二次绕组端子。
2、
有一次绕组中性点降低绝缘和有一次二次绕组的单相电压互感器A、N为一次绕组端子;a、n为二次绕组端子。
3、
A、B、C、N为一次绕组端子;a、b、c、n为二次绕组端子。
4、
A、B或N为一次绕组端子;1a、1b或1n,2a、2b或2n为二次绕组端子。
5、
A、B、C、N为一次绕组端子;1a、1b、1c、1n、2a、2b、2c、2n为二次绕组端子。
6、
A、B或N为一次绕组端子;a1、a2、a3、b或n为二次绕组端子。
7、
A、B、C、N为一次绕组端子;a1、a2、a3、b1、b2、b3、c1、c2、c3、n为二次绕组端子。
8、
有两个多抽头二次绕组的单相电压互感器
A、B或N为一次绕组端子;1a1、1a2、1b或1n,2a1、2a2、2b或2n为二次绕组端子。
9、
有一个剩余电压绕组的单相电压互感器
A、N为一次绕组端子;a、n为二次绕组端子;da、dn为剩余绕组端子。
10、
有一个剩余电压绕组的三相电压互感器
A、B、C、N为一次绕组端子;a、b、c、n为二次绕组端子;da、dn为剩余绕组端子。