matlab仿真光束的传输特性

matlab仿真光束的传输特性
matlab仿真光束的传输特性

一、课程设计题目:

用matlab 仿真光束的传输特性。

二、任务和要求

用matlab 仿真光束通过光学元件的变换。

① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲率半径,设为100mm ,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。

② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121=='n n (K9玻璃),502-=r ,0.12='

n ,物点A 距第一面顶点的距离为100,由

A 点计算三条沿光轴夹角分别为10、20、30的光线的成像。试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。

③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。用matlab 仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。)

2、用MATLAB 仿真平行光束的衍射强度分布图样。(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。)

3、用MATLAB仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布和平面的灰度图。)

4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab 对不同传输距离处的光强进行仿真。

三、理论推导部分

将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sinθ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r-(y

r ),并设出射直线为y=k*x+b;由直线经过(x1,y1)即可求2^

)2^1

出b值,从而就可以求出射直线。由单透镜焦点计算公式1/f=-(n-1)*(1/r1-1/r2)可求得f=193.6858。

利用近轴光学公式i1=(l1-r1)*u1/r1,i11=n1*i/n11,u11=u1+i1-i11 l11=r1+r1*i11/u11和转面公式u2=u11,l2=l11-d1可以求得u11、u22、l22、h2等。

入射光线的夹角为u1,设入射光线为y1=k1*x1+b1其中的斜率k1=-u1又由于入射光线经过经过(-100,0)就可以求出b1。由h1=l1*u1即为y1,当y1为定值时就可以得到第一个横坐标x0,再利用最后的出射光线公式y3=k3*x3+b3,k3=-u22,又因为最终出射经过(d+l22,0)可求出b3,利用转面公式h2=h1-d*u11,即为y3可求出第二个横坐标x00。再求在透镜中的直线斜率k2=((h2-h1)/(x00-x0)),y2=k2*x2+b2经过(x0,h1)即可求得b2值,从而即可求得三条直线。

实际光束求法同理。

利用菲涅耳近似公式

1

1])2

^122

)^1(2)^1(1[1ex p()1,1(1),(dy dx z y y x x ikz y x E z i y x E ??-+-+-

=λ 求衍射面上的光强要对孔径上的点求积分可以转换成对其x1,y1的微分求和,其中公式中的z1=f 。

2.(1)夫朗和费矩形孔衍射

若衍射孔为矩形则在透镜焦平面上得到的衍射图样如图,衍射图样的主要特征为衍射亮斑集中分布在两个相互垂直的方向上,并且x 轴上的亮斑宽度与y 轴亮斑宽度之比,恰与矩形孔在两个轴上的宽度相反。

其中的θ为θx,同样的β中的θ为θy,利用θx=x/f,θy=y/f进行求解。(2)夫朗和费圆形孔衍射

夫朗和费圆孔衍射的讨论方法和矩形孔衍射的讨论方法相同,只是由于圆孔的几何对称性,采用极坐标更为方便。

Ф=kaθ

(3)夫朗和费单缝衍射

对于前面讨论的夫朗和费矩形孔衍射,如果矩形的一个方向的尺寸比另一个方向大得多,则该矩形孔衍射就变成单缝衍射(如图),这时沿y方向的衍射效应不明显,只在x方向有亮暗变化的衍射图样。

实验中通过利用θ=x/f进行求解

(4)夫朗和费多缝衍射

夫朗和费多缝衍射装置如图,其每条狭缝均平行于y1方向,沿x1方向的缝宽为a,相邻狭缝的间距为d,在研究多缝衍射时,由于后透镜的存在使衍射屏上每个单缝的衍射条纹位置与位置无关。因此,用平行光照射多缝时,其每一个单缝都要产生自己的衍射,形成各自一套衍射条纹。当每个单缝等宽时,各套衍射条纹在透镜焦平面上完全重叠,其总光强分布为它们的干涉叠加。

四、Matlab仿真部分

clear all

r=100;

n1=1.5163;

n2=1;%透镜的曲率半径为100mm,透镜的折射率n1=1.5,空气的折射率n2=1

- d=3;

%x=77:0.1:320;

figure(1)

for n=-5:5

y1=0.1*n;

%hold on;

%plot(x1,y1);

a1=asin(y1/r);%入射角

a2=asin(n1/n2*(y1/r));%折射角

a=a2-a1;

k=tan(a);%出射光线的斜率

x1=sqrt(r^2-y1^2);

x2=x1-r+d;

b=y1+k*x2;

%出射光线经过(x2,y1)

x=-20:0.01:x2;%零坐标选在透镜中心,入射光线距透镜20mm,故x=-20

hold on

plot(x,y1);%平行光束

x3=x2:0.01:300;

y=-k*x3+b;%出射光线

h old on

- plot(x3,y);

End

clear all

%透镜的结构参数

r1=10;

r2=-50;

l1=-100;

L1=-100;

n1=1.0;

d1=5;

n11=1.563

n2=1.563;

n22=1.0;

figure(1)

for n=-3:-1%沿光轴分别为1、2、3度的光线进行入射

%近轴光学成像公式第一个面

u1=n;

i1=(l1-r1)*u1/r1

i11=n1*i/n11;

u11=u1+i1-i11;

- l11=r1+r1*i11/u11;

%转面公式

u2=u11;

l2=l11-d1;

%近轴光学成像公式第二个面

i2=(l2-r2)*u2/r2;

i22= n2*i2/n22;

u22=u2+i2-i22;

l22=r2+r2*i22/u22;

%入射光线与第一个透镜交点的纵坐标,坐标原点选在第一个透镜的顶点处

h1=l1*(u1*pi/180);

k1=-u1*pi/180;%入射光线的斜率

b1=100*k1;%因为入射光线经过(-100,0)点

x0=(h1-b1)/k1;%入射光线与第一个透镜交点的横坐标

x1=-100:0.01:x0;

y1=k1*x1+b1;

hold on

plot(x1,y1);%输出入射光线

k3=-u22*pi/180;%第二次折射后出射光线的斜率

b3=-k3*(d1+l22);%因为第二次折射后出射光线经过(d1+l22,0)点h2=h1-d1*(u11*pi/180);%第一次折射后入射到第二个透镜的纵坐标

- x00=(h2-b3)/k3;%第一次折射后入射到第二个透镜的横坐标

k2=(h2-h1)/(x00-x0);%第一次折射后光线的斜率

b2=h1-k2*x0;%因为第一次折射后光线经过(x0,h1)点

x2=x0:0.01:x00;

y2=k2*x2+b2;

hold on

plot(x2,y2);%输出第一次折射在两个透镜中的光线

x3=x00:0.01:30;%选在30是为了将输出图形看得更清晰些

y3=k3*x3+b3;

hold on

plot(x3,y3);%输出经过第二个透镜后的输出光线

%实际光路

U1=n*pi/180;

I1=asin((L1-r1)*sin(U1)/r1);

I11=asin(n1*sin(I1)/n11);

U11=U1+I1-I11;

L11=r1+r1*sin(I11)/sin(U11);

%转面公式

U2=U11;

L2=L11-d1;

%实际光学成像公式第二个面

I2=asin((L2-r2)*sin(U2)/r2);

I22=asin(n2*sin(I2)/n22);

U22=U2+I2-I22;

L22=r2+r2*sin(I22)/sin(U22);

%入射光线与第一个透镜交点的纵坐标,坐标原点选在第一个透镜的顶点处

h3=L1*tan(U1);

k4=-tan(U1);%入射光线的斜率

b4=100*k4;%因为入射光线经过(-100,0)点

x01=(h3-b4)/k4;%入射光线与第一个透镜交点的横坐标

x4=-100:0.01:x01;

y4=k4*x4+b4;

hold on

plot(x4,y4,'r');%输出入射光线

k6=-tan(U22);

b6=-k6*(d1+L22);%因为第二次折射后出射光线经过(d1+L22,0)点h4=h3-d1*tan(U11);%第一次折射后入射到第二个透镜的纵坐标

x02=(h4-b6)/k6;%第一次折射后入射到第二个透镜的横坐标

k5=(h4-h3)/(x02-x01);%第一次折射后光线的斜率

b5=h4-k5*x02;%因为第一次折射后光线经过(x02,h4)点

x5=x01:0.01:x02

y5=k5*x5+b5;

hold on

plot(x5,y5,'r');%输出第一次折射在两个透镜中的光线x6=x02:0.01:30;%选在30是为了将输出图形看得更清晰些

x6=x02:0.01:30;

y6=k6*x6+b6;

hold on

plot(x6,y6,'r');%输出经过第二个透镜后的输出光线

%球差

m=(L22+d1)-(l22+d1);

end

clear all

n=1.5062;%K9玻璃的折射率

d=3;%透镜的中心厚度

R=25;%透镜凸面曲率半径

f=R/(n-1);%透镜焦距

R0=1;%入射光束半径

lambda=1.064e-3;%波长

k=2*pi/lambda;

phy=lambda*0.61/R0;%角半径

w0=sqrt(f*lambda/pi);%实际光斑半径

data=w0-f*phy; %误差

z=f;

rmax=3*f*phy;%艾利斑半径

r=linspace(0,rmax,100);%产生从0到rmax之间的100点行矢量将衍射半径100等分

eta=linspace(0,2*pi,100);%将0到2*pi100等分

[rho,theta]=meshgrid(r,eta);%生成绘制3D图形所需的网格数据[x,y]=pol2cart(theta,rho);%衍射斑某点的坐标转换极坐标到直角坐标

r0=linspace(0,R0,100);%将入射光束半径100等分

eta0=linspace(0,2*pi,100);

[rho0,theta0]=meshgrid(r0,eta0);

[x0,y0]=pol2cart(theta0,rho0);

for dx=1:100%都是为了建立网格

for dy=1:100

Ep=-i/(lambda*z)*exp(i*k*z)*exp(i*k*((x-x0(dx,dy)).^2+(y-y0 (dx,dy)).^2)/(2*z));

E2(dx,dy)=sum(Ep(:));%积分公式的求和表达

end

end

Ie=conj(E2).*E2;%光强表达式

figure(1);

surf(x,y,Ie);

figure(2)

plot(x(50,:),Ie(50,:));

2.(1)夫朗和费矩形孔衍射

clear all;

lamda=500e-9;

a=1e-3;

b=1e-3;

f=1;

m=500;

ym=8000*lamda*f;

ys=linspace(-ym,ym,m)

xs=ys;

n=255;

for i=1:m

sinth2=ys./sqrt(ys.^2+f^2);%相当于x/f

sinth1=xs(i)/sqrt(xs(i).^2+f^2);%xs(i)作用每给一个ys值,要遍历到所有的x值

angleA=pi*a*sinth1/lamda;%相当于书上的alfa=kax/2f k=2*pi/lamda

angleB=pi*b*sinth2./lamda;

B(:,i)=(sin(angleA).^2.*sin(angleB).^2.*5000./(angleA.^2.*a ngleB.^2));%光强度公式

end

subplot(1,2,1)

image(xs,ys,B)

colormap(gray(n))

subplot(1,2,2)

plot(B(m/2,:),ys)

(2)夫朗和费圆孔衍射

clear

lam=500e-9

a=1e-3

f=1

m=300;

ym=5*0.61*lam*f/a;%取爱里光斑半径的5倍

ys=linspace(-ym,ym,m);

xs=ys;

n=200;

for i=1:m

r=xs(i)^2+ys.^2;%相当于r的平方

sinth=sqrt(r./(r+f^2));%角度

fai=2*pi*a*sinth./lam;%fai=k*a*sinth

hh=(2*BESSELJ(1,fai)).^2./fai.^2;%贝塞尔函数 b(:,i)=hh.*5000;

end

subplot(1,2,1)

image(xs,ys,b)

colormap(gray(n))

subplot(1,2,2)

b(:,m/2)

plot(ys,b(:,m/2))

(3)夫朗和费单缝衍射

clear all

lam=500e-9;

a=3;f=1;

xm=3*lam*f/a;

nx=50;

x=linspace(-xm,xm,nx);

ny=50;

- y=linspace(0,a,ny);

for i=1:ny

sinphi=x/f;%角

af=(pi*a*sin(sinphi))/lam;

I(i,:)=5*(sin(af)./af).^2;

end

N=255;%确定灰度等级

Br=(I/max(I(1,:)))*N;

subplot(1,2,1)

image(x,y,Br);

colormap(gray(N));%颜色

subplot(1,2,2)

plot(x,I(1,:));

(4)夫朗和费多缝衍射

clear all;

lamda=500e-9; %波长

N=2; %缝数,可以随意更改变换

a=2e-4;f=5;d=5*a;

ym=2*lamda*f/a;%选择坐标范围

xs=ym;

n=1001;

- ys=linspace(-ym,ym,n);

for i=1:n

sinphi=ys(i)/f;

alpha=pi*a*sinphi/lamda;

fai=2*pi*d*sinphi/lamda;

I1=(sin(alpha)./alpha).^2;%单缝衍射因子

B(i,:)=I1*(sin(N*fai/2)./sin(fai/2)).^2;%多缝衍射光强的计算公式

B1=B/max(B);%归一化光强

end

NC=256; %确定灰度的等级

Br=(B/max(B))*NC;

subplot(1,2,1)

image(xs,ys,Br);

colormap(gray(NC)); %色调处理

subplot(1,2,2)

plot(B1,ys,'k');

五、画出仿真图形

matlab仿真光束的传输特性

一、课程设计题目: 用matlab 仿真光束的传输特性。 二、任务和要求 用matlab 仿真光束通过光学元件的变换。 ① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1.5062,镜片中心厚度为3mm ,凸面曲率半径,设为100mm ,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 ② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121=='n n (K9玻璃),502-=r ,0.12=' n ,物点A 距第一面顶点的距离为100,由 A 点计算三条沿光轴夹角分别为10、20、30的光线的成像。试用Matlab 对以上三条光线光路和近轴光线光路进行仿真,并得出实际光线的球差大小。 ③ 设半径为1mm 的平面波经凸面曲率半径为25mm ,中心厚度3mm 的平凸透镜。用matlab 仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。)

2、用MATLAB仿真平行光束的衍射强度分布图样。(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。) 3、用MATLAB仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布和平面的灰度图。) 4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab对不同传输距离处的光强进行仿真。 三、理论推导部分 将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sin θ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r -)2^1 r ),并设出射直线为y=k*x+b;由直线经过(x1,y1)即 2^(y

高斯光束的matlab仿真复习进程

高斯光束的m a t l a b 仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, CCD采集的高斯光束光强分布 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。

图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 图3 理论高斯曲线 50 100150200 020406080100120140160 180实验测量高斯曲线 -40 -30-20-10010203040 00.2 0.4 0.6 0.8 1 理论高斯曲线

M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on xlabel('x'),ylabel('y'),zlabel('z'); title('三维强度分布');

MATLAB仿真教程

一、设计目的 通过运用MATLAB对函数进行Z域分析和单边带信号的调制与解调,使我们进一步加深对MATLAB的认识和运用,以实现以下目的: 1.本次试验进一步熟悉了MATLAB软件的使用方法及相关的操作。 2.对Z变换及其反变换函数在MATLAB中的调用有了掌握。 3.理论与实际的仿真相结合,更直观的看到结果。 4.观察了单边带信号调制与解调后的图像,加深认识。 二、设计原理 MATLAB是The MathWorks公司在1984年推出的一种商品化软件,它提供了大量丰富的应用函数,并且具有扩充的开放性结构。目前,该软件包涵盖了控制系统应用、数字信号处理、数字图像处理、通讯、神经网络、小波理论分析、优化与统计、偏微分方程、动态系统实时仿真等多学科专业领域。 其中单边带调制信号是将双边带信号中的一个边带滤掉而形成的。根据方法的不同,产生单边带调制信号的方法有:滤波和相移法。 由于滤波法在技术上比较难实现所以在此我们将用相移法对单边带调制与解调系统进行讨论与设计。 三、设计内容和MATLAB图像

1、数字系统的响应 源代码如下: b=[0 1 2 1 0]; a=[1 -0.5 0 0.3 -0.005]; subplot(421);zplane(b,a); title('系统的零极点图'); subplot(422);impz(b,a,21); title('单位脉冲响应'); subplot(423);stepz(b,a,21); title('单位阶跃响应');

N=21;n=0:N-1; x=exp(-n); x0=zeros(1,N); y0=[1,-1]; xi=filtic(b,a,y0); y1=filter(b,a,x0,xi); xi0=filtic(b,a,0); y2=filter(b,a,x,xi0); y3=filter(b,a,x,xi); [h w]=freqz(b,a,21); subplot(424);stem(n,y1); title('零输入响应');grid on; subplot(425);stem(n,y2); title('零状态响应');grid on; subplot(426);stem(n,y3); title('系统的全响应');grid on; subplot(427);plot(w,abs(h)); title('幅频特性曲线');grid on; subplot(428);plot(w,angle(h)); title('相频特性曲线');grid on;

高斯光束的matlab仿真

题目:根据高斯光束数学模型,模拟仿真高斯光束在谐振腔中某一位置处的归一化强度分布并给出其二维、三维强度分布仿真图;用Matlab读取实际激光光斑照片中所记录的强度数据(读取照片中光斑的一个直径所记录的强度数据即可,Matlab读取照片数据命令为imread),用该数据画出图片中激光光斑的强度二维分布图,与之前数学模型仿真图对比。(如同时考虑高斯光束光斑有效截面半径和等相位面特点,仿真高斯光束光强、光斑有效截面半径以及等相位面同时随传播距离z的变化并给出整体仿真图可酌情加分。) 原始光斑如图1所示,用imread命令读入matlab后直接用imshow命令读取即可, CCD采集的高斯光束光强分布 图1 CCD采集的高斯光束强度分布 读入的数据是一个224 X 244的矩阵,矩阵中的数值代表光强分布。用读入的数据取中间一行(122行)画出强度分布如图2所示。

图2 实验测量高斯曲线 用理论上的高斯曲线公式画出理论高斯曲线如图3所示。 图3 理论高斯曲线 50 100150200 020406080100120140160 180实验测量高斯曲线 -40 -30-20-10010203040 00.2 0.4 0.6 0.8 1 理论高斯曲线

M文件如下: A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); A1=A(:,122); x1=1:1:224; x2=-100:1:100; a2=exp(-x2.^2/10); figure imshow(A); axis off title('\fontsize{12}CCD采集的高斯光束光强分布'); figure plot(x2,a2,'linewidth',1,'color','b'); axis([-40 40 0 1.2]) title('\fontsize{12}实验测量高斯曲线') figure plot(x1,A1,'linewidth',1,'color','r') title('\fontsize{12}理论高斯曲线') axis([50 200 0 180]) 画三维强度分布。取图片矩阵的中间层,用mesh命令画出三维图如图4所示。 图4 三维强度分布 由于读入的图片有一行白边,需要手动去除掉,否则三维图会有一边整体竖起来,影响观察。最终的M文件如下。 A=imread('D:\documents\作业\激光原理与应用\高斯.bmp'); [high, width, color] = size(A); x=1:width; y=1:high-1; mesh(x', y', double(A(2:224,:,1))); grid on xlabel('x'),ylabel('y'),zlabel('z'); title('三维强度分布');

直流电动机的MATLAB仿真..

第一章课程设计内容及要求 1. 直流电动机的机械特性仿真; 2. 直流电动机的直接起动仿真; 3. 直流电动机电枢串联电阻启动仿真; 4. 直流电动机能耗制动仿真; 5.直流电动机反接制动仿真; 6. 直流电动机改变电枢电压调速仿真; 7. 直流电动机改变励磁电流调速仿真。 要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析

第二章直流电动机的电力拖动仿真绘制 1)直流电动机的机械特性仿真 clear; U_N=220;P_N=22;I_N=115; n_N=1500;R_a=;R_f=628; Ia_N=I_N-U_N/R_f; C_EPhi_N=(U_N-R_a*Ia_N)/n_N; C_TPhi_N=*C_EPhi_N; Ia=0;Ia_N; n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia; Te=C_TPhi_N*Ia; P1=U_N*Ia+U_N*U_N/R_f; T2_N=9550*P_N/n_N; figure(1); plot(Te,n,'.-'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); ylim([0,1800]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm');

hold on; R_c=0; for coef=1:;; U=U_N*coef; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); s_y=1650*coef; text(50,s_y,str); end figure(3); n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); hold on; U=U_N;R_c=; for R_c=0::; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(R_c+R_a),'\Omega'); s_y=400*(4-R_c*; text(120,s_y,str);

使用Multisim进行电路频率特性分析

使用Multisim进行电路频率响应分析 作者:XChuda Multisim的AC Analysis功能用于对电路中一个或多个节点的电压/电流频响特性进行分析,画出伯德图。本文基于Multisim 11.0。 1、实验电路 本例使用如图的运放电路进行试验。该放大电路采用同相输入,具有(1+100/20=)6倍的放大倍数,带300欧负载。方框部分象征信号源,以理想电压源串联电阻构成。 请不要纠结于我把120Vrms的电压源输入双15V供电的运放这样的举动是否犯二,电压源在AC Analyses中仅仅是作为一个信号入口的标识,其信号类型、幅值和频率对分析是没有贡献的,但是它的存在必不可少,否则无法得到仿真结果! 2、操作步骤 搭好上述电路后,就可以进行交流分析了。

一般设置Frequency parameters和Output两页即可,没有特殊要求的话其他选项保持默认,然后点Simulate开始仿真。切记是点Simulate,点OK的话啥都不会发生。

按照上述步骤仿真结果如下: 分析结果是一份伯德图。在上下两个图表各自区域上按右键弹出列表有若干选项,各位可自己动手试试。右键菜单中的Properties可打开属性对话框,对图表进行更为详细的设置。 3、加个电容试试 从上面伯德图分析结果看出,该电路具有高通特性,是由输入耦合电容C3造成的。现在在输入端加入一个退耦电容试试。电路如下:

在输入端加入220pF退耦电容后C1与后面的放大电路输入电阻构成低通滤波器,可滤除高频干扰。加入C1后,放大电路的输出应该具有带通特性。用AC Analysis分析加入C1后的电路频响特性: 奇怪,为什么高通不见了?一阵疑惑,我甚至动笔算了同相输入端的阻容网络复频域的特性,无论C1是否加入,从同相输入端向左看出去的阻容电路都有一个横轴为0的零点,所以幅度特性应该是从0Hz处开始上升的!对,从0Hz开始!回头看看电路加入C1前仿真的伯德图,发现竖轴范围是13dB~13.3dB! 我们尝试放大来看看。现在重新进行AC分析,将频率范围设置为0.1~10Hz,结果如下图。OK,没问题,果然是高通的,只是截止频率非常低(0.3Hz左右),刚才的仿真频率范围从1Hz开始,自然是看不到的。从中也看出,图表中数字后加小写m,是毫赫兹(mHz)的意思,而不是兆赫兹(MHz)。

Matlab Simulink 仿真步骤

MATLAB基础与应用简明教程 张明等编著 北京航空航天大学出版社(2001.01) MATLAB软件环境是美国New Mexico大学的Cleve Moler博士首创的,全名为MATrix LABoratory(矩阵实验室)。它建立在20世纪七八十年代流行的LINPACK(线性代数计算)和ESPACK(特征值计算)软件包的基础上。LINPACK和ESPACK软件包是从Fortran语言开始编写的,后来改写为C语言,改造过程中较为复杂,使用不便。MA TLAB是随着Windows环境的发展而迅速发展起来的。它充分利用了Windows环境下的交互性、多任务功能语言,使得矩阵计算、数值运算变得极为简单。MA TLAB语言是一种更为抽象的高级计算机语言,既有与C语言等同的一面,又更为接近人的抽象思维,便于学习和编程。同时,它具有很好的开放性,用户可以根据自己的需求,利用MA TLAB提供的基本工具,灵活地编制和开发自己的程序,开创新的应用。 本书重点介绍了MA TLAB的矩阵运算、符号运算、图形功能、控制系统分析与设计、SimuLink仿真等方面的内容。 Chap1 MATLAB入门与基本运算 本章介绍MATLAB的基本概念,包括工作空间;目录、路径和文件的管理方式;帮助和例题演示功能等。重点介绍矩阵、数组和函数的运算规则、命令形式,并列举了可能得到的结果。由于MA TLAB的符号工具箱是一个重要分支,其强大的运算功能在科技领域有特殊的帮助作用。 1.1 MATLAB环境与文件管理 1.2 工作空间与变量管理 1.2.1 建立数据 x1=[0.2 1.11 3]; y1=[1 2 3;4 5 6]建立一维数组x1和二维矩阵y1。分号“;”表示不显示定义的数据。 MATLAB还提供了一些简洁方式,能有规律地产生数组: xx=1:10 %xx从1到10,间隔为1 xx=-2:0.5:1 %xx从-2到1,间隔为0.5 linespace命令等距离产生数组,logspace在对数空间中等距离产生数组。对于这一类命令,只要给出数组的两端数据和维数就可以了。 xx=linespace(d1,d2,n) %表示xx从d1到d2等距离取n个点 xx=logspace(d1,d2,n) %表明xx从10d1到10d2等距离取n个点 1.2.2 who和whos命令 who: 查看工作空间中有哪些变量名 whos: 了解这些变量的具体细节 1.2.3 exist命令 查询当前的工作空间内是否存在一个变量,可以调用exist()函数来完成。 调用格式:i=exist(…A?); 式中,A为要查询的变量名。返回的值i表示A存在的形式: i=1 表示当前工作空间内存在一个变量名为A的矩阵; i=2 表示存在一个名为A.m的文件; i=3 表示MATLAB的工作路径下存在一个名为A.mex的文件;

Multisim2001实现放大电路频率特性的仿真测试

Multisim2001实现放大电路频率特性的仿真测试 Multisim2001是一个用于电路设计和仿真的EDA工具软件,目前广泛应用于电子线路的仿真实验平台和电子系统的仿真设计工具。Multisim2001为电类专业的学习、教学、研究及开发提供了一种先进的手段和方法。在电子线路的应用中,往往需要对电路的性能指标进行测试和分析,可以利用Multisim2001的仿真仪器或Multisim2001仿真分析方法对电路的性能指标进行仿真测试。Multisim2001提供了18种基本仿真分析方法,分别是直流工作点分析、交流分析、瞬态分析、傅里叶分析、噪声分析、失真分析、直流扫描分析、灵敏度分析、参数扫描分析、温度扫描分析、极点-零点分析、传递函数分析、最坏情况分析、蒙特卡罗分析、批处理分析、自定义分析、噪声图形分析和RF分析,这些分析方法能满足一般电子电路的设计、调试和性能指标测试的要求。下面以分压偏置共射极放大电路交流频率响应的仿真测试为例,介绍Multisim2001仿真分析方法在放大电路频率特性仿真测试中的应用。 首先在Multisim2001电路窗口中创建分压偏置共射极放大电路,如图1所示。 交流频率响应的仿真测试 Multisim2001扫描分析法中的交流分析(AC Analysis)可以对模拟电路进行交流频率响应的分析,即获得模拟电路的幅度和相位的频率响应。Multisim2001在进行交流分析前,会自动计算电路的直流工作点,以确定电路中非线性元器件的小信号工作模型,而且,在交流分析中,所有输入源都认为是正弦信号,直流电压源视为短路,直流电流源视为开路。交流频率响应的仿真测试方法如下: 启动Simulate菜单中Analyses下的AC Analysis命令,弹出AC Analysis对话框,在AC Analysis对话框中,单击Frequency Parameters按钮,设置AC分析的频率参数:Start frequency[交流分析的起始频率]为1Hz,Stop frequency[交流分析的终止频率]为10GHz,Sweep type[扫描方式(X轴刻度)]为Decade(十倍程),Number of point per becade[每个十倍程刻度数]为10,Vertical scale[幅度刻度形式(Y轴刻度)]为Logarithmic(对数刻度)。参数设置如图2所示。 在AC Analysis对话框中,单击“Out put variables”按钮,选择分析节点:分压偏置共射极放大电路的信号输出端:u0,如图3所示。 单击AC Analysis对话框的Simulate按钮,便可得放大电路交流频率响应特性曲线图,如图4所示。 低频频率响应的仿真测试 Multisim2001仿真分析法中的参数扫描分析(Parameter Sweep Analysis),可以将电路中某些元器件的参数在一定的取值范围内变化时,对电路交流频率特性

matlabsimulink初级教程

S i m u l i n k仿真环境基础学习Simulink是面向框图的仿真软件。 7.1演示一个Simulink的简单程序 【例7.1】创建一个正弦信号的仿真模型。 步骤如下: (1)在MATLAB的命令窗口运行simulink命令,或单击工具栏中的图标,就可以打开Simulink模块库浏览器(SimulinkLibraryBrowser)窗口,如图7.1所示。

图7.1Simulink界面 (2)单击工具栏上的图标或选择菜单“File”——“New”——“Model”,新建一个名为“untitled”的空白模型窗口。 (3)在上图的右侧子模块窗口中,单击“Source”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink下的Source子模块库,便可看到各种输入源模块。 (4)用鼠标单击所需要的输入信号源模块“SineWave”(正弦信号),将其拖放到的空白模型窗口“untitled”,则“SineWave”模块就被添加到untitled窗口;也可以用鼠标选中“SineWave”模块,单击鼠标右键,在快捷菜单中选择“addto'untitled'”命令,就可以将“SineWave”模块添加到untitled窗口,如图7.2所示。

(5) Scope ”模块(示波器)拖放到“untitled ”窗口中。 (6)在“untitled ”窗口中,用鼠标指向“SineWave ”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope ”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图7.3所示。 (7)开始仿真,单击“untitled ”模型窗口中“开始仿真”图标 ,或者选择菜单“Simulink ”——“Start ”,则仿真开始。双击“Scope ” 模块出现示波器显示屏,可以看到黄色的正弦波形。如图7.4所示。 图7.2Simulink 界面

简易频率特性测试仪论文

2013年全国大学生电子设计竞赛 简易频率特性测试仪(E题) 【本科组】 2013年9月6日

摘要 本实验以DDS芯片AD9854为信号发生器,以单片机STM32F103RBT6为核心控制芯片。系统由5个模块组成:正弦扫频信号模块,待测阻容双T网络模块,整形滤波模块,A/D转换模块及显示模块。先以单片机送给AD9854控制字产生1MHZ —40MHZ的扫频信号,经过阻容双T网络检测电路,两路路信号通过AD9283对有效值进行采集后进入单片机进行幅值转换,最终由TFTLCD显示输出。 ABSTRACT In this experiment, the DDS chip AD9854 as the signal generator, MCU STM32F103RBT6 as the core control chip, and with FPGA as auxiliary, and on the peripheral circuit to realize the detection of amplitude frequency and phase frequency. The system comprises 6 modules: signal sine sweep signal module, the measured resistance capacitance of double T module, filter module, A/D conversion module and display module. The first single-chip microcomputer to AD9854 control word generate sweep signal of 10MHZ - 40MHZ, the resistance and capacitance of double T detection circuit, two road signals are collected on the effective value through the AD9283 into the microcontroller to amplitude conversion, the LCD display output, finally to complete the amplitude frequency and phase frequency of simple test.

matlab电力电子仿真教程

MATLAB在电力电子技术中的应用 目录 MATLAB在电力电子技术中的应用 (1) MATLAB in power electronics application (2) 目录 (4) 1绪论 (6) 1.1关于MATLAB软件 (6) 1.1.1MATLAB软件是什么 (6) 1.1.2MATLAB软件的特点和基本操作窗口 (7) 1.1.3MATLAB软件的基本操作方法 (10) 1.2电力电子技术 (12) 1.3MATLAB和电力电子技术 (13) 1.4本文完成的主要内容 (14) 2MATLAB软件在电路中的应用 (15) 2.1基本电气元件 (15) 2.1.1基本电气元件简介 (15) 2.1.2如何调用基本电器元件功能模块 (17) 2.2如何简化电路的仿真模型 (19) 2.3基本电路设计方法 (19) 2.3.1电源功能模块 (19) 2.3.2典型电路设计方法 (20) 2.4常用电路设计法 (21) 2.4.1ELEMENTS模块库 (21) 2.4.2POWER ELECTRONICS模块库 (22) 2.5MATLAB中电路的数学描述法 (22) 3电力电子变流的仿真 (25) 3.1实验的意义 (25) 3.2交流-直流变流器 (25)

3.2.1单相桥式全控整流电路仿真 (26) 3.2.2三相桥式全控整流电路仿真 (38) 3.3三相交流调压器 (53) 3.3.1无中线星形联结三相交流调压器 (53) 3.3.2支路控制三角形联结三相交流调压器 (59) 3.4交流-交流变频电路仿真 (64) 3.5矩阵式整流器的仿真 (67)

基于matlab高斯光束经透射型体光栅后的光束传输特性分析(附源程序)

目录 1 基本原理 (1) 1.1耦合波理论 (1) 1.2高斯光波的基本理论 (9) 2 建立模型描述 (10) 3仿真结果及分析 (10) 3.1角度选择性的模拟 (10) 3.2波长选择性的模拟 (13) 3.3单色发散光束经透射型布拉格体光栅的特性 (15) 3.4多色平面波经透射型布拉格体光栅的特性 (17) 4 调试过程及结论 (18) 5 心得体会 (20) 6 思考题 (20) 7 参考文献 (20) 8 附录 (21)

高斯光束经透射型体光栅后的光束传输 特性分析 1 基本原理 1.1耦合波理论 耦合波理论分析方法基于厚全息光栅产生的布拉格衍射光。当入射波被削弱且产生强衍射效率时,耦合波理论分析方法适用耦合波理论分析方法适用于透射光栅。 1.1.1耦合波理论研究的假设条件及模型 耦合波理论研究的假设条件: (1) 单色波入射体布拉格光栅; (2) 入射波以布拉格角度或近布拉格角度入射; (3)入射波垂直偏振与入射平面; (4)在体光栅中只有两个光波:入射光波 R 和衍射光波 S; (5)仅有入射光波 R 和衍射光波 S 遵守布拉格条件,其余的衍射能级违背布拉格 条件,可被忽略; (6)其余的衍射能级仅对入射光波 R 和衍射光波 S 的能量交换有微小影响; (7)将耦合波理论限定于厚布拉格光栅中; 图1为用于耦合波理论分析的布拉格光栅模型。z 轴垂直于介质平面,x 轴在介质平面内,平行于介质边界,y 轴垂直于纸面。边界面垂直于入射面,与介质边界成Φ角。光栅矢量K垂直于边界平面,其大小为2/ =Λ,Λ为光栅周期,θ为入射角。 Kπ 图1布拉格光栅模型

典型环节的频率 特性仿真分析

实验二典型环节的频率特性仿真分析 一、实验目的和要求 (1)熟悉如何通过MA TLAB语言编程来进行仿真实验。 (2)通过绘制典型环节的频率特性曲线,正确理解频率特性的概念,明确频率特性的物理意义。 二、实验主要仪器和设备 装有Matlab软件的计算机 三、实验内容 分别改变以下几个典型环节的相关参数,观察系统(或环节)的频率特性,并分析其相关参数改变对频率特性的影响。 比例环节(K) 积分环节( S T i 1 ) 一阶惯性环节( S T K c + 1 ) 一阶微分环节( S T D + 1) 典型二阶环节( 2 2 2 2 n n n S S K ω ξω ω + +) 四、实验方法 wn=5;k=1; g1=tf([k*wn*wn],[1 2*0.4*wn wn*wn]); g2=tf([k*wn*wn],[1 2*0.8*wn wn*wn]); g3=tf([k*wn*wn],[1 2*1.2*wn wn*wn]); figure(1); step(g1); hold on step(g2); hold on step(g3); figure(2) bode(g1); hold on bode(g2); hold on bode(g3); figure(3); nyquist(g1); hold on nyquist(g2);

hold on nyquist(g3); 五、实验数据记录 (1) 比例环节 G(S)= K ; 参数值分别为K1= 1 ;K2= 2 ;K3= 3 ; 单位阶跃响应曲线: 00.10.20.30.40.50.60.70.80.91 1 1.21.41.61.82 2.2 2.42.62.83Step Response Tim e (sec) A m p l i t u d e Bode 图: 02468 M a g n it u d e (d B )10 -1 -0.500.51 P h a s e (d e g ) Bode D iagram Frequency (rad/sec) Nyquist 曲线:

MATLAB 高斯光束传播轨迹的模拟

B1:高斯光束传播轨迹的模拟 设计任务: 作图表示高斯光束的传播轨迹 (1)基模高斯光束在自由空间的传播轨迹; (2)基模高斯光束经单透镜变换前后的传播轨迹; (3)基模高斯光束经调焦望远镜变换前后的传播轨迹。 function varargout = B1(varargin) % B1 M-file for B1.fig % B1, by itself, creates a new B1 or raises the existing % singleton*. % % H = B1 returns the handle to a new B1 or the handle to % the existing singleton*. % % B1('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in B1.M with the given input arguments. % % B1('Property','Value',...) creates a new B1 or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before B1_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to B1_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDA TA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help B1 % Last Modified by GUIDE v2.5 21-Oct-2010 17:52:32 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @B1_OpeningFcn, ... 'gui_OutputFcn', @B1_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []);

Matlab仿真实验教程

MATLAB的实验仿真 目录 实验一MATLAB在控制系统模型建立与仿真中的应用 (1) 实验二典型系统的时域响应分析 (13) 实验三线性控制系统的根轨迹与频域分析 (17) 实验四线性系统的校正 (22) 附录一 MATLAB6.5 控制系统工具箱函数和结构化的控制语句 (30) 附录二 SIMULINK 基本模块介绍 (34)

实验一 MATLAB 在控制系统模型建立与仿真中的应用 一、 MATLAB 基本操作与使用 1. 实验目的 1) 掌握MATLAB 仿真软件的安装及启动,熟悉 MATLAB 工作环境平台。 2) MATLAB 命令窗口,包括工具条以及菜单选项的使用;MATLAB 语言的基本规定,包括数值的表示、变量命名规定、基本运算符、预定义变量以及表达式等。 3) MATLAB 图形绘制功能、M 文件程序设计和线性控制系统传递函数模型的建立等。 2. 实验仪器 PC 计算机一台,MATLAB 软件1套 3. 实验内容 1) MATLAB 的启动 这里介绍MATLAB 装入硬盘后,如何创建MATLAB 的工作环境。 方法一 MATLAB 的工作环境由matlab.exe 创建,该程序驻留在文件夹matlab\bin\ 中。它的图标是 matlab 。只要从<我的电脑>或<资源管理器>中去找这个程序,然后双击此图标,就会自动创建如图1所示的MATLAB6.5 版的工作平台 。 图1 在英文Windows 平台上的MATLAB6.5 MATLAB 工作平台 方法二 假如经常使用MATLAB ,则可以在Windows 桌面上创建一个MATLAB 快捷方式图标。具体办法为: 把<我的电脑>中的 matlab 图标用鼠标点亮,然后直接把此图标拖到Windows 桌面上即可。此后,直接双击Windows 桌面上的matlab 图标,就可建立图1所示的 MATLAB 工作平台。 2) MATLAB 工作环境平台 桌面平台是各桌面组件的展示平台,默认设置情况下的桌面平台包括 6 个窗口,具体如下: ① MATLAB 窗口 Command Window

simulink-matlab仿真教程

simulink matlab 仿真环境教程 Simulink 是面向框图的仿真软件。 演示一个Simulink 的简单程序 【例1.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在MATLAB 的命令窗口运行simulink 命令,或单击工具栏中的图标,就可以打开Simulink 模块库浏览器 (Simulink Library Browser) 窗口,如图1.1所示。 (2) 单击工具栏上的图标或选择菜单“File ”——“New ”——“Model ”,新建一个名为“untitled ”的空白 模型窗口。 (3) 在上图的右侧子模块窗口中,单击“Source ”子模块库前的“+”(或双击Source),或者直接在左侧模块和工具箱栏单击Simulink 下的Source 子模块库,便可看到各种输入源模块。 (4) 用鼠标单击所需要的输入信号源模块“Sine Wave ”(正弦信号),将其拖放到的空白模型窗口“untitled ”,则“Sine Wave ”模块就被添加到untitled 窗口;也可以用鼠标选中“Sine Wave ”模块,单击鼠标右键,在快捷菜单中选择“add to 'untitled'”命令,就可以将“Sine Wave ”模块添加到untitled 窗口,如图1.2 所示。 图7.1 Simulink 界面

(5) 用同样的方法打开接收模块库“Sinks”,选择其中的“Scope ”模块(示波器)拖放到“untitled”窗口中。 (6) 在“untitled”窗口中,用鼠标指向“Sine Wave”右侧的输出端,当光标变为十字符时,按住鼠标拖向“Scope”模块的输入端,松开鼠标按键,就完成了两个模块间的信号线连接,一个简单模型已经建成。如图1.3所示。 (7) 开始仿真,单击“untitled”模型窗口中“开始仿真”图标,或者选择菜单“Simulink”——“Start”,则仿真开始。双击“Scope”模块出现示波器显示屏,可以看到黄色的正弦波形。如图1.4所示。 (8) 保存模型,单击工具栏的图标,将该模型保存为“Ex0701.mdl”文件。 1.2 Simulink的文件操作和模型窗口 1.2.1 Simulink的文件操作 1. 新建文件 新建仿真模型文件有几种操作: ?在MATLAB的命令窗口选择菜单“File”“New”“Model”。 图7.2 Simulink界面 图7.3 Simulink模型窗口 图7.4 示波器窗口

高斯光束经透射型体光栅后的光束传输特性分析

目录 1 技术指标 (1) 1.1 初始条件 (1) 1.2 技术要求 (1) 1.3 主要任务 (1) 2 基本理论 (1) 2.1 高斯光波的基本理论 (1) 2.2 耦合波理论 (2) 3 建立模型描述 (4) 4 仿真结果及分析 (5) 4.1 角度选择性的模拟 (5) 4.1.1 不同光栅厚度下的角度选择性 (6) 4.1.2 不同光栅线对下的角度选择性 (7) 4.2 波长选择性的模拟 (8) 4.2.1不同光栅厚度下的波长选择性 (8) 4.2.2不同光栅线对下的波长选择性 (9) 4.3 单色发散光束经透射型布拉格体光栅的特性 (10) 4.4 多色平面波经透射型布拉格体光栅的特性 (11) 5 调试过程及结论 (12) 6 心得体会 (13) 7 思考题 (13) 8 参考文献 (14)

高斯光束经透射型体光栅后的光束传输 特性分析 1 技术指标 1.1 初始条件 Matlab软件,计算机 1.2 技术要求 根据耦合波理论,推导出透射体光栅性能参量(角度和波长选择性)与光栅参数(光栅周期,光栅厚度等)之间的关系式;数值分析平面波、谱宽和发散角为高斯分布的光束入射条件下,衍射效率受波长和角度偏移量的影响。 1.3 主要任务 1 查阅相关资料,熟悉体光栅常用分析方法,建立耦合波分析模型; 2 利用matlab软件进行模型仿真,程序调试使其达到设计指标要求及分析仿真结果; 3 撰写设计说明书,进行答辩。 2 基本理论 2.1 高斯光波的基本理论 激光谐振腔发出的基膜场,其横截面的振幅分布遵守高斯函数,称之为高斯脉冲光波。如图1所示为高斯脉冲光波及其参数的图。

matlab仿真光束的传输特性

一、课程设计题目: 用matlab 仿真光束的传输特性。 二、任务与要求 用matlab 仿真光束通过光学元件的变换。 ① 设透镜材料为k9玻璃,对1064nm 波长的折射率为1、5062,镜片中心厚度为3mm,凸面曲率半径,设为100mm,初始光线距离透镜平面20mm 。用matlab 仿真近轴光线(至少10条)经过平凸透镜的焦距,与理论焦距值进行对比,得出误差大小。 ② 已知透镜的结构参数为101=r ,0.11=n ,51=d ,5163.121=='n n (K9玻 璃),502-=r ,0.12='n ,物点A 距第一面顶点的距离为100,由A 点计 算三条沿光轴夹角分别为10、20、30的光线的成像。试用Matlab 对以上三条光线光路与近轴光线光路进行仿真,并得出实际光线的球差大小。 ③ 设半径为1mm 的平面波经凸面曲率半径为25mm,中心厚度3mm 的平凸透镜。用matlab 仿真平面波在透镜几何焦平面上的聚焦光斑强度分布,计算光斑半径。并与理论光斑半径值进行对比,得出误差大小。(方法:采用波动理论,利用基尔霍夫—菲涅尔衍射积分公式。) 2、用MATLAB 仿真平行光束的衍射强度分布图样。(夫朗与费矩形孔衍射、夫朗与费圆孔衍射、夫朗与费单缝与多缝衍射。) 3、用MATLAB 仿真厄米—高斯光束在真空中的传输过程。(包括三维强度分布与平面的灰度图。)

4、(补充题)查找文献,掌握各类空心光束的表达式,采用费更斯-菲涅尔原理推导各类空心光束在真空中传输的光强表达式。用matlab对不同传输距离处的光强进行仿真。 三、理论推导部分 将坐标原点选在透镜中心处,θ1=arcsin(y1/r),由n1*sinθ1=n2*sinθ2可得出θ2=arcsin(n1/n2)*(y1/r),由几何关系可得到θ=θ2-θ1,则出射光线的斜率k=tan(θ2-θ1),当入射直线y=y1时,x1=d-(r-r ),并设出射直线为y=k*x+b;由直线经过(x1,y1)即可求出b (y 2^ )2^1 值,从而就可以求出射直线。由单透镜焦点计算公式1/f=-(n-1)*(1/r1-1/r2)可求得f=193、6858。

相关文档
最新文档