(人教版)初中数学九上 第二十二章综合测试03-答案

合集下载

人教版初中九年级上册数学第二十二章测试卷含答案解析和双向细目表-九上22

人教版初中九年级上册数学第二十二章测试卷含答案解析和双向细目表-九上22

人教版数学九年级上册第22单元《二次函数》测试考生须知:●本试卷满分120分,考试时间100分钟。

●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。

●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。

●保持清洁,不要折叠,不要弄破。

一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 函数y= (a-2) x2+bx+c是二次函数时,a的取值为()A.a=2B.a=-2C.a≠2D.a≠-22.二次函数y=(x+1)2-3的图象大致是()A. B. C. D.3.抛物线y=x2+2x+1的顶点坐标是()A.(0,-1)B.(-1,1)C.(-1,0)D.(1,0)4.关于抛物线y=x2-6x+9,下列说法错误的是()A.开口向上B.顶点在x轴上C.对称轴是x=3D.x>3时,y随x增大而减小5. 在同一平面直角坐标系中,先将抛物线A :y=x2-2通过左右平移得到抛物线B,再将抛物线B通过上下平移得到抛物线C:y=x2-2x+2,则抛物线B的顶点坐标为()A.(-1,2)B.(1,-2)C.(1,2)D.(-1,-2)6. 已知二次函数y=-x2+2mx+2,当x< -2时,y的值随x的增大而增大,则实数m ( ) A. m=-2B . m>-2C . m ≥-2D . m ≤-27. 如图1所示的是山西大同北都桥的照片,桥上面的部分是以抛物线为模型设计而成的,从正面观察该桥的上面部分是一条抛物线,如图2,若AB=60,OC=15,以AB 所在直线为x 轴,抛物线的顶点C 在y 轴上建立平面直角坐标系,则此桥上半部分所在抛物线的解析式为( )A.156012+-=x y B.156012--=x y C.1524012+-=x yD.1524012--=x y8.已知点A (m ,y 1)、B(m+2,y 2)、C(x 0,y 0)在二次函数y=ax 2+4ax+c ( a ≠0)的图象上,且C 为抛物线的顶点,若y 0≥y 1>y 2,则m 的取值范围是( ) A. m<-3B.m>-3C. m<-2D. m>-29.一副三角板(△ABC 与△DEF)如图放置,点D 在AB 边上滑动,DE 交AC 于点G ,DF 交BC 于点H ,且在滑动过程中始终保持DG=DH ,若AC=2,则△BDH 面积的最大值是( ) A.3B.33C.23D.233(第9题) (第7题)第10题10.已知二次函数y=ax2+bx+c (其中a,b,c为常数)的图象如图所示,有以下结论:①abc>0;②a+b+c=0;③2a-b=0;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确结论的序号是()A.①②④B.①③④C.①④D.③④二.填空题:本大题有6个小题,每小题4分,共24分。

人教版九年级数学上册第22章测试题含答案

人教版九年级数学上册第22章测试题含答案

九上数学第二十二章检测题(R J )(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(共12小题,每小题3分,共36分)1.在同一坐标系中作y =2x 2,y =-2x 2,y =12x 2的图象,它们的共同特点是 ( D )A .都是关于x 轴对称,抛物线开口向上B .都是关于y 轴对称,抛物线开口向下C .都是关于原点对称,抛物线的顶点都是原点D .都是关于y 轴对称,顶点都是原点2.(兰州中考)在下列二次函数中,其图象的对称轴为x =-2的是 ( A )A .y =(x +2)2B .y =2x 2-2C .y =-2x 2-2D .y =2(x -2)23.在一次足球比赛中,守门员用脚踢出去的球的高度h 随时间t 的变化而变化,可以近似地表示这一过程的图象是 ( C )4.(贵港中考)将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 ( C )A .y =(x -1)2+1B .y =(x +1)2+1C .y =2(x -1)2+1D .y =2(x +1)2+1,第5题图) 5.若二次函数y=ax2+bx+a2-2(a,b为常数)的图象如图所示,则a的值为(D) A.-2 B.- 2 C.1 D.26.(东营中考)若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则m的值为(D) A.0 B.0或2 C.2或-2 D.0,2或-2 7.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是(C)8.某工厂的大门是抛物线形水泥建筑物,大门的地面宽为8 m,两侧距地面3 m高处各有一个壁灯,两壁灯之间的水平距离为6 m(如图所示),则大门的高为(水泥建筑物厚度忽略不计) (A) A.6.9 m B.7.0 m C.7.1 m D.6.8 m,第8题图),第12题图) 9.(枣庄中考)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D) A.当a=1时,函数图象经过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a <0,函数图象的顶点始终在x 轴的下方D .若a >0,则当x ≥1时,y 随x 的增大而增大10.(苏州中考)已知二次函数y =x 2-3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两实数根是 ( B )A .x 1=1,x 2=-1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=311.(徐州中考)若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是 ( A )A .b <1且b ≠0B .b >1C .0<b <1D .b <112.★(恩施中考)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a +b +c >0;④若点B ⎝ ⎛⎭⎪⎫-52,y 1,C ⎝ ⎛⎭⎪⎫-12,y 2为函数图象上的两点,则y 1<y 2.其中正确的结论是 ( B )A .②④B .①④C .①③D .②③第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.抛物线y =12x 2-3与y 轴的交点为 (0,-3) .14.若抛物线y =(m -1)x m 2-m 开口向下,则m = -1 .15.把二次函数y =x 2+6x +4配方成y =a (x -h )2+k 的形式,得__y =(x +3)2-5__,它的顶点坐标是__(-3,-5)__.16.若A ⎝ ⎛⎭⎪⎫-134,y 1,B (-1,y 2),C ⎝ ⎛⎭⎪⎫35,y 3是抛物线y =-(x +2)2-1上的三点,则y 1,y 2,y 3按从小到大的顺序为 y 3<y 1<y 2 .17.某种火箭被竖直向上发射时,它的高度h (m)与时间t (s)的关系可以用公式h =-5t 2+150t +10表示.经过 15 s ,火箭达到它的最高点.18.★如图,抛物线y =ax 2+bx +c 过点(-1,0),且对称轴为直线x =1,有下列结论:①abc <0;②10a +3b +c >0;③抛物线经过点(4,y 1)与点(-3,y 2),则y 1>y 2;④无论a ,b ,c 取何值,抛物线都经过同一个点⎝ ⎛⎭⎪⎫-c a ,0;⑤am 2+bm +a ≥0,其中所有正确的结论是__②④⑤__.三、解答题(本大题共8小题,共66分)19.(6分)已知二次函数y =x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:(1)(2)当x 为何值时,y 有最小值,最小值是多少?解:(1)y =x 2-4x +5;(2)当x =2时,y 最小值=1;20.(6分)已知一个二次函数的对称轴是直线x =1,图象上最低点P 的纵坐标是-8,图象过点(-2,10)且与x 轴交于点A 、点B ,与y 轴交于点C ,求:(1)这个二次函数的解析式;(2)△ABC 的面积.(3)当x 取何值时,y 随x 的增大而增大?解:(1)y =2x 2-4x -6;(2)S △ABC =12;(3)x >1(写x ≥1也可).21.(8分)已知抛物线y =ax 2+bx +c 经过点(-1,2)且方程ax 2+bx +c =0的两根分别为-3,1.(1)求抛物线的解析式;(2)求抛物线的顶点坐标;(3)当x 取何值时,y >0.解:(1)依题意设抛物线的解析式为y =a (x +3)(x -1),把(-1,2)坐标代入得2=a (-1+3)(-1-1),∴a =-12,故所求的解析式为y =-12(x +3)(x -1)即y =-12x 2-x +32.(2)由y =-12x 2-x +32=-12(x +1)2+2,所以抛物线的顶点为(-1,2).(3)-3<x <1.22.(8分)(南京中考)已知函数y =mx 2-6x +1(m 为常数).(1)求证:无论m 为何值,该函数图象与y 轴总有一个固定交点;(2)若该函数与x 轴只有一个交点,求m 的值.(1)证明:当x =0时,y =1,故y =mx 2-6x +1与y 轴总有一固定交点(0,1);(2)解:①若y =mx 2-6x +1为一次函数,则m =0,此时函数与x 轴有唯一交点;②若y =mx 2-6x +1为二次函数,则Δ=36-4× m × 1=0,m =9,综上可得m =0或m =9.23.(8分)如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A (3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF .(1)求a 的值;(2)求点F 的坐标.解:(1)把A (3,0)代入y =ax 2-x -32中得a =12.(2)∵A (3,0),∴OA =3.∵四边形OABC 是正方形,∴OC =OA =3,当y =3时,12x 2-x -32=3,即x 2-2x -9=0,解得x 1=1+10,x 2=1-10<0(舍去),∴CD=1+10,在正方形OABC中,AB=CB,同理BD=BF,∴AF=CD=1+10.∴点F的坐标为(3,1+10).24.(10分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门,已知计划中的材料可建墙体(不包括门)总长为27 m,求能建成的饲料室面积最大值为多少m2.解:设宽为x,则长为30-3x,面积为y,∴y=x(30-3x)=-3(x-5)2+75(0<x<10)∵a<0,∴x=5时,y有最大值,y最大值=75 m2.答:能建成饲养室面积的最大值是75 m2.25.(10分)(安徽中考)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数解析式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数解析式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?解:(1)设y 与x 之间的函数解析式为y =kx +b ,⎩⎪⎨⎪⎧50k +b =100,60k +b =80,得⎩⎪⎨⎪⎧k =-2,b =200. 即y 与x 之间的函数解析式是y =-2x +200;(2)由题意可得,W =(x -40)(-2x +200)=-2x 2+280x -8 000,即W 与x 之间的函数解析式是W =-2x 2+280x -8 000;(3)∵W =-2x 2+280x -8 000=-2(x -70)2+1 800,40≤x ≤80, ∴当40≤x ≤70时,W 随x 的增大而增大,当70≤x ≤80时,W 随x 的增大而减小,当x =70时,W 取得最大值,此时W =1 800,答:当40≤x ≤70时,W 随x 的增大而增大,当70≤x ≤80时,W 随x 的增大而减小,售价为70元时获得最大利润,最大利润是1 800元.26.(10分)定义:如图①,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A,B两点不重合),如果△ABP 的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=-x2+1的勾股点的坐标.(2)如图②,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数解析式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP 的Q点(异于点P)的坐标.解:(1)抛物线y=-x2+1的勾股点的坐标为(0,1);(2)抛物线y=ax2+bx过原点,即点A(0,0),如图,作PG⊥x轴于点G,∵点P的坐标(1,3),∴AG=1,PG=3,P A=AG2+PG2=12+(3)2=2,∵PGAG=3,∴∠P AG=60°,在Rt△P AB中,AB=4,∴点B坐标为(4,0),设y=ax(x-4),将点P(1,3)代入得a=-33,∴y=-33x(x-4)=-33x2+433x;(3)①当点Q在x轴上方时,由S△ABQ=S△ABP知点Q的纵坐标为3,则有-33x2+433x=3,解得x1=3,x2=1(不符合题意,舍去),∴点Q的坐标为(3,3);②当点Q在x轴下方时,由S△ABQ=S△ABP知点Q的纵坐标为-3,则有-33x2+433x=-3,解得x1=2+7,x2=2-7,∴点Q的坐标为(2+7,-3)或(2-7,-3);综上,满足条件的点Q有3个:(3,3)或(2+7,-3)或(2-7,-3).。

人教版九年级上册数学第二十二章同步测试试卷及答案

人教版九年级上册数学第二十二章同步测试试卷及答案

第二十二章综合素质评价一、选择题(每题3分,共30分)1.下列函数关系式中,一定为二次函数的是()A.y=3x-1 B.y=ax2+bx+cC.s=2t2-2t+1 D.y=x2+1 x2.【教材P32练习拓展】若二次函数y=ax a2-1的图象开口向上,则a的值为() A.3 B.-3 C. 3 D.- 33.【教材P56复习题T3改编】下列各点中,在抛物线y=-x2+1上的是() A.(1,0) B.(0,0) C.(0,-1) D.(1,1)4.【教材P35例3变式】将抛物线y=3x2向右平移2个单位长度,再向上平移3个单位长度,所得的抛物线是()A.y=3(x+2)2+3 B.y=3(x+2)2-3C.y=3(x-2)2+3 D.y=3(x-2)2-35.已知抛物线y=ax2+bx+c与x轴的一个交点为(1,0),对称轴是直线x=-1,则方程ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1C.x1=x2=-3 D.x1=x2=16.下列抛物线中,与x轴无公共点的是()A.y=x2-1 B.y=x2-4x+4C.y=-x2+4x+5 D.y=x2-2x+27.【2020·西宁】函数y=ax2+1和y=ax+a(a为常数,且a≠0),在同一平面直角坐标系中的大致图象可能是()8.二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确...的是() A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大(第8题)(第10题)9.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1 C.b≥1 D.b≤110.【教材P46例题拓展】【2021·齐齐哈尔】如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=-1,结合图象给出下列结论:①a+b+c=0;②a-2b+c<0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为-3和1;④若点(-4,y1),(-2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤a-b<m(am+b)(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.当m________时,函数y=(m-1)x2+3x-5是二次函数.12.将二次函数y=12x2-6x+21配方可得y=________.13.已知抛物线的顶点坐标是(0,1),且经过点(-3,2),则此抛物线对应的函数解析式为______________;当x>0时,y随x的增大而__________.14.【教材P47习题T4变式】已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则b=________.15.【教材P51习题T1拓展】二次函数y=x2-2x+n的最小值为-3,则n的值为____________.16.【2021·成都】在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=____________.17.当0≤x≤3时,直线y=a与抛物线y=(x-1)2-3有交点,则a的取值范围是________.18.【2021·襄阳】从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y(单位:m)与它距离喷头的水平距离x(单位:m)之间满足函数解析式y=-2x2+4x+1,则喷出水珠的最大高度是________m.三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分)19.已知二次函数y=43(x-1)2-3.(1)写出二次函数图象的开口方向和对称轴;(2)y有最大值还是最小值?并求出这个最大(小)值.20.已知抛物线y=ax2+bx+c经过点(-1,2),且方程ax2+bx+c=0的两根分别为-3,1.(1)求抛物线对应的函数解析式;(2)求抛物线的顶点坐标.21.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙足够长),如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设养鸡场与墙平行的一边的长度为x m,要使养鸡场面积最大,养鸡场与墙平行的一边的长度应为多少米?23.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/kg,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(kg)与销售单价x(元/kg)的函数关系如图所示.(1)求y与x的函数解析式;(2)求这一天销售西瓜获得的利润W(元)的最大值.24.如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O,B两点.(1)求此抛物线对应的函数解析式;(2)求△AOB的面积;(3)若抛物线上另有一点P满足S△PO B=S△A O B,请求出点P的坐标.25.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)对应的函数解析式;(2)王师傅在喷水池内维修设备期间,喷水头意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷出的水柱的最大高度.答案一、1.C 2.C 3.A 4.C 5.A 6.D7.D8.C9.D点思路:当x>1时,y的值随x值的增大而减小,也就是抛物线的对称轴在直线x=1左侧或与直线x=1重合.10.C点拨:①∵二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),∴a+b+c=0,故①正确;②∵抛物线的对称轴为直线x=-b2a=-1,∴b=2a.∵抛物线开口向上,与y轴交于负半轴,∴a>0,c<0.∴a-2b+c=c-3a<0.故②正确;③由抛物线的对称性,得抛物线与x轴的另一交点为(-3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为-3和1,故③正确;④∵对称轴为直线x=-1,且开口向上,∴离对称轴越近,y值越小.∵|-4+1|=3,|-2+1|=1,|3+1|=4,且点(-4,y1),(-2,y2),(3,y3)均在二次函数图象上,∴y2<y1<y3,故④不正确;⑤∵当x=-1时,y有最小值,∴a-b+c≤am2+bm+c(m为任意实数).∴a-b≤m(am+b).故⑤不正确.∴正确的结论有①②③,共3个.故选C.二、11.≠112.12(x-6)2+313.y=19x2+1;增大14.215.-216.117.-3≤a≤1点方法:抛物线的顶点为(1,-3),且0≤x≤3,则-3≤y≤1.由题意知直线y=a与x轴平行或重合,所以要使直线y=a与抛物线y=(x-1)2-3有交点,则a的取值范围为-3≤a≤1.18.3三、19.解:(1)在y =43(x -1)2-3中,∵a =43>0,∴二次函数图象开口向上,且对称轴为直线x =1; (2)∵二次函数图象开口向上,∴y 有最小值, ∵其顶点坐标为(1,-3),∴y 的最小值为-3.20.解:(1)依题意可得抛物线对应的函数解析式为y =a (x +3)(x -1).把点(-1,2)的坐标代入,得2=a ·(-1+3)×(-1-1), ∴a =-12.∴抛物线对应的函数解析式为y =-12(x +3)(x -1), 即y =-12x 2-x +32.(2)∵y =-12x 2-x +32=-12(x +1)2+2, ∴抛物线的顶点坐标为(-1,2). 21.解:(1)由图象可得:x 1=1,x 2=3;(2)结合图象可得:当1<x <3时,y >0;当x <1或x >3时,y <0; (3)根据图象可得:当x ≥2时,y 随x 的增大而减小. 22.解:设养鸡场的面积为y m 2,依题意得:y =x ·50-x 3=-13x 2+503x ,∵-13<0,∴y 有最大值,当x =-5032×⎝ ⎛⎭⎪⎫-13=25时,y 最大.答:要使养鸡场面积最大,养鸡场与墙平行的一边的长度应为25 m. 23.解:(1)当6≤x ≤10时,设y 与x 的函数解析式为y =kx +b (k ≠0).根据题意,得⎩⎨⎧1 000=6k +b ,200=10k +b ,解得⎩⎨⎧k =-200,b =2 200.∴y =-200x +2 200.当10<x ≤12时,y =200. 故y 与x 的函数解析式为y =⎩⎨⎧-200x +2 200(6≤x ≤10),200(10<x ≤12). (2)由已知得W =(x -6)y .当6≤x ≤10时,W =(x -6)(-200x +2 200)=-200⎝ ⎛⎭⎪⎫x -1722+1 250.∵-200<0,即抛物线的开口向下, ∴当x =172时,W 取得最大值1 250.当10<x ≤12时,W =(x -6)·200=200x -1 200. ∵W 随x 的增大而增大,∴当x =12时,W 取得最大值,为200×12-1 200=1 200<1 250. 答:这一天销售西瓜获得的利润的最大值为1 250元. 24.解:(1)设抛物线对应的函数解析式为y =a (x +3)2-3.∵抛物线过点(0,0),∴9a -3=0.∴a =13. ∴y =13(x +3)2-3,即y =13x 2+2x . (2)根据对称性得B (-6,0),∴S △AOB =6×32=9. (3)由题意得P 点纵坐标为3,将y =3代入解析式得13(x +3)2-3=3, ∴x 1=-3+32,x 2=-3-3 2.∴点P 的坐标为( -3+32,3)或(-3-32,3).25.解:(1)设水柱所在抛物线(第一象限部分)对应的函数解析式为y =a (x -3)2+5(a ≠0).将点(8,0)的坐标代入y =a (x -3)2+5,得25a +5=0,解得a =-15.∴水柱所在抛物线(第一象限部分)对应的函数解析式为y =-15(x -3)2+5(0<x <8).(2)当y =1.8时,有-15(x -3)2+5=1.8,解得x 1=-1(舍去),x 2=7. ∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内. (3)当x =0时,y =-15(0-3)2+5=165.设改造后水柱所在抛物线(第一象限部分)对应的函数解析式为y =-15x 2+bx +165.∵该抛物线过点(16,0),∴0=-15×162+16b +165,解得b =3.∴改造后水柱所在抛物线(第一象限部分)对应的函数解析式为y =-15x 2+3x +165=-15⎝ ⎛⎭⎪⎫x -1522+28920. ∴扩建改造后喷出的水柱的最大高度为28920米.。

人教版九年级上册数学第22章测试题附答案

人教版九年级上册数学第22章测试题附答案

人教版九年级上册数学第22章测试题附答案(时间:120分钟 满分:120分)姓名:______ 班级:______ 分数:______一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.二次函数y =x 2+ax +b 的图象经过点(1,1),则a +b 的值为 ( A )A .0B .1C .-1D .22.抛物线y =2(x +m )2+n (m ,n 是常数)的顶点坐标是( B )A .(m ,n )B .(-m ,n )C .(m ,-n )D .(-m ,-n )3.将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是 ( D )A .向左平移1个单位长度B .向右平移3个单位长度C .向上平移3个单位长度D .向下平移1个单位长度4.已知抛物线y =ax 2+bx +c (a <0)过A (-3,0),B (1,0),C (-5,y 1),D (5,y 2)四点,则y 1与y 2的大小关系是( A )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定5.以x 为自变量的二次函数y =x 2-2(b -2)x +b 2-1的图象不经过第三象限,则实数b 的取值范围是 ( A )A .b ≥54B .b ≥1或b ≤-1C .b ≥2D .1≤b ≤26.抛物线y =ax 2+bx +c 经过点(-2,0),且对称轴为直线x =1,其四个结论:部分图象如图所示,对于此抛物线有如下则x =1①ac >0;②16a +4b +c =0;③若m >n >0,+m 时的函数值小于x =1-n 时的函数值;④点⎝ ⎛⎭⎪⎫-c 2a ,0不在此抛物线上.其中正确结论的序号是 ( B )A .①②B .②③C .②④D .③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是y =x 2-1(只需写一个).8.若抛物线y =-x 2+8x -12的顶点是P ,与x 轴的两个交点是C ,D 两点,则△PCD 的面积是__8__.9.(原创题)军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y (m)与飞行时间x (s)的关系满足y =-15x 2+10x ,经过 25 s 时间,炮弹到达它的最高点,最高点的高度是 125 m ,经过 50 s 时间,炮弹落到地上爆炸了.10.当a ≤x ≤a +2时,二次函数y =3x 2+6x +2的最大值为47,则a 的值是__-5或1__.11.如图是抛物线y =ax 2+bx +c 的一部分,另为直线x =一部分被墨水污染,发现:对称轴1,与x 轴的一个交点为(3,0).请你经过推理分析,不等式ax 2+bx +c >0的解集是__-1<x<3__.12.已知二次函数的图象经过原点及点⎝ ⎛⎭⎪⎫-12,-14,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为__y =-13x 2+13x 或y =x 2+x __.三、(本大题共5小题,每小题6分,共30分)13.已知二次函数的解析式为y =x 2-6x +5,(1)利用配方法将解析式化成y =a (x -h )2+k 的形式;(2)写出该二次函数图象的对称轴和顶点坐标.解:(1)y =x 2-6x +9-9+5=(x -3)2-4.(2)抛物线的对称轴为x =3,顶点坐标为(3,-4).14.已知抛物线y =x 2-2mx +3m +4.(1)抛物线经过原点时,求m 的值;(2)顶点在x 轴上时,求m 的值.解:(1)∵抛物线y =x 2-2mx +3m +4经过原点,∴3m +4=0,解得m =-43.(2)∵抛物线y =x 2-2mx +3m +4顶点在x 轴上,∴b 2-4ac =0.∴(-2m )2-4×1×(3m +4)=0,解得m =4或m =-1.15.已知抛物线y=ax2-3ax-4a(a≠0).(1)直接写出该抛物线的对称轴;(2)试说明无论a为何值,该抛物线一定经过两个定点,并求出这两个定点的坐标.解:(1)抛物线的对称轴为x=--3a2a=32.(2)y=ax2-3ax-4a=a(x+1)(x-4).当(x+1)(x-4)=0,即x=-1或4时,y=0,∴抛物线一定经过(-1,0),(4,0).ABC的16.如图所示,已知等腰直角三角形直角边长与正方形MNPQ的边长均为20 cm,与点N重AC与MN在同一直线上,开始时点A合,让△ABC以每秒2 cm的速度向左运动,最终点A与点M重合.(1)求重叠部分面积y(cm2)与时间t(s)之间的函数关系式及自变量t的取值范围;(2)求重叠部分面积是△ABC面积的18时t的值.解:(1)y=12(20-2t)2(0≤t≤10).(2)由题意得12(20-2t)2=18× 20× 20,解得t1=5,t2=15.∵0≤t≤10,∴t=5.如图17.某工厂大门是一抛物线形水泥建筑物,的高所示.大门地面宽AB =4 m ,顶部C 离地面度为4.4 m ,现有一辆满载货物的汽车欲通过大门,请判货物顶部距地面2.8 m ,装货宽度为2.3 m ,断这辆汽车能否顺利通过大门.解:以大门地面的中点为原点,大门地面为x 轴,建立直角坐标系.根据对称性设二次函数的解析式为y =a (x +2)(x -2).将(0,4.4)代入得a =-1.1.∴二次函数的解析式为y =-1.1x 2+4.4.当y =2.8时,有-1.1x 2+4.4=2.8,解得x 1≈1.21,x 2≈-1.21(舍去).∵2× 1.21=2.42> 2.3,∴汽车可以顺利通过大门.四、(本大题共3小题,每小题8分,共24分)的图象18.如图,已知二次函数y =x 2+bx +c过点A(1,0),C(0,-3).(1)求此二次函数的解析式;面积为(2)若在抛物线上存在点P ,使△ABP 的10,请直接写出点P 的坐标.解:(1)∵二次函数y =x 2+bx +c 的图象过点A (1,0),C (0,-3),∴⎩⎪⎨⎪⎧1+b +c =0,c =-3,解得⎩⎪⎨⎪⎧b =2,c =-3.∴此二次函数的解析式为y=x2+2x-3.(2)P(-4,5)或P(2,5).19.已知抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,请仅用无刻度直尺按要求作图:(1)在图①中,直线l为对称轴,请画出点C关于直线l的对称点;(2)在图②中,若CD∥x轴,请画出抛物线的对称轴.解:(1)如图①,点E即为所求(画法不唯一).(2)如图②,直线m即为所求.20.如图,足球场上守门员在O处开出一高球,球从离地面1米的A 处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)足球第一次落地点C距守门员多少米?(取43≈7)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取26≈5)解:(1)设足球开始飞出到第一次落地时,抛物线的解析式为y=a(x-6)2+4,由题意得当x=0时y=1,即1=36a+4,∴a=-112,∴解析式为y=-112(x-6)2+4.(2)令y=0,-112(x-6)2+4=0,∴(x-6)2=48,解得x1=43+6≈13,x2=-43+6<0(舍去),∴足球第一次落地距守门员约13米.(3)第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),∴2=-112(x-6)2+4,解得x1=6-26,x2=6+26,∴CD=|x1-x2|=46≈10,∴BD=13-6+10=17(米).即运动员乙应再向前跑17米.五、(本大题共2小题,每小题9分,共18分)21.如图,在矩形OABC中,OA=8,OC=4,OA,OC分别在x轴与y轴上,点D为OA上一点,且CD=AD.(1)求点D的坐标;(2)若经过B,C,D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使△PBC 的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.解:(1)设OD =x ,则AD =CD =8-x .在Rt △OCD 中,(8-x )2=x 2+42,解得x =3,∴OD =3,∴D(3,0).(2)由题意知,抛物线的对称轴为直线x =4.∵D(3,0),∴另一交点E(5,0).(3)若存在这样的P ,则由S 梯形=20得S △PBC =12·BC·h =20.∴h =5. ∵B(8,-4),C(0,-4),D(3,0),∴该抛物线函数关系式为y =-415x 2+3215x -4,顶点坐标为⎝ ⎛⎭⎪⎫4,415, ∴顶点到BC 的距离为4+415=6415<5. ∴不存在这样的点P ,使得△PBC 的面积等于梯形DCBE 的面积.22.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于成本的90%,市场调研发现,在一段时间内,每天销售数量(个)与销售单价(元)符合一次函数关系,如图所示:(1)根据图象信息,求出y 与x 的函数关系式;(2)该公司要想每天获得3 000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?解:(1)设y =kx +b (k ≠0,b 为常数),将点(50,160),(80,100)代入得⎩⎪⎨⎪⎧160=50k +b ,100=80k +b ,解得⎩⎪⎨⎪⎧k =-2,b =260,∴y 与x 的函数关系式为y =-2x +260.(2)由题意得(x -50)(-2x +260)=3 000,化简得x 2-180x +8 000=0,解得x 1=80,x 2=100,∵50×(1+90%)=95,∴x 2=100>95(不符合题意,舍去),∴销售单价为80元.(3)设每天获得的利润为w 元,由题意得w =(x -50)(-2x +260)=-2x 2+360x -13 000=-2(x -90)2+3 200,∵a =-2<0,抛物线开口向下,∴w 有最大值,当x =90时,w 最大值=3 200.∴销售单价为90元时,每天获得的利润最大,最大利润是3 200元.六、(本大题共12分)23.如图①,抛物线C:y=x2经过变化可得到抛物线C1:y1=a1x(x -b1),C1与x轴的正半轴交于点A1,且其对称轴分别交抛物线C,C1于点B1,D1,此时四边形OB1A1D1恰为正方形;按上述类似方法,如图②,抛物线C1:y1=a1x(x-b1)经过变换可得到抛物线C2:y2=a2x(x -b2),C2与x轴的正半轴交于点A2,且其对称轴分别交抛物线C1,C2于点B2,D2,此时四边形OB2A2D2也恰为正方形;按上述类似方法,如图③,可得到抛物线C3:y3=a3x(x-b3)与正方形OB3A3D3.请探究以下问题:(1)填空:a1=1,b1=2;(2)求出C2与C3的解析式;(3)按上述类似方法,可得到抛物线C n:y n=a n x(x-b n)与正方形OB n A n D n(n≥1).①请用含n的代数式直接表示出C n的解析式;②当x取任意不为0的实数时,试比较y2 019与y2 020的函数值的大小并说明理由.解:(1)令y1=0,a1x(x-b1)=0,x1=0,x2=b1,∴A1(b1,0),由正方形OB 1A 1D 1得OA 1=B 1D 1=b 1,∴B 1⎝ ⎛⎭⎪⎫b 12,b 12,D 1⎝ ⎛⎭⎪⎫b 12,-b 12, ∵B 1在抛物线C 上,则b 12=⎝ ⎛⎭⎪⎫b 122, 解得b 1=0(不符合题意,舍去)或b 1=2,∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)得-1=-a 1, ∴a 1=1,故答案为1,2.(2)令y 2=0,a 2x (x -b 2)=0,x 1=0,x 2=b 2,∴A 2(b 2,0), 由正方形OB 2A 2D 2得OA 2=B 2D 2=b 2,∴B 2⎝ ⎛⎭⎪⎫b 22,b 22, ∵B 2在抛物线C 1上,则b 22=⎝ ⎛⎭⎪⎫b 222-2×b 22, 解得b 2=0(不符合题意,舍去)或b 2=6,∴D 2(3,-3),把D 2(3,-3)代入C 2的解析式,得-3=3a 2(3-6),a 2=13, ∴C 2的解析式为y 2=13x (x -6)=13x 2-2x , 令y 3=0,a 3x (x -b 3)=0,x 1=0,x 2=b 3,∴A 3(b 3,0), 由正方形OB 3A 3D 3得OA 3=B 3D 3=b 3,∴B 3⎝ ⎛⎭⎪⎫b 32,b 32, ∵B 3在抛物线C 2上,则b 32=13×⎝ ⎛⎭⎪⎫b 322-2×b 32, 解得b 3=0(不符合题意,舍去)或b 3=18,∴D 3(9,-9),把D 3(9,-9)代入C 3的解析式,得-9=9a 3(9-18),解得a3=19,∴C3的解析式为y3=19x(x-18)=19x2-2x.(3)①C n的解析式为y n=13n-1x2-2x(n≥1).②由上题可得,抛物线C2 019的解析式为y2 019=132 018x2-2x,抛物线C2 020的解析式为y2 020=132 019x2-2x,∴两抛物线的交点为(0,0);如图,由图象得当x≠0时,y2 019>y2 020.。

新人教版初中数学九年级上册第二十二章检测卷过关习题和解析答案(精品).doc

新人教版初中数学九年级上册第二十二章检测卷过关习题和解析答案(精品).doc

第二十二章检测卷一、选择题:1.抛物线2(1)3y x =-+的对称轴是( ) (A )直线1x = (B )直线3x = (C )直线1x =- (D )直线3x =-2.对于抛物线21(5)33y x =--+,下列说法正确的是( )(A )开口向下,顶点坐标(53),(B )开口向上,顶点坐标(53),(C )开口向下,顶点坐标(53)-,(D )开口向上,顶点坐标(53)-,3、已知二次函数y=ax 2+bx 的图象经过点A (-1,1),则ab 有 ( )(A )最小值0; (B )最大值 1; (C )最大值2; (D )有最小值41-3.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( )(A )123y y y << (B )213y y y << (C )312y y y << (D )132y y y <<4.二次函数362+-=x kx y 的图象与x 轴有两个交点,则k 的取值范围是( )(A )3<k (B )03≠<k k 且 (C )3≤k (D )03≠≤k k 且5.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) (A)23(1)2y x =-- (B)23(1)2y x =+- (C )23(1)2y x =++ (D )23(1)2y x =-+ 6.烟花厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) (A)3s(B)4s(C)5s(D)6s7、把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )(A )()1232+-=x y ; (B )()1232-+=x y ;(C )()1232--=x y (D )()1232++=x y8、(3)已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过( )A.一、二、三象限 ;B.一、二、四象限;C .一、三、四象限; D.一、二、三、四象限.9、若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( ) (A )第一象限;(B )第二象限;(C )第三象限;(D )第四象限10、已知二次函数222)(22b a x b a x y +++-= ,b a , 为常数,当y 达到最小值时,x 的值为( )(A )b a +; (B )2b a +; (C )ab 2-; (D )2ba -11、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax 2+bx+c 的是( )12、不论x 为何值,函数y=ax 2+bx+c(a≠0)的值恒大于0的条件是( ) A.a>0,△>0; B.a>0, △<0; C.a<0, △<0; D.a<0, △<0二、填空题:13、如图,已知点M (p ,q )在抛物线y =x 2-1上,以M 为圆心的圆与x 轴交于A 、B 两点,且A 、B 两点的横坐标是关于x 的方程x 2-2px +q =0的两根,则弦AB 的长等于_______。

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。

人教版九年级上册数学第二十二章测试题有答案

人教版九年级上册数学第二十二章测试题有答案

人教版九年级上册数学第二十二章测试卷一、单选题1.把二次函数y=x 2-4x+1化成y=a (x-h )2+k 的形式是( )A .y=(x-2)2+1B .y=(x-2)2-1C .y=(x-2)2-3D .y=(x-2)2+3 2.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 3.将抛物线y=x 2﹣4x ﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )A .y=(x+1)2﹣13B .y=(x ﹣5)2﹣3C .y=(x ﹣5)2﹣13D .y=(x+1)2﹣34.已知二次函数y =a (x -1)2+3,当x <1时,y 随x 的增大而增大,则a 的取值范围是( ) A .a ≥0 B .a ≤0 C .a >0 D .a <05.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =.给出以下结论:①0abc >;②24b ac >;③420a b c ++>;④30a c +>.其中,正确的结论有( )A .1个B .2个C .3个D .4个6.在同一坐标系中,一次函数y=ax+2与二次函数y=x 2+a 的图象可能是( )A .B .C .D . 7.对于下列结论:①二次函数y=6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x+m )2+b=0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是x 1=﹣4,x 2=﹣1;③设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是()A.0个B.1个C.2个D.3个8.某商品经过连续两次降价,销售单价由原来100 元降到81 元。

人教版九年级数学上册第二十二章达标测试卷含答案

人教版九年级数学上册第二十二章达标测试卷含答案

人教版九年级数学上册第二十二章达标测试卷一、选择题(每题3分,共30分)1.下列关于x 的函数一定为二次函数的是( ) A .y =2x +1B .y =ax 2+bx +cC .y =-5x 2-3D .y =x 3+x +12.把二次函数y =2x 2-8x +3用配方法化成y =a (x -h )2+k 的形式时,应为( ) A .y =2(x -2)2+5 B .y =2(x -2)2-1C .y =2(x -2)2-5D .y =2(x -2)2+73.[2023丽水]一个球从地面竖直向上弹起时的速度为10米/秒,经过t (秒)时球距离地面的高度h (米)适用公式h =10t -5t 2,则球弹起后又回到地面所花的时间t (秒)是( )A .5B .10C .1D .24.抛物线y =2x 2-4x +c 经过三点(-4,y 1),(-2,y 2),⎝ ⎛⎭⎪⎫12,y 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 3>y 1 B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 1>y 3>y 25.已知二次函数y =x 2-4x +2,当-1≤x ≤1时,y 的最小值为( )A .-3B .-2C .-1D .76.在平面直角坐标系中,如果抛物线y =-x 2+2x -1经过平移可以与抛物线y=-x 2互相重合,那么这个平移是( ) A .向上平移1个单位 B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位7.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )8.如图,九(1)班同学准备用8 m 长的围栏,在本班劳动实践基地内围出一块一边靠墙的等腰三角形菜地,他们能围出的最大面积是()A.4 3 m2B.(10 3-10) m2C.8 m2D.(20 2-20) m2(第8题) (第9题) (第10题)9.[2023眉山]如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的一个交点坐标为(1,0),对称轴为直线x=-1,下列四个结论:①abc<0;②4a-2b+c <0;③3a+c=0;④当-3<x<1时,ax2+bx+c<0.其中正确结论的个数为()A.1个B.2个C.3个D.4个10.[2023南通]如图①,在△ABC中,∠C=90°,AC=15,BC=20.点D从点A出发沿折线A-C-B运动到点B停止,过点D作DE⊥AB,垂足为E.设点D运动的路径长为x,△BDE的面积为y,若y与x的对应关系如图②所示,则a-b的值为()A.54 B.52 C.50 D.48二、填空题(每题3分,共18分)11.[2023哈尔滨]抛物线y=-(x+2)2+6与y轴的交点坐标是________.12.二次函数y=x2-2x+m的图象与x轴只有一个公共点,则m的值为________.13.已知二次函数y=x2-(m+1)x+1,当x>1时,y随x的增大而增大,则m 的取值范围是________.14.如图是某公园一座抛物线形拱桥,按如图所示建立坐标系,得到函数y=-12,在正常水位时水面宽AB=30 m,当水位上升5 m时,则水面宽CD=25x________m.(第14题) (第15题)(第16题) 15.[2023娄底]如图,抛物线y=ax2+bx+c与x轴相交于点A(1,0),B(3,0),与y轴相交于点C,点D在抛物线上,当CD∥x轴时,CD=________.16.[2023成都]在平面直角坐标系中,抛物线y=-14x2+32x+4(0≤x≤8)如图所示,对任意的0≤a<b≤8,称W为a到b时y的值的“极差”(即a≤x≤b时y的最大值与最小值的差),L为a到b时x的值的“极宽”(即b与a的差值),则当L =7时,W的取值范围是________.三、解答题(共72分)17.(6分) 已知函数y=m(m+2)x2+mx+m+1.(1)当m为何值时,此函数是一次函数?(2)当m为何值时,此函数是二次函数?18.(8分)已知抛物线y=-x2+4x+5.(1)用配方法将y=-x2+4x+5化成y=a(x-h)2+k的形式;(2)写出抛物线的开口方向、对称轴和顶点坐标.19.(10分)[2024广州期中]如图,抛物线的顶点为C(1,9),与x轴交于A,B(4,0)两点.(1)求抛物线的解析式;(2)抛物线与y轴交点为D,求S△BCD.20.(10分)[2023兰州]一名运动员在10 m高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面OB的高度y(m)与离起跳点A的水平距离x(m)之间的函数关系如图所示,运动员离起跳点A的水平距离为1 m时达到最高点,当运动员离起跳点A的水平距离为3 m 时离水面的距离为7 m.(1)求y关于x的函数解析式;(2)求运动员从起跳点到入水点的水平距离O B.21.(12分)[2023鞍山]网络销售已经成为一种热门的销售方式,某果园在网络平台上直播销售荔枝.已知该荔枝的成本为6元/kg,销售价格不高于18元/kg,且每售卖1 kg需向网络平台支付2元的相关费用,经过一段时间的直播销售发现,每日销售量y(kg)与销售价格x(元/kg)之间满足如图所示的一次函数关系.(1)求y与x的函数解析式.(2)当每千克荔枝的销售价格定为多少元时,销售这种荔枝日获利最大,最大利润为多少元?22.(12分)[2023乐山节选]已知(x1,y1),(x2,y2)是抛物线C1:y=-14x2+bx(b为常数)上的两点,当x1+x2=0时,总有y1=y2.(1)求b的值;(2)将抛物线C1平移后得到抛物线C2:y=-14(x-m)2+1(m>0).当0≤x≤2时,若抛物线C1与抛物线C2有一个交点,求m的取值范围.23.(14分)[2023巴中]如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点A(-1,0)和B(0,3),其顶点的横坐标为1.(1)求抛物线的解析式;(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当m取何值时,使得AN+MN有最大值,并求出最大值;(3)若点P为抛物线y=ax2+bx+c(a≠0)的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点.在(2)的条件下求得的点M,是否能与A,P,Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.答案一、1.C2.C3.D4.B5.C 【点拨】由题意得二次函数的图象开口向上,且对称轴为直线x=--42×1=2.∴当x<2时,y随x的增大而减小.∵-1≤x≤1,∴当x=1时,二次函数y=x2-4x+2有最小值,最小值为12-4×1+2=-1.6.C【点拨】由y=-x2+2x-1得y=-(x-1)2.∵抛物线y=-(x-1)2的顶点为(1,0),抛物线y=-x2的顶点为(0,0),从(1,0)到(0,0)是向左平移了1个单位,∴抛物线y=-x2+2x-1向左平移1个单位得到抛物线y=-x2.7.C【点拨】先确定一个基础函数图象,再根据这个基础函数图象确定待定系数的取值范围,然后再看求出的待定系数的取值范围是否满足另一个函数图象.8.C【点拨】设等腰三角形菜地的面积为S m2.如图①,当底边靠墙时,过点A作AD⊥BC于点D.∵用8 m长的围栏围出一块一边靠墙的等腰三角形菜地,∴腰长为8÷2=4(m).∴S=12×4×AD=2AD.当AD和腰长相等时,此时为等腰直角三角形,S取得最大值,此时S=8,即等腰三角形菜地的最大面积为8 m2.如图②,当一条腰靠墙时,过点B作BD⊥AC于点D,设AB=AC=x m,则BC=(8-x)m,∴S=AC·BD2<x(8-x)2=-(x-4)2+162≤8.∴当一条腰靠墙时,围出的等腰三角形菜地的最大面积一定小于8 m2.综上可得,能围出的最大面积是8 m2.9.D【点拨】∵二次函数图象开口向上,且与y轴交于y轴负半轴,∴a>0,c<0.∵二次函数图象的对称轴为直线x=-1,∴-b2a=-1,∴b=2a>0,∴abc<0,故①正确;∵二次函数的图象与x轴的一个交点坐标为(1,0),对称轴为直线x=-1,∴二次函数的图象与x轴的另一个交点坐标为(-3,0),∴当x=-2时,y<0,∴4a-2b+c<0,故②正确;∵当x=1时,y=0,∴a+b+c=0.∵b=2a,∴a+2a+c=0,即3a+c=0,故③正确;由函数图象易知当-3<x<1时,ax2+bx+c<0,故④正确.10.B【点拨】∵∠C=90°,AC=15,BC=20,∴AB=25.当x=10时,点D 在线段AC上,则AD=10,∴CD=15-10=5.在Rt△CDB中,由勾股定理得BD2=CD2+BC2=52+202=425.设AE=z,则BE=25-z,∴BE2=(25-z)2=z2-50z+625.在Rt△ADE中,由勾股定理得DE2=AD2-AE2=100-z2,在Rt△DEB中,由勾股定理得BD2=DE2+BE2,即425=100-z2+z2-50z+625,解得z=6,∴DE=8,BE=19.∴a=S△BDE=12×19×8=76.当x=25时,点D在线段BC上,则CD=25-15=10,∴BD=20-10=10.设BE=q,则AE=25-q,∴AE2=(25-q)2=625-50q+q2.连接AD,在Rt△CDA中,由勾股定理得AD2=AC2+CD2=152+102=325.在Rt△BDE 中,由勾股定理得DE2=BD2-BE2=100-q2.在Rt△DEA中,由勾股定理得AD2=DE2+AE2,即325=100-q2+625-50q+q2,解得q=8,∴BE=8,DE=6.∴b=S△BDE=12×6×8=24.∴a-b=76-24=52.二、11.(0,2)12.113.m≤1【点拨】∵y=x2-(m+1)x+1,∴抛物线开口向上,对称轴为直线x=--(m+1)2=m+12.∵当x>1时,y随x的增大而增大,∴m+12≤1,解得m≤1.14.2015.4【点拨】∵抛物线y=ax2+bx+c与x轴相交于点A(1,0),B(3,0),∴抛物线的对称轴为直线x=1+32=2.∵当x =0时,y =c ,∴C (0,c).∵CD ∥x 轴,∴C ,D 关于直线x =2对称,∴D (4,c ).∴CD =4-0=4.16.4≤W ≤254【点拨】根据题意得y =-14x 2+32x +4=-14(x -3)2+254,∴抛物线的对称轴为直线x =3,顶点坐标为⎝ ⎛⎭⎪⎫3,254.∵L =7,即b 与a 的差值为7,∴b =a +7.∵0≤a <b ≤8,∴0≤a <a +7≤8.∴0≤a ≤1.∴7≤a +7≤8.∵-14<0,∴当a ≤x ≤3时,y 随x 的增大而增大,当3<x ≤a +7时,y 随x 的增大而减小.∴当x =3时,y 有最大值,最大值为254;当x =a +7时,y 有最小值,最小值为-14(a +4)2+254.∴W =254-[-14(a +4)2+254]=14(a +4)2,则其对称轴为直线a =-4.∴当0≤a ≤1时,W 随a 的增大而增大.∴当a =0时,W 有最小值,最小值为4;当a =1时,W 有最大值,最大值为254.综上所述,4≤W ≤254. 三、17.【解】(1)∵函数y =m (m +2)x 2+mx +m +1是一次函数,∴m (m +2)=0且m ≠0,解得m =-2.(2)∵函数y =m (m +2)x 2+mx +m +1是二次函数, ∴m (m +2)≠0,∴m ≠-2且m ≠0.18.【解】(1)y =-x 2+4x +5=-x 2+4x -4+4+5=-(x -2)2+9.(2)∵y =-(x -2)2+9,∴抛物线开口向下,对称轴为直线x =2,顶点坐标为(2,9).19.【解】(1)∵抛物线的顶点为C(1,9),∴设抛物线的解析式为y =a (x -1)2+9. ∵抛物线与x 轴交于点B (4,0), ∴a (4-1)2+9=0,解得a =-1.∴抛物线的解析式为y =-(x -1)2+9=-x 2+2x +8. (2)过点C 作C E ⊥y 轴于点E ,则四边形O BC E 为梯形. ∵抛物线与y 轴交点为D , ∴易得D(0,8).∴O D =8. ∵B(4,0),C(1,9),∴C E =1,OE =9,O B =4.∴D E =OE -O D =1.∴S △BCD =S 梯形O BC E -S △C E D -S △O BD =12×(1+4) ×9-12×1×1-12×4×8=6.20.【解】(1)由题意得抛物线的对称轴为直线x =1,经过点(0,10),(3,7).设抛物线的解析式为y =ax 2+bx +c ,则⎩⎪⎨⎪⎧-b 2a =1,c =10,9a +3b +c =7,解得⎩⎨⎧a =-1,b =2,c =10,∴y 关于x 的函数解析式为y =-x 2+2x +10.(2)令y =0,则-x 2+2x +10=0,解得x 1=1+11,x 2=1-11(负值舍去),∴运动员从起跳点到入水点的水平距离OB 为(1+11) m .21.【解】(1)设y 与x 的函数解析式为y =kx +b .将点(8,2 200)和点(14,1 600)的坐标代入,得⎩⎨⎧8k +b =2 200,14k +b =1 600,解得⎩⎨⎧k =-100,b =3 000,∴y 与x 的函数解析式为y =-100x +3 000.(2)设销售这种荔枝日获利w 元,根据题意,得w =(x -6-2)(-100x +3 000)=-100x 2+3 800x -24 000=-100(x -19)2+12 100.∴抛物线开口向下,且对称轴为直线x =19.∴当x <19时,y 随x 的增大而增大.∵销售价格不高于18元/kg ,∴当x =18时,w 取得最大值,最大值为12 000,即当每千克荔枝的销售价格定为18元时,销售这种荔枝日获利最大,最大利润为12 000元.22.【解】(1)由题意知y 1=-14x 12+bx 1,y 2=-14x 22+bx 2.∵当x 1+x 2=0 时,总有 y 1=y 2,∴当x 1+x 2=0时,-14x 12+bx 1=-14x 22+bx 2,整理得(x 1-x 2)(x 1+x 2-4 b )=0.∵x 1≠x 2,∴x 1-x 2≠0.∴x 1+x 2-4b =0.∴b =0.(2)由(1)知抛物线C 1的解析式为y =-14x 2,将x =0代入,得y =0,将x =2代入,得y =-1. 如图①,当抛物线 C 2 过点(0,0)时, 将点(0,0)的坐标代入y =-14(x -m )2+1,得-14m 2+1=0,解得m =2或m =-2(舍去).如图②,当抛物线 C 2 过点(2,-1)时, 将点(2,-1)的坐标代入y =-14(x-m )2+1,得-14(2-m )2+1=-1,解得m =2+2 2或m =2-2 2(舍去).综上所述,m 的取值范围为2≤m ≤2+2 2.23.【解】(1)∵抛物线的顶点的横坐标为1,∴抛物线的对称轴为直线x =1.∵抛物线经过点A (-1,0),∴抛物线与x 轴的另一交点坐标为(3,0).将(-1,0),(3,0),(0,3)的坐标分别代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =0,9a +3b +c =0,c =3,解得⎩⎨⎧a =-1,b =2,c =3,∴抛物线的解析式为y =-x 2+2x +3.(2)由题意知0<m <3,易知点M (m ,-m 2+2m +3),点N (m ,0),则MN =-m 2+2m +3,AN =m +1,∴AN +MN =m +1+(-m 2+2m +3)=-m 2+3m +4=-⎝ ⎛⎭⎪⎫m -322+254.∵-1<0,且0<m <3,∴当m =32时,AN +MN 有最大值,最大值为254.(3)能构成.∵y =-x 2+2x +3=-(x -1)2+4,∴该抛物线向左平移1个单位长度后得到的抛物线的解析式为y =-x 2+4.将x =32代入y =-x 2+2x +3,得y =-⎝ ⎛⎭⎪⎫322+2×32+3=154,∴点M 的坐标为⎝ ⎛⎭⎪⎫32,154. 假设存在以A ,P ,Q ,M 为顶点的平行四边形,设点Q 的坐标为(n ,-n 2+4).∵点P 为抛物线y =ax 2+bx +c (a ≠0)的对称轴上一动点,∴点P 的横坐标为1. ①当AM 为对角线时,则对角线AM ,PQ 互相平分,∴-1+322=1+n 2,解得n =-12,∴点Q 的坐标为⎝ ⎛⎭⎪⎫-12,154; ②当AP 为对角线时,则对角线AP ,MQ 互相平分,∴-1+12=32+n 2,解得n =-32,∴点Q 的坐标为⎝ ⎛⎭⎪⎫-32,74; ③当AQ 为对角线时,对角线AQ ,PM 互相平分,∴-1+n 2=1+322,解得n =72,∴点Q 的坐标为⎝ ⎛⎭⎪⎫72,-334. 综上所述,存在以A ,P ,Q ,M 为顶点的平行四边形,点Q 的坐标为⎝ ⎛⎭⎪⎫-12,154或⎝ ⎛⎭⎪⎫-32,74或⎝ ⎛⎭⎪⎫72,-334.。

人教版初中九年级数学上册第二十二章《二次函数》经典练习题(含答案解析)(3)

人教版初中九年级数学上册第二十二章《二次函数》经典练习题(含答案解析)(3)

一、选择题1.抛物线y=ax2+bx+c(a≠0)的图象大致如图所示,下列说法:①2a+b=0;②当﹣1<x<3时,y<0;③若(x1,y1)(x2,y2)在函数图象上,当x1<x2时,y1<y2;④9a+3b+c=0,其中正确的是()A.①②④B.①④C.①②③D.③④A解析:A【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图示知,对称轴是直线x=3122ba-=-,则2a+b=0,故说法正确;②由图示知,当﹣1<x<3时,y<0,故说法正确;③若(x1,y1)(x2,y2)在函数图象上,当1<x1<x2时,y1<y2,故说法错误;④由图示知,当x=3时,y=0,即9a+3b+c=0,故说法正确.综上所述,正确的说法是①②④.故选:A.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.如图,一条抛物线与x轴相交于M,N两点(点M在点N的左侧),其顶点P在线段AB上移动,点A,B的坐标分别为(﹣2,﹣3),(1,﹣3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1 B.﹣3 C.﹣5 D.﹣7C 解析:C【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.3.如图等边ABC的边长为4cm,点P,点Q同时从点A出发点,Q沿AC以1cm/s 的速度向点C运动,点P沿A B C--以2cm/s的速度也向点C运动,直到到达点C时停止运动,若APQ的面积为()2cmS,点Q的运动时间为()s t,则下列最能反映S与t之间大致图象是().A .B .C .D .D解析:D 【分析】当点P 在AB 边运动时,S=12AQ×APsinA ,图象为开口向上的抛物线,当点P 在BC 边运动时,如下图,S=12×AQ×PCsinC ,即可求解. 【详解】解:当点P 在AB 边运动时,21133sin 22222S AQ AP A t t t =⨯=⨯⨯⨯=, 图象为开口向上的抛物线, 当点P 在BC 边运动时,如下图,1133sin 2(6)(6)2222S AQ PC C t t t t =⨯⨯=⨯⨯-⨯=-,图象为开口向下的抛物线, 故选:D . 【点睛】本题是运动型综合题,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程. 4.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+-- D .21y x =-D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根. 其中正确的结论个数是( ) A .3 B .2C .1D .0A解析:A 【分析】根据函数解析式画出函数图象,结合函数图象进行判断.解:如图:①如图所示,函数图象关于y 轴对称,故①符合题意. ②如图所示,函数没有最大值,有最小值,故②不符合题意. ③如图所示,当x <-1时,y 随x 的增大而减小,故③符合题意.④如图所示,当-2<a <-1时,关于x 的方程x 2-2|x|-1=a 有4个实数根,故④符合题意. 综上所述,正确的结论有3个. 故选:A . 【点睛】本题为函数图象探究题,考查了根据函数图象判断函数的对称性、增减性以及从函数的角度解决方程问题.6.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .4C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .1C解析:C 【分析】利用抛物线开口方向得到a <0,利用抛物线的对称轴方程得到b=-2a >0,利用抛物线与y 轴的交点在x 轴上方得到c >0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x 轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a 得到c=-3a ,则可对③④进行判断. 【详解】解:∵抛物线开口向下, ∴a <0,∵抛物线的对称轴为直线x=﹣b2a=1, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x 轴的一个交点坐标为(3,0), ∴抛物线与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程ax 2+bx+c=0的根是-1,3,所以②正确; ∵当x=-1时,y=0, ∴a-b+c=0, 而b=-2a ,∴a+2a+c=0,即c=-3a , ∴a+2b-c=a-4a+3a=0,即a+2b=c ,所以③正确; a+4b-2c=a-8a+6a=-a ,所以④错误; 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.8.已知点1(1,)y -,(,)23y ,31(,)2y 在函数22y x x m =++的图象上,则1y ,2y ,3y 的大小关系是( ) A .123y y y >> B .213y y y >> C .231y y y >> D .312y y y >>C解析:C 【分析】由抛物线222(1)1y x x m x m =++=++-,可知抛物线对称轴为x =-1,开口向上,然后根据各点到对称轴的结论可判断y 1,y 2,y 3的大小. 【详解】∵222(1)1y x x m x m =++=++-, ∴抛物线对称轴为x =-1,开口向上,又∵点((,)23y 离对称轴最远,点1(1,)y -在对称轴上, ∴231y y y >>. 故选:C . 【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键. 9.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( ) A .0个 B .1个C .2个D .1或2个C解析:C 【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数. 【详解】解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,∴3a-2>a+2, 即a >2,令y=0,21(3)4x x a --+-=0,△=(-1)2-4×(a-3)×(-14)=a-2,∵a >2, ∴a-2>0,∴函数图象与x 轴的交点个数为2. 故选:C . 【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.10.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<- B .2a 1-<< C .1a 0-<< D .2a 4<<C解析:C 【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9,0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C . 【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题11.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.【分析】先把配成顶点式再利用顶点式写出平移后的抛物线的解析式【详解】此抛物线的顶点坐标为()把点()向下平移个单位长度再向左平移个单位长度所得对应点的坐标为()即()所以平移后得到的抛物线的解析式为 解析:2710y x x =++【分析】先把2y x x =+配成顶点式,再利用顶点式写出平移后的抛物线的解析式. 【详解】2211()24y x x x =+=+-,此抛物线的顶点坐标为(12-,14-),把点(12-,14-)向下平移2个单位长度,再向左平移3个单位长度, 所得对应点的坐标为(132--,124--),即(72-,94-), 所以平移后得到的抛物线的解析式为279()24y x =+-,即2710y x x =++. 故答案为:2710y x x =++. 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 12.二次函数2y ax bx c =++的部分对应值如下表:利用二次函数的图象可知,当函数值时,的取值范围是______.表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x > 【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出. 【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3. 【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.13.如图,抛物线224y x x =-+与x 轴交于点O ,A ,把抛物线在x 轴及其上方的部分记为1C ,将1C 以y 轴为对称轴作轴对称得到2C ,2C 与x 轴交于点B ,若直线y = m 与1C ,2C 共有4个不同的交点,则m 的取值范围是_______________.【分析】首先求出点A 和点B 的坐标然后求出解析式分别求出直线过抛物线顶点时m 的值以及直线过原点时m 的值结合图形即可得到答案【详解】令解得:或则A (20)B (-20)∵与关于y 轴对称:顶点为(12)∴的 解析:02m <<【分析】首先求出点A 和点B 的坐标,然后求出2C 解析式,分别求出直线y m =过抛物线顶点时m的值以及直线y m =过原点时m 的值,结合图形即可得到答案. 【详解】令2240y x x =-+=, 解得:0x =或2x =, 则A (2,0),B (-2,0),∵1C 与2C 关于y 轴对称,1C :()2224212y x x x =-+=--+,顶点为(1,2), ∴2C 的解析式为()2221224y x x x =-++=--(20x -≤≤),顶点为(-1,2),当直线y m =过抛物线顶点时,它与1C ,2C 共有2个不同的交点,此时2m =;当直线y m =过原点时,它与1C ,2C 共有3个不同的交点,此时0m =; ∴当02m <<时,直线y m =与1C ,2C 共有4个不同的交点. 故答案为:02m <<. 【点睛】本题考查了抛物线与x 轴的交点、二次函数的图象与几何变换、一次函数与二次函数的关系,数形结合是解题的关键.14.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0, ∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0),而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上,∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确.由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.15.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()b a b c a ++的值为______.=2再利用x =−3和x =1对应的函数值相等得到a +b +c =3然后利用整体代入的方法计算(a +b +c )的值【详解】解:∵抛物线 解析:6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1,则−2b a =−1,所以b a=2,再利用x =−3和x =1对应的函数值相等得到a +b +c =3,然后利用整体代入的方法计算b a (a +b +c )的值.【详解】解:∵抛物线经过点(−2,−1.68),(0,−1.68),∴抛物线的对称轴为直线x =−1,即−2b a =−1, ∴b a=2, ∴x =−3和x =1对应的函数值相等,∵x =−3时,y =3,∴x =1时,y =3,即a +b +c =3,∴b a(a +b +c )=2×3=6. 故答案为:6.【点睛】 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.16.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.7【分析】根据抛物线y=x2-5x-6与x 轴分别交于AB 两点可以令y=0求得点AB 的坐标从而可以求得AB 的长【详解】解:∵y=x2-5x-6∴y=0时x2-5x-6=0解得x1=-1x2=6∵抛物线解析:7【分析】根据抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,可以令y=0求得点A 、B 的坐标,从而可以求得AB 的长.【详解】解:∵y=x 2-5x-6,∴y=0时,x 2-5x-6=0,解得,x 1=-1,x 2=6.∵抛物线y=x 2-5x-6与x 轴分别交于A 、B 两点,∴点A 的坐标为(-1,0),点B 的坐标为(6,0),∴AB 的长为:6-(-1)=7.故答案为:7.【点睛】本题考查抛物线与x 轴的交点,以及数轴上两点间的距离,解题的关键是明确抛物线与x 轴相交时,y=0.17.已知关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,则代数式a 2﹣ab +b 2的最小值为_____.【分析】由韦达定理得出ab 与m 的关系式由一元二次方程的根与判别式的关系得出m 的取值范围再对代数式a2﹣ab+b2配方并将a+b 和ab 整体代入化简然后再配方结合m 的取值范围可得出答案【详解】∵关于x 的 解析:916【分析】由韦达定理得出a ,b 与m 的关系式、由一元二次方程的根与判别式的关系得出m 的取值范围,再对代数式a 2﹣ab +b 2配方并将a +b 和ab 整体代入化简,然后再配方,结合m 的取值范围可得出答案.【详解】∵关于x 的一元二次方程x 2﹣(2m +1)x +m 2﹣1=0有实数根a ,b ,∴a +b =2m +1,ab =m 2﹣1,△≥0,∴△=[﹣(2m +1)]2﹣4×1×(m 2﹣1)=4m 2+4m +1﹣4m 2+4=4m +5≥0,∴m ≥54-. ∴a 2﹣ab +b 2 =(a +b )2﹣3ab=(2m +1)2﹣3(m 2﹣1)=4m 2+4m +1﹣3m 2+3=m 2+4m +4=(m +2)2,∴a 2﹣ab +b 2的最小值为:2592416⎛⎫-+= ⎪⎝⎭. 故答案为:916. 【点睛】本题考查了一元二次方程根与系数的关系,以及利用二次函数的性质求解代数的最值,灵活利用韦达定理及根的判别式,是解决本题的关键,熟悉用函数的思想解决最值问题也是关键点.18.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.19.已知二次函数2(0)y ax bx c a =++≠的对称轴为直线1x =-,与x 轴的一个交点B的坐标为()1,0其图象如图所示,下列结论:①0abc <;②20a b -=;③当0y >时,1x >;④320b c +>;⑤当0x <时,y 随x 的增大而减小;其中正确的有____.(只填序号)①②【分析】根据开口向上故;对称轴再y 轴的的左边根据同左异右故抛物线交y 轴的下方;对称轴为故有即抛物线与x 轴的交点有两个根据对称性可以得到交点为等信息利用这些信息进行答题【详解】解:根据开口向上故;解析:①②【分析】根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方;对称轴为1x =-,故有12b a-=- 即2b a =,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==-等信息,利用这些信息进行答题.【详解】解:根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方,故0c < ,因此0abc <①正确对称轴为1x =-,故有12b a-=- 即2b a = 故②20a b -=也正确 由抛物线知道,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==- 当当0y >时,图形上是在x 轴的上方,有1x >或者3x <- 故③错误当x=1是,由图可以知道0a b c ++= 即2220a b c ++= 由2b a =,便有320b c += 故④错误由图形可以知道当1x <-时,y 随x 的增大而减小,当1x ≥-时,y 随x 的增大而增大,故⑤错误故答案为①②【点睛】本题考查二次函数图像,从图像中获取信息是关键,20.如图,抛物线 y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①2a +b =0;②b 2-4ac <0;③当y >0时,x 的取值范围是 -1<x <3;④当 x >0时,y 随x 增大而增大;⑤若t 为任意实数,则有a+b≥at 2+bt .其中结论正确的是_________.①③⑤【分析】根据二次函数的图象及性质即可判断【详解】解:由图象可知:该抛物线的对称轴为x=1∴抛物线与x 轴的另外一个交点为:(30)∵对称轴为x=−=1从而可知:2a+b=0故①正确;∵抛物线与x解析:①③⑤【分析】根据二次函数的图象及性质即可判断.【详解】解:由图象可知:该抛物线的对称轴为x=1,∴抛物线与x 轴的另外一个交点为:(3,0)∵对称轴为x=−2b a=1, 从而可知:2a+b=0,故①正确;∵抛物线与x 轴有两个交点(-1,0),(3,0)∴△=b 2-4ac >0,而②b 2-4ac <0,故②错误;由图象可知:当y >0时,x 的取值范围是-1<x <3,故③正确;由图象可知:当x <1时,y 随x 增大而增大,故④错误;若t 为任意实数,x=1时,函数取得最大值,故a+b+c≥at 2+bt+c ,∴a+b≥at 2+bt ,故⑤正确,所以,结论正确的是①③⑤.故答案为:①③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.三、解答题21.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2y x 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C 都是正方形.(1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.解析:(1)1A (1,1),1B (0,2),1C (-1,1)(2)223⨯ ,22n ⨯.【分析】(1)直接根据图象以及二次函数的解析式求出点的坐标即可;(2)表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律即可;【详解】解:(1)∵四边形111A OC B 是正方形且关于y 轴对称,∴ ∠11AOB =45°,又∵点1A 在二次函数图象上, 设1A (x ,x),∴2x x = 且x >0,∴x=1即点1A (1,1),∴1OA 2 ,12OB = ,∴1A (1,1),1B (0,2),1C (-1,1);(2)根据正方形的性质,1OA 与y 轴的夹角为45°,故直线1OA 解析式为y x =,∵1B (0,2),求得直线11C B 的解析式为2y x =+,进而求得2A (2,4),2C (-2,4),2B (0,6),同时求得3B (0,12) ,于是12OB =,124B B =,236B B =,正方形111OA B C 面积=12222⨯⨯=,正方形1222B A B C 面积=21448=222⨯⨯=⨯, 正方形2333B A B C 面积=216618=232⨯⨯=⨯, 正方形1n n n n B A B C -的面积=212222n n n ⨯⨯=⨯; 【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形所在的直线解析式,求出每一个正方形的面积,找出规律是解题的关键;22.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?解析:(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.【分析】(1)根据题意,可以写出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可得到销售单价定为多少时,该厂每天获取的利润最大,最大利润为多少;(2)根据(1)中利润与单价之间的函数关系式和物价部门规定,该产品的最高销售单价不得超过30元,可以得到当单价为30时,才能获得最大利润.【详解】解:(1)设该厂每天获得的利润为w 元,2810600106804800W x x x x210x 346760 当x 34=时,W 有最大值6760元因此,当销售单价定为34元时,该厂每天获得的利润最大,最大利润是6760元. (2)由(1)可知210346760W x∴函数图像开口向下,对称轴为34x =,∵最高销售单价不得超过30元,∴当x =30时,w 取得最大值,此时210303467606600W, 因此,当销售单价定为30元时,才能获得最大利润是6600元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 23.已知二次函数y =(x ﹣1)(x ﹣m )(m 为常数)(1)求证:不论m 为何值,该函数的图象与x 轴总有公共点;(2)当m 的值变化时,该函数图象的顶点在下列哪个函数的图象上? . A .y =x ﹣1 B .y =﹣x ﹣1 C .y =﹣(x+1)2 D .y =﹣(x ﹣1)2解析:(1)见解析;(2)D【分析】(1)根据已知函数解析式得到抛物线与x 轴的两点交点横坐标:x 1=1,x 2=m ,据此证得结论;(2)根据顶点式先得到抛物线的顶点坐标为(-m ,m ),然后分别代入四个解析式中看是否满足解析式,再进行判断.【详解】(1)证明:当y =0时,(x ﹣1)(x ﹣m )=0.解得x 1=1,x 2=m .当m =1时,方程有两个相等的实数根;当m≠1时,方程有两个不相等的实数根.所以,不论m 为何值,该函数的图象与x 轴总有公共点.(2)由二次函数y =(x ﹣1)(x ﹣m )=(x ﹣12m +)2+m ﹣2(1)4m +得到该抛物线的顶点坐标是(12m +,m ﹣2(1)4m +), 而点(12m +,m ﹣2(1)4m +)满足y =﹣(x ﹣1)2,不满足y =x ﹣1,y =﹣x ﹣1,y =﹣(x+1)2,∴点(12m +,m ﹣2(1)4m +)在函数y =﹣(x ﹣1)2上. 故答案是:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,二次函数的性质等知识点,需要掌握二次函数与一元二次方程间的关系,二次函数三种形式.24.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B .(1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.解析:(1)()2122y x =-;(2)()0,2D ,(35,35C 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得35x =±, 根据点C 的位置,取35x =-,∴()35,35C --.【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.25.如图已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)如图,连接BC ,PB ,PC ,设PBC 的面积为S .①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点P 的坐标.解析:(1)2y x 2x 3=-++;(2)①23922S t t =-+;②最大值928,此时P 坐标315,24⎛⎫ ⎪⎝⎭【分析】(1)由点A 、B 坐标,利用待定系数法求解抛物线的表达式即可;(2)①过点P 作PH ⊥x 轴于H ,设点P 坐标为(t ,223t t -++),由PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形即可表示出S 关于t 的函数表达式;②由于BC 为定值,所以点P 到直线BC 的距离最大时即为S 最大,根据二次函数的性质求出S 的最大值,利用勾股定理求出线段BC 的长,再利用等面积法求出点P 到直线BC 的距离的最大值,进而可求出此时的点P 坐标.【详解】解:(1)将点A (﹣1,0)、B (3,0)代入2y x bx c =-++中,得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴,抛物线的表达式为2y x 2x 3=-++;(2)①过点P 作PH ⊥x 轴于H ,如图,当x=0时,y=3,∴C (0,3),OC=3,∵点P 的坐标为(t ,223t t -++)且点P 在第一象限,∴PH=223t t -++,OH=t ,BH=3﹣t ,∴PBC PHB BOC OCPH S S S S ∆∆∆=+-梯形=22111(233)(3)(23)33222t t t t t t ⋅-+++⋅+⋅-⋅-++-⨯⨯ =23922t t -+, ∴S 关于t 的函数关系式为S=23922t t -+(t >0);②由S=23922t t -+= 23327()228t --+,且32-<0,得: 当t= 32时,S 有最大值,最大值为278, ∵OB=3,OC=3,∴BC= 2232OB OC +=,∵当t=32时,223t t -++=23315()23224-+⨯+= ∴点P 到直线BC 的距离的最大值为272928832⨯=,此时,点P 的坐标为(32,154). 【点睛】本题考查了待定系数法求二次函数的解析式、坐标与图形的性质、二次函数的性质、割补法求三角形的面积,解答的关键是认真审题,寻找知识点的关联点,利用待定系数法、割补法和数形结合思想进行推理、探究和计算.26.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.解析:(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤ 【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.27.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货。

人教版九年级上册数学第二十二章测试题(附答案)

人教版九年级上册数学第二十二章测试题(附答案)

人教版九年级上册数学第二十二章测试题(附答案)一、单选题(共12题;共24分)1.抛物线y=3(x+1)2+1的顶点所在象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A. y=2x2-2B. y=2x2+2C. y=2(x-2)2D. y=2(x+2)23.二次函数y=ax2+bx+c(a≠0)和正比例函数y= x的图象如图所示,则方程ax2+(b-)x+c=0(a≠0)的两根之和()A. 小于0B. 等于0C. 大于0D. 不能确定4.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. y=(x+2)2+3B. y=(x﹣2)2+3C. y=(x+2)2﹣3D. y=(x﹣2)2﹣35.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y=3(x-2)2+1B. y=3(x+2)2-1C. y=3(x-2)2-1D. y=3(x+2)2+16.将抛物线y=6x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是( )A. y=6(x-2)2+3B. y=6(x+2)2+3C. y=6(x-2)2-3D. y=6(x+2)2-37.将二次函数y=x2﹣4的图象先向右平移2个单位,再向上平移3个单位后得到的抛物线的函数表达式为()A. y=(x+2)2﹣7B. y=(x﹣2)2﹣7C. y=(x+2)2﹣1D. y=(x﹣2)2﹣18.关于二次函数y=﹣(x﹣3)2﹣2的图象与性质,下列结论错误的是()A. 抛物线开口方向向下B. 当x=3时,函数有最大值﹣2C. 当x>3时,y随x的增大而减小D. 抛物线可由y=x2经过平移得到9.如图为二次函数y=ax2+bx+c的图象,下列各式中:①a>0,②b>0,③c=0,④c=1,⑤a+b+c=0.正确的只有()A. ①④B. ②③④C. ③④⑤D. ①③⑤10.将y=x2向右平移1个单位,再向下平移2单位后,所得表达式是()A. y=(x﹣1)2+2B. y=(x+1)2+2C. y=(x﹣1)2﹣2D. y=(x+1)2﹣211.在下列y关于x的函数中,一定是二次函数的是()A. B. C. D.12.小明为了研究关于的方程的根的个数问题,先将该等式转化为,再分别画出函数的图象与函数的图象(如图),当方程有且只有四个根时,的取值范围是()A. B. C. D.二、填空题(共7题;共16分)13.若是二次函数,则的值是________.14.已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________15.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点的横坐标分别为,,则此二次函数图象的对称轴为________.16.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c>0;②a-b+c>1;③abc >0;④4a-2b+c<1;⑤b+2a=0.其中所有正确的结论是________.(填序号)17.二次函数()的图象如图所示,对称轴为,给出下列结论:①;②当时,;③ ;④ ,其中正确结论有________.18.已知抛物线y=ax2+bx+c的顶点为D(﹣1,3),与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2- 4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有实数根;其中正确的结论为________.19.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 ________(写出所有正确说法的序号).①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的一个根为.三、计算题(共2题;共20分)20.如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.(1)求抛物线的表达式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.21.如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.四、解答题(共4题;共20分)22.某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为多少元,今年生产的这种玩具每件的出厂价为多少元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.25.如图,抛物线与轴交于、两点(点在点的左侧),点的坐标为,与轴交于点,作直线.动点在轴上运动,过点作轴,交抛物线于点,交直线于点,设点的横坐标为.(Ⅰ)求抛物线的解析式和直线的解析式;(Ⅱ)当点在线段上运动时,求线段的最大值;(Ⅲ)当以、、、为顶点的四边形是平行四边形时,直接写出的值.五、综合题(共3题;共40分)26.如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.(1)抛物线的对称轴与x轴的交点E坐标为________,点A的坐标为________;(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.27.已知二次函数y=x2﹣4x.(1)在给出的直角坐标系内用描点法画出该二次函数的图象;(2)根据所画的函数图象写出当x在什么范围内时,y≤0?(3)根据所画的函数图象写出方程:x2﹣4x=5的解.28.如图,抛物线C1:y=mx2﹣2mx﹣3m(m<0)与x轴交于A、B两点,与y轴交于点D,顶点为M,另一条抛物线C2与x轴也交于A、B两点,且与y轴的交点是C(0,),顶点是N.(1)求A,B两点的坐标.(2)求抛物线C2的函数表达式.(3)是否存在m,使得△OBD与△OBC相似?若存在,请求出m的值;若不存在请说明理由.答案一、单选题1. B2. B3. C4. B5. D6. B7. D8. D9. D 10.C 11. A 12. B二、填空题13.14. y=x2﹣2x﹣3 15. x=-2 16.②③ 17. ①③④ 18.①②③ 19. ②③三、计算题20. (1)将点A(-1,0),B(4,0)的坐标代入函数的表达式得:,解得:b=3,c=4.抛物线的解析式为y=-x2+3x+4.(2)如图1所示:∵令x=0得y=4,∴OC=4.∴OC=OB.∵∠CFP=∠COB=90°,∴FC=PF时,以P,C,F为顶点的三角形与△OBC相似.设点P的坐标为(a,-a2+3a+4)(a>0).则CF=a,PF=|-a2+3a+4-4|=|a2-3a|.∴|a2-3a|=a.解得:a=2,a=4.∴点P的坐标为(2,6)或(4,0).(3)如图2所示:连接EC.设点P的坐标为(a,-a2+3a+4).则OE=a,PE=-a2+3a+4,EB=4-a.∵S四边形PCEB= OB•PE= ×4(-a2+3a+4),S△CEB= EB•OC= ×4×(4-a),∴S△PBC=S四边形PCEB-S△CEB=2(-a2+3a+4)-2(4-a)=-2a2+8a.∵a=-2<0,∴当a=2时,△PBC的面积S有最大值.∴P(2,6),△PBC的面积的最大值为8.21.(1)如图,过点D作DE⊥OA于E,在△AED与△BAO中∵∠EDA+∠EAD=∠EAD+∠BAO=90°,∴∠EDA=∠BAO,∵∠AED=∠AOB=90°,∴△ADE∽△BAO,∴∵点A(0,4),DM=6,∴AO=4,AE=EO-AO=DM-AO=2,∴ED=,∴点D的坐标为D(2,6).(2)∵AE=2,ED=2,△ADE∽△BAO,∴BO=AO=4∴点B的坐标为B(0,4)设:过O、D、B三点的抛物线的函数关系式为:将A(0,0),B(0,4),D(2,6)代入函数关系式,解得:∴过O、D、B三点的抛物线的函数关系式为:.四、解答题22. 解:设销售单价为x元,销售利润为y元.根据题意,得y=(x﹣20)[400﹣20(x﹣30)]=(x﹣20)(1000﹣20x)=﹣20x2+1400x﹣20000,当x=﹣=35时,y最大=4500,这时,x﹣30=35﹣30=5.所以,销售单价提高5元,才能在半月内获得最大利润4500元23. 解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24. 解:(1)依题意,得,解得;∴二次函数的解析式为:y=﹣2x2+4x+1.(2)当x=4时,m=﹣2×16+16+1=﹣15,由y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故其顶点坐标为(1,3).25. 解:(I)∵抛物线过A、C两点,∴代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+3,令y=0可得,﹣x2+2x+3=0,解x1=﹣1,x2=3,∵B点在A点右侧,∴B点坐标为(3,0),设直线BC解析式为y=kx+s,把B、C坐标代入可得,解得,∴直线BC解析式为y=﹣x+3;(Ⅱ)∵PM⊥x轴,点P的横坐标为m,∴M(m,﹣m2+2m+3),N(m,- m+3),∵P在线段OB上运动,∴M点在N点上方,∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+ ,∴当m= 时,MN有最大值,MN的最大值为;(Ⅲ)∵PM⊥x轴,∴MN∥OC,当以C、O、M、N为顶点的四边形是平行四边形时,则有OC=MN,当点P在线段OB上时,则有MN=﹣m2+3m,∴﹣m2+3m=3,此方程无实数根,当点P不在线段OB上时,则有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,∴m2﹣3m=3,解得m= 或m= ,综上可知当以C、O、M、N为顶点的四边形是平行四边形时,m的值为或五、综合题26. (1)(,0);(﹣1,0)(2)解:如图①中,设⊙E与直线BC相切于点D,连接DE,则DE⊥BC,∵DE=OE= ,EB= ,OC=﹣4a,∴DB= ,∵tan∠OBC= ,∴,解得a= ,∴抛物线解析式为y=(3)解:如图②中,由题意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵点B的坐标为(4,0),点C的坐标为(0,3),∴直线BC解析式为y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+ m+3),作MF⊥OC于F,∵sin∠BCO= ,∴,∴CM= m,①当N在直线BC上方时,﹣m2+ m+3﹣(﹣m+3)= m,。

(人教版)初中数学九年级上册:第二十二章综合测试卷(含答案)3

(人教版)初中数学九年级上册:第二十二章综合测试卷(含答案)3

第二十二章综合测试一、选择题(每小题4分,共28分)1.若用配方法将二次函数2342y x x =--化成2y a x h k =-+()的形式,则h ,k 的值分别为( ) A .23h =-,103k = B .23h =,103k =-C .2h =,6k =D .2h =,2k =-2.已知点11,x y (),22,x y ()(两点不重合)均在抛物线21y x =-上,则下列说法正确的是( ) A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y >3.抛物线26y x =-可以看成是由抛物线265y x =-+按下列何种变换得到的( )A .向上平移5个单位长度B .向下平移5个单位长度C .向左平移5个单位长度D .向右平移5个单位长度4.二次函数()20y ax bx c a =++≠的大致图象如图22-6所示,关于该二次函数,下列说法错误的是( ) A .函数有最小值 B .对称轴是直线12x =C .当x a <时,y 随x 的增大而减小D .当12x -<<时,0y >5.若二次函数20y ax bx c a =++≠()的图象与x 轴有两个交点,坐标分别为1,0x (),2,0x (),且12x x <,图象上有一点()00,M x y 在x 轴下方,则下列判断正确的是( ) A .0a > B .240b ac -≥ C .102x x x <<D .()()01020a x x x x --<6.已知0a ≠,在同一直角坐标系中,函数y ax =与2y ax =的图象有可能是( )ABCD7.图22-7阴影部分表示的是二次函数2122y x =-+的图象在x 轴上方的部分与x 轴所围成的区域,你认为该区域的面积可能是( )A .3B .163C .2πD .8二、填空题(每小题4分,共16分)8.若抛物线2y x bx c =++与y 轴交于点A ,与x 轴的正半轴交于B ,C 两点,且2BC =,3ABC S =△,则b =_________.9.二次函数26y x x c =-+的图象的顶点与原点的距离为5,则c =_________. 10.若抛物线2244y x x =-+与直线6y x m =+只有一个公共点,则m =_________.11.图22-8是二次函数20y ax bx c a =++≠()的图象的一部分,给出下列命题:①0a b c ++=;②2b a >;③20ax bx c ++=的两个根分别为3-和1;④20a b c -+>.其中正确的命题是(填写正确命题的序号)_________.三、解答题(共56分)12.(10分)已知在同一平面直角坐标系中,正比例函数5y x =与二次函数22y x x c =-++的图象交于点1A m -(,).(1)求m ,c 的值;(2)求二次函数的图象的对称轴和顶点坐标。

RJ人教版九年级上册第二十二章测试卷内含答案解析

RJ人教版九年级上册第二十二章测试卷内含答案解析

第二十二章评估测试卷(时间:100分钟满分:100分)一、选择题(每小题3分,共30分)1.下列函数中是二次函数的是()A.y=8x-1B. y=C. y=8x2+1D. y=+12.二次函数y=ax2经过点(-1,-2),则这个二次函数的解析式为()A.y=x2B. y=2x2C. y=-2x2D. y=-x23.抛物线y=2(x-3)2+1的顶点坐标是()A.(3,1)B.(3,-1)C.(-3,1)D.(-3,-1)4.抛物线y=x2-3x+2不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.抛物线y=a(x+1)(x-3)(a≠0)的对称轴是直线()A. x=1B. x=-1C. x=-3D. x=36.在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是()7.在二次函数y=-x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1B. x>1C. x<-1D. x>-18.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象的对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A.②③B.①③C.②③D.①④9.将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x2-1B. y=x2+1C. y=(x-1)2D. y=(x+1)210.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4B. y=(x-1)2+4C. y=(x+1)2+2D. y=(x-1)2+2二、填空题(每小题3分,共30分)11.已知点A(x1,y1),B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“<”或“=”).12.已知下列函数:①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).13.抛物线y=x2-2x-3与x轴交于A,B两点,则AB的长为.14.当x= 时,二次函数y=x2+4x-5有最小值.15.抛物线y=ax2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示.x…-2-1012…y…04664…从上表可知下列说法正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x= ;④在对称轴左侧,y随x的增大而增大.16.已知二次函数y=-(x+3)2 +4,当-2≤x≤3时,函数的最大值为.17.若关于x的函数y=kx2+2x-1的图象与x轴仅有一个公共点,则实数k的值为.18.若二次函数y=x2+bx+c的图象经过点(-4,0),(2,6),则这个二次函数的解析式为.19.若抛物线y=x2-2(k+1)x+16的顶点在y轴上,则k的值是.20.有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的最高点作为平面直角坐标系的原点,则此抛物线的解析式为.三、解答题(共40分)21.(7分)已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;(2)若t=-4,求a、b的值,并指出此时抛物线的开口方向.22.(7分)已知一个二次函数的对称轴是直线x=1,图象上最低点P的纵坐标是-8,图象过点(-2,10)且与x轴交于点A、点B,与y轴交于点C,求:(1)这个二次函数的解析式;(2)△ABC的面积.23.(8分)已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…-101234…y…1052125…(1)求该二次函数的关系式;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小. 24.(9分)如图所示,隧道的截面由抛物线和长方形构成,长方形的长是8 m,宽是2 m,抛物线可用y=-表示.(1)一辆货运卡车高4 m,宽2m,它能通过该隧道吗?(2)如果隧道内设双行道,那么这辆货运卡车是否可以通过?25.(9分)某汽车租赁公司拥有20辆汽车,据统计,当每辆车的日租金为400元时,可全部租出;当每辆汽车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元,设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?答案1. C 由二次函数的定义知C 为二次函数.2. C 把(-1,-2)代入y=ax 2中,得a=-2,∴y=-2x 2.3. A 抛物线y=a (x-h )2+k 的顶点坐标为(h ,k ),故抛物线y=2(x-3)2+1的顶点坐标为(3,1). 4. C 借助图象.5. A 由题意知:抛物线与x 轴两交点为(-1,0)、(3,0),∴对称轴为x=132-+=1,故选 A. 6. D A 选项中由一次函数经过第二、三、四象限知m<0,∴- m>0,∴抛物线的开口向上,故排除 A;B 选项中由一次函数经过第二、三、四象限知m<0,∴抛物线的对称轴x=1m<0,故排除 B;C 选项中由一次函数经过第一、二、三象限知m >0,∴-m<0,∴抛物线的开口向下,故排除 C .综上所述,故选 D. 7. A 对于二次函数y=-x 2+2x+1,∵a=-1<0,∴抛物线开口向下.∵抛物线的对称轴x=-2b a =-22(1)⨯-=1,由二次函数图象的性质可知,当x<1时,y 随x 的增大而增大.8. B 观察图象,补全图象后可知图象与x 轴有两个不同的交 点.b 2-4ac>0,即b 2>4ac ,①正确;又对称轴是x=1,即-2ba=1,2a+b=0,③正确;图象开口向下,故a<0,结合 ③得b>0,又图象与y 轴交于正半轴,故c>0,因此bc>0, ②不正确;x=1时,y=a+b+c ≠0,④不正确,故只有①③正确,故选 B .(判断①正确后,再看③是否正确即可.用排除法)9. A 根据二次函数图象的平移规律“上加下减,左加右减”进 行解题.∵向下平移1个单位,∴y=x 2-1,故得到的抛物线的解析式是y=x 2-1. 10. D11. > 由二次函数y=(x-1)2+1可得抛物线的对称轴为直线x=1,∵x 1>x 2>1,∴A ,B 两点均在对称轴的右侧.∵函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大.∵x 1>x 2>1,∴y 1>y 2. 12.①③ 13. 414. -2 当x=-2ba 时,函数有最小值. 15.①③④ 当x=12时,y 取得最大值,且最大值大于6.16. 3 对称轴为x=-3,∵a<0,∴-2≤x ≤3时y 随x 的增大而减小,∴当x=-2时y 最大,y=3. 17. 0或1 当k=0时,函数y=2x-1是一次函数,其图象与x 轴仅有一个公共点;当k ≠0时,函数y=kx 2+2x-1是二次函数,与x 轴仅有一个公共点,则Δ=22-4k ×(-1)=4+4k=0,解得k=-1.故k=0或k=-1.18. y=x 2+3x-4 把(-4,0),(2,6)分别代入y=x 2+bx+c 中,得2(4)(4)0,426,b c b c ⎧⎪-+-+=⎨++=⎪⎩, 解得3,4.b c =⎧⎨=-⎩则y=x 2+3x-4. 19. -1 由题意知- 2b a =0,即-2(1)2k -+=0,则k=-1.20. y=-2125x 设抛物线的解析式为y=ax 2,由题意知抛物线过点(20,-16),则-16=400a ,∴a=-125,∴y=-2125x .21.解:(1)y 最小 =-3,t=-6 (2)分别将(-4,0)和(-3,3)代入y=ax 2+bx 得016a 4b 39a 3b.=-⎧⎨-=-⎩,.解得a 1?b 4.=⎧⎨=⎩,此时抛物线开口方向向上. 22.(1)设解析式为y=a (x-h )2+k ,顶点为(1,-8),过点(-2,10),∴a=2,∴y=2(x-1)2-8,y=2x 2-4x-6. (2)2x 2-4x-6=0,x 1=3,x 2=-1,∴A (3,0),B (-1,0),C (0,-6),∴AB=4,S △ABC =12×4×6=12.23.(1)y=x 2-4x+5 (2)x=2,y 最小=1 (3)y 2-y 1=2m-3.当m<23时,y 1>y 2. 当m=23时,y 1=y 2.当m>23时,y 1<y 2.24.解:(1)当x=1时,y=-14+4=334>4-2. ∴卡车能通过隧道.(2)当x=2时,y=-1+4=3>4-2, ∴卡车能通过隧道. 25.(1)(1400-50x ).(2)y=-50(x-14)2+5000(0≤x ≤20),∴当每日租出14辆时,租赁公司日收益最大,最大是5000元. 当y=0时,x=24或4.当每日租出24或4辆时,公司不盈不亏。

人教版 九年级数学上册 第22章练习题(含答案)

人教版 九年级数学上册 第22章练习题(含答案)

人教版九年级数学上册第22章练习题(含答案)22.1 二次函数的图象和性质一、选择题1. 二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.其图象开口都向上B.其图象的对称轴都是y轴C.其图象都有最高点D.y随x的增大而增大2. 若y=ax2+bx+c,则由表格中的信息可知y与x之间的函数解析式是()A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+83. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=74. 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1C.b≥1 D.b≤15. 二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点6. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度7. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n2二、填空题9. 某抛物线的形状、开口方向与抛物线y=12x2-4x+3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.10. 已知抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,则y1与y2的大小关系是________.11. 抛物线y=-8x2的开口向________,对称轴是________,顶点坐标是________;当x>0时,y随x的增大而________,当x<0时,y随x的增大而________.12. 已知二次函数的图象经过原点及点(-12,-14),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.13. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为________.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.15. 如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题17. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.18. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.19. 如图,等腰直角三角形ABC的直角边与正方形MNPQ的边长均为10 cm,边CA与边MN在同一直线上,开始时点A与点M重合,△ABC沿MN方向以1 cm/s 的速度匀速运动,当点A与点N重合时,停止运动.设运动的时间为t s,运动过程中△ABC与正方形MNPQ重叠部分的面积为S cm2.(1)试写出S关于t的函数关系式,并指出自变量t的取值范围;(2)当MA=2 cm时,重叠部分的面积是多少?20. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.人教版 九年级数学上册 22.1 二次函数的图象和性质 同步训练-答案一、选择题 1. 【答案】B2. 【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.3. 【答案】D【解析】∵二次函数y =x 2+mx 的对称轴为x =-m2=3,解得m =-6,则关于x 的方程为x 2-6x =7,解得,x 1=-1,x 2=7.4. 【答案】D [解析] 先根据抛物线的性质得到其对称轴为直线x =b ,且当x >b 时,y 的值随x 值的增大而减小.因为当x >1时,y 的值随x 值的增大而减小,所以b≤1.5. 【答案】D【解析】本题考查了二次函数的性质,由于2>0,所以抛物线的开口向上,所以A 选项错误;由于当x =2时,y =8-3=5,所以B 选项错误;由于y =2x 2-3的对称轴是y 轴,所以C 选项错误;由2x 2-3=0得b 2-4ac =24>0,则该抛物线与x 轴有两个交点,所以D 选项正确.6. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.7. 【答案】D8. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)· x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .二、填空题9. 【答案】y =12(x +2)2+1 [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x-h)2+k.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y =12(x +2)2+1.10. 【答案】y 1<y 2[解析] ∵抛物线的解析式是y =2(x -1)2,∴其对称轴是直线x =1,抛物线的开口向上, ∴在对称轴右侧,y 随x 的增大而增大.又∵抛物线y =2(x -1)2上有两点(x 1,y 1),(x 2,y 2),且1<x 1<x 2,∴y 1<y 2.11. 【答案】下y 轴 (0,0) 减小 增大12. 【答案】y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y=x 2+x 或y =-13x 2+13x .13. 【答案】0 【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.14. 【答案】y =-3(x -2)215. 【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题17. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).18. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC =12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行, 设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得, ⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分) ∴158<b ≤3.(12分)注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.19. 【答案】解:(1)设AB 与MQ 交于点R.∵△ABC 是等腰直角三角形,四边形MNPQ 是正方形, ∴△AMR 是等腰直角三角形. 由题意知,AM =MR =t , ∴S =S △AMR =12t·t =12t 2(0≤t≤10).(2)当MA =2 cm ,即t =2时,重叠部分的面积是12×2×2=2(cm 2).20. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2, 所以当x =-3时,函数y 3的最小值是-2.(8分)22.2 二次函数与一元二次方程一.选择题1.对于抛物线y =ax 2+2ax ,当x =1时,y >0,则这条抛物线的顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知抛物线y =ax 2+1过点(﹣2,0),则方程a (x ﹣2)2+1=0的根是( ) A .x 1=0,x 2=4 B .x 1=﹣2,x 2=6C .x 1=﹣4,x 2=0D .x 1=,x 2=3.已知二次函数y =ax 2+bx +c 中x 和y 的值如下表( )x 0.10 0.11 0.12 0.13 0.14 y﹣5.6﹣3.1﹣1.50.91.8则ax 2+bx +c =0的一个根的范围是( ) A .0.10<x <0.11 B .0.11<x <0.12 C .0.12<x <0.13D .0.13<x <0.144.二次函数y=ax2+bx+c的x,y的对应值如下表:x…﹣1012…y…﹣1m1n…下列关于该函数性质的判断①该二次函数有最大值;②当x>0时,函数y随x的增大而减小;③不等式y<﹣1的解集是﹣1<x<2;④关于x的一元二次方程ax2+bx+c=0的两个实数根分别位于﹣1<x<和<x<2之间.其中正确结论的个数有()A.1个B.2个C.3个D.4个5.一条抛物线与x轴相交于A、B两点(点A在点B的左侧),若点M、N的坐标分别为(﹣1,﹣2)、(1,﹣2),抛物线顶点P在线段MN上移动.点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.﹣3 B.﹣1 C.1 D.36.下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.只有一个交点,且它位于y轴的右侧B.只有一个交点,且它位于y轴的左侧C.有两个交点,且它们位于y轴的两侧D.有两个交点,且它们位于y轴的右侧7.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点:则下列判断中正确的是()①图象的对称轴是过点(1,0)且平行于y轴的直线②当x>1时,y随x的增大而减小③一元二次方程ax2+bx+c=0的两个根是﹣1和3④当﹣1<x<3时,y<0A.①②B.①②④C.①②③D.④8.如图,抛物线y=ax2+2ax﹣3a(a>0)与x轴交于A,B,顶点为点D,把抛物线在x轴下方部分关于点B作中心对称,顶点对应D′,点A对应点C,连接DD′,CD′,DC,当△CDD′是直角三角形时,a的值为()A.或B.或C.或D.或9.对于每个自然数n,抛物线与x轴交于A n、B n两点,以|A n B n|表示该两点间的距离,则|A1B1|+|A2B2|+…+|A2011B2011|的值为()A.B.C.D.10.已知点A(x1,y1)和B(x2,y2)均在二次函数y=ax2﹣6ax+9a﹣4的图象上,且|x1﹣3|<|x2﹣3|,则下列说法错误的是()A.直线x=3是该二次函数图象的对称轴B.当a<0时,该二次函数有最大值﹣4C.该二次函数图象与坐标轴一定有一个或三个交点D.当a>0时,y1<y2二.填空题11.抛物线y=(m﹣1)x2+4x+1与x轴有公共点,则实数m的取值范围是.12.若二次函数y=x2﹣(m﹣1)x的图象经过点(3,0),则关于x的一元二次方程x2﹣(m﹣1)x=0的根为.13.若抛物线y=ax2+bx+c与x轴的交点为(4,0)与(2,0),则抛物线的对称轴为直线x=.14.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.15.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为.三.解答题16.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1与x轴交于点A,B.(1)若AB=2,求该抛物线的顶点坐标;(2)过点(0,1)作与x轴平行的直线,交抛物线于点M,N.当MN≥2时,结合函数图象,求m的取值范围.17.已知抛物线y=x2﹣4x+3(1)求这条抛物线与x轴的交点的坐标;(2)当y>0时,直接写出x的取值范围;(3)当﹣1<x<3时,直接写出y的取值范围.18.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…﹣2﹣101234…y…50﹣3﹣4﹣30m…(1)二次函数图象的开口方向,顶点坐标是,m的值为;(2)点P(﹣3,y1)、Q(2,y2)在函数图象上,y1y2(填<、>、=);(3)当y<0时,x的取值范围是;(4)关于x的一元二次方程ax2+bx+c=5的解为.19.已知抛物线y=ax2+bx+c经过A(2,0),对称轴是直线x=1,且关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)设(m,y1),(m+2,y2)是抛物线y=ax2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.20.如图,抛物线y=x2+bx+c与直线y=x+3交于A、B两点,点A在y轴上,抛物线交x轴于C、D两点,已知C(﹣3,0)(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,请求出点M的坐标及这个最大值.参考答案一.选择题1.C.2.A.3.C.4.B.5.A.6.D.7.C.8.A.9.D.10.C.二.填空题11.m≤5且m≠1.12.0或3.13.3.14.﹣3<x<1.15..三.解答题16.(1)抛物线y=mx2﹣2mx+m﹣1的对称轴为直线x=﹣=1.∵点A、B关于直线x=1对称,AB=2,∴抛物线与x轴交于点A(0,0)、B(2,0),将(0,0)代入y=mx2﹣2mx+m﹣1中,得m﹣1=0,即m=1,∴该抛物线解析式为y=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的顶点坐标是(1,﹣1);(2)抛物线y=mx2﹣2mx+m﹣1与x轴有两个交点,∴△>0即(﹣2m)2﹣4m(m﹣1)>0,解得:m>0,∴该抛物线开口向上,当MN≥2时,则有m﹣1≤1,解得m≤2,所以,可得0<m≤2.17.(1)y=x2﹣4x+3,令y=0,则x=1或3,故抛物线与x轴的交点的坐标为:(1,0)或(3,0);(2)y>0时,x>3或x<1;(3)当x=﹣1时,y=8,函数顶点坐标为:(2,﹣1),故当﹣1<x<3时,y的取值范围为:﹣1≤y<8.18.(1)由表格可见,函数的对称轴为x=1,对称轴右侧,y随x的增大而增大,故抛物线开口向上,顶点坐标为(1,﹣4),根据函数的对称性m=5;故答案为:向上;(1,﹣4);5;(2)从P、Q的横坐标看,点Q离函数的对称轴近,故y1>y2;故答案为:>;(3)从表格看,当y<0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(4)从表格看,关于x的一元二次方程ax2+bx+c=5的解为:x=﹣2或4,故答案为:x=﹣2或4.19.(1)将点A的坐标代入抛物线表达式得:0=4a+2b+c①,函数的对称轴为x=1=﹣,即b=﹣2a②,关于x的方程ax2+bx+c=x有两个相等的实数根,则△=(b﹣1)2﹣4ac=0③,联立①②③并解得:,故抛物线的表达式为y=﹣x2+x;(2)(m,y1),(m+2,y2)是抛物线y=ax2+bx+c上的两点,则y2﹣y1=﹣(m+2)2+(m+2)+m2﹣m=﹣2m,故当m≥0时,y2﹣y1≤0;当m<0时,y2﹣y1>0.20.(Ⅰ)当x=0时,y=x+3=3,则A(0,3),把A(0,3),C(﹣3,0)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+x+3;(Ⅱ)抛物线的对称轴为直线x=﹣=﹣,∵C点和D点关于直线x=﹣对称,∴MC=MD,∵|MB﹣MC|≤BC(当B、C、M共线时,取等号),∴|MB﹣MC|的最大值为BC的长,解方程组,解得,则B(﹣4,1),∴BC==,设直线BC的解析式为y=kx+t,把B(﹣4,1),C(﹣3,0)代入得,解得,∴直线BC的解析式为y=﹣x﹣3,当x=﹣时,y=﹣x﹣3=﹣,则此时M点的坐标为(﹣,﹣),∴点M的坐标为(﹣,﹣)时,|MB﹣MD|的值最大,最大值为.22.3 实际问题与二次函数1. 某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-2x2+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元2. 某广场有一喷水池,水从地面喷出,以水平地面为x轴,出水点为原点,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米3. 某商品进货单价为90元/个,按100元/个出售时,能售出500个,如果这种商品每个每涨价1元,那么其销售量就减少10个,为了获得最大利润,其单价应定为()A.130元/个B.120元/个C.110元/个D.100元/个4. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm25. 如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形P ABQ的面积的最小值为()A.19 cm2B.16 cm2C.15 cm2D.12 cm26. 如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m7. 用长为12 m 的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE ,AE ⊥AB ,BC ⊥AB ,垂足分别为A ,B ,∠C =∠D =∠E .设CD =DE =x m ,五边形ABCDE 的面积为S m 2,则S 的最大值为( )A .12 3B .12C .24 3D .没有最大值8. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m9. 一种包装盒的设计方法如图所示,四边形ABCD 是边长为80 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四点重合于图中的点O ,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.15 10. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同二、填空题11. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.12. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.13. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.14. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.15. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题16. 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分.如图,甲在O点正上方1 m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x-4)2+h.已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-124时,①求h的值,②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面的高度为12 5m的Q处时,乙扣球成功,求a的值.17. 超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元/件,每天销售量会减少1件.设销售单价增加x元/件,每天售出y 件.(1)请写出y与x之间的函数解析式(不用写x的取值范围);(2)当x为多少时,超市每天销售这种玩具可获得利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?18. 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?19. 凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18-10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低售价买?(2)写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?20. 如图,用一块长为50 cm,宽为30 cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角各截去一个相同的小正方形,设小正方形的边长为x cm.(1)盒子底面的长AB=________ cm,宽BC=________ cm.(用含x的代数式表示)(2)若做成的盒子的底面积为300 cm2,求该盒子的容积.(3)该盒子的侧面积S(cm2)是否存在最大值?若存在,求出此时x的值及S的最大值;若不存在,说明理由.人教版 九年级数学 22.3 实际问题与二次函数针对训练 -答案一、选择题 1. 【答案】B2. 【答案】A [解析] y =-(x 2-4x +4)+4=-(x -2)2+4,∴水喷出的最大高度是4米.3. 【答案】B [解析] 设利润为y 元,涨价x 元,则有y =(100+x -90)(500-10x)=-10(x -20)2+9000,故每个商品涨价20元,即单价为120元/个时,获得最大利润.4. 【答案】A[解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm 2.5. 【答案】C [解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm , ∴S四边形PABQ=S △ABC -S △CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.6. 【答案】D[解析] 把y =0代入y =-112x 2+23x +53,得-112x 2+23x +53=0,解得x 1=10,x 2=-2.又∵x >0,∴x =10. 故选D.7. 【答案】A[解析] 连接EC ,过点D 作DF ⊥EC ,垂足为F .∵∠DCB =∠CDE =∠DEA ,∠EAB =∠CBA =90°,∴∠DCB =∠CDE =∠DEA =120°.∵DE=CD,∴∠DEC=∠DCE=30°,∴∠CEA=∠ECB=90°,∴四边形EABC为矩形.∵DE=x m,∴AE=(6-x)m,DF=12x m,EC=3x m,∴S=12·3x·12x+(6-x)·3x=-3 34x2+6 3x(0<x<6),故当x=4时,S最大=123.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a=-15.∴y=-15x2+3.5.可见选项A正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B错误.由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C错误.将x=-2.5代入抛物线的解析式,得y=-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m可见选项D错误.故选A.9. 【答案】C[解析] 如图,设BE=CF=x cm,则EF=(80-2x)cm.∵△EFM和△CFN都是等腰直角三角形,∴MF=22EF=(40 2-2x)cm,FN=2CF=2x cm,∴包装盒的侧面积=4MF·FN=4·2x(40 2-2x)=-8(x-20)2+3200,故当x=20时,包装盒的侧面积最大.10. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确. 由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.二、填空题11. 【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y =-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.12. 【答案】150 [解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.13. 【答案】225214. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.15. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y =ax 2+k. ∵抛物线的顶点为C(0,16), ∴抛物线的解析式为y =ax 2+16.把(18,7)代入解析式,得7=18×18a +16, ∴7=324a +16, ∴a =-136, ∴y =-136x 2+16.当y =0时,0=-136x 2+16, ∴-136x 2=-16,解得x =±24, ∴E(24,0),D(-24,0), ∴OE =OD =24 m ,∴DE =OD +OE =24+24=48(m).三、解答题16. 【答案】【思维教练】(1)将点P 坐标代入解析式求出h 的值,当抛物线到达球网位置的时候,对比抛物线与球网的高度判断是否能过网;(2)球能过网说明抛物线过点(0,1)和点(7,125),代入抛物线解析式求解即可.解:(1)①把(0,1)代入y =-124(x -4)2+h ,得h =53.(2分)②把x=5代入y=124(x-4)2+53,得y=-124(5-4)2+53=1.625.∵1.625>1.55.∴此球能过网;(4分)(2)把(0,1),(7,125)代入y=a(x-4)2+h,得⎩⎪⎨⎪⎧16a+h=1,9a+h=125,解得⎩⎪⎨⎪⎧a=-15,h=215.∴a=-15.(8分)17. 【答案】解:(1)根据题意,得y=-12x+50.(2)根据题意,得(40+x)(-12x+50)=2250,解得x1=50,x2=10.∵每件利润不能超过60元,∴x=50不合题意,舍去,∴x=10.答:当x为10时,超市每天销售这种玩具可获得利润2250元.(3)根据题意,得w=(40+x)(-12x+50)=-12x2+30x+2000=-12(x-30)2+2450.∵a=-12<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w最大=2400.答:当x为20时w最大,最大值是2400.18. 【答案】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1100>0,(2分)解得x>22,(3分)又∵x是5的倍数,∴每辆车的日租金至少应为25元.(5分)(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1100,(6分)∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1100=3900;(8分)当x>100时,y 2=(50-x -1005)x -1100=-15x 2+70x -1100=-15(x -175)2+5025.(9分)∴当x =175时,y 2的最大值是5025, ∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多是5025元.(10分)19. 【答案】解:(1)设一次至少买x 只计算器,才能以最低售价购买,则每只降价为:0.1(x -10)元,由题意得, 20-0.1(x -10)=16, 解得x =50.答:一次至少购买50只计算器,才能以最低售价购买.(2分) 【一题多解】设一次购买x 只计算器,才能以最低售价购买,则每只降低为:0.1(x -10)元,由题意得,20-0.1(x -10)≤16,解得x ≤50, ∴最大整数x =50.答:一次至少购买50只计算器,才能以最低售价购买. (2)由题意得,当10<x ≤50时,y =[20-12-0.1(x -10)]x , 即y =-0.1x 2+9x(3分)当x >50时,则每只计算器都按16元销售. ∴y =16x -12x =4x ,综上可得y =⎩⎨⎧-0.1x 2+9x (10<x ≤50)4x (x >50).(5分)(3)由y =-0.1x 2+9x 得,其图象的对称轴为x =-b2a =-92×(-0.1)=45,∵a =-0.1<0,当x >45时,y 随x 的增大而减小,(6分) 又∵50>46>45,∴当x =46时的函数值大于x =50时的函数值, 即卖46只赚的钱反而比卖50只赚的钱多.(8分)由二次函数的性质知,当x =45时,y 最大值=-0.1×452+9×45=202.5, 这时售价为20-0.1×(45-10)=16.5(元).答:店家一次应卖45只,这时的售价是16.5元.(10分)20. 【答案】解:(1)(50-2x) (30-2x)(2)依题意,得(50-2x)(30-2x)=300, 整理,得x 2-40x +300=0,解得x 1=10,x 2=30(不符合题意,舍去). 当x =10时,盒子的容积=300×10=3000(cm 3).(3)存在.盒子的侧面积S =2x(50-2x)+2x(30-2x)=100x -4x 2+60x -4x 2=-8x 2+160x =-8(x 2-20x)=-8[(x -10)2-100]=-8(x -10)2+800,∴当x=10时,S有最大值,最大值为800.。

人教版九年级数学上册 第二十二章综合测试卷含答案

人教版九年级数学上册 第二十二章综合测试卷含答案

人教版九年级数学上册 第二十二章综合测试卷01一、选择题(30分)1.抛物线2311y x =-+()的顶点坐标是( ) A .(1,1) B .(1-,1) C .(1-,1-)D .(1,1-)2.已知二次函数2y ax bx c =++的x ,y 的部分对应值如下表:则该二次函数图象的对称轴为( ) A .y 轴B .直线52x = C.直线2x =D .直线32x =3.用配方法将二次函数289y x x =--化为2()y a x h k =-+的形式为( ) A .2(4)7y x =-+ B .2(4)25y x =-- C .2(4)7y x =++ D .2(4)25y x =+-4.将抛物线216212y x x =-+向左平移2个单位长度后,得到的新抛物线的解析式为( ) A .21(8)52y x =-+B .21(4)52y x =-+C .21(8)32y x =-+D .21(4)32y x =-+5.对于二次函数()()213y x x =+-,下列说法正确的是( ) A 图象开口向下B .当1x >时,y 随x 的增大而减小C .当1x <时,y 随x 的增大而减小D .图象的对称轴是直线1x =-6.已知二次函数23y x x m =-+(m 为常数)的图象与x 轴的一个交点为()1,0,则关于x 的一元二次方程230x x m -+=的两实数根是( )A .11x =,21x =-B .11x =,22x =C .11x =,20x =D .11x =,23x =7.小刚在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离是( )A .3.5 mB .4 mC .4.5 mD .4.6 m8.如图是二次函数2y a bx c =++图象的一部分,且过点3,0A (),二次函数图象的对称轴是直线1x =,下列结论正确的是( ) A .24b ac <B .0ac >C .20a b -=D .0a b c -+=9.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在14x -<<的范围内有解,则t 的取值范围是( ) A .1t -≥B .13t -≤<C .18t -≤<D .38t <<10.如图,已知二次函数2(3)(1)3y x x =+-的图象与x 轴交于点A ,B ,与y 轴交于点C ,顶点为D ,则ABC △与ABD △的面积之比是( )A .2:3B .3:4C .4:5D .7:8二、填空题(24分)11.某学习小组为了探究函数2y x bx =+的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上的一些点的坐标,表格中的m =__________.12.若y 关于x 的函数2(2)(21)y a x a x a =---+的图象与坐标轴有两个交点,则a 可取的值为 __________.(写出一个即可)13.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是__________.14.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()24A -,,()11B ,,则方程2ax bx c =+的解是_________.15.其种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(2030x ≤≤,且x 为整数)出善,可英出30x -()件。

人教版九年级数学上学期 第二十二章单元测试卷试题附答案

人教版九年级数学上学期 第二十二章单元测试卷试题附答案

人教版九年级数学上学期第二十二章单元测试卷试题一、单选题(共5题;共10分)1.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A. 有最大值﹣1,有最小值﹣2B. 有最大值0,有最小值﹣1C. 有最大值7,有最小值﹣1D. 有最大值7,有最小值﹣22.将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为().A. y=2(x+2)2+3B. y=2(x-2)2+3C. y=2(x-2)2-3D. y=2(x+2)2-33.抛物线y=-3x2+6x+2的对称轴是()A. 直线x=2B. 直线x=-2C. 直线x=1D. 直线x=-1.4.已知a,b是非零实数,,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b 的大致图象不可能是()A. B. C. D.5.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A. 无解B. x=1C. x=﹣4D. x=﹣1或x=4二、填空题(共6题;共6分)6.二次函数y=-(x-6)2+8的最大值是________。

7.已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a﹣b+c<0;③3a+c=0;④当﹣1<x<3时,y>0,正确的是________(填写序号).8.如图,抛物线y=ax2和直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1), 则关于x的方程ax2=bx+c的解为________.9.如图,在△ABC中,AB=AC=5,BC=4 ,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为________.10.矩形的周长等于40,则此矩形面积的最大值是________.11.若二次函数的对称轴为直线,则关于的方程的解为________.三、综合题(共1题;共15分)12.某商店购进一批成本为每件30 元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800 元,则每天的销售量最少应为多少件?答案解析部分一、单选题1.【答案】D2.【答案】B3.【答案】C4.【答案】D5.【答案】D二、填空题6.【答案】87.【答案】①③④8.【答案】9.【答案】810.【答案】10011.【答案】,三、综合题12.【答案】(1)解:设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=-2x+160;(2)解:由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)解:由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件。

综合解析人教版九年级数学上册第二十二章二次函数综合测试试卷(含答案详解版)

综合解析人教版九年级数学上册第二十二章二次函数综合测试试卷(含答案详解版)

人教版九年级数学上册第二十二章二次函数综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知学校航模组设计制作的火箭升空高度h (m )与飞行时间t (s )满足函数表达式h =﹣t 2+24t +1,则下列说法中正确的是( )A .点火后1s 和点火后3s 的升空高度相同B .点火后24s 火箭落于地面C .火箭升空的最大高度为145mD .点火后10s 的升空高度为139m2、关于函数()2231y x =++,下列说法:①函数的最小值为1;②函数图象的对称轴为直线x =3;③当x ≥0时,y 随x 的增大而增大;④当x ≤0时,y 随x 的增大而减小,其中正确的有( )个.A .1B .2C .3D .4 3、已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABP ABP ABP S S S m ===,则m 的值是( )A .1B .32C .2D .44、抛物线y=ax 2+bx+3(a≠0)过A (4,4),B (2,m )两点,点B 到抛物线对称轴的距离记为d ,满足0<d≤1,则实数m 的取值范围是( )A .m≤2或m≥3B .m≤3或m≥4C .2<m <3D .3<m <4 5、如图,抛物线()21:12G y a x =++与抛物线()22:21H y x =---交于点()1,2B -,且它们分别与y 轴交于点D 、E .过点B 作x 轴的平行线,分别与两抛物线交于点A 、C ,则以下结论:①无论x 取何值,2y 总是负数;②抛物线H 可由抛物线G 向右平移3个单位,再向下平移3个单位得到;③当31x -<<时,随着x 的增大,12y y -的值先增大后减小;④四边形AECD 为正方形.其中正确的是( )A .①②B .①②④C .③④D .①②③6、抛物线2y x bx c =-++经过(0,3)-,对称轴直线1x =-,关于x 的方程20x bx c n -++-=在41x -<<的范围有实数根,则n 的范围( )A .112n -<<-B .63n -<<-C .112n -<≤-D .116n -<<-7、关于抛物线:23(1)2y x =-++,下列说法正确的是( ).A .它的开口方向向上B .它的顶点坐标是(1,2)C .当1x <-时,y 随x 的增大而增大D .对称轴是直线1x =8、二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D .9、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( )A .90元,4500元B .80元,4500元C .90元,4000元D .80元,4000元 10、把抛物线()2321y x =-+的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是( )A .()2313y x =-+B .()2311y x =--C .()2333y x =-+ D .()2331y x =-- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A 在抛物线y =x 2﹣2x +2上运动.过点A 作AC⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为_____.2、如果抛物线y =(m ﹣1)x 2有最低点,那么m 的取值范围为_____.3、抛物线()2221y x k x k =+--(k 为常数)与x 轴交点的个数是__________.4、定义:由a ,b 构造的二次函数()2y ax a b x b =+++叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数()2y ax a b x b =+++的“本源函数”(a ,b 为常数,且0a ≠).若一次函数y =ax +b 的“滋生函数”是231y ax x a =-++,那么二次函数231y ax x a =-++的“本源函数”是______.5、如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)a 的值为______,图象的顶点坐标为______;(2)若点(),Q m n 在该二次函数图象上,且点Q 到y 轴的距离小于2,则n 的取值范围为______.三、解答题(5小题,每小题10分,共计50分)1、2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量y (kg )与销售单价x (元)满足的函数关系式为640(1014)20920(1430)x y x x <≤⎧=⎨-+<≤⎩(其中1030x <) (1)分别求出销售单价为12元、20元时每天的销售利润.(2)当销售单价为多少元时,每天的销售利润最大?最大利润是多少?2、为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元.张远村老张计划明年承租部分土地种植某种经济作物.考虑各种因素,预计明年每亩土地种植该作物的成本y (元)与种植面积x (亩)之间满足一次函数关系,且当160x =时,840y =;当190x =时,960y =.(1)求y 与x 之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩.若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润最大?最大利润是多少?(每亩种植利润=每亩销售额-每亩种植成本+每亩种植补贴)3、2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x (元),每天的销售量为y (件).(1)求每天的销售量y (件)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?4、已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数,求m 的值(2)若这个函数是二次函数,求m 的取值范围.5、如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式;(2)若直线y=kx23(k≠0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x22=10时,求k的值;(3)当﹣4<x≤m时,y有最大值43m,求m的值.-参考答案-一、单选题1、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项.【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C .【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.2、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性.【详解】解:∵()2231y x =++,∴该函数图象开口向上,有最小值1,故①正确;函数图象的对称轴为直线3x =-,故②错误;当x ≥0时,y 随x 的增大而增大,故③正确;当x ≤﹣3时,y 随x 的增大而减小,当﹣3≤x ≤0时,y 随x 的增大而增大,故④错误. 故选:B .【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质.3、C【解析】【分析】由题意易得点123,,P P P 的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解.【详解】解:假设点A 在点B 的左侧,∵二次函数2286y x x =-+的图象交x 轴于,A B 两点,∴令0y =时,则有20286x x =-+,解得:121,3x x ==,∴()()1,0,3,0A B ,∴312AB =-=,∵图象上有且只有123,,P P P 三点满足123ABP ABP ABP S S S m ===, ∴点123,,P P P 的纵坐标的绝对值相等,如图所示:∵()22286222y x x x =-+=--, ∴点()12,2P -, ∴112222ABP m S ==⨯⨯=; 故选C .【考点】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.4、B【解析】【分析】把A (4,4)代入抛物线y=ax 2+bx+3得4a+b=14,根据对称轴x=-2b a ,B (2,m ),且点B 到抛物线对称轴的距离记为d ,满足0<d≤1,所以0<|2-(-2b a )|≤1,解得a≥18或a≤-17,把B (2,m )代入y=ax 2+bx+3得:4a+2b+3=m ,得到a=78-4m ,所以78-4m ≥18或78-4m ≤-18,即可解答. 【详解】把A(4,4)代入抛物线y=ax 2+bx+3得:16a+4b+3=4,∴16a+4b=1, ∴4a+b=14, ∵对称轴x=−2b a,B(2,m),且点B 到抛物线对称轴的距离记为d ,满足0<d≤1, ∴0<|2−(−2b a)|≤1 ∴0<|42a b a|≤1, ∴|18a|≤1, ∴a≥18或a≤−18, 把B(2,m)代入y=ax 2+bx+3得:4a+2b+3=m ,2(2a+b)+3=m ,2(2a+14−4a)+3=m , 72−4a=m , a=78-4m , ∴78-4m ≥18或78-4m ≤-18, ∴m≤3或m≥4.故答案选:B.【考点】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质.5、B【解析】【分析】①根据非负数的相反数或者直接由图像判断即可;②先求抛物线G 的解析式,再根据抛物线,G H 的顶点坐标,判断平移方向和平移距离即可判断②;③先根据题意得出31x -<<时,观察图像可知12y y >,然后计算12y y -,进而根据一次函数的性质即可判断;④分别计算出,,,A E C D 的坐标,根据正方形的判定定理进行判断即可.【详解】①2(2)0x -≥,2(2)0x ∴--≤,∴()22211y x =---≤-, ∴无论x 取何值,2y 总是负数,故①正确; ②抛物线()21:12G y a x =++与抛物线()22:21H y x =---交于点()1,2B -, 1,2x y ∴==,即22(11)2a -=++,解得1a =-,∴抛物线()21:12G y x =-++,∴抛物线G 的顶点(1,2)-,抛物线H 的顶点为(2,1)-,将(1,2)-向右平移3个单位,再向下平移3个单位即为(2,1)-,即将抛物线G 向右平移3个单位,再向下平移3个单位可得到抛物线H ,故②正确; ③()1,2B -,将2y =-代入抛物线()21:12G y x =-++, 解得123,1x x =-=,(3,2)A ∴--,将2y =-代入抛物线()22:21H y x =---, 解得123,1x x ==,(3,2)C ∴-,31x -<<,从图像可知抛物线G 的图像在抛物线H 图像的上方,12y y ∴>2212(1)2[(2)1]66y y x x x -=-++----=-+∴当31x -<<,随着x 的增大,12y y -的值减小,故③不正确;④设AC 与y 轴交于点F ,()1,2B -,(0,2)F ∴-,由③可知(3,2)A ∴--,(3,2)C -,AF CF ∴=,6AC =,当0x =时,121,5y y ==-,即(0,1),(0,5)D E -,6DE ∴=,3DF EF ==,∴四边形AECD 是平行四边形,,AC DE AC DE =⊥,∴四边形AECD 是正方形,故④正确,综上所述,正确的有①②④,故选:B .【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.6、C【解析】【分析】由题意先得出抛物线的解析式,进而利用根的判别式以及二次函数图象的性质进行分析计算即可.【详解】解:∵抛物线2y x bx c =-++经过(0,3)-,∴将(0,3)-代入可得3c =-,∵对称轴直线1x =-, ∴122b b a -==-,解得2b =-, ∴抛物线为223y x x -=--,∴2230x x n +++=,∵关于x 的方程20x bx c n -++-=在41x -<<的范围有实数根,∴24480b ac n ∆=-=--≥,解得2n ≤-,且同时满足当4x =-,0y <以及当1,0x y =>,解得116n n <-⎧⎨>-⎩(舍去), 或者当4x =-,0y >以及当1,0x y =<,解得116n -<<-,综上可得n 的范围为:112n -<≤-.故选:C .【考点】本题考查二次函数与一元二次方程的结合,熟练掌握二次函数图象的性质并运用数形结合思维分析是解题的关键.7、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 选项:∵30-<,∴抛物线23(1)2y x =-++的开口向下,故A 错误;B 选项:抛物线23(1)2y x =-++的顶点坐标是(-1,2),故B 错误;C 选项:对抛物线23(1)2y x =-++,当1x <-时,y 随x 增大而增大,故C 正确;D 选项:抛物线23(1)2y x =-++的对称轴是直线1x =-,故D 错误.故选:C .【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.8、A【解析】【分析】先分析二次函数21y ax bx =++的图像的开口方向即对称轴位置,而一次函数2y ax b =+的图像恒过定点(,0)2b a-,即可得出正确选项. 【详解】二次函数21y ax bx =++的对称轴为2b x a =-,一次函数2y ax b =+的图像恒过定点(,0)2b a-,所以一次函数的图像与二次函数的对称轴的交点为(,0)2b a -,只有A 选项符合题意. 故选A .【考点】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数2y ax b =+的图像恒过定点(,0)2b a-,本题蕴含了数形结合的思想方法等. 9、B【解析】【分析】 设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.【详解】解:设每月总利润为w ,依题意得:(50)w y x =-(5550)(50)x x =-+-2580027500x x =-+-25(80)4500x =--+50-<,此图象开口向下,又50x ≥,∴当80x =时,w 有最大值,最大值为4500元.故选:B .【考点】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.10、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵抛物线()2=-+的顶点坐标为(2,1),321y x∴向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)∴所得抛物线解析式是()2313=-+.y x故选:A.【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便.二、填空题1、1【解析】【分析】由矩形的性质可知BD=AC,再结合顶点到x轴的距离最近可知当点A在顶点处时满足条件,求得抛物线的顶点坐标即可求得答案.【详解】解:∵AC⊥x轴,∴当点A为抛物线顶点时,AC有最小值,∵抛物线y=x2﹣2x+2=(x−1)2+1,∴顶点坐标为(1,1),∴AC的最小值为1,∵四边形ABCD为矩形,∴BD=AC,∴BD的最小值为1,故答案为:1.【考点】本题主要考查了二次函数的性质及矩形的性质,确定出AC最小时的位置是解题的关键.2、m>1【解析】【分析】直接利用二次函数的性质得出m-1的取值范围进而得出答案.【详解】解:∵抛物线y=(m-1)x2有最低点,∴m-1>0,解得:m>1.故答案为m>1.【考点】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键.3、2【分析】求出∆的值,根据∆的值判断即可.【详解】解:∵∆=4(k-1)2+8k=4k 2+4>0,∴抛物线与x 轴有2个交点.故答案为:2.【考点】本题考查了二次函数与坐标轴的交点问题,二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与x 轴的交点横坐标是一元二次方程ax 2+bx +c =0的根.当∆=0时,二次函数与x 轴有一个交点,一元二次方程有两个相等的实数根;当∆>0时,二次函数与x 轴有两个交点,一元二次方程有两个不相等的实数根;当∆<0时,二次函数与x 轴没有交点,一元二次方程没有实数根.4、2-1y x =﹣【解析】【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数231y ax x a =-++的本源函数.【详解】解:由题意得3=++1=a b a b ⎧⎨⎩﹣ 解得=2=1a b ⎧⎨⎩﹣﹣∴函数231y ax x a =-++的本源函数是2-1y x =﹣. 故答案为:2-1y x =﹣.本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”. 5、 2a = ()1,2- 211n ≤<【解析】【分析】(1)把P (−2,3)代入23y x ax =++中,即可求解;(2)由|m |<2,结合二次函数的图像和性质,即可求n 的范围.【详解】解:(1)把P (−2,3)代入23y x ax =++中,得:()23223a =--+,∴a =2,∴223y x x =++=(x +1)2+2;∴图象的顶点坐标为(−1,2);(2)点Q 到y 轴的距离小于2,∴|m |<2,∴−2<m <2,∴当m =-1时,y 的最小值= 2,当m =2时,y 的最大值= 11,∴2≤n <11.【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,找到二次函数图像的对称轴,是解题的关键.三、解答题1、(1)销售单价为12元时,每天的利润为1280元;销售单价为20元时,每天的利润为5200元;(2)当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元【解析】【分析】(1)设每天的利润为W 元,根据题意:当1014x <时,640y =,可得当12x =时的销售利润;当1430x <时,20920y x =-+,根据每件的利润乘以数量即可得出;(2)根据题意列出在两个范围内的函数解析式,然后根据一次函数及二次函数的性质,求出最大值进行比较即可得.【详解】(1)设每天的利润为W 元,当1014x <时,640y =,∴当12x =时,(1210)6401280W =-⨯=(元),当1430x <时,20920y x =-+,∴当20x 时,=(2010)(20920)5200W x -⨯-+=(元),∴销售单价为12元时,每天的利润为1280元;销售单价为20元时,每天的利润为5200元;(2)设每天的销售利润为W 元,当1014x <时,640(10)6406400W x x =⨯-=-,6400k =>,∴W 随着x 的増大而増大,当14x =时,46402560W =⨯=(元),当1430x <时,(10)(20920)W x x =--+,220(28)6480x =--+,200a =-<,开口向下,∴W 有最大值,1430x <,∴当28x =时,6480W =最大(元),64802560>,∴当28x =时,6480W =最大(元),答:当销售单价x 为28元时,每天的销售利润最大,最大利润是6480元.【考点】题目主要考查一次函数与二次函数的应用,理解题意,列出相应的函数解析式是解题关键.2、(1)4200y x =+;(2)种植面积为240亩时总利润最大,最大利润268800元.【解析】【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y (元)与种粮面积x (亩)之间的函数关系为4200y x =+,进而得出W 与x 的函数关系式,再利用二次函数的最值公式求出即可.【详解】解:(1)设y 与x 之间的函数关系式()0y kx b k =+≠,依题意得:160840190960k b k b +=⎧⎨+=⎩,解得:4200k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为4200y x =+.(2)设老张明年种植该作物的总利润为W 元,依题意得:()21604200120W x x ⎡=-+⎤⎣⎦+⋅ 242080x x =-+()24260270400x =--+. ∵40-<,∴当260x <时,y 随x 的增大而增大.由题意知:240x ≤,∴当240x =时,W 最大,最大值为268800元.即种植面积为240亩时总利润最大,最大利润268800元.【考点】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W 与x 的函数关系式是求最值问题的关键.3、(1)2160y x -+=;(2)当销售单价为56元时,每天所获得的利润最大,最大利润为1152元【解析】【分析】(1)根据“销售单价每降低1元,则每天可多售出2件”列函数关系式;(2)根据总利润=单件利润×销售量列出函数关系式,然后利用二次函数的性质分析其最值.【详解】解:(1)由题意可得:202(70)y x +-=,整理,得:2160y x -+=,∴每天的销售量y (件)与销售单价x (元)之间的函数关系式为2160y x -+=;(2)设销售所得利润为w ,由题意可得:2(302)(32)(2160)22245120w x y x x x x =--=--+=-+-,整理,得:22(56)1152w x =--+,20-<,∴当56x =时,w 取最大值为1152,∴当销售单价为56元时,销售这款文化衫每天所获得的利润最大,最大利润为1152元.【考点】此题考查二次函数的应用——销售问题,涉及运算能力及一次函数应用,熟练掌握相关知识是解题的关键.4、(1)1m =;(2)1m ≠±【解析】【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;【详解】解:(1)由题意得,1010m m ⎧-=⎨+≠⎩解得1m =; (2)由题意得,||10m -≠,解得1m ≠且1m ≠-.【考点】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.5、(1)()21233y x =--+;(2)1222,,3k k ==;(3)9.4m = 【解析】【分析】(1)把50,3A ⎛⎫ ⎪⎝⎭代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去,y 得:()21223,33x kx --+=+再利用根与系数的关系与()222121212210,x x x x x x +=+-=可得关于k 的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当2,m ≤ 2<m <8, 8,m ≥ 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把50,3A ⎛⎫ ⎪⎝⎭代入()223y a x =-+中, 543,3a ∴+= 1,3a ∴=- ∴ 抛物线的解析式为:()212 3.3y x =--+ (2)联立一次函数与抛物线的解析式得:()2231233y kx y x ⎧=+⎪⎪⎨⎪=--+⎪⎩ ()21223,33x kx ∴--+=+整理得:()24330,x k x ---=121243,3,x x k x x ∴+=-=-()222121212210,x x x x x x +=+-= ()()()22432343120,k k ∴--⨯-=-+> ∵x 1+x 2=4-3k ,x 1•x 2=-3,∴x 12+x 22=(4-3k )2+6=10, 解得:1222,,3k k == ∴1222,,3k k ==(3)∵函数的对称轴为直线x=2,当m <2时,当x=m 时,y 有最大值,43m =-13(m-2)2+3,解得当m≥2时,当x=2时,y 有最大值, ∴43m =3, ∴m=94,综上所述,m 的值为94.【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与x 轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.。

人教版九年级上册数学第二十二章测试卷及答案

人教版九年级上册数学第二十二章测试卷及答案

人教版九年级上册数学第二十二章测试题一、单选题1.将二次函数y=x 2-4x+2化为顶点式,正确的是()A .2y (x 2)2=--B .2y (x 2)3=-+C .2y (x 2)2=+-D .2y (x 2)2=-+2.将函数y =2(x +1)2﹣3的图象向上平移2个单位,再向左平移1个单位,可得到的抛物线的解析式为()A .y =2(x ﹣1)2﹣5B .y =2x 2﹣1C .y =2(x +2)2﹣5D .y =2(x +2)2﹣13.函数y =(m ﹣5)x 2+x 是二次函数的条件为()A .m 为常数,且m ≠0B .m 为常数,且m ≠5C .m 为常数,且m =0D .m 可以为任何数4.抛物线y=(x+2)(x ﹣4)的对称轴是()A .直线x=﹣1B .y 轴C .直线x=1D .直线x=25.一元二次方程x 2+bx+c=0有一个根为x=3,则二次函数y=2x 2﹣bx ﹣c 的图象必过点()A .(﹣3,0)B .(3,0)C .(﹣3,27)D .(3,27)6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论:①ab >0;②a+3b+9c >0;③4a+b=0;④当y=﹣2时,x 的值只能为0;⑤3b ﹣c <0,其中正确的个数是()A .1个B .2个C .3个D .4个7.已知原点是抛物线y=(m+1)x 2的最低点,则m 的取值范围是()A .m <﹣1B .m <1C .m >﹣1D .m >﹣28.若A (﹣4,y 1),B (﹣3,y 2),C (1,y 3)为二次函数y=x 2+4x+c 的图象上的三点,则y 1,y 2,y 3的大小关系是()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 29.在平面直角坐标系中,抛物线与直线均过原点,直线经过抛物线的顶点(2,4),则下列说法:①当0<x <2时,y 2>y 1;②y 2随x 的增大而增大的取值范围是x <2;③使得y 2大于4的x 值不存在;④若y 2=2,则x=2或x=1.其中正确的有()A .1个B .2个C .3个D .4个10.如图,已知抛物线y=x 2+px+q 的对称轴为直线x=﹣2,过其顶点M 的一条直线y=kx+b 与该抛物线的另一个交点为N (﹣1,﹣1).若要在y 轴上找一点P ,使得PM+PN 最小,则点P 的坐标为().A .(0,﹣2)B .(0,﹣43)C .(0,﹣53)D .(0,﹣54)11.在同一直角坐标系中,函数y mx m =+和222y mx x =-++的图象可能是()A .B .C .D .12.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(2,0),其对称轴是直线x=﹣1,直线y=3恰好经过顶点.有下列判断:①当x <﹣2时,y 随x 增大而减小;②ac <0;③a﹣b+c<0;④方程ax2+bx+c=0的两个根是x1=2,x2=﹣4;⑤当m≤3时,方程ax2+bx+c=m 有实数根.其中正确的是()A.①②③B.①②④C.②④⑤D.②③④二、填空题13.抛物线y=12(x+2)2-2的顶点是_____.14.已知抛物线y=x2−2x+2-a与x轴有两个不同的交点,则直线y=ax+a不经过第________________象限。

人教版九年级数学上册第二十二章达标检测卷附答案

人教版九年级数学上册第二十二章达标检测卷附答案

人教版九年级数学上册第二十二章达标检测卷一、选择题(每题3分,共30分)1.【教材P29思考变式】下列函数是二次函数的是()A.y=3x2+9 B.y=2x-3 C.y=2x2+1x-2 D.y=4x22.【2021·兰州】二次函数y=x2+2x+2的图象的对称轴是() A.x=-1 B.x=-2 C.x=1 D.x=2 3.下列关于函数y=36x2的叙述中,错误的是()A.图象的对称轴是y轴B.图象的顶点是原点C.当x>0时,y随x的增大而增大D.y有最大值4.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是() A.-3 B.-1 C.2 D.3 5.已知点(x1,y1)(x2,y2)是函数y=(m-3)x2的图象上的两点,且当0<x1<x2时,有y1>y2,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3 6.【2021·西藏】把函数y=(x-1)2+2的图象向左平移3个单位长度,再向下平移4个单位长度所得到的抛物线的解析式为()A.y=x2-8x+22 B.y=x2-8x+14C.y=x2+4x+10 D.y=x2+4x+27.二次函数y=ax2+bx+c的图象如图所示,下面关于一元二次方程ax2+bx +c=0的根的情况,说法正确的是()A.方程有两个相等的实数根B.方程的两个实数根的积为负数C.方程有两个正的实数根D.方程没有实数根8.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0),如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10 m B.15 m C.20 m D.22.5 m 9.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()10.【2021·滨州】对于二次函数y=12x2-6x+21,有以下结论:①当x>5时,y随x的增大而增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物线y=12x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为____________.12.【教材P51习题T1改编】若抛物线y=x2+(a-2)x+c的顶点在y轴上,则a的值是_____________________________________________.13.已知点A(4,y1),B(1,y2),C(-3,y3)在函数y=-3(x-2)2+m(m为常数)的图象上,则y1,y2,y3的大小关系是________(由小到大排列).14.已知二次函数图象的顶点坐标是(2,-1),形状与抛物线y=2x2相同且开口方向向下,则这个二次函数的解析式是________________.15.【2021·成都】在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=________.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c >0的解集是________.17.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需________秒.18.【教材P41习题T8变式】如图,在△ABC中,∠B=90°,AB=8 cm,BC =6 cm,点P从点A开始沿AB边向点B以2 cm/s的速度运动,点Q从点B开始沿BC边向点C以1 cm/s的速度运动.如果点P,Q分别从点A,B同时出发,当其中一点到达终点时,另一点也随之停止运动.当△PBQ 的面积最大时,运动时间为________ s.三、解答题(19题10分,20~21题每题12分,22~23题每题16分,共66分)19.如图是抛物线y=-x2+bx+c的部分,其中点A(1,0),点B(0,3).(1)求抛物线的解析式;(2)结合图象,写出当y<3时x的取值范围.20.如图,一次函数y=kx+b的图象与二次函数y=ax2的图象交于点A(1,m)和点B(-2,4),与y轴交于点C.(1)求k,b,a的值;(2)求△AOB的面积.21.【2020·宁波】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx +b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.22.【2020·黔东南州】黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x,y之间的部分数值对应关系如表:销售单价x/(元/件) 11 19日销售量y/件18 2 请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?23.已知如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A,B,C三点的抛物线的解析式.(2)在平面直角坐标系xOy中是否存在一点P,使得以点A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由.答案一、1.A 2.A 3.D 4.D 5.D 6.D7.B 8.B 9.C 10.A二、11.y =(x -2)2+1 12.213.y 3<y 1<y 2 14.y =-2(x -2)2-115.1 16.-1<x <317.36 18.2三、19.解:(1)∵函数的图象过点A (1,0),点B (0,3),∴⎩⎨⎧0=-1+b +c ,3=c ,解得⎩⎨⎧b =-2,c =3.故抛物线的解析式为y =-x 2-2x +3.(2)抛物线的对称轴为直线x =-1,且当x =0时,y =3,∴当x=-2时,y =3,故当y <3时,x 的取值范围是x <-2或x >0.20.解:(1)把点B (-2,4)的坐标代入y =ax 2中,得4=4a ,∴a =1.∴二次函数的解析式是y =x 2.把点A (1,m )的坐标代入y =x 2中,得m =1,∴A (1,1).把点A (1,1)和点B (-2,4)的坐标分别代入y =kx +b 中,得⎩⎨⎧k +b =1,-2k +b =4,解得⎩⎨⎧k =-1,b =2. ∴a =1,k =-1,b =2.(2)令y =-x +2中x =0,则y =2,∴C (0,2).∴OC =2.∵S △AOC =12OC ·|1|=12×2×1=1,S △BOC =12OC ·|-2|=12×2×2=2,∴S △AOB =S △AOC +S △BOC =1+2=3.21.解:(1)∵抛物线y =(x +2)2+m 经过点A (-1,0),∴0=1+m .∴m =-1.∴二次函数的解析式为y =(x +2)2-1=x 2+4x +3.∴点C 的坐标为(0,3).又∵抛物线的对称轴为直线x =-2,点B ,C 关于抛物线的对称轴对称,∴点B 的坐标为(-4,3).∵直线y =kx +b 经过点A ,B ,∴⎩⎨⎧-k +b =0,-4k +b =3,解得⎩⎨⎧k =-1,b =-1. ∴一次函数的解析式为y =-x -1.(2)由图象可知,满足(x +2)2+m ≥kx +b 的x 的取值范围为x ≤-4或x ≥-1.22.解:(1)设甲、乙两种商品的进货单价分别是a 元/件,b 元/件,由题意得⎩⎨⎧3a +2b =60,2a +3b =65.解得⎩⎨⎧a =10,b =15. ∴甲、乙两种商品的进货单价分别是10元/件、15元/件.(2)设y 与x 之间的函数关系式为y =kx +b 1,将x =11,y =18和x =19,y =2代入得⎩⎨⎧11k +b 1=18,19k +b 1=2,解得⎩⎨⎧k =-2,b 1=40. ∴y 与x 之间的函数关系式为y =-2x +40(11≤x ≤19).(3)由题意得w =(-2x +40)(x -10)=-2(x -15)2+50(11≤x ≤19).∴当x =15时,w 取得最大值50.即当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.23.解:(1)设抛物线的解析式为y =ax 2+bx +c ,由题易知A 的坐标为(1,0),B 的坐标为(0,3),C 的坐标为(-4,0),∴⎩⎨⎧a +b +c =0,c =3,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =-34,b =-94,c =3.∴经过A ,B ,C 三点的抛物线的解析式为y =-34x 2-94x +3.(2)存在.以CA ,CB 为邻边时,如图,∵OB =3,OC =4,OA =1,∴BC =AC =5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴BP =AC =5,且点P 到x 轴的距离等于OB 的长,∴点P 的坐标为(5,3);以AB ,AC 为邻边时,AC ≠AB .∴不存在点P 使四边形ABPC 为菱形;以BA ,BC 为邻边时,BA ≠BC .∴不存在点P 使四边形ABCP 为菱形.故符合题意的点P 的坐标为(5,3).。

(含答案)九年级数学人教版上册第22章《单元测试》03

(含答案)九年级数学人教版上册第22章《单元测试》03

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教九年级上单元测试第22章班级________姓名________一、单选题1.若二次函数y=(m-3)x2+m2-9的图象的顶点是坐标原点,则m的值是()A.3B.-3C.±3D.无法确定2.二次函数()2y x=+-的图象是()221A.B.C.D.3.在平面直角坐标系中,将抛物线24=-先向右平移2个单位,再向上平y x移2个单位,得到的抛物线的解析式是()A.()222+22=-D.()2=-y xy x y x=--C.()22+2=++B.()222y x4.二次函数224=-++的最大值为()y x xA.3B.4C.5D.65.矩形的周长为12cm,设其一边长为x cm,面积为y cm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()A.y=﹣x2+6x(3<x<6)B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12)D.y=﹣x2+6x(0<x<6)6.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是21=+,则原抛物线的解析式不可能的是()y xA.21=++y x xy x=-B.265C.244=++y x xy x x=++D.28177.二次函数y=﹣x2+4x+1的图象中,若y随x的增大而减小,则x的取值范围是()A .x <2B .x >2C .x <﹣2D .x >﹣28.已知二次函数2y ax c =+()0a ≠,若存在1x 、2x ()12x x ≠,使得1x x =与2x x =时函数值相等,则当12x x x =+时,函数值为()A .a c +B .a c -C .c-D .c9.如图,在平面直角坐标系中抛物线y =(x +1)(x ﹣3)与x 轴相交于A 、B 两点,若在抛物线上有且只有三个不同的点C 1、C 2、C 3,使得△ABC 1、△ABC 2、△ABC 3的面积都等于m ,则m 的值是()A .6B .8C .12D .1610.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确的个数为A .1B .2C .3D .411.如图,已知二次函数212433y x x =-的图象与正比例函数223y x =的图象交于点A (3,2),与x 轴交于点B (2,0),若120y y <<,则x 的取值范围是()A .0<x <2B .0<x <3C .2<x <3D .x <0或x >312.若A(-4,y 1),B(-3,y 2),C(1,y 3)为二次函数y =x 2+4x -5的图象上的三个点,则y 1,y 2,y 3的大小关系是()A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2二、填空题13.二次函数y =2x 2+4x +1图象的顶点坐标为_____.当x =-1时,y =_____.14.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为211040y x =-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF =________.15.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.16.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.17.已知:如图,在平面直角坐标系xOy 中,点A 在抛物线246y x x =-+上运动,过点A 作AC ⊥x 轴于点C ,以AC 为对角线作正方形ABCD .则正方形的边长A B 的最小值是___________.三、解答题18.已知243(3)5m m y m x +-=++是关于x 的二次函数.(1)求m 的值.(2)当m 为何值时,该函数图象的开口向上?(3)当m 为何值时,该函数有最大值?19.如图,矩形ABCD 的两边长18AB cm =,4AD cm =,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.当Q 到达C 点时,P 、Q 停止运动.设运动时间为x 秒,PBQ 的面积为()2.y cm ()1求y 关于x 的函数关系式,并写出x 的取值范围;()2求PBQ 的面积的最大值.20.如图,抛物线y =2(x -2)2与平行于x 轴的直线交于点A ,B ,抛物线顶点为C ,△ABC 为等边三角形,求S △AB C;21.已知二次函数y=x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(1,0),与y 轴的交点坐标为(0,-3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y 为正数时,自变量x 的取值范围.22.如图,已知抛物线21y x bx 2=+与直线y 2x =交于点O (0,0),()A 12a,.点B 是抛物线上O ,A 之间的一个动点,过点B 分别作x轴、y轴的平行线与直线OA 交于点C ,E .(1)求抛物线的函数解析式;(2)若点C 为OA 的中点,求BC 的长;(3)以BC ,BE 为边构造条形BCDE ,设点D 的坐标为(m,n),求m,n之间的关系式.23.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?24.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.参考答案1.B 2.C 3.B 4.C 5.D 6.B 7.B 8.D 9.B 10.B 11.C 12.B 13.(-1,-1)-114.米15.﹣3<x <116.2或1718.解:(1)根据题意,得2432,30,m m m ⎧+-=⎨+≠⎩解得51,3.m m m =-=⎧⎨≠-⎩或∴5m =-或1m =.(2)∵函数图象的开口向上,∴30m +>,∴3m >-∴1m =.∴当1m =时,该函数图象的开口向上.(3)∵函数有最大值,∴30m +<.∴3m <-,∴5m =-.∴当5m =-时,该函数有最大值.19.解:()112PBQ S PB BQ =⋅ ,182PB AB AP x =-=-,BQ x =,12y ∴=()182x x -,即29(04)y x x x =-+<≤;()2由()1知,29y x x =-+,2981()24y x ∴=--+,当902x <≤时,y 随x 的增大而增大,而04x <≤,∴当4x =时,20y =最大值,即PBQ 的最大面积是202cm .20.解:过B 作BP ⊥x 轴交于点P ,连接AC ,BC ,由抛物线y=222x -()得C (2,0),∴对称轴为直线x=2,设B (m ,n ),∴CP=m-2,∵AB ∥x 轴,∴AB=2m-4,∵△ABC 是等边三角形,∴BC=AB=2m-4,∠BCP=∠ABC=60°,∴m-2),∵PB=n=222m -(),m-2)=222m -(),解得,m=2(不合题意,舍去),∴BP=32,∴S △ABC =13224=.21.(1)将点(1,0)、(0,-3)代入y =x 2+bx +c ,得:103b c c ++=⎧⎨=-⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为y =x 2+2x -3;(2)当y =0时,x 2+2x -3=0,解得:x =1或x =-3,所以抛物线与x 轴的交点坐标为(-3,0)和(1,0),结合函数图象知,当x <-3或x >1时,y >0.22.解:(1)∵点()A 12a,在直线y 2x =上,∴122a =,即a 6=.∴点A 的坐标是(6,12).又∵点A (6,12)在抛物线21y x bx 2=+上,∴把A (6,12)代入21y x bx 2=+,得b 1=-.∴抛物线的函数解析式为21y x x 2=-.(2)∵点C 为OA 的中点,∴点C 的坐标是(3,6).把y 6=代入21y x x 2=-,解得12x 1 x 1==.∴BC 132==.(3)∵点D 的坐标为(m,n),∴点E 的坐标为1n, n 2⎛⎫ ⎪⎝⎭,点C 的坐标为()m, 2m .10/10∴点B 的坐标为1n, 2m 2⎛⎫ ⎪⎝⎭.把1n, 2m 2⎛⎫ ⎪⎝⎭代入21y x x 2=-,得21112m n n 222⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,即.∴m,n之间的关系式为23.试题分析:根据题意列方程组即可得到结论;①由题意列出关于x ,y 的方程即可;②把函数关系式配方即可得到结果.试题解析:(1)根据题意得:,解得:25{30a b ==;(2)①由题意得:y=(x -20)【100-5(x -30)】∴y=﹣52x +350x ﹣5000,②∵y=﹣52x +350x ﹣5000=﹣52(35)x -+1125,∴当x=35时,y 最大=1125,∴销售单价为35元时,B 商品每天的销售利润最大,最大利润是1125元.考点:二次函数的应用;二元一次方程组的应用24.(1)当5080x <时,210(50)y x =--,即260y x =-.当80140x <时,210(8050)3(80)y x =----,即4203y x =-,则260(5080),4203(80140).x x y x x -<⎧=⎨-<⎩(2)由利润=(售价-成本)×销售量可以列出函数关系式为2230010400(5080),354016800(80140).x x x W x x x ⎧-+-<=⎨-+-<⎩。

人教版数学九年级上册第22章二次函数单元综合测试(含答案)

人教版数学九年级上册第22章二次函数单元综合测试(含答案)

第 1 页 共 56 页人教版数学九年级上册第22章二次函数单元综合测试(含答案) 一、精心选一选(每题3分,共30分)1.若抛物线c bx ax y ++=2的顶点在第一象限,与x 轴的两个交点分布在原点两侧,则点(a ,ac)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若双曲线)0(≠=k xky 的两个分支在第二、四象限内,则抛物线222k x kx y +-=的图象大致是图中的( )xyOxyO xyO O yx DCBA3.如图是二次函数c bx ax y ++=2的图象,则一次函数bc ax y +=的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若点(2,5),(4,5)是抛物线c bx ax y ++=2上的两个点,那么这条抛物线的对称轴是( )A .直线1=xB .直线2=xC .直线3=xD .直线4=x 5.已知函数772--=x kx y 的图象与x 轴有交点,则k 的取值范围是( )A .47- kB .047≠-≥k k 且C .47-≥kD .047≠-k k 且6.函数y=ax 2+bx+c 的图象如图所示,那么关于一元二次方程ax 2+bx+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根Oyx第 2 页 共 56 页C .有两个相等的实数根D .没有实数根7.现有A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),用小莉掷A 立方体朝上的数字为x ,小明掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各掷一次所确定的点P 落在已知抛物线y=-x 2+4x 上的概率为( ) A .118 B .112 C .19 D .168.已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 2)都在函数y=x 2的图象上,则( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 3 9.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③ 第9题图 10. 已知二次函数y x x =++29342,当自变量x 取两个不同的值x x 12,时,函数值相等,则当自变量x 取x x 12+时的函数值与( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二章综合测试
答案解析
1.【答案】B
【解析】2
224210342323333y x x x x x ⎛⎫⎛
⎫=--=--=-- ⎪ ⎪⎝⎭⎝
⎭,即23h =,103k =-.
2.【答案】D
【解析】因为两点不重合,若12y y =,则12x x =-,故A ,B 项不正确;因为开口方向向上,对称轴为y 轴,所以若120x x <<,则12y y <,故C 项不正确,D 项正确,故选D . 3.【答案】B
【解析】把抛物线265y x =-+向下平移5个单位长度得到抛物线26y x =-. 4.【答案】D
【解析】由抛物线的开口向上,知0a >,函数有最小值;由图象可知,对称轴为直线1
2
x =
;因为0a >,所以当12
x <时,y 随x 的增大而减小;由图象可知,当12x -<<时,0y <,故D 项说法是错误的。

5.【答案】D
【解析】二次函数2(0)y ax bx c a =++≠与x 轴有两个交点,则240b ac ->,所以选项B 错误;二次函数图象的开口方向可能向上,也可能向下,所以选项A 错误;符合条件的点()00,M x y 有多种可能,当0a >时,
12x xo x <<;当0a <时,有两种情况:一种是012x x x <<,另一种是120x x x <<,所以选项C 错误;
而当0a >时,102x x x <<,所以()()01020a x x x x --<;当0a <时,无论012x x x <<还是120x x x <<,都有
()()01020a x x x x --<,所以选项D 正确。

6.【答案】C
【解析】A 选项,在函数y ax =中,0a >,在2y a x =中,0a >,但当1x =时,两函数图象应有交点1,a (),
不符合题意;B 选项,在函数y ax =中,0a <,在2y ax =中,0a >,不符合题意;C 选项,在函数y ax
=中,0a <,在2y a x =中,0a <,且当1x =时,两函数图象有交点1,a (),符合题意;D 选项,在函数y ax
=中,0a >,在2y ax =中,0a <,不符合题意. 7.【答案】B
【解析】假设该函数与x 轴交于点A ,B
(点A 在点B 的左侧),与y 轴交于点C ,(2,0)A -,2,0B (),0,2C (),
故。

21
1π222
S AB OC ⨯⨯⨯⋅阴影>>,即42πS 阴影<<,故选B . 8.【答案】4-
【解析】画出抛物线的草图(图略),可知0c >,对称轴在y 轴右侧.设()1,0B x ,20C x (,)
,则122BC x x =-=,
所以
2.因为12x x b +=-,12x x c =2=.因为1
32
ABC S BC c =⋅⋅=△,
所以1232c ⨯⋅=,所以3c =2=,所以4b =±.因为02
b
x =->,所以0b <,所以4b =-.
9.【答案】5或13
【解析】因为226(3)9y x x c x c =-+=-+-,所以顶点坐标是(3, 9)c -.由勾股定理得22
2395c +-=(),
所以5c =或13. 10.【答案】8.5-
【解析】由22446x x x m -+=+,得221040x x m -+-=,令0A =,即100840m --=(
),得8.5m =-. 11.【答案】①③
【解析】显然2y ax bx c =++的图象过()1,0点,所以0a b c ++=,故①正确;对称轴为直线1x =-,即
12b
a
-
=-,所以2b a =,故②错误;由抛物线的轴对称性可知,抛物线与x 轴的交点为(3,0)-,(1,0),所以20ax bx c ++=的两个根分别为3-,1,故③正确;因为2b a =,所以22243a b c a a c a a c a c -+=-⨯+=-+=-+<,由函数的图象,知显然有0a >,0c <,所以30a c -+<,即20a b c -+<,故④错误.
12.【答案】解:(1)因为点1,A m -()在正比例函数5y x =的图象上,所以515m =⨯-=-(),所以点A 的坐标为1,5--().因为点1,5A --()在二次函数22y x x c =-++的图象上,所以125c --+=-,所以2c =-.
(2)由(1),知二次函数的解析式为22
2211y x x x =-+-=-
--(),故二次函数的图象的对称轴为直线1x =,顶点坐标为
1,1-(). 【解析】根据点在图象上,求出m 与c 的值,从而求出二次函数的解析式、对称轴及顶点坐标。

13.【答案】解:(1)由题意,得0,4A ().因为6AOB S =△,即162
O A O B ⨯⨯=,所以1
462
OB ⨯⨯=,得3OB =.
又因为点B 在x 轴的负半轴上,所以点B 的坐标为(3,0)-.
(2)将点3,0B -()代入²14y x k x =-+-+(),得09134k =-+-⨯-+()(),解得2
3
k =-,所以25
43
y x x =--+.
(3)因为0,4A (),3,0B -(),所以5AB =. ①当AB AP =时,3,0P ();
②当AB BP =时,5BP =,所以2,0P ()
或()8,0-; ③当AP BP =时,P 在x 轴正半轴上,设,0P x (),其中0x >,
则3x +=解得76x =,所以7,06P ⎛⎫
⎪⎝⎭
. 综上,满足条件的点P 的坐标为3,0()或2,0()
或8,0-()或7
,06⎛⎫ ⎪⎝⎭
. 【解析】(1)先根据二次函数的解析式求出点A 的坐标,再根据6AOB S =△求出点B 的坐标。

(2)由点B 在二次函数的图象上求出二次函数的解析式。

(3)ABP △是等腰三角形需分类讨论.
14.【答案】((1)15010y x =-(05x ≤≤,且x 为整数). (2)设每星期的利润为w 元,则()()403015010w x x =-+-
21050 1 500x x =-++ 2
510 1 562.52x ⎛
⎫=--+ ⎪⎝
⎭.
因为05x ≤≤,且x 为整数,所以当2x =或3x =时, 1 560w =最大值.
又因为15010y x =-,即销售量随x 的增大而减小,所以当2x =,即每件售价为42元时,每星期的利润最大,且销量较大,此时最大利润为1560元.
【解析】此题根据题意建立二次函数的关系式,利用二次函数的性质求出最大利润。

15.【答案】解:(1)由题意,知930
0421a b c a b c a b c -+=⎧⎪
++=⎨⎪-+=⎩,
解得13231a b c ⎧=-⎪⎪

=-⎨⎪
=⎪⎪⎩
,所以抛物线的表达式为212133y x x =--+.
所以抛物线的表达式为212
133
y x x =--
+. (2)如答图22-1,将0x =代入抛物线表达式,得1y =,所以点M 的坐标为()0,1.
设直线MA 的表达式为0y kx n k =+≠()
, 则130n k n =⎧⎨-+=⎩,解得131
k n ⎧=⎪⎨⎪=⎩ 所以直线MA 的表达式为113y x =
+,设点D 的坐标为200
012,133x x x ⎛⎫
--+ ⎪⎝⎭
, 则点F 的坐标为001,13
x x ⎛
⎫+ ⎪⎝


200012111333DF x x x ⎛⎫
=--+-+ ⎪⎝⎭
2
20001133
3324
x x x ⎛⎫=--=-++ ⎪⎝⎭
当032x =-时,DF 取最大值
34
, 此时2
012513
34x x --+=,即点D 的坐标是35,24⎛⎫- ⎪⎝⎭
. 【解析】(1)把3,0(-),1,0(),2,1-()三个点代入2y ax bx c =++,组成关于a ,b ,c 的三元一次方程组,
求解即可.
(2)由题意得D ,F 两点的横坐标相同,点D 在抛物线上,点F 在直线AM 上,分别把点D 、点F 的纵坐标用横坐标表示出来,又因为DF 的长等于点D 的纵坐标减去点F 的纵坐标,故可形成关于x 的二次函数,求其最大值即可.
16.【答案】解:(1)由题意,得当 1 s t =时,
1
()2
OPFE S OP EF OE =+⋅梯形
1
(2527)1262
=⨯+⨯=. (2)设运动时间为t 时,
梯形OPFE 的面积为y ,221(28328)2282(7)982y t t t t t t =-+-=-+=--+,其中2803
t <, 所以当7 s t =时,梯形OPFE 的面积最大,最大为98. (3)当APF OPFE S S =△梯形呼时,
即2
2
32282
t t t -+=
解得8t =1,20t =(舍去).
当8 s t =时,PF =
所以当 APF OPFE S S =△梯形时,线段PF 的长为
【解析】本题既涉及点的运动,又涉及直线的运动,弄清点与线的运动方式及规律是解题关键.BEF △始终是等腰直角三角形,且EF EB =.在解关于面积最大或最小的问题时,通常要将二次函数的解析式化成顶点式。

相关文档
最新文档