浙江省丽水市中考数学模拟试卷(庆元)
2024年浙江省丽水市中考一模考试数学模拟试题(原卷版)
2023学年第二学期初中九年级适应性考试数学试题卷考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上. 3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 5.本次考试不得使用计算器.卷Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1. 下列图形是中心对称图形的是( ) A. 等边三角形 B. 直角三角形 C. 平行四边形D. 正五边形2. 如果水位升高3m 时水位变化记作3m +,那么水位不升不降时水位变化记作( ) A. 3m +B. 3m −C. 0mD. 3m ±3. 下列计算结果为5a 的是( ) A. 102a a ÷B. 23a aC. 32a a +D. ()32a4. 如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A. 四边形ABCD 的周长不变B. 四边形ABCD 的面积不变C. AD AB =D. AB CD =5. 如图,在Rt △ABC 中,∠A =90°,AB =8,BC =10,则cos B 的值是( )A.34B.43C.35D.456. 某不等式组的解集在数轴上表示为如图所示,则该不等式组的解集是( )A. 32x −<≤B. 32x −≤≤C. 3x <−或2x ≥D. 3x ≤−或2x ≥7. 如图,在矩形ABCD 中,AC 与BD 交于点O ,点E 是BC 上一点,连结DE 交对角线AC 于F .若2CFD BAC ∠=∠,则下列结论错误的是( )A. AOD DFC ∠=∠B. DFA DOC ∠=∠C. 2EFC ACB ∠=∠D. 2DCF FDO ∠=∠8. 已知关于x 的方程()200ax bx c a ++=≠,当240b ac −=时,方程的解为( )A. 12bx a =,22b x a=−B. 1bx a =,2b x a=− C 122b x x a== D. 122bx x a==−9. 在函数图象与性质的拓展课上,小明同学借助几何画板探索函数112y x x=+−的图象,请你结合函数解析式的结构,分析他所得到的函数图象是( ) A.B..C.D.10. 如图,ABC 中,ABC ∠为钝角,以AB 为边向外作平行四边形ABDE ,ABD ∠为钝角,连结CE ,CD ,设CDE ,ACE △,BCD △面积分别为S ,1S ,2S ,若知道ABC 的面积,则下列代数式的值可求的是( )A. 12S S S ++B. 12S S S −+C. 12S S S +−D. 12S S S −−卷Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题(本题有6小题,每小题3分,共18分)11. “x 与5的差大于x 的3倍”用不等式表示为________.12. 在一个不透明袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有___________个.13. 已知二次函数y =(m ﹣2)x 2﹣4x +2m ﹣8的图象经过原点,它可以由抛物线y =ax 2(a ≠0)平移得到,则a 的值是 _____.14.勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数的的学著作《九章算术》.现有勾股数a ,b ,c ,其中a ,b 均小于c ,21122a m =−,21122c m +,m 是大于1的奇数,则b =___________(用含m 的式子表示). 15. 如图,在矩形ABCD 中,8AB =,10BC =,①在边CD 上取一点E ,连结BE ,②以点B 为圆心,AB 长为半径画弧,以点E 为圆心,AE 长为半径画弧,两弧相交于点A M ,;③类比②以点B 为圆心,BD 长为半径画弧,以点E 为圆心,ED 长为半径画弧,两弧相交于点D N ,.连结MN ,当MN 恰好经过点C 时,DE 长是______.16. 如图,已知正方形ABCD ,点M N ,在BC 上且点M 在点N 的左侧,在BC 的同侧以BM ,MN ,NC 为一边,另一边分别为5104,,在正方形内部作三个矩形,其面积分别为1S ,2S ,3S .若322S S =,123100S S S ++=,则阴影部分图形的周长为______.三、解答题(本题有8小题,第17、18题每题6分,第19~21每题8分,第22题10分,第23题12分,第24题14分,共72分,各小题都必须写出解答过程)17. 小红解方程()3110x x x −−+=的过程如下: 解:()()3011x x x −−−=,……① 310x −=,……② 31x =,……③13x =.……④(1)小红的解答过程是有错误的,请指出开始出现错误的那一步的序号; (2)写出你的解答过程.18. 某校九年级学生进行了体育中考模拟测试,现任意抽取该校九年级部分男生、女生的长跑测试成绩的(满分为10分),将数据整理得到如下统计表和统计图: 九年级男生长跑测试成绩统计表 分值人数百分比1 12.5%23 2 5%4 1 2.5%5 1 2.5%625%71 2.5% 8 410%98 20% 102050%(1)写出男、女学生测试成绩的众数;(2)分别求出男、女学生测试成绩的满分率(100%=×满分人数满分率总人数):(3)为了更好地提高长跑测试成绩,请你结合相关统计量,对该校后期长跑备考提出一条合理化的建议.19. 如图,已知在四边形ABCD 中,AB CD ∥,C D ∠=∠.的(1)求证:AD BC =;(2)若17AB =,210AD CD ==,求AB 与CD 间的距离.20. 小陈同学从市场上购买了如图1的花盆,花盆底部的横截面是直径为35cm 的圆,他家中有如图2的托盘,托盘底部的横截面是边长为60cm 的正三角形.(1)求正三角形一边的高线长;(2)这个托盘是否适用于该花盆?请判断并说明理由. 21. 设函数11k y x=,22y k x =(1k ,2k 是常数,10k ≠,20k ≠),点()2,4A 在函数2y 的图象上,且两个函数图象的一个交点B ()1,m . (1)求函数1y 的表达式;(2)若点C 在函数2y 的图象上,点C 先向下平移3个单位,再向左平移3个单位,得点D ,点D 恰好落在函数1y 的图象上,求点C 的坐标.22. 如图1是一个立方体纸盒的示意图,图2、图3分别是该立方体纸盒两种不同的表面展开图.(1)如图2,连结AB ,CD ,猜想AB ,CD 的位置关系并说明理由; (2)如图3,连结MN ,GH 交于点P ,求NPMP的值. 23. 设二次函数21y ax bx ++(0a ≠,b 是常数),已知函数值y 和自变量x 的部分对应取值如下表所示:x1− 01 2 3ym1n1p(1)若0m =时,求二次函数的表达式;(2)当13x −≤≤时,y 有最小值为12,求a 的值; (3)若3a <−,求证:20n m p −−>.24. 如图,已知AB 是O 的直径,弦CD AB ⊥于点E ,G 是 AC 上的一点,AG ,DC 的延长线交于点F ,连结AD .(1)若70FGC ∠=°,求AGD ∠的度数; (2)若点G 是 AC 的中点.①写出AD 与CF 的数量关系并证明你的结论;②若AG a =,CF b =,求CD 的长(用含a b ,的代数式表示).。
2023年浙江省丽水市中考数学第二次模拟考试试卷附解析
2023年浙江省丽水市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知3x =4y ,则y x =( ) A .34 B .43 C .43- D .以上都不对2.下列各组线段中,能成比例的是( )A . 3,6,7,9B .2,5,6,8C .3,6,9,18D . 1,2,3,4 3.如图,A 、B 、C 是⊙O 上三点,∠AOB= 50°,则∠ACB= ( ) A .25° B .50° C .30°D .100° 4. 已知二次函数图像与 x轴两交点间的距离是8,且顶点为M(1,5),则它的解析式( )A .y =-516 x 2+58 x +7516B .y =-516 x 2-58 x +7516C .y =-516 x 2+58 x -7516D .y =-516 x 2-58 x -7516 5.如果抛物线 y =ax 2+bx +c 经过点(-1,12),(0,5)和(2,-3),则a +b +c 的值为( )A .-4B .-2C .0D .1 6.某厂计划用两年的时间把某种型号的电视机成本降低36%,若每年下降的百分比相同,则这个百分比为( )A .16%B .18%C .20%D .22% 7.下列方程中,无实数根的是( ) A .2250x x ++=B .220x x --=C .22100x x +-=D .2210x x --= 8.在下列图形中,不能单独镶嵌成平面图形的是 ( )A .正三角形B .正方形C .正五边形D .正六边形 9. 如图,给出了过直线外一点作已知直线的平行线的方法, 其依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等10.下列各式,是完全平方式的为( )①2244a ab b -+;②2242025x xy y ++;③4224816x x y y --;④42212a a a ++. A .①、③ B . ②、④ C . ①、② D .③、④二、填空题11.矩形的面积为2,一条边长为x ,另一条边长为y ,则y 与x 的函数关系式为(不必写出自变量取值范围)________________.12.如图, 如果函数y=-x 与y=x4-的图像交于A 、B 两点, 过点A 作AC 垂直于y 轴, 垂足为点C, 则△BOC 的面积为___________.13.如图,在直角三角形中,AB=8,BC=6,M 是斜边AC 上的中点,则BM 的长是 .14.点A(5,2-)关于直角坐标系原点对称的点的坐标是 ,关于y 轴对称的点的坐标是 ,关于x 轴对称的点的坐标是 .15.如图所示,是某单位职工的年龄(取正整数)的频数分布直方图,根据图中提供的信息,回答下列问题(每组可含最低值,不含最高值).(1)该单位共有职工 人;(2)不小于36岁但小于42岁的职工占总人数的百分比是 ;(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有 人.解答题16.直线4y kx =+与两坐标轴围成的直角三角形面积为2,则这条直线与x 轴的交点 为 .17.线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D 的坐标为 .18.如图,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为 .32 19.如图,若∠1+∠B=180°,则 ∥ ,理由是 .三、解答题20.画出下列几何体的三种视图.21.抛物线22y x x m =-+的顶点在直线y=x-1 上,求m 的值.22.已知:如图,∠AOB=∠AOC ,∠1=∠2.试说明:(1)△ABC 是等腰三角形;(2)AO ⊥BC .23.如图,找出图中的同位角、内错角和同旁内角.24.已知x a =5,x b =3,求x 3a -2b 的值.125925.有一批型号相同的陶瓷杯子共1000个,其中有一等品700个,二等品200个,三等品100个,从中任选1个杯子,求下列事件发生的概率:(1)选到一等品的概率;(2)选到二等品的概率;(3)选到三等品的概率.26.已知,4425,7522==y x 求22)()(y x y x --+的值.27.已知直线1l ∥2l , 点 A ,B ,C 在直线1l 上,点E ,F ,H 在2l 上,任意取三个点连成一个三角形. 求:(1)连成△ABD 的概率;(2)连成△ABD 或△DEB 的概率;(3)连成的三角形有两个顶点在直线2l 上的概率.28.如图,若∠l 与∠2互补,且∠l=60°,求∠3、∠4、∠5、∠6、∠7、∠8的度数.29.利用计算器比较下列各数的大小,并用<”号连结:353310π335310π<<30.杭州世博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计..为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的解析式;(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.A4.A5.C6.C7.A8.C9.A10.C二、填空题x y 2= 12. 213.514.(-5,2),(-5,2-),(5,2)15.(1)50;(2)54%;(3)1516.(-1,0)或(1,O)17.(1,2)18.19.AD ;BC ;同旁内角互补,两直线平行三、解答题20.21.22211(1)1y x x m x m =-+-+=-+-,顶点是(1,m-1),代入直线1y x =-, ∴m=122.(1)证明:△AOB ≌△AOC ,得AB=AC ,∴△ABC 是等腰三角形;(2)由(1)得,∠OAB=∠OAC ,∴AO ⊥BC .23.无同位角;内错角有∠D 与∠ABD ;同旁内角有∠D 与∠DBE24.125925. (1)710;(2)51;(3)11032.27. (1)130;(2)115;(3)3528.∠3=∠4=∠2=∠7=120°,∠1=∠5=∠6=∠8=60°29.π<<30.(1)由题意,x=1时,y=2;x=2时,y=2+4=6.代入y=ax 2+bx ,解得a=b=1,所以y=x 2+x ;(2)纯收益g=33x-150-(x 2+x )=-x 2+32x-150;(3)g=-(x-16)2+106,即设施开放16个月后,游乐场的纯收益达到最大; 又在0<x ≤16时,g 随着x 的增大而增大,当x ≤5时,g<0;而x=6时,g>0. 所以6个月后能收回投资.。
浙江省丽水市第四中学2024届中考数学考试模拟冲刺卷含解析
浙江省丽水市第四中学2024届中考数学考试模拟冲刺卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )A .4π-B .πC .12π+D .π154+2.2017年,小榄镇GDP 总量约31600000000元,数据31600000000科学记数法表示为( ) A .0.316×1010B .0.316×1011C .3.16×1010D .3.16×10113.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE4.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π-B .2233π C .233π-D 233π 5.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°6.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是()A.30°B.45°C.50°D.60°7.化简:xx y--yx y+,结果正确的是()A.1 B.2222x yx y+-C.x yx y-+D.22x y+8.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)7 8 9 10次数 1 4 3 2A.8、8 B.8、8.5 C.8、9 D.8、109.青藏高原是世界上海拔最高的高原,它的面积是2500000 平方千米.将2500000 用科学记数法表示应为()A.70.2510⨯B.72.510⨯C.62.510⨯D.52510⨯10.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°11.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .812.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( ) A .12B .14C .16D .116二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是 尺.14.计算:()212273-=_____.15.正方形EFGH 的顶点在边长为3的正方形ABCD 边上,若AE=x ,正方形EFGH 的面积为y ,则y 与x 的函数关系式为______.16.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m=0(m >0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:112220182018111111...αβαβαβ++++++的值为_____.17.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为_____18.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”集称之衡,雀俱重,燕俱轻.将一只雀、一只燕交换位置而放,译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.20.(6分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B求证:△ADF∽△DEC;若AB=8,3,3AE的长.21.(6分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?22.(8分)已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=1.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.23.(8分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.24.(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是.(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率25.(10分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=63,求阴影区域的面积.(结果保留根号和π)26.(12分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.27.(12分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AEBE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C 【解题分析】这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积. 【题目详解】 解:如图:∵正方形的面积是:4×4=16;扇形BAO 的面积是:229013603604n r πππ⨯⨯==,∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×4π=4-π, ∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π, 故选C . 【题目点拨】本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键. 2、C 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】31600000000=3.16×1.故选:C . 【题目点拨】本题考查科学记数法,解题的关键是掌握科学记数法的表示. 3、A 【解题分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了. 【题目详解】 ∵EB=CF ,∴EB+BF=CF+BF ,即EF=BC , 又∵∠A=∠D ,A 、添加DE=AB 与原条件满足SSA ,不能证明△ABC ≌△DEF ,故A 选项正确.B 、添加DF ∥AC ,可得∠DFE=∠ACB ,根据AAS 能证明△ABC ≌△DEF ,故B 选项错误. C 、添加∠E=∠ABC ,根据AAS 能证明△ABC ≌△DEF ,故C 选项错误.D 、添加AB ∥DE ,可得∠E=∠ABC ,根据AAS 能证明△ABC ≌△DEF ,故D 选项错误, 故选A. 【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 4、B 【解题分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可. 【题目详解】解:由旋转可知AD=BD ,∵∠ACB=90° ∴CD=BD , ∵CB=CD ,∴△BCD 是等边三角形, ∴∠BCD=∠CBD=60°,∴,∴阴影部分的面积2602360π⨯23π.故选:B. 【题目点拨】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 5、C 【解题分析】根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案. 【题目详解】 因为a ∥b ,所以∠1=∠BAD=50°, 因为AD 是∠BAC 的平分线, 所以∠BAC=2∠BAD=100°, 所以∠2=180°-∠BAC=180°-100°=80°. 故本题正确答案为C.【题目点拨】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等. 6、D 【解题分析】根据圆周角定理的推论,得∠B=∠D .根据直径所对的圆周角是直角,得∠ACD=90°. 在直角三角形ACD 中求出∠D .则sinD=∠D=60° ∠B=∠D=60°. 故选D .“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边. 7、B 【解题分析】先将分母进行通分,化为(x+y )(x-y )的形式,分子乘上相应的分式,进行化简. 【题目详解】()()()()222222x y x +xy xy-y x +y -=-=x-y x+y x+y x-y x+y x-y x -y【题目点拨】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则. 8、B 【解题分析】根据众数和中位数的概念求解. 【题目详解】由表可知,8环出现次数最多,有4次,所以众数为8环; 这10个数据的中位数为第5、6个数据的平均数,即中位数为892+=8.5(环), 故选:B . 【题目点拨】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9、C【解题分析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.10、C【解题分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【题目详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【题目点拨】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11、B【解题分析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.12、B【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【题目详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解题分析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题14、2【解题分析】根据二次根式的运算法则即可求出答案.【题目详解】原式=22322-=-.故答案为-2.【题目点拨】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.15、y=2x 2﹣6x+2【解题分析】由AAS 证明△DHE ≌△AEF ,得出DE=AF=x ,DH=AE=1-x ,再根据勾股定理,求出EH 2,即可得到y 与x 之间的函数关系式.【题目详解】如图所示:∵四边形ABCD 是边长为1的正方形,∴∠A=∠D=20°,AD=1.∴∠1+∠2=20°,∵四边形EFGH 为正方形,∴∠HEF=20°,EH=EF .∴∠1+∠1=20°,∴∠2=∠1,在△AHE 与△BEF 中23D A EH EF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DHE ≌△AEF (AAS ),∴DE=AF=x ,DH=AE=1-x ,在Rt △AHE 中,由勾股定理得:EH 2=DE 2+DH 2=x 2+(1-x )2=2x 2-6x+2;即y=2x 2-6x+2(0<x <1),故答案为y=2x 2-6x+2.【题目点拨】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y 与x 之间的函数关系式是解题的关键.16、40362019. 【解题分析】利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案.【题目详解】∵x 2+2x-m 2-m=0,m=1,2,3, (2018)∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式=3320182018112211223320182018αβαβαβαβαβαβαβαβ+++++++⋯+ =222212233420182019+++⋯+⨯⨯⨯⨯ =2×(111111112233420182019-+-+-+⋯+-) =2×(1-12019) =40362019, 故答案为40362019. 【题目点拨】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.17【解题分析】连接OA ,OC ,根据∠COA=2∠CBA=90°可求出AC=Rt △ACD 中利用三角函数即可求得CD 的长.【题目详解】解:连接OA ,OC ,∵∠COA=2∠CBA=90°,∴在Rt △AOC 中,AC=22222222OA OC +=+=,∵CD ⊥AB ,∴在Rt △ACD 中,CD=AC·sin ∠CAD=12222⨯=, 故答案为2.【题目点拨】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.18、{561340x y x y +=-=【解题分析】设雀、燕每1只各重x 斤、y 斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【题目详解】设雀、燕每1只各重x 斤、y 斤,根据题意,得45561x y y x x y +=+⎧⎨+=⎩整理,得340.561x y x y -=⎧⎨+=⎩ 故答案为340.561x y x y -=⎧⎨+=⎩【题目点拨】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=﹣x 2+2x+3;(2)DE+DF 有最大值为132;(3)①存在,P 的坐标为(73,209)或(103,139-);②23-<t <83. 【解题分析】(1)设抛物线解析式为y=a (x+1)(x ﹣3),根据系数的关系,即可解答(2)先求出当x=0时,C 的坐标,设直线AC 的解析式为y=px+q ,把A,C 的坐标代入即可求出AC 的解析式,过D作DG 垂直抛物线对称轴于点G ,设D (x ,﹣x 2+2x+3),得出DE+DF=﹣x 2x-1)=﹣x 2+(),即可解答(3)①过点C 作AC 的垂线交抛物线于另一点P 1,求出直线PC 的解析式,再结合抛物线的解析式可求出P 1,过点A 作AC 的垂线交抛物线于另一点P 2,再利用A 的坐标求出P 2,即可解答②观察函数图象与△ACQ 为锐角三角形时的情况,即可解答【题目详解】解:(1)设抛物线解析式为y=a (x+1)(x ﹣3),即y=ax 2﹣2ax ﹣3a ,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x 2+2x+3;(2)当x=0时,y=﹣x 2+2x+3=3,则C (0,3),设直线AC 的解析式为y=px+q ,把A (﹣1,0),C (0,3)代入得03p q q -+=⎧⎨=⎩,解得33p q =⎧⎨=⎩,∴直线AC 的解析式为y=3x+3,如答图1,过D 作DG 垂直抛物线对称轴于点G ,设D (x ,﹣x 2+2x+3),∵DF ∥AC ,∴∠DFG=∠ACO ,易知抛物线对称轴为x=1,∴DG=x-1,(x-1),∴DE+DF=﹣x 2(x-1)=﹣x 2+(,∴当x=1+,DE+DF 有最大值为132;答图1 答图2(3)①存在;如答图2,过点C 作AC 的垂线交抛物线于另一点P 1,∵直线AC 的解析式为y=3x+3,∴直线PC 的解析式可设为y=13-x+m ,把C (0,3)代入得m=3, ∴直线P 1C 的解析式为y=13-x+3,解方程组223133y x x y x ⎧=-++⎪⎨=-+⎪⎩,解得03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩,则此时P 1点坐标为(73,209);过点A 作AC 的垂线交抛物线于另一点P 2,直线AP 2的解析式可设为y=13-x+n ,把A (﹣1,0)代入得n=13-, ∴直线PC 的解析式为y=1133x --,解方程组2231133y x x y x ⎧=-++⎪⎨=--⎪⎩,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 2点坐标为(103,139-),综上所述,符合条件的点P 的坐标为(73,209)或(103,139-); ②23-<t <83. 【题目点拨】此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.20、(1)见解析(2)6【解题分析】(1)利用对应两角相等,证明两个三角形相似△ADF ∽△DEC.(2)利用△ADF ∽△DEC ,可以求出线段DE 的长度;然后在在Rt △ADE 中,利用勾股定理求出线段AE 的长度.【题目详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B ,∴∠AFD=∠C在△ADF 与△DEC 中,∵∠AFD=∠C ,∠ADF=∠DEC ,∴△ADF ∽△DEC(2)∵四边形ABCD 是平行四边形,∴CD=AB=1.由(1)知△ADF ∽△DEC , ∴AD AF DE CD =, ∴AD CD 638DE 12AF 43⋅⨯=== 在Rt △ADE 中,由勾股定理得:()2222AE DE AD 12636=-=-=21、(1)证明见解析;(2)AE =2时,△AEF 的面积最大.【解题分析】(1)根据正方形的性质,可得EF=CE ,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE ,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH ≌△ECD ,由全等三角形的性质可得FH=ED ;(2)设AE=a ,用含a 的函数表示△AEF 的面积,再利用函数的最值求面积最大值即可.【题目详解】(1)证明:∵四边形CEFG 是正方形,∴CE =EF.∵∠FEC =∠FEH +∠CED =90°,∠DCE +∠CED =90°,∴∠FEH =∠DCE.在△FEH 和△ECD 中,,∴△FEH ≌△ECD ,∴FH =ED.(2)解:设AE =a ,则ED =FH =4-a ,∴S △AEF =AE·FH =a(4-a)=- (a -2)2+2,∴当AE =2时,△AEF 的面积最大.【题目点拨】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.22、(1)m ≥﹣112;(2)m =2. 【解题分析】(1)利用判别式的意义得到(2m +3)2﹣4(m 2+2)≥1,然后解不等式即可;(2)根据题意x 1+x 2=2m +3,x 1x 2=m 2+2,由条件得x 12+x 22=31+x 1x 2,再利用完全平方公式得(x 1+x 2)2﹣3x 1x 2﹣31=1,所以2m +3)2﹣3(m 2+2)﹣31=1,然后解关于m 的方程,最后利用m 的范围确定满足条件的m 的值.【题目详解】(1)根据题意得(2m +3)2﹣4(m 2+2)≥1,解得m ≥﹣112; (2)根据题意x 1+x 2=2m +3,x 1x 2=m 2+2,因为x 1x 2=m 2+2>1,所以x 12+x 22=31+x 1x 2,即(x 1+x 2)2﹣3x 1x 2﹣31=1,所以(2m +3)2﹣3(m 2+2)﹣31=1,整理得m 2+12m ﹣28=1,解得m 1=﹣14,m 2=2,而m ≥﹣112; 所以m =2.【题目点拨】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =1(a ≠1)的两根时,1212,b c x x x x a a+=-=.灵活应用整体代入的方法计算.23、(1)证明见解析;(2)AE=BF ,(3)AE=BF ;【解题分析】(1)根据正方形的性质,可得∠ABC 与∠C 的关系,AB 与BC 的关系,根据两直线垂直,可得∠AMB 的度数,根据直角三角形锐角的关系,可得∠ABM 与∠BAM 的关系,根据同角的余角相等,可得∠BAM 与∠CBF 的关系,根据ASA ,可得△ABE ≌△BCF ,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C ,由余角的性质得到∠BAM=∠CBF ,根据相似三角形的性质即可得到结论;(3)结论:AE=BF .证明方法类似(2);【题目详解】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如图2中,结论:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.(3)结论:AE=BF.理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴,∴AE=BF.【题目点拨】本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.24、(1)23;(2)13.【解题分析】(1)直接利用概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.【题目详解】解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是23;故答案为:23;(2)画树状图为:共有6种等可能的结果数,其中乙摸到白球的结果数为2,所以乙摸到白球的概率=26=13.【题目点拨】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.25、(1)证明见解析(2)﹣6π2【解题分析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【题目详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt △ODF 中,DF =63, ∴OD =DF •tan30°=6,在Rt △AED 中,DA =63,∠CAD =30°,∴DE =DA •sin30°=33,EA =DA •cos30°=9,∵∠COD =180°﹣∠AOC ﹣∠DOF =60°,由CO =DO ,∴△COD 是等边三角形,∴∠OCD =60°,∴∠DCO =∠AOC =60°,∴CD ∥AB ,故S △ACD =S △COD ,∴S 阴影=S △AED ﹣S 扇形COD =216093362360π⨯⨯-⨯=27362π-.【题目点拨】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S △ACD =S △COD 是解题关键.26、(1)5;(2)()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩;(3)167t =时,半径PF =127;t =16,半径PF =12. 【解题分析】(1)由矩形性质知BC =AD =5,根据BE :CE =3:2知BE =3,利用勾股定理可得AE =5;(2)由PF ∥BE 知AP AF AB AE=,据此求得AF =54t ,再分0≤t ≤4和t >4两种情况分别求出EF 即可得; (3)由以点F 为圆心的⊙F 恰好与直线AB 、BC 相切时PF =PG ,再分t =0或t =4、0<t <4、t >4这三种情况分别求解可得【题目详解】(1)∵四边形ABCD 为矩形,∴BC =AD =5,∵BE ∶CE =3∶2,则BE =3,CE =2,∴AE ===5.(2)如图1,当点P 在线段AB 上运动时,即0≤t≤4,∵PF ∥BE , ∴=,即=,∴AF =t ,则EF =AE -AF =5-t ,即y =5-t(0≤t≤4);如图2,当点P 在射线AB 上运动时,即t >4,此时,EF =AF -AE =t -5,即y =t -5(t >4); 综上,()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩;(3)以点F 为圆心的⊙F 恰好与直线AB 、BC 相切时,PF =FG ,分以下三种情况:①当t =0或t =4时,显然符合条件的⊙F 不存在;②当0<t <4时,如解图1,作FG ⊥BC 于点G ,则FG =BP =4-t ,∵PF ∥BC ,∴△APF ∽△ABE , ∴=,即=,∴PF =t ,由4-t =t 可得t =,则此时⊙F 的半径PF =;③当t >4时,如解图2,同理可得FG =t -4,PF =t ,由t -4=t 可得t =16,则此时⊙F 的半径PF =12.【题目点拨】本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.27、(1)12,14;(2)证明见解析;(3)34m n =. 【解题分析】(1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【题目详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽, ∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =. 故答案为:12,14. (2)如图11-中,作//DH CF 交AB 于H .2m =,3n =,∴tan ∠B=12CE AC BE BC ==,tan ∠ACE= tan ∠B=12AE CE = ∴BE=2CE ,12AE CE = 4BE AE ∴=,2BD CD =,设AE a =,则4BE a =,//DH AC ,∴2BH BD AH CD==, 53AH a ∴=,5233EH a a a =-=, //DH AF ,∴3223EF AE a DE EH a ===, 32EF DE ∴=. (3)如图2中,作DH AB ⊥于H .90ACB CEB ∠=∠=︒,90ACE ECB ∴∠+∠=︒,90B ECB ∠+∠=︒,ACE B ∴∠=∠,DA DB =,EAG B ∠=∠,EAG ACE ∴∠=∠,90AEG AEC ∠=∠=︒,AEG CEA ∴∆∆∽,2AE EG EC ∴=, 32CG AE =,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,224AC AD CD b =-,:4:3AC CD ∴=,mAC nDC =,::4:3AC CD n m ∴==,∴34m n =.【题目点拨】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.。
2023年浙江省丽水市中考数学模拟试卷附解析
2023年浙江省丽水市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图1表示正六棱柱形状的高大建筑物,图2表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在( )A .P 区域B .Q 区域C .M 区域D .N 区域2.布袋中装有 3个红球和 2个白球,从中任抽两球,恰好有 1 个红球、 1 个白球的概率是( )A .35B .30lC .12D .143.已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的( )A .南偏东50°B .南偏东40°C .北偏东50°D .北偏东40°4.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD=60°,BP=1,CD=32,则△ABC 的边长为( ) A .3 B .4C .5D .6 5.下列说法中正确的是( )A .一组对边平行的四边形是梯形B .矩形是特殊的等腰梯形C .有两个角相等的梯形是等腰梯形D .等腰梯形是轴对称图形 6.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( )A .同旁内角互补,两直线平行B .内错角相等,两直线平行C .对顶角相等D .平行于同一直线的两条直线平行7.根据下列条件,不能判定四边形ABCD 是平行四边形的是( )A .∠A :∠B :∠C :∠D=1:2:l :2B .∠A+∠B=180°,∠B+∠C=180°C .∠A+∠C=180°,∠B+∠D=180°D .∠A=∠C=45°,∠B=∠D=135°8.如图所示,下列条件中,不能判定AB ∥CD 的是( )A .∠PEB=∠EFDB .∠AEG=∠DFHC .∠BEF+∠EFD=180°D .∠AEF=∠EFD9.有两棵树,高度分别为6米、2米,它们相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米( )A .41B .41C .3D .910.在盒子里放有三张分别写有整式1a +、2a +、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A . 13B . 23C . 16D . 3411.下列分解因式错误的是( )A .15a 2+5a=5a (3a+1)B .-x 2-y 2= -(x 2-y 2)= -(x+y )(x-y )C .k (x+y )+x+y=(k+1)(x+y )D .a 3-2a 2+a=a (a-1)2 12.如图,△ABD ≌△DCA ,B 和C 是对应顶点,则∠ADB 和∠DAC 所对的边是( )A .A0和DOB .AB 和DC C .A0和BD D .D0和AC13.如图所示,在4×4的正方形网格中,∠l ,∠2,∠3的大小关系是( )A .∠l>∠2>∠3B .∠1=∠2>∠3C .∠l<∠2=∠3D .∠l=∠2=∠314.如图所示,是轴对称图形的个数有( )A .4个B .3个C .2个D .1个 15. 如图,数轴上A 点表示的数减去B 点表示的数,结果是( )A .8B .-8C .2D .-2 二、填空题16.手电筒、台灯发出的光线形成的投影是 . 17.抛物线 y=x 2+x-4与y 轴的交点坐标为 .18.如图,四个函数的图象分别对应的函数关系式是①2y ax =;②2y bx =;③2y cx =;④2y dx =,则 a 、b 、c 、d 的大小关系是 .19.仔细观察下列图案,并按规律在横线上画出合适的图形.20.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x (元),当x > 时,办理金卡购物省钱.21.已知5312b a x y +和2243a b x y --是同类项,那么a= ,b= .22.已知轮船顺水前进的速度为m 千米/时,水流速度为2千米/时,则轮船在静水中的速度是__________千米/时.23.代数式 4a 的意义可以解释为 .24.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为_________米. 三、解答题25. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若AB=2 , AC=3.求:(1)∠A 的度数; (2) ⌒CD 的长; (3)弓形CBD 的面积.26.如图,AB=AE,BC=ED,∠B=∠E,M是CD的中点,试猜想:AM与CD有什么关系?请加以证明.27.某厂加工学生书包,每人每天可裁剪书包 60个或缝制书包20个,现有技工 12人,问应安排几人裁剪、几人缝制,才能使裁剪出来的书包正好缝制完.28.在一个不透明的口袋中装有除颜色外一模一样的5个红球,3个蓝球和2•个黑球,它们已在口袋中被搅匀了,请判断以下事件是不确定事件、不可能事件、还是必然事件?(1)从口袋中任意取出一个球,是白球;(2)从口袋中一次任取两个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和黑球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、黑三种颜色的球都齐了.29.已知一个自然数的平方根是a±(a>0),那么与这个自然数相邻的下一个自然数的平方根是什么?21a+30.一个零件的形状如图所示,按规定∠A应等于90°,∠B和∠C分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,你能否运用三角形的有关知识说明这个零件不合格的理由?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.A5.D6.C7.C8.B9.B10.B11.BB13.B14.B15.B二、填空题16.中心投影17.(0,-4)18.a>b>c>d.19.略20.500元21.2,-122.m-223.青菜价格每千克a 元,买了4 千克青菜共需 4a 元24.22.5三、解答题25.(1)30度;(2)π32;(3)4331-π. 26.AM 垂直平分CD ,连结AC ,AD设裁剪、缝制的人数分别为x 、y 时,才能使裁剪出来的书包正好缝制完,则126020x y x y +=⎧⎨=⎩, 解这个方程组,得39x y =⎧⎨=⎩,经检验,符合题意. 答:裁剪、缝制的人数分别为 3、9时,才能使裁剪出来的书包正好缝制完. 28.(1)不可能事件;(2)不确定事件;(3)不确定事件;(4)不确定事件. 29..连结BC ,则∠DBC+∠DCB=180°-148°=32°,∴∠ABC+∠ACB=32°+32°+21°=85°,∴∠A=95°>90°所以这个零件不合格.。
【2022】浙江省丽水市中考数学模拟试卷(及答案解析)
浙江省丽水市中考数学模拟试卷(含答案)(时间120分钟满分:100分)一.选择题(共10小题,满分40分,每小题4分)1.计算﹣6+1的结果为()A.﹣5 B.5 C.﹣7 D.72.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.3.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B.C.D.4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小5.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较6.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.7.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°8.使(x2+px+8)(x2﹣3x+q)乘积中不含x2与x3项的p、q的值是()A.p=0,q=0 B.p=3,q=1 C.p=﹣3,q=﹣9 D.p=﹣3,q=19.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A.B.C.D.10.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t (min)之间的关系如图所示,给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min其中正确的个数为是()A.4个B.3个C.2个D.1个二.填空题(共6小题,满分30分,每小题5分)11.把多项式3mx﹣6my分解因式的结果是.12.若P(m+2n,﹣m+6n)和点Q(2,﹣6)关于x轴对称,则m=,n=.13.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.14.如图,直线PQ平行于△ABC的边BC所在的直线MN,∠ACN的平分线CE所在的直线交PQ于点D,若∠EDQ=50°,∠A=30°,则∠ABC=°.15.如图,点D,C的坐标分别为(﹣1,﹣4)和(﹣5,﹣4),抛物线的顶点在线段CD上运动(抛物线随顶点一起平移),与x轴交于A,B两点(A在B的左侧),点B的横坐标最大值为3,则点A的横坐标最小值为.16.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB 是平行四边形,则点C的坐标为.三.解答题(共8小题,满分20分)17.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.18.解不等式,并把它的解集表示在数轴上:5x﹣2>3(x+1)19.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,将△ABO向左平移6个单位长度得到△A1B1O1;将△A1B1O1绕点B1按逆时针方向旋转90°后,得到△A2B2O2,请画出△A1B1O1和△A2B2O2,并直接写出点O2的坐标.20.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.21.某市火车站北广场将于2016年底投入使用,计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600 棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?22.如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.23.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m+4与y轴交于点A(0,3),与x轴交于点B,C(点B在点C左侧).(1)求该抛物线的表达式及点B,C的坐标;(2)抛物线的对称轴与x轴交于点D,若直线y=kx+b经过点D 和点E(﹣1,﹣2),求直线DE的表达式;(3)在(2)的条件下,已知点P(t,0),过点P作垂直于x轴的直线交抛物线于点M,交直线DE于点N,若点M和点N中至少有一个点在x轴下方,直接写出t的取值范围.24.如图,已知抛物线y=ax2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式.(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交轴BC于点N,求MN的最大值.第26题图(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x 轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P 的坐标.参考答案一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法法则,|﹣6|>|1|,所以结果为负号,并把它们的绝对值相减即可.【解答】解:﹣6+1=﹣(6﹣1)=﹣5故选:A.【点评】本题考查的是有理数的加法,注意区别同号相加与异号相加,把握运算法则是关键.2.【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【解答】解:从上面看,是正方形右边有一条斜线,如图:故选:B.【点评】本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.3.【分析】直接利用概率的意义分析得出答案.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选:B.【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.4.【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.5.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=1.8,S乙2=0.7,∴S甲2>S乙2,∴成绩比较稳定的是乙;故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x>﹣1,解不等式②,得x≤1,所以不等式组的解集是﹣1<x≤1.故选:B.【点评】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画.<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示.“<”,“>”要用空心圆圈表示.7.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.8.【分析】把式子展开,找到所有x2和x3项的系数,令它们的系数分别为0,列式求解即可.【解答】解:∵(x2+px+8)(x2﹣3x+q),=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q,=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.故选:B.【点评】灵活掌握多项式乘以多项式的法则,注意各项符号的处理.9.【分析】先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.【解答】解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠DAE=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.故选:B.【点评】本题考查了扇形面积的计算:阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.10.【分析】由0≤t≤8所对应的图象表示小刚边走边聊阶段,根据速度=路程÷时间可判断①;由t=0时s=1000的实际意义可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④.【解答】解:①小刚边走边聊阶段的行走速度是=50(m/min),此①错误;②当t=0时,s=1000,即小刚家离学校的距离是1000m,此②正确;③当s=0时,t=10,即小刚回到家时已放学10min,此③正确;④小刚从学校回到家的平均速度是=100(m/min),此④正确;故选:B.【点评】本题考查利用一次函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.二.填空题(共6小题,满分30分,每小题5分)11.【分析】直接提取公因式3m,进而分解因式即可.【解答】解:3mx﹣6my=3m(x﹣2y).故答案为:3m(x﹣2y).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】直接利用关于x轴对称点的性质得出关于m,n的方程组,进而得出答案.【解答】解:∵P(m+2n,﹣m+6n)和点Q(2,﹣6)关于x轴对称,∴,解得:.故答案为:0,1.【点评】此题主要考查了关于x轴对称点的性质,正确记忆关于x 轴对称点的性质是解题关键.13.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色不同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】若要求∠ABC,可以利用三角形内角和定理,也可以利用三角形外角的性质,结合角平分线的定义和平行线的性质,问题可解决.【解答】解:方法一:∵直线PQ平行于△ABC的边BC所在的直线MN,∠EDQ=50°∴∠ECN=∠EDQ=50°∵CE是∠ACN的平分线∴∠ACN=2∠EDQ=100°∵∠ACB+∠ACN=180°∴∠ACB=180°﹣∠ACN=80°∵在△ABC中:∠A+∠ACB+∠ABC=180°(三角形三个内角的和是180°)∠A=30°∴∠ABC=180°﹣∠A﹣∠ACB=70°方法二:∵直线PQ平行于△ABC的边BC所在的直线MN,∠EDQ=50°∴∠ECN=∠EDQ=50°(两直线平行,同位角相等)∵CE是∠ACN的平分线∴∠ACN=2∠EDQ=100°又:∠ACN=∠A+∠ABC(三角形的外角等于和它不相邻的两个内角的和)∴∠ABC=∠ACN﹣∠A°∵∠A=30°∴∠ABC=100°﹣30°=70°【点评】此题重点考查三角形的角的相关计算,能熟练运用三角形的内角和定理、外角性质、角平分线的定义、平行线的性质是解决问题的基础.15.【分析】当顶点在D点时,B的横坐标最大,此时,DB两点的水平距离为4,故AB=8,同样当当顶点在C点时,A点的横坐标最小,即可求解.【解答】解:当顶点在D点时,B的横坐标最大,此时,DB两点的水平距离为4,∴AB=8,当顶点在C点时,A点的横坐标最小,∴A的横坐标最小值为﹣5﹣•AB═﹣9,故答案为﹣9.【点评】本题考查的是二次函数的性质,涉及到的对称轴位置,求解AB的长度是本题的关键.16.【分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE ⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三.解答题(共8小题,满分20分)17.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,再将x的值代入计算即可.【解答】解:原式=9x2﹣4﹣10x2+10x+x2﹣2x+1=8x﹣3,当x=﹣1时,原式=8×(﹣1)﹣3=﹣11.【点评】此题考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.18.【分析】先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.【解答】解:5x﹣2>3x+3,2x>5,∴.【点评】不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.19.【分析】分别作出平移变换和旋转变换后的对应点,再顺次连接即可得.【解答】解:如图所示,△A1B1O1、△A2B2O2即为所求:其中点O2的坐标为(﹣3,﹣3).【点评】本题主要考查作图﹣旋转变换、平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义、性质.20.【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【解答】解:(1)本次调查的学生共有:30÷30%=100(人);故答案为:100;(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)根据在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600 棵可以列出相应的二元一次方程组,从而可以解答本题;(2)根据安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:(1)设A,B两种花木的数量分别是x棵、y棵,,解得,,即A,B两种花木的数量分别是4200棵、2400棵;(2)设安排种植A花木的m人,种植B花木的n人,,解得,,即安排种植A花木的7人,种植B花木的6人,可以确保同时完成各自的任务.【点评】本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的二元一次方程组.22.【分析】(1)连接OE,如图,先证明OE∥AC,再利用切线的性质得OE⊥EF,从而得到EF⊥AC;(2)连接DE,如图,设.⊙O的半径长为r,利用圆周角定理得到∠BED=90°,则DE=BD=r,BE=r,再证明∠EDF=90°,∠DFE=60°,接着用r表示出DF=r,EF=r,CE=r,从而得到r+r=2,然后解方程即可.【解答】(1)证明:连接OE,如图,∵OB=OE,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∵EF为切线,∴OE⊥EF,∴EF⊥AC;(2)解:连接DE,如图,设.⊙O的半径长为r,∵BD为直径,∴∠BED=90°,在Rt△BDE中,∵∠B=30°,∴DE=BD=r,BE=r,∵DF∥BC,∴∠EDF=∠BED=90°,∵∠C=∠B=30°,∴∠CEF=60°,∴∠DFE=∠CEF=60°,在Rt△DEF中,DF=r,∴EF=2DF=r,在Rt△CEF中,CE=2EF=r,而BC=2,∴r+r=2,解得r=,即⊙O的半径长为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和垂径定理.23.【分析】(1)把A点坐标代入可求得m的值,可求得抛物线的表达式,令y=0可求得B、C两点的坐标;(2)由(1)可求得抛物线的对称轴,可求得D点坐标,再利用待定系数法可求得直线DE的表达式;(3)由条件可知当直线和抛物线的图象不能都在x轴上方,结合直线和抛物线的图象可求得t的范围.【解答】解:(1)∵抛物线y=mx2﹣2mx+m+4与y轴交于点A(0,3),∴m+4=3.∴m=﹣1.∴抛物线的表达式为y=﹣x2+2x+3.∵抛物线y=﹣x2+2x+3与x轴交于点B,C,∴令y=0,即﹣x2+2x+3=0.解得x1=﹣1,x2=3.又∵点B在点C左侧,∴点B的坐标为(﹣1,0),点C的坐标为(3,0);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1.∵抛物线的对称轴与x轴交于点D,∴点D的坐标为(1,0).∵直线y=kx+b经过点D(1,0)和点E(﹣1,﹣2),∴解得∴直线DE的表达式为y=x﹣1;(3)如图,当P点在D、B两点之间时,M、N都在x轴上方,∴点M、N至少有一个点在x轴下方的t的范围为:t<1或t>3.【点评】本题主要考查二次函数与一次函数的综合,在(1)中注意待定系数法的应用,在(2)中求得D点坐标是解题的关键,在(3)中注意数形结合思想的应用.24.【分析】(1)设直线BC的解析式为y=mx+n,将B(5,0),C (0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.【解答】解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,故直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c得,解得.故抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).【点评】本题考查了二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法.(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键.。
2023年浙江省丽水市中考数学复习模拟真题试卷附解析
2023年浙江省丽水市中考数学复习模拟真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图1的俯视图的是( )2.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 3.边长分别为3,4,5的三角形的内切圆半径与外接圆半径的比为( ) A .1∶5 B .2∶5 C .3∶5 D .4∶5 4.半径为4和2的两圆相外切,则其圆心距为( ) A .2B .3C .4D .65.在△ABC 中,∠C= 90°,若∠B=2∠A ,则tanB =( ) A 3B 3C 3 D .126.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ) A .11000B .1200C .12D .157.ABC ∆中,AD 是BC 边上高,已知2AB =AC =2,45B ∠=︒,则C ∠的度数是( ) A .30° B . 45° C . 60° D .90°8.以下列长度(同一单位)为长的四条线段中,不成比例的是( )A .2,5,10,25B .4,7,4,7C .2,21,21,4 D .2,5,25,529.下列说法中,正确的有( )(1)面积相等的两个圆是等圆;(2)若点到圆心的距离小于半径,则点在圆内;(3)圆既是中心对称图形,又是轴对称图形;(4)大于半圆的弧是优弧 A .1 个B .2 个C .3 个D .4 个10.抛物线2y ax bx c =++的图象如图所示,则不等式0bx a +>的解是( ) A .a x b>-B .a x b>C .a x b<-D .a x b<11.如图所示,0为□ABCD 对角线AC ,BD 的交点,EF 经过点O ,且与边AD ,BC 分别交于点E,F,若BF=DE,则图中的全等三角形有()A.2对B.3对C.5对D.6对12.用四边形地砖镶嵌地面,在每一个顶点的周围,这种四边形地砖的块数是()A.10块B.8块C.6块D.4块13.如图,身高为1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,那么树的高度为()A.4.8 m B.6.4 m C.8 m D.10 m14.如图是条跳棋棋盘.其中格点上的黑色为棋子.剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行.跳行一次称为一步.已知点A 为乙方一枚棋子.欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为()A.2步B.3步C.4步D.5步二、填空题15.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那最省事的办法是( )A.带①去B.带②去C.带③去D.带①②去16.已知一种卡车每辆至多能载4吨货物,现有38吨黄豆,若要一次运完这批黄豆,至少需要这种卡车辆.17.方程组53x yx y+=⎧⎨-=⎩的解也是方程10x-my=7的解,则m=_______.3318.如图,∠ACB=∠DFE ,BC=EF ,请你再补充一个条件: ,使得△ABC 与△DEF 全等.19.将下列二元一次方程变形,用含其中一个未知数的代数式表示另一个未知数,要求 选取最简单的方法.(1) 230x y --=: ; (2)2(1)0a b -+=: ; (3) 136x y-=: . 20.5的相反数是 ,-2的倒数是 ,-6的绝对值是 .三、解答题21.如图是一个食品包装盒的侧面展开图. (1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面积之和).22.画出函数y=x 2-2x-3图像,并利用图像回答:x 取何值时,y 随x 的增大而减小?23.已知□ABCD 中,AC ,BD 交于点O ,EF 经过点O ,与AB 交于点E ,与CD 交于点F.G ,H 分别是AO 和CO 的中点,求证:四边形EHFG 是平行四边形.24.用两根长度均为 20 cm 的绳子,分别围成一个正方形和圆,试猜想,正方形和圆的面积哪个大?25.为了普及法律知识,增强法律意识,某中学组织了法律知识竞赛活动,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分) 七年级 80 86 88 80 88 99 80 74 91 89 八年级 85 85 87 97 85 76 88 77 87 88 九年级8280 7878 819697888986(1)请你填写下表:平均数 众数中位数 七年级 85.587八年级。
2023年浙江省丽水市中考数学复习模拟试卷附解析
2023年浙江省丽水市中考数学复习模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.抛掷一枚普通的骰子(各个面分别标 12、3、4、5、6),朝上一面是偶数的概率为( ) A .16 B .12 C .13 D .142.菱形和矩形一定都具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .每条对角线平分一组对角3.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形4.圆的切线( )A .垂直于半径B .平行于半径C .垂直于经过切点的半径D .以上都不对5.某种商品的进价为 800 元,出售时标价为1200 元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( )A .6 折B .7 折C .8 折D .9 折6.已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )A .平均数但不是中位数B .平均数也是中位数C .众数D .中位数但不是平均数7. 如图,不能判定 a ∥b 是( ) A .∠1=∠4 B .∠1=∠3 C .∠2=∠3 D .∠3=∠48.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A .13B .12C .23D .349.下列计算中:(1)a m ·a n =a mn ; (2)(a m+n )2=a 2m+n ; (3)(2a n b 3)·(-61ab n -1)=-31a n+1b n+2;(4)a 6÷a 3= a 3 正确的有( )A .0个B .1个C .2个D .3个 10.有A 、B 、C 三座城市,已知A 、B 两市的距离为50 km ,B 、C 两市的距离是30 km ,那么 A .C 两市问的距离是( )A .80 kmB .20 kmC .40 kmD .介于20 km 至80 km 之间二、填空题11.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成35时,测得旗杆AB 在地面上的投影BC 长为23.5米,则旗杆AB 的高度约是 米(精确到0.1米)12.已如图所示,两个同样高度的建筑物 AB 和CD ,它们相距 8m ,在 BD 上一点E 处测得A 点的仰角为 60°,C 点的仰角为 30°,则两建筑物的高度为 m .13.已知,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影为3m ,同时测量出DE 在阳光下的投影长为6m ,则DE = m .14.一个三角形的边长为 3、4、5,另一个和它相似的三角形的最小边长是 6,则另一个三角形的大边长是 .15.在一幅长80 cm ,宽50 cm 的长方形风景画的四周镶一条金色纸边,纸边的宽度一样, 做成一幅长方形挂图,如果要使整个挂图的面积是 5400 cm 2,设金色纸边的宽为x (cm),那么x 满足的方程是 .16.如图,E 、F 是□ABCD 对角线BD 上的两点,请你添加一个条件: ,使四边形AECF 是平行四边形.17.“如果a >b ,那么a -1>b -1”这个命题是________命题.18.35(2.510)(1.610)⨯⨯= .19.不等式322104x x --+>的所有整数解的积为 . 20.如图,1l ⊥2l , 3l ⊥2l ,则1l 3l ,理由是 .21.如图,大圆半径为2cm ,小圆的半径为1cm ,则图中阴影部分的面积是__________cm 2.三、解答题22.已知一抛物线与x 轴的交点是)0,2( A 、B (1,0),且经过点C (2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.23.如图所示,已知点0是□ABCD 的对称中心,MN 经过点0,求证:OM=ON .24.如图,直线a 是一个轴对称图形的对称轴,画出这个轴对称图形的另一半,并说明这个轴对称图形是一个什么图形,它一共有几条对称轴.(不写作法,保留作.图痕迹.)25. :请你在3×3 的方格纸上,以其中的格点为顶点分别画出,三个形状不同的三角形(工具不限,只要求画出图形,不必写结论).26.经营户小熊在蔬菜批发市场上了解到以下信息内容:蔬菜品种 红辣椒 黄瓜 西红柿 茄子 批发价(元/公斤) 4 1.21.6 1.1 零售价(元/公斤) 51.42.0 1.3 他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完.请你计算出小熊能赚多少钱?27.根据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表或画树状图的方法表示所有可能的闯关情况;(2)求出闯关成功的概率.28.先化简下面的代数式再求值6a 2-(2a -1)(3a -2)+(a+2)(a -2),其中a=31.29.在△ABC 中,∠A+∠C=120°,∠B+∠C=110°,求三角形各内角的度数.30.现在各学校都采用政府统一采购行为,教育局对各个学校的校服征订也采用了统一征订的办法.在教育局的样品室里摆放着12个样品,有l2种不同的价位,分别为50,60,70,80,90,100,110,120,130,140,150,160元.现要对全校1500名学生统一征订校服,由于价格相差甚远,学校于是采取征求家长意见,制作了一张调查表,对家长的意见进行调查,请问,你该怎样设计这张调查表格(要求家长用打“√”的形式来表达).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.C5.B6.B7.D8.C9.C10.D二、填空题11.16.512. 2313.1014.1015.(802)(502)5400x x ++=(或 2653500x x +-=)16.BE =DF 等,(答案不惟一)17.真18.4210⨯19.20.∥;∠l=∠2=90°,同位角相等,两直线平行21.π2三、解答题22.(1)4222-+=x x y (2))29,21(--. 23.连结AC ,则AC 必过点0.证明△AOM ≌△CON(ASA),可得OM=0N 24.是一个正五角星,它共有五条对称轴. 如图所示:25.26.解:设小熊在市场上批发了红辣椒x 公斤,西红柿y 公斤. 根据题意,得44,4 1.6116.x y x y +=⎧⎨+=⎩,解这个方程组,得x=19,y=25. 25×2+19×5-116=29(元).答:他卖完这些西红柿和红辣椒能赚29元钱. 27.(1) A 1A 1A 2A 2B 1 B 2 B 1 B 2(2)P (闯关成功)=4128.932672-=-+a a . 29.∠A=70°,∠B=60°,∠C=50°30. 校服价格(单位:元)50 60 70 80 90 100 110 120 130 140 150 160 在您认可的 价格下打“√”。
2022年浙江省丽水市中考数学真题模拟试卷附解析
2022年浙江省丽水市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( ) A .12 个B .9 个C .7 个D .6个 2.抛物线24y x x =-的对称轴是( )A .直线x=2B .直线x=-2C .直线x=4D .直线x=-43.函数ky x =-中,x =y =-4,则 h 等于( )AB .-C .D 4.下列语句中是命题的有( )(1)两点之间线段最短;(2)不在同一直线上的三点确定一个平面;(3)画出△ABC 的高;(4)三个角对应相等的两个三角形不一定全等.A .1个B .2个C .3个D .4个5.已知22222()3()40a b a b +-+-=,则22a b +=( ) A .-l B .4 C .4或-l D .任意实数6.若m n >,则下列不等式中成立的是( ) A .m a n b +<+ B .ma nb < C .22ma na > D .a m a n -<-7.将直角三角形的三边都扩大3倍后,得到的三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .无法确定8. 用一副三角板画图,不能画出的角的度数是( ) A .15° B .75° C .145° D .165°9.用科学记数法表示0.00038得( )A .53810-⨯B .43.810-⨯C .43.810⨯D .30.3810-⨯ 二、填空题10.直角坐标平面内,一点光源位于A(0,6)处,线段CD ⊥x 轴,D 为垂足,C(-3,2),则CD 在x 轴上的影长为 ,点C 的影子的坐标为 .11.如图,AB 切⊙O 于B ,OA 交⊙O 于C ,若AC=15-,AB=2,则tanA= .12.如图,△ABC 中,点D在AB上,请填上一个你认为适合的条件 ,使得△ACD ∽△ABC . 13.在如图的方格纸中有一个菱形ABCD (A 、B 、C 、D 四点均为格点),若方格纸中每个最小正方形的边长为1,则该菱形的面积为 .14.如图,在等腰三角形ABC 中,AB=AC ,BC=2cm ,∠A=120°,将△ABC 绕着点A 旋转,当点B 落在点C 的位置时,点C 落在点D 处,则BD 的长为 cm .15.一个几何体的三视图如图所示,则这个几何体是 .16.若x +x 1=3,则x 2+21x=___________. 17.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE =__________cm .18.若去分母解方程3233x x x=---时,出现增根,则增根为 . 19.用内径为9 cm 的圆柱形玻璃杯(已装满水)向一个底面积为13.1×13.1 cm 2,内高为8.1 cm 的长方形铁盒内倒水,当铁盒装满水时,玻璃杯中水的高度下降 . (π取3.14,精确到0.1 cm)三、解答题20.如图,现有m 、n 两堵墙,两个同学分别在A 处和B 处,请问小明在哪个区域内活动才不会被这两个同学发现(画图用阴影表示)21.如图,已知⊙O 中弦 AC 、BD 交于点 P ,则图中相似三角形有多少对?说明理由.22.老师在同一直角坐标系中画了一个反比例函数的图象以及一个正比例函数y=-x 的图象,请同学们观察.同学甲、乙对反比例函数图象的描述如下:同学甲:与直线y= 一x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为 5请根据以上信息,写出反比例函数的解析式.23. 计算: 61510 1112133 (3)3(33)128(4)(22)(322)+; 281()17- 12()312; (7)(236)(326)⨯24.下图是一机器人的部分示意图.(1)在同一坐标系中茴出将此图形先向右平移7个单位,再向下平移1个单位的图形;(2)你能画出平移后的图形关于x 轴对称的图形吗?25.把下列各式分解因式:(1)3246x x -;(2)225a b ab b ++;(3)2(1)1x x --+26.计算:(1) -12-(-8); (2)213502()5+÷⨯-27.某车间有150名工人,每人每天加工螺栓15个或螺母20个,要使每天加工的螺栓与螺母刚好配套(一个螺栓配两个螺母),应如何分配加工螺栓、螺母的工人?28. 已知3a b +=,求:(1)2a b ++;(2)332a b ++.29.自由下落物体的高度 h(m)与下落时间 t(s)的关系为249h t =⋅.有一钢球从176.4m 的高空落下,它到达地面需要多长时间?30.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.请你解决下列问题:(l)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.C5.B6.D7.A8.C9.B二、填空题10.1.5,(-4.5,0)2112.∠1=∠B 或∠2=∠ACB 或AB AC AC AD =或AC 2=AD ·AB(只填一个) 13.1214.215.圆柱16.717.2.418.3=x 19.5.5 cm三、解答题20.如图,小明在阴影部分的区域就不会被发现.21.∵∠BAG=∠BDC,∠ABD=∠ACD ,∴△AB ∽△CDP,∵∠DAC=∠DBC,∠ADP=∠ACB. ∴△ADP ⊥△BCP.∴图中共有两对相似三角形. 22.∵反比例函数的图象与直线 y=一x 有两个交点,∴此图象必须经过四象限; ∵图象上任意一点到两坐标轴的距离的积都为5,∴||5k =,∴k.=一5 (+5舍去).∴5y x=-. 23.(1) 30;(23332182;(4)225)1517;(6)12;(7)126+图略25.22(23)x x -;(2)2(251)b a a ++;(3)(1)(2)x x -- 26.(1)-4; (2) 0.527.应分配 60个工人生产螺栓,90 个工人生产螺母. 28.(1)5 (2) 1129.6 s30.(1):(2)P (甲)=31;P (乙)=32.。
2023年浙江省丽水市中考数学第四次模拟考试试卷附解析
2023年浙江省丽水市中考数学第四次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A . 43B . 34C . 53D . 542.已知点A (0,-l ),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角度数( )A .一定大于90°B .一定小于90°C .一定等于90°D .以上三种情况都有可能3.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4)4.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )A .2.95元,3元B .3元,3元C .3元,4元D .2.95元,4元5.计算-4a (2a 2+3a-1)的结果是( )A .-8a 3+12a 2-4aB .-8a 3-12a 2+1C .-8a 3-12a 2+4aD .8a 3+12a 2+4a6.以下各题中运算正确的是( )A .2266)23)(32(y x y x y x -=+-B .46923232))((a a a a a a a +-=--C .2222512531009)2.03.0(y xy x y x ++=-- D .ca bc ab c b a c b a ---++=--2222)(7.下列各图中,射线OA 表示北偏东42º方向的是 ( )A B C D8.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是 ( )A .120元B .125元C .135元D .140二、填空题9.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 . 10.如图,在直角△ABC 中,∠C =90°,若AB =5,AC =4,则sin ∠B = .11.Rt △ABC 中,若∠C= 90°,AB = 5,BC=3,则 sinB = .12.如图所示,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,要使△ABE ∽△ACD ,需添加一个条件是 (只要写一个条件) .13. 如果二次函数y =x 2-3x -2k,不论x 取任何实数,都有y>0,则k 的取值范围是_______. k<-98 14.若二次函数2y ax =的图象经过(1,一2),则a= .15.要使一个平行四边形为矩形,只需增加一个条件 即可.16.当2x =-时,二次根式122x -的值为 . 17.若代数式29x m ++是完全平方式,那么m .18.约分23326x x x--,得 . 19.从 1,2,3,4,5 中任选两个数,这两个数的和恰好等于7 有 种可能.20.在统计分析数据时,常用的统计图有 .21.程序相应的算式是 .三、解答题22.如图所示是由小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块中个数. 请画出相应几何体的主视图和左视图.红红 红白白 蓝 A B C D E O23.如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的应高为2米,求旗杆的高度.24.已知:如图,△PQR 是等边三角形,∠APB =120°.(1)求证:△PAQ ∽△BPR ;(2)求证:2QR AQ RB =⋅.25.一池塘内有水2000 m 3,现用抽水机抽水,每小时可抽水200 m 3.(1)求池塘中余水量y(m 3)与抽水时间x(h)之间的函数解析式;(2)求自变量x 的取值范围;(3)画出它的图象.26.如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.3y kx =- y OM 1 1 2-27.某篮球运动员三分球命中率约为50%,二分球命中率约为70%,罚球命中得1分,命中率约为80%,如果该运动员在一场比赛中投三分球6次,投2分球10次,罚球10次.估计他在这场比赛中大概得几分?28.不解方程组522008200833x yx y⎧-=⎪⎪⎨⎪+=⎪⎩,试求代数式229156x xy y--的值.29.已知正方体的表面积是 24cm2,求它的棱长.30.在如图所示的立体图形中,它们分别有几个面?哪些面是平面?哪些面是曲面?面面相交的地方形成了几条线?这些线是直的还是曲的?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.C4.A5.C6.C7.D8.B二、填空题9.110.2411.54512. ∠B=∠C(答案不唯一)13.14.-215. 对角线相等或有一个直角等16.4317.6±18.12x 19.220.条形统计图,折线统计图,扇形统计图21.-3.52+5三、解答题22.如图.23.过点C 作CE ⊥AB 于点E ,5.1211=AE ,AE=14,旗杆AB=14+2=16米. 24.(1)∵△PQR 是等边三角形,∴∠QPR =∠PQR=∠PRQ=60°,PQ=PR=QR ∵∠APB= 120°, ∴∠1+∠2=60°. ∵∠1+∠3=60°,∴∠2=∠3,∵∠PQA=∠PRB=120°,∴△PAQ ∽△BPR.(2)∵△PAQ ∽△BPR ,∴AQ PR PQ RB =,即AQ QR QR RB=,∴2QR AQ RB =⋅ 25.(1)y=2000-200x ;(2)0≤x ≤10;(3)图略26.解:由图象可知,点(21)M -,在直线3y kx =-上,231k ∴--=.解得2k =-.27.31分.28.529.2 cm30.图①由三个面构成;两个平面一个曲面;面与面相交成两条曲线.图②是由一个曲面和一个平面组成;面与面相交形成一条曲线.图③由六个平面构成;面与面相交形成12条直线.。
2023年浙江省丽水市中考数学全真模拟试卷附解析
2023年浙江省丽水市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸, 求出这支蜡烛在暗盒 中所成像 CD 的长( )A .16cmB .13cm C .12cm D .1 cm2.视线看不到的地方称为( )A .盲点B .盲人C .盲区D .影子 C3.如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在( )A .△ACEB .△BFDC .四边形BCED D .△ABD D4.函数22(2)4y x =-+的最小值是( )A .2B .4C .8D .23 5.如图,下列说法中。
正确的是( )A .∠1与∠4是同位角B .∠l 与∠3是同位角C .∠2与∠4是同位角D .∠2与∠3是同位角6.已知a b <,则下列不等式一定成立的是( )A .33a b +>+B .22a b >C .a b -<-D .0a b -< 7.直线142y x =-与x 轴的交点坐标为( )A .(0,一4)B .(一4,0)C .(0,8)D .(8,O ) 8.从长度为 1,3,5,7,9 的五条线段中任取三条,组成三角形的机会是( ) A . 50%B . 30%C . 10%D . 100% 9.已知∠α= 35°,则∠α的余角是( )A . 55°B .45°C .145°D .135° 10.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.5 11.若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( )A .10B .-10C .6D .-6 二、填空题12.小芳晚上到人民广场去玩,她发现有两人的影子一个向南,一个向北,于是她肯定的说:“广场上的大灯泡一定位于两人 ”. 13.下列函数中,y 随x 的增大而减小的有 .(填写序号)①y=3x ②y=2x -1 ③y=-x+5 ④y=4-x 3 ⑤y=1x (x>0) ⑥y=3x(x<0) 14.如图,在等腰梯形ABCD 中,AD BC ∥,60B ∠=,AD AB =.点E F ,分别在AD ,AB 上,AE BF =,DF 与CE 相交于P ,则DPE ∠= .15.如图,已知AB =AC ,BE =CE ,延长AE 交BC 于D ,则图中全等三角形共有 对.16.将50个数据分成三组,其中第一组与第三组的频率之和是0.7,则第二组的频率是 ,第二组的频数是 .17.如图所示,是两位同学五子棋的对弈图,黑棋先下,现轮到白棋下.如你是白棋,认为应该下在 .18.△ABC 平移到△DEF ,若AD = 5,则CF 为_____________.19.若一个三角形的三个内角这比为2:3:4,则三个内角中最小的内角为 .20.多项式22358ab a b M -++的结果是27a ab -,则M=________________. 226108a ab b --21.填空:(1)温度由 t ℃下降2℃后是 ;(2)今年李华 m 岁,去年李华 岁;5年后李华 岁;(3)a 的15%减去 70 可以表示为 ;(4)某商店上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(5)明明用 t(s)走了s(m),那么他的速度是 m/s.22.两个数的积是-1,其中一个数是1-,则另一个数是.35三、解答题23.菱形的一边与它的两条对角线所构成的两角之比为5:4,求菱形的各内角.24.已知:⊙0的半径为r,点0到直线l的距离为d,且r,d满足方程0-r,试-d+22=()47判断⊙0与直线l的位置关系.25.某食品店购进2000箱苹果,从中任取10箱,称得重量分别为(单位:千克):16 16.5 14.5 13.5 1516.5 15.5 14 14 14.5若每千克苹果售价为2.8元,则利用样本平均数估计这批苹果的销售额为多少元?26.如图所示,△ABC是等腰直角三角形,点D在BC上,将△ABD按逆时针旋转至△AFE 的位置,问:(1)此旋转的旋转中心是哪一个点?(2)此旋转的角度为多少度?(3)若点M为AB的中点,则旋转后点M转到了什么位置?27.如图所示,△ABC与△DFE全等,AC与DE是对应边.(1)找出图中相等的线段和相等的角;(2)若BE=14 cm,FC=4 cm,求出EC的长.28.先化简,再求值:523[52(2)3]x y x x y x y-+---+,其中12x=-,16y=- .29.计算:(1)23(2)(2)-⨯-;(2)25(3)⨯-;(3)42(2)(4)---;(4)22(32)32-⨯-⨯30.30.00l0.0l-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.3.4.A5.D6.D7.D8.B9.A10.A11.D二、填空题之间的上方13.③④⑤⑥14.120°15.316.0.3,15 17.(2,F)或(6,B) 18.519.40°20.21.(1) (t-2) (2)m-1,m+5 (3)15%a- 70 (4)2a+10 (5)s t22.516三、解答题23.100°,80°,l00°,80°24.相离.25.84 000元26.(1)点A;(2)45°;(3)AF的中点27.(1)BF=CE,AC=DE,AB=DF,BC=EF,∠A=∠D,∠B=∠EFD,∠ACB=∠E;(2)5 cm原式=113()3126x y--=--+⨯=29.(1)-32 (2) 45 (3)0 (4)24 30.。
2023年浙江省丽水市中考数学名师模拟试卷附解析
2023年浙江省丽水市中考数学名师模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列命题中,假命题的是( ) A .圆的切线垂直于过切点的半径 B .垂直于切线的直线必经过圆心C .若圆的两条切线平行,那么经过两切点的直线必经过圆心D .经过半径的外揣并且垂直于这条半径的直线是圆的切线2.如图,在四边形 ABCD 中,∠A=60°,∠B=∠D= 90°,BC= 2,CD=3,则 AB=( ) A .4B .5C .23D .833.下列说法错误的是( ) A .错误的判断也是命题 B .命题有真命题和假命题两种 C .定理是命题 D .命题是定理4.用配方法解方程2230x x --=时,配方所得的方程是( ) A .2125()46x i -=B .2123()416x += C .2123()43x -= D .217()42x +=5.下列不等式组的解,在数轴上表示为如图所示的是( ) A .1020x x ->⎧⎨+≤⎩B .1020x x -≤⎧⎨+<⎩C .1020x x +≥⎧⎨-<⎩D .1020x x +>⎧⎨-≤⎩6.等腰三角形的一个外角是80°,则其底角是( ) A .40°B .100°或40°C .100°D .80°7.下列判断正确的是( ) A .若0m <,则57m m < B .若x 为有理数,则2257x x <- C .若x 为有理数,则250x +> D .若57m m -<,则0m <8.甲、乙两把不相同的锁,各配有 2 把钥匙,那么从这4 把钥匙中任取 2 把钥匙,打开甲、乙两把锁的概率为()A.12B.13C.23D.56二、填空题9.Rt△ABC中,斜边与一直角边比为25:7,则较小角的正切值为.10.已知某地区 2003 年的人口为 10 万,若人口自然增长率为 x,2005 年的人口为y万,则y 与 x之间的函数关系式是.11.如图是某市一景点 6月份 1~10 日每天的最高温度折线统计图,由图信息可知该景点这10天的最高温度的平均数是 .12.把命题“两个奇数的和必为偶数”改写成“如果…那么…”的形式为 . 13.在直角三角形中,两个锐角的差为20°,则两个锐角的度数分别为.14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形的边长为8cm,则正方形A,B,C,D的面积和是 cm2.15.如图,在方格纸上有一个顶点都在格点上的△ABC,则这个三角形是________三角形.16.洋洋有5位好朋友,他们的年龄(单位:岁)分别为15,l5,16,l7,17,其方差为0.8,则三年后,这五位好朋友年龄的方差为 .17.已知等腰三角形的两条边长为3和5,求等腰三角形的周长.18.长方形的长为2ab(m),面积为22a b(m2),则这个长方形的宽为 m,周长为 m. 19.某件商品原价为a 元,先涨价20%后,又降价20%,现价是元.20.3227xy z的次数是,系数是.三、解答题21.如图所示是由小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块中个数. 请画出相应几何体的主视图和左视图.22.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B 餐厅用昝的概率.23.运用三角形相似的知识,请你设计一个方案测量一条河流的宽度AB(画出示意图,并简要说明理由).24.如图,为了测量有小河相隔的 A.B 两点间的距离,可先在点A、B处立上标杆,在适当的位置放一水平桌面,铺上白纸,在纸上选一点 0,立一大头针,通过观测,再在纸上确定点C,使0、C、A 在同一直线上,并且OA的长是OC 长的 100倍,间接下来如何做,才能得出A.B两点间的距离?25.如图所示.在△ABC中,∠BAC=120°,AB=AC,BC=4,请你建立适当的平面直角坐标系,并写出A、B、C各点的坐标.26.在某城市中,体育场在火车站以西4000 m再往北2000 m处,华侨宾馆在火车站以西3000 m再往南2000 m处,汇源超市在火车站以南3000 m再往东2000 m处,请建立适当的平面直角坐标系,分别写出各地的坐标.27.已知关于x的方程5(2)324(1)+-=--的解为正数,试确定k的取值范围.x k x kk<-628.如图是由 16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑. 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑;使它们成为轴对称图形.29.如图所示,已知△ABE≌△ACE,D是BC的中点,你能说明△BDE≌△CDE吗?30.用牙签按下图方式搭图.(1)根据上面的图形,填写下表:(2)第n (1)3;9;18;30;45;(2)()213+=n n s①②③【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.D4.A5.D6.A7.C8.C二、填空题9.710.242=+11.y x10(1)26.4℃12.如果两个数是奇数,那么它们的和必为偶数13.55°,35°14.6415.等腰16.0.817.11或l318.1ab,5ab219.0.96a20.4,87三、解答题21.如图.22.所有可能出现结果如下:(1)甲、乙、丙三名学生在同一餐厅用餐的概率是14;(2)甲、乙、丙三名学生中至少有一人在 B餐厅用餐的概率是7823.略.24.连结 OB,在纸上确定 D,使0、D、B在同一直线上,并且OB 长是 OD 长的 100倍,连结 CD,则OC ODAO OB=,∠O=∠OM∴△OCD∽△OAB.∴OC1100CDAB OA==,∴量出 CD 的长,它的 100倍就是AB 的长.25.答案不唯一,略26.略27.6k<-28.29.略30.。
最新浙江省丽水市中考数学综合模拟试卷附解析
浙江省丽水市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.小红把班级勤工助学挣得的班费 500 元按一年期存入银行,已知年利率为 x ,一年 到期后, 银行将本金和利息自动按一年定期转存,设两年到期后,本利和为 y 元,则y 与x 之间的函数关系式为( )A .25y x x =+B .2500y x =+C .2500y x x =+D .2500(1)y x =+2.下列语句中,属于命题的是( )A .任何一元二次方程都有实数解B .作直线AB 的平行线C .1与2相等吗D .若229a =,求a 的值3.已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是( )A .abB .a bC .a b +D .a b -4.代数式1m -的值大于一 1,又不大于 3,则m 的取值范围是( )A .13m -<≤B .31m -≤<C .22m -≤<D .22m -<≤ 5.三角形的三边长a 、b 、c 满足等式(22()2a b c ab +-=,则此三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 6.下列说法中,正确的是( )A .图形平移的方向只有水平方向和竖直方向B .图形平移后,它的位置、大小、形状都不变C .图形平移的方向不是唯一的,可向任何方向平行移动D .图形平移后对应线段不可能在一条直线上7.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今年小刚取出一年到期的本息时,交纳了l3.5元的利息税,则小刚一年前存入银行的本金为 ( )A .1000元B .2000元C .4000元D .3000元8.实数a ,b 在数轴上的位置如图所示,那么下列式子中不成立的是( ) A .a b > B .a b < C .0ab > D .0a b >9.32332(3)(1)(1)---⨯-+-的值为( )A .-30B .0C .-11D .24二、填空题10.如图,在黑暗的房间里,用白炽灯照射一个足球,则球在地面上的投影是一个 ,当球离地面越来越近时,地面上的投影会 .11.如图所示, ∠1、∠2、∠3、∠4 之间的关系是 .12.已知二次函数y =ax 2 +bx+c 的图象如图所示,则点P (a ,bc )在第 象限.13.从围棋盒中抓出一大把棋子,所抓出棋子的个数是奇数的概率为 .14.如图,AE=AD ,请你添加一个条件: ,使△ABE ≌△ACD (图形中不再增加其他字母).15. 甲、乙两人分别从相距s(km)的A ,B 两地同时出发,相向而行,已知甲的速度是每小时m(krn),乙的速度是每小时n(km),则经过 h 两人相遇.16.积的乘方等于积中各个因式分别 ,再把所得的 . 17.已知∠A=40°,则∠A 的余角是 .18.如果一个角是30°,在10倍放大镜下观察,这个角应是 .19.当a = 时,关于x 的方程22x 146x a +--=的解是0. 20.已知142n a b --与21n a b +是同类项,则2n m -= .21.大于-3 且小于 4 的整数有 , 并将它们表示在数轴上.22.党的“十六大”提出全面建设小康社会,加快推进社会主义现代化,力争国内生产总值到2020年比2000年翻两番,在21世纪的头20年(2001~2020年),要实现这一目标,以十年为单位计算,设每十年的国内生产总值的增长率都是x ,则可列方程 .三、解答题23.已知y 是x 的反比例函数,当x=3时,y=4,则当x=2时求函数y 的值.6.24.如图,正方形网格中的每个小正方形边长都是1,•每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个梯形,使其面积为6.25.已知:如图,□ABCD各角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形.26.如图,DB是△ABC的高,AE是∠BAC的角平分线,∠BAE=26°,求∠BFE的度数.27.如图所示是视力表中的一部分.以第一个图形为基本图形.请分析后三个图形可以根据基本图形作怎样的变换得到.28.一班36个学生的期末考试与取得各等成绩的人数如条形统计图所示,请据此画出相应的扇形统计图,并在扇形统计图上标明各等学生在全班学生中所占的百分比.29.佩佩所在的班级共有50名学生,在一次教学考试中,女生的及格率为 80%,男生的及格率为75%,全班的及格率为 78%,问这个班的男、女生各有多少人?30.设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数? 2514x =-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.D4.C5.B6.C7.D8.B9.B二、填空题10.圆,变小∠2>∠1=∠4>∠3.12.三13.1214. 答案不唯一,如AB =AC15.nm s +16. 乘方,幂相乘17.50°18.30°19.320.321.-2,-1,0,1,2,3,图略22.2(1)4x +=三、解答题23.24.解:图形略,答案不惟一.25.略26.64°27.28.略29.设这个班男生有x 人,则女生有(50x -)人.由题意,得75%80%(50)78%50x x +-=⨯,解得20x =,∴5030x -=(人). 答:这个班男生20人,女生 30人.30.。
丽水市中考模拟考试数学试卷及答案
2017年初中毕业生毕业升学适应性检测数 学 试 题 卷温馨提示:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分.2.答题前,请在答题卷的相应区域内填写学校、班级、姓名、考场号、座位号、以及填涂学生检测号等.3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应. 一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.下列数中,与-2的和为0的数是………………………………………………………( ▲ )A .2B .-2C .21D .21- 2.计算()-a 23的结果是……………………………………………………………………( ▲ )A .a 5B .-a 5C .a 6D .-a 63.下列四个几何体中,主视图与其它三个不同的是……………………………………( ▲ )4.已知实数0<a ,则下列事件中是必然事件的是………………………………………( ▲ ) A .03<+a B .03<-a C .03>a D .03>a5.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 5 6 人数25431则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )元.A .3,3B .2,3C .2,2D .3,56.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是……………( ▲ ) A .8B .12C .16D .18 7.在矩形ABCD 中,2,2==BC AB ,以A 为圆心,AD 为半径 画弧交线段BC 于E ,连结DE ,则阴影部分的面积为 ( ▲ )DEABC第7题图A. B. C. D.第14题图第16题图BAC第15题图B AA ′CDA .22-πB .222-πC .2-πD .22-π8.下列四个命题中,真命题是……………………………………………………………( ▲ )A .对角线互相垂直平分的四边形是正方形B .对角线相等且互相平分的四边形是矩形C .对角线垂直且相等的四边形是菱形D .四边都相等的四边形是正方形9.若A (x 1,y 1)、B (x 2,y 2)是一次函数2y ax x =+-图象上的不同的两点,记m =(x 1-x 2)( y 1-y 2),则当m <0时,a 的取值范围是…………………………………………………( ▲ ) A .a <0B .a >0C .a <-1D .a >-110.如图正方形ABCD 的边长为2,点E ,F ,G ,H 分别在AD ,AB ,BC ,CD 上,且EA =FB=GC =HD ,分别将△AEF ,△BFG ,△CGH ,△DHE 沿EF ,FG ,GH ,HE 翻折,得四边形MNKP ,设AE =x (01x <<),S 四边形MNKP =y ,则y 关于x 的函数图象大致为( ▲ )二、填空题(本题由6小题,每小题4分,共24分) 11.3-的倒数是 ▲ .12.口袋内装有一些除颜色外完全相同的红球3个,白球5个,黑球2个,从中任意摸一球,那么摸到红球的概率是 ▲ .13.设n 为整数,且n <20<n +1,则n = ▲ .14.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB 的度数为 ▲ .15.如图,在直角△ABC 中,∠C =90o ,∠A =30o ,AB ∥y 轴,且AB =6,顶点B ,C 在反比例函数(0)ky x x=>的图象上,且点B 的横坐标为23k = ▲ .AB CEMNKPxy O1 42xy O4 21 xyO1 4 2xy O1 4 2A .B .C .D .第10题图16.如图,抛物线y =x 2+2x 与直线y =12x +1交于A ,B 两点,与直线x =2交于点P ,将抛物线沿着射线AB.(1)平移后的抛物线顶点坐标为 ▲ ;(2)在整个平移过程中,点P 经过的路程为 ▲ .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:9)21()32(60cos 20+--+︒-π18.(本题6分)先化简,再计算:.12),121(1212+=-+÷+-+a a a a a 其中19.(本题6分)如图,已知∠MON =25°,矩形ABCD 的边BC在OM 上,对角线AC ⊥ON . (1)求∠ACD 度数;(2)当AC =5时,求AD 的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)20.(本题8分)某市为了解高峰时段从总站乘16路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:14,23,16,25,23,28,26,27,23,25. (1)计算这10个班次乘车人数的平均数;(2)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?21.(本题8分)如图,AB 是⊙O 的直径,P A 是⊙O 的切线,点C 在⊙O 上,CB ∥PO .第19题图(1)判断PC 与⊙O 的位置关系,并说明理由; (2)若AB = 6,CB = 4,求PC 的长.22.(本题10分)如图(1),公路上有A ,B ,C 三个车站,一辆汽车从A 站以速度v 1匀速驶向B 站,到达B 站后不停留,以速度v 2匀速驶向C 站,汽车行驶路程y (千米)与行驶时间x (小时)之间的函数图像如图(2)所示. (1)当汽车在A ,B 两站之间匀速行驶时,求y 与x 之间的函数关系式及自变量 的取值范围; (2)求出v 2的值;(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始 时x 的值.23.(本题10分)问题背景 如图1在△ABC 中,BC =4,AB =2AC .问题初探 请写出任意一对满足条件的AB 与AC 的值:AB = ▲ ,AC = ▲ . 问题再探 如图2,在AC 右侧作∠CAD =∠B ,交BC 的延长线于点D ,求CD 的长. 问题解决 求△ABC 的面积的最大值.24.(本题12分)如图,平面直角坐标系中,点O 为坐标原点,矩形OABC 的边OA ,OC 在坐标轴上,点B (12,4),点D (3,0),点E (0,2),过点D 作DF ⊥DE ,交AB 于点F ,连结EF ,将ΔDEF 绕点E 逆时针方向旋转,旋转角度为θ(0°<θ<180°). (1)求tan ∠DFE .(2)在旋转过程中,当ΔDFE 的一边与直线AB 平行时,求直线AB 截ΔDFE 所得的三角形的面积.(3)在旋转过程中,当∠DFE 的两边所在直线与y 轴围成的三角形为等腰三角形时,求点F 的坐标.ABC图1ABCD图2第23题图第22题图AB C图(1)y (千米)420 300 100 01 4x (小时)图(2)备用图第24题图2017年初中毕业生毕业升学适应性检测数 学 答案一、选择题1~5 ADDBB 6~10 CABCD 二、填空题 11.31-; 12. 0.3; 13. 4; 14. 10°;; 16. (1)(2,12), (2)618三、简答题 17.12;18.11a -;19. (1)25°(2)2.1 20. (1)23 (2)138021.(1)相切,(2)2; 22.(1)y =100x (0≤x ≤3) (2)120千米每小时 (3)2.523.(1)满足443AC <<即可;(2)43;(3)163. 24.(1)34; (2)s 1=132661- s 2=38s 3=31310677-(3)4)62,6()3,12()26,30()515-不用注册,免费下载!。
2022年浙江省丽水市中考数学模拟试题附解析
2022年浙江省丽水市中考数学模拟试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.圆O 的直径为12cm ,圆心O 到直线l 的距离为7cm ,则直线l 与圆O 的位置关系是( )A .相交B .相切C .相离D .不能确定2.如图,等边ABC △的边长为12cm ,内切⊙O 切BC 边于D 点,则图中阴影部分的面积为( )A .2πcmB .332πcmC .22πcmD .32πcm3.下列图形中,中心对称图形是( )A .B .C .D . 4.四边形的四个内角的度数之比是2:1:1:2,则此四边形是( )A .任意四边形B .任意梯形C .等腰梯形D .平行四边形 5.如图所示,六边形ABCDEF 中,CD ∥AF ,AB ⊥BC ,DE ⊥EF ,∠D=∠A ,∠C=150°.求∠F 的度数.( )6.若0ab >,0a b +<0,则点P (a ,b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.从长度为1,3,5,7的四条线段中任取三条,组成三角形的机会是( )A .10%B .25%C .50%D .100% 8.把多项式224n m -+分解因式,其结果正确的是( )A .(2)(2)m n m n +-B .2(2)m n +C . 2(2)m n -D .(2)(2)n m n m +- 9.将如图所示的图案绕其中心旋转n °时与原图案完全重合,那么n 的最小值是( )A .60B .90C .120D .180二、填空题10.在方格纸中,每个小格的顶点称为格点,以格点连线为边的三角形叫格点三角形.在如图5×5的方格中,作格点△ABC和△OAB相似(相似比不为1),则点C的坐标是____________.解答题11.已知,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影为3m,同时测量出DE在阳光下的投影长为6m,则DE= m.12.已知⊙O的半径OA=1,弦 AB、AC 的长分别是2、3,则∠BAC的度数为.13.将一长方形的纸片按如图方式折叠,BC,BD为折痕,则∠CBD= 度.14.如图所示,一道斜坡的坡比为 1:8,已知 AC= 16,则斜坡 AB 的长为.15.如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为.16.如图,点A、B、C在直线l上,则图中共有______条线段.17.两个数的积是-1,其中一个数是135-,则另一个数是.18.在数轴上距原点2.5个单位长度的点所表示的数是 .三、解答题19.已知抛物线2y ax=经过点A(12,-2)(1)求a的值,并写出这个二次函数的解析式;(2)说出这个二次函数的顶点坐标、对称轴、开口方向.20.一个无盖的长方体木箱的体积是400O0cm2,(1)如果它的底面积为acm,高为hcm,求h 关于a的函数关系式.(2)如果这个长方体的底是边长为xcm 的正方形,求它的表面积S (cm 2)关于x 的函数关系式. (1)h=40000a ;(2)S=x 2+160000x.21.如图,菱形ABCD 中,BE ⊥AD ,BF ⊥CD ,E 、F 为垂足,AE=ED ,求∠EBF 的度数.22.根据频数直方图(如图)回答问题:(1)总共统计了多少名学生的心跳情况?(2)哪些次数段的学生数最多?占多大比例?(3)如果半分钟心跳次数为x ,且3039x ≤次属于正常范围,心跳次数属于正常的学生占多大比例?(4)说说你从频数折线图中获得的信息.23.如图所示,已知:AD=BC ,AD ∥BC , AE ⊥BD ,CF ⊥BD ,E ,F 为垂足.求证:四边形AECF 是平行四边形.24.如图,在△ABC中,∠ACB=90°,CA=CB,CD⊥AB,垂足是D,E是AB上一点,EF ⊥AC,垂足是F,G是BC上一点,CG=EF.求证:△DFG是等腰直角三角形.25.某单位于“三·八”妇女节期间组织女职工到温泉“星星竹海”观光旅游,下面是领队与旅行社导游就收费标准的一段对话:领导:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领导:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团游览“星星竹海”结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?26.如图,在四边形ABCD中,AC⊥DC,∠ADC的面积为30cm2,DC=12 cm ,AB=3cm ,BC=4 cm,求△ABC的面积.27.解下列分式方程: (1)2711x x x=+--; (2)11222x x x -=-++.28.请验证下列等式是否成立:33332333333333333232434352526262;3131414153536464++++++++====++++++++;;; (1)请你写出一个符合上面规律的一个式子(不能与上面的重复);(2)探索其中的规律,再写出一个类似的等式,并用含m ,n 的等式表示这个规律(m ,n 为整数).29.解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,30.一支考古队在某地挖掘出一枚正方体古代金属印章,其棱长为 4.5厘米,质量为1069克,则这枚印章每立方厘米约重多少克(结果精确到0.01克)?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.C5.150°6.C7.B8.A9.C二、填空题10.(4,0)或(3,2)11.1012.75°或15°13.9014..52 16. 317.51618. 2.5±三、解答题19.(1)把点(12,-2) 的坐标代入2y ax =得212()2a -= ∴a =—8.∴这个二次函数的解析式28y x =-(2)顶点为 (0,0),对称抽为 y 轴.因为a=-8<0,所以开口向下.20.21.60°22.⑴总共统计了 27人的心跳情况;(2)30~33这个次数段的学生数最多,约占26% ;(3)约占56%;(4)从折线统计图中可知:呈中间高两边低的趋势,就是说心跳正常的人数较多.23.先证明△ADE ≌△CBF(AAS),得AE=CF ,则AE ∥CF24.证△AFD ≌△CGD ,FD=GD ,∠ADF=∠CDG ,得∠FDG=90°25.解:设该单位这次参加旅游的共有x 人. 100×25<2700,∴x>25.依题意,得[100-2(x-25)]x=2700.解得x 1=30,x 2=45.当x=30时,l 00-2(x-25)=90>70,符合题意.当x=45时,100-2(x-25)=60<70,不符合题意,舍去. ∴x=30.答:该单位这次参加旅游的共有30人26.6cm 227.(1) 1.5x =;(2) 4x =-28.(1)如:333373737474++=++ (2)3333()()m n m n m m n m m n ++=+-+- 29.11.x y =⎧⎨=⎩, 30. 正方体的棱长为 4.5 厘米,所以其体积为34.5立方厘米.因印章的重量为1069克,因此这枚印章每立方厘米的重量约为31069 4.511.73÷≈(克)。
2023年浙江省丽水市中考数学摸底测试试卷附解析
2023年浙江省丽水市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )A .B .C .D .2.如图①所示,为五角大楼示意图,图②是它的俯视图,小红站在地面上观察这个大楼,若想看到大楼的两个侧面,小红应站在( )A .A 区域B .B 区域C .C 区域D .三个区域都可以3.有一实物如图所示,那么它的主视图是( )A .B .C .D .4.己如图,BC 是⊙O 的直径,P 是 CB 延长线上的一点,PA 切⊙O 于点 A ,如果3PA =,PB= 1,那么∠APC 等于( )A .15°B .30°C .45°D .60°5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,OD ∥AC ,下列结论错误..的是( ) A .∠BOD =∠BAC B .∠BOD =∠COD C .∠BAD =∠CAD D .∠C =∠D6.若a 、b 分别表示圆中的弦和直径的长,则( )A .a>bB .a<bC . a=bD .a ≤b 7.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )A .1,0B .-1,0C .1,-1D .无法确定8.在Rt ΔABC 中,∠C =Rt ∠,BC:AC =1:2,AB =5,则斜边上的高长为( ) A .315 B . 2 C . 1 D . 3152 9.下列等式:⑴632=⨯;⑵2221=;⑶252322=+;⑷27=33; ⑸=+9494+;⑹32)32(2-=-.成立的个数有( ) A .2个 B .3个 C .4个 D .5个10.不等式组0260x ≤-≤的解是( ) A .3x ≥ B .3x ≤ C .3x = D .无解11.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( ) A .必然事件B .不确定事件C .不可能事件D .无法判断 12.下面计算中,能用平方差公式的是( ) A .)1)(1(--+a aB .))((c b c b +---C .)21)(21(-+y xD .)2)(2(n m n m +-13.连一连:( )2(49)(7)a a -÷- 7a - 2(1449)(7)a a a -+÷- 7a --2(49)(7)a b b a -÷- 7a +2(49)(7)a a -÷- 7ab b +14.如图,从A 到B 有①、②、③三条路可以走,每条路长分别为l 、m 、n ,则l 、m 、n 的大小关系是( )A .l n m >>B .l m n =>C .m n l >>D .l m n >>15.如图,在一块木板上均匀地钉了9颗钉子,用细绳可以像图中那样围成三角形,在这块木板上,还可以围成x 个与图中三角形全等但位置不同的三角形,则x 的值为( )A .8 8 12 C 15 D .17二、填空题16.皮影戏中的皮影是由投影得到的.17.若θ为三角形的一个锐角,且2sin3θ=,则θ= .18.如图中的=x_________.19.在12xx--中,字母x的取值范围是 .20.对某中学同年级70名女生的身高进行了测量,得到一组数据,最大值是l69 cm,最小值是145 cm,对这组数据进行整理时,确定它的组距为2.3 cm,则应分组.21.如图,在平面直角坐标系中,OA=10,点B的坐标为(8,0),则点A 的坐标为 . 22.如图,∠A=80°,∠2=130°,则∠l= .23.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形……如此继续下去,结果如下表.所剪次数1234…n正三角形个数471013…na则na= (用含n的代数式表示).解答题三、解答题画出图中几何体的三种视图.25.一个圆锥的底面半径为10cm ,母线长为20cm ,求:(1)圆锥的高;(2)•侧面展开图的圆心角.26.如图,⊙O 为四边形ABCD 的外接圆,圆心O 在AD 上,OC ∥AB .(1)求证:AC 平分DAB ∠;(2)若AC=8,⌒AC :⌒CD =2:1,试求⊙O 的半径;若点B 为⌒AC 的中点,试判断四边形ABCD 的形状. (3)27.已知抛物线2y x bx c =++的图象向右平移3个单位,再向下平移 2 个单位得到抛物线2(3)1y x =-+,求b 、c 的值.28.解下列程组:(1)245x y x y +=⎧⎨-=⎩ (2) ⎪⎩⎪⎨⎧=-+=+.11)1(2,231y x y x29.如图所示,画出△ABC的角平分线BD,AB边上的高CE,BC边上的中线AF.30.1公顷生长茂盛的树林每天大约可以吸收二氧化碳lt,成人每小时平均呼出二氧化碳38g,如果要吸收一万个人一天呼出的二氧化碳,那么至少需要多少公顷的树林?(结果保留2个有效数字)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.B4.B5.D6.D7.C8.B9.C10.C11.B12.B13.略14.B15.C二、填空题16.中心17.60°18.219.1x ≥且2x ≠20.1121.(8,6)22.130°23.31n +三、解答题24.如图:25.解:(1)如右图所示,在Rt △SOA 中,22222010SA OA -=-3.(2)设侧面展开图扇形的圆心角度数为n ,则由2πr=180n l π,得n=180,• 故侧面展开图扇形的圆心角为180°. 26.(1)略;(2)338;(3)等腰梯形. 27.由题意,平移前解析式为22(33)123y x x =-+++=+,∴b= 0 , c= 3 28.(1)⎩⎨⎧-==23y x ,(2)⎩⎨⎧==15y x 29.略30.9.1 公顷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年初中学业考试模拟卷数学卷命题人:周立志(庆元县第三中学)一、选择题(本题有10小题,每小题3分,共30分) 1. 3的倒数是( )A .13B .— 13 C .3 D .—32.如图所示的物体的主视图是( )3.下列计算正确的是( )A .2a +3b =5abB .x 2·x 3=x 6C .123=-a aD .()632a a =4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。
用科学记数法表示342.78万正确的是( ) A .3.4278×107 B .3.4278×106 C .3.4278×105 D .3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( )A.相交 B.内切 C.外切 D.内含6.如图,直线l 1//l 2,则α为( ) A .150°B .140°C .130°D .120°7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( ) A .79,85B .80,79C .85,80D .85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( ) A .(-1,-1) B .(-1,1) C .(1,1) D .(1,-1)l 1 l 250°70°αCB A O OABC 112题图10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B .若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( ) A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分)11.因式分解:ma +mb = .12.如图,O 为直线AB 上一点,∠COB =30°,则∠1= .13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度. 14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 .15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .BA图1 图2 图324y x =12y x=ABCD(第15题)三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)计算:()0|tan 45|122012π+-+o(2)当2x =-时,求22111x x x x ++++的值.18.(本题6分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;20.(本题6分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销售每千克成品茶叶所获利润如下表:(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形. 探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?(请用计算器进行探索,要求至少写出二次的尝试估算过程)②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)BC A图甲24.(本题12分)已知:在矩形A 0BC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.E 是边AC 上的一个动点(不与A ,C 重合),过E 点的反比例函数(0)ky k x=>的图象与BC 边交于点F .(1)若△OAE 、△OBF 的面积分别为S 1、S 2且S 1+S 2=2,求k 的值;(2)若OB =4,OA =3,记OEF ECF S S S =-△△问当点E 运动到什么位置时,S 有最大值,其最大值为多少?(3)请探索:是否存在这样的点E ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点E 的坐标;若不存在,请说明理由.参考答案一、选题题(本题有10小题,每小题3分,共30分) 题次 1 2 3 4 5 6 7 8 9 10 答案ACDBBDCACA二、填空题(本题有6小题,每小题4分,共24分) 11. m (a +b );12. 150°;13. 65;14.23;15. ①③④;16. 1+2 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++ 当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题6分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin 30°=30CM BC CM =,∴CM =15cm .∵sin 60°=BA BF ,∴23=40BF ,解得BF =203, ∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm . 19.(本题6分)解:(1)y =x 2+2x +m =(x +1)2+m ﹣1,对称轴为x =﹣1, ∵与x 轴有且只有一个公共点, ∴顶点的纵坐标为0,∴C 1的顶点坐标为(﹣1,0);(2)设C 2的函数关系式为y =(x +1)2+k ,把A (﹣3,0)代入上式得(﹣3+1)2+k =0,得k =﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题6分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.»CE=»BE.∵OP⊥弦BC于点D且交⊙O于点E,∴»AC=»CE=»BE.∵C为半圆ACB¯的三等分点,∴∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题8分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P 22.(本题10分)解:(1)设安排x 人采“炒青”, 20x ;5(30-x ).(2)设安排x 人采“炒青”,y 人采“毛尖”则30205(30)10245x y x x +=⎧⎪-⎨+=⎪⎩,解得:1812x y =⎧⎨=⎩即安排18人采“炒青”,12人采“毛尖”. (3)设安排x 人采“炒青”,205(30)11045205(30)10045x x x x -⎧+≤⎪⎪⎨-⎪+≥⎪⎩ 解得:17.5≤x ≤20①18人采“炒青”,12人采“毛尖”. ②19采“炒青”,11人采“毛尖”. ③20采“炒青”,10人采“毛尖”. 所以有3种方案.计算可得第(1)种方案获得最大利润. 18×204×40+12×55×120=5040元 最大利润是5040元. 23.(本题10分)解:(1) 正确画出分割线CD(如图,过点C 作CD ⊥AB ,垂足为D ,CD 即是满足要求的分割线,若画成直线不扣分) 理由:∵ ∠B = ∠B ,∠CDB =∠ACB =90° ∴△BCD ∽△ACB(2)① △DEF 经N 阶分割所得的小三角形的个数为n 41∴ S n =n 41000当 n =3时,S 3 =31000S ≈15.62 当 n = 4时, S 4 =41000S ≈3.91 ∴当 n = 4时,3 <S 4 < 4②S n 2 = S 1-n × S 1+n ,S 1-n = 4 S n , S n = 4 S 1+n 24.(本题12分)解:(1)∵点E 、F 在函数ky x=(k >0)的图象上, ∴设E (x 1,1k x ),F (x 2,2k x ),x 1>0,x 2>0, ∴111122k K S x x ==,S 2= 22122k K x x = , ∵S 1+S 2=2, ∴22K K+=2,∴k =2; (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴1111432234ECF S EC CF k k ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭g △, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△ ∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.此时,点E 坐标为(2,3),即点E 运动到AC 中点.(3)解:设存在这样的点E ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=o Q ,∴EMN MFB ∠=∠.又90ENM MBF ∠=∠=oQ , ∴ENM MBF △∽△.∴EN EM MB MF=,∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭, ∴94MB =. 222MB BF MF +=Q ,∴222913444k k ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.∴25438k EM EC ==-=,故AE =78. ∴存在符合条件的点E ,它的坐标为(78,3).。