碳世界的珍宝石墨烯

合集下载

石墨烯科普讲解稿-“烯”世之材

石墨烯科普讲解稿-“烯”世之材

石墨烯科普讲解稿-“烯”世之材2009年上映了一部电影《阿凡达》,相信在座很多朋友还对它印象深刻。

在电影里讲述了人类来到潘多拉星球,不惜破坏生态,屠戮原住民,为的就是得到这个星球上一种特殊的资源,电影里称它为难得的元素。

这可不是瞎编出来的词,在航空领域人们用“难得的元素”形容性能完美的材料,比如,轻的像空气却又坚硬的像钢铁。

今天,我要为大家介绍一种全新的材料——石墨烯,它就是我们梦想中的一种“难得的元素”。

石墨烯跟石墨,钻石甚至我们呼出的二氧化碳一样,都是由碳原子构成的。

碳原子的排列方式不同,赋予了它们不同的性能。

我们可以看到石墨是由碳原子以六边形排列然后堆积形成的层状结构。

1毫米厚的石墨包含大约300万层这种结构,如果你只分离出一层原子的石墨,那就是石墨烯。

石墨好比一本厚厚的书,而石墨烯就是里面的一页纸。

上学时写作业写错了,墨水笔又擦不掉怎么办?有一个非常好用的小工具——胶带,轻轻用力,本子上的错字就可以被粘下来了。

让我们把镜头拉至英国,2004年某一个星期五的早晨,英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁·诺沃消洛夫就用胶带从石墨上撕下了石墨烯。

从此以后全世界都开始撕石墨烯,两人也因为这样的奇思妙想获得了2010年度诺贝尔物理学奖。

石墨烯究竟有何过人之处呢?石墨烯是目前发现的最轻、最薄、最强的材料,还具有非常好的导电导热性能。

薄如蝉翼这个词都不足以形容它。

它只有一个原子的厚度,是头发的二十万分之一。

并且它的柔韧性非常好,可以延展到原来的20%。

但它的强度却是钢的两百倍,理论计算1毫米厚度的石墨烯能够撑起一只大象的重量。

石墨烯的种种独特的性质,将它从实验室一步步推向商业和工业的应用。

展望未来,科学家为我们勾勒了石墨烯应用的美好前景,只需几分钟就完成充电的手机,把卫星导航系统集成在汽车玻璃上,可以卷成报纸筒的笔记本电脑,或者把大海变成巨大的淡水库……这些或许都不再是天方夜谭。

石墨烯是什么材料

石墨烯是什么材料

石墨烯是什么材料
石墨烯是一种由碳原子构成的二维晶体材料,其结构类似于蜂窝状的蜂窝状结构。

石墨烯由单层碳原子组成,形成了具有特殊性质的六角形晶格。

石墨烯的发现被认为是一项革命性的进展,因为它具有许多独特的物理和化学特性,使其在许多领域具有巨大的潜力。

首先,石墨烯具有出色的导电性。

由于其独特的结构,石墨烯中的电子可以自由移动,因此具有非常高的电导率。

事实上,石墨烯被认为是已知最好的导电材料之一,甚至比铜还要好。

这使得石墨烯在电子器件和导电材料方面具有巨大的应用潜力。

其次,石墨烯还具有出色的热导率。

由于其结构的特殊性,石墨烯可以有效地传递热量,因此具有很高的热导率。

这使得石墨烯在热管理和散热领域具有广阔的应用前景。

此外,石墨烯还具有出色的机械性能。

尽管它只有一个原子厚度,但石墨烯却非常坚固和耐用。

事实上,石墨烯被认为是已知最坚固的材料之一,具有比钢还要强大的拉伸强度和弹性模量。

这使得石墨烯在材料强度和耐久性方面具有巨大的潜力。

此外,石墨烯还具有许多其他独特的特性,例如光学透明性、化学稳定性和柔韧性等。

这些特性使得石墨烯在许多领域都具有广泛的应用前景,包括电子学、光学、材料科学、生物医学等。

总的来说,石墨烯是一种具有许多独特性质的材料,具有广阔的应用前景。

随着对石墨烯的研究不断深入,相信它将在未来的许多领域发挥重要作用,为人类社会带来巨大的变革和进步。

世界上最轻的材料

世界上最轻的材料

世界上最轻的材料
世界上最轻的材料之一是石墨烯。

石墨烯是由碳原子组成的二维材料,具有惊
人的轻薄特性。

它的厚度仅为一个原子层,相当于三百万分之一毫米,比人类头发丝还要细小。

石墨烯的密度非常之低,是空气的五十倍。

这使得它成为了世界上最轻的材料之一。

石墨烯的轻薄特性使得它在许多领域具有巨大的应用潜力。

首先,由于其轻盈
的特性,石墨烯可以被用于制造轻型材料,例如飞机和汽车的结构材料。

这将大大减轻飞机和汽车的重量,提高其燃油效率,降低能源消耗。

其次,石墨烯还可以被用于制造柔性电子产品,如可折叠屏幕和弯曲电池。

由于石墨烯具有出色的导电性和柔韧性,因此可以被制成超薄的电子产品,为人们的生活带来更多便利。

除此之外,石墨烯还具有许多其他优异的特性。

它拥有出色的导热性能,是铜
的两倍,这使得它可以被用于制造高效的散热材料。

此外,石墨烯还具有出色的机械强度和化学稳定性,可以被用于制造耐磨材料和防腐蚀材料。

然而,尽管石墨烯具有如此出色的性能,但是其大规模制备和应用仍然面临着
许多挑战。

目前,石墨烯的生产成本较高,且大规模生产技术尚未成熟。

此外,石墨烯的环境影响和安全性问题也需要得到充分考虑。

尽管如此,随着科技的不断进步和创新,相信这些问题将会逐渐得到解决。


墨烯作为世界上最轻的材料之一,将会在未来的科技领域中发挥越来越重要的作用,为人类带来更多的惊喜和便利。

石墨烯是什么材料

石墨烯是什么材料

石墨烯是什么材料石墨烯是一种由碳原子形成的二维晶格结构的材料,被认为是科学界中的一项重大发现。

它具有许多出色的性质,使其成为研究、应用和开发各种技术的理想材料。

本文将介绍石墨烯的结构、性质和应用。

石墨烯的结构非常特殊。

它是由一个碳原子层构成的,碳原子形成了六边形的排列。

每个碳原子与周围三个碳原子形成共价键,形成一个稳定的二维晶格结构。

这种结构使石墨烯具有独特的性质。

首先,石墨烯具有优异的电子性能。

由于其二维结构,石墨烯的电子在平面内可以自由移动,表现出高度的导电性。

事实上,石墨烯的电子迁移率可以达到几百万cm2/V·s,远高于其他材料。

这使得石墨烯成为电子器件和传感器等领域的理想选择。

其次,石墨烯具有出色的力学性能。

虽然石墨烯只有一个碳原子层的厚度,但它的强度却相当高。

实验证明,石墨烯的强度是钢铁的200倍,同时也具有很高的柔韧性。

这种强度和柔韧性使石墨烯成为纳米复合材料和柔性电子设备的理想材料。

此外,石墨烯还具有很高的光学透明性。

它可以在可见光和红外光范围内实现高透射率,达到97.7%。

这使得石墨烯在显示技术和太阳能电池等领域有着广泛的应用前景。

石墨烯的应用非常广泛。

在电子领域,石墨烯可以用于制造高速电子器件、柔性电子设备和能量存储器件。

在材料领域,石墨烯可以用于制造轻质复合材料、高强度纤维和超薄薄膜。

在能源领域,石墨烯可以用于制造高效的太阳能电池和储能装置。

此外,石墨烯还可以用于制造高效的传感器、过滤器和催化剂等。

然而,尽管石墨烯具有如此出色的性质和应用潜力,但目前仍面临一些挑战。

首先,大规模合成石墨烯仍然是一个复杂和昂贵的过程。

其次,石墨烯的良好导电性和透明性容易受到氧化和杂质的影响,从而降低性能。

因此,石墨烯的制备和保护仍然需要进一步的研究和发展。

总之,石墨烯是一种由碳原子构成的二维晶格结构材料,具有出色的电子、力学和光学性能。

它在电子、材料和能源领域具有广泛的应用前景。

虽然石墨烯仍然面临挑战,但科学界对于其研究和开发仍抱有巨大的期望。

石墨烯 (Graphene)

石墨烯 (Graphene)

石墨烯的性质与大多数常见的三维物质不同,纯 石墨烯是一种半金属或零能隙半导体。理解石墨 烯的电子结构是研究其能带结构的起始点。参阅 前面能带结构图,科学家很早就察觉,对于低能 量电子,在二维的六角形布里渊区的六个转角附 近,能量-动量关系是线性关系
这引至电子和空穴的有效质量都等于零。因为这 线性色散关系,电子和空穴在这六点附近的物理 行为,好似由狄拉克方程描述的相对论性自旋 1/2粒子。所以,石墨烯的电子和空穴都被称为 狄拉克费米子,布里渊区的六个转角被称为“狄 拉克点”又称为“中性点”在这位置,能量等于零, 载子从空穴变为电子,从电子变为空穴。
常用制备方法
• 撕胶带法/轻微摩擦法 • 碳化硅表面外延生长 • 金属表面生长 • 氧化减薄石墨片法 • 石墨的声波处理法 • 肼还原法 • 乙氧钠裂解 • 切割碳纳米管法等
潜在应用
• 石墨烯晶体管 • 透明导电电极 • 太阳能电池 • 感光元件 • 超级电容器 • 石墨烯生物器件 • 抗癌治疗 • 集成电路等
石墨烯 (Graphene)
introdu ce
石墨烯(Graphene)是一种由碳原子以sp2 杂化轨道组成六角型呈蜂巢晶格的平面薄膜, 只有一个碳原子厚度的二维材料。石墨烯一 直被认为是假设性的结构,无法单独稳定存 在,直至2004年,英国曼彻斯特大学物理学 家安德烈·海姆和康斯坦丁·诺沃肖洛夫, 成功地在实验中从石墨中分离出石墨烯,而 证实它可以单独存在,两人也因“在二维石 墨烯材料的开创性实验”为由,共同获得 2010年诺贝尔物理学奖。
感光元件 柔性显示屏
石墨烯晶体管
Graphene in Semiconductors
• 一个理想的微电子材料需要: (1) 易于在大面积的衬底上生长,过程不产生危害物,能够与现有的硅基技术相容。 (2)与衬底介电材料之间能形成稳定的界面,缺陷浓度小,不会影响界面附近半导 体中载流子的输运 (3)和金属栅极之间的接触电阻较小 (4)最最重要的一点,足够好的热导率、迁移率以及一个合适的能隙宽度。这些特 性决定了该器件的频率和开关电流比。

石墨烯用途

石墨烯用途

石墨烯用途石墨烯是最新发现的一种贵重的碳材料,它的出现对科学和技术的发展产生了深远的影响。

它的特性使其成为被广泛应用的材料,它的发明带来了无数的用途。

今天,石墨烯正在全球范围内推动前沿科技领域的发展和创新,成为世界上最具潜力的新材料。

首先,石墨烯在电子领域有着广泛的应用。

它可以用于制造高品质的电子器件,可以用于制造电子器件、组件、集成电路、电路板以及用于空间、航空、航海等其他领域的电子技术。

石墨烯电子设备的优势在于它具有较强的抗干扰能力、保持良好的磁性性能和温度耐受性、低电阻性等特点。

石墨烯不仅可以用于电子领域,还可以用于光电子领域,特别是太阳能发电领域。

石墨烯可以用于制造太阳能电池,电池具有更高的能量密度、更长的使用寿命以及更好的可持续性。

此外,石墨烯还可以用于光调制,可以有效改善传统有源光纤光缆的传输特性,实现高效传输。

此外,石墨烯还可以用于构筑用于储存热能的超电容器,以替代燃料电池。

同时,利用它的电导率和导电性,能够生产出先进的高级电子产品,满足不同用户的需求。

此外,石墨烯还有工业应用。

它可用于制造超细纳米纤维,这些纤维在航空航天、船舶和汽车制造和维护等工业领域中有着广泛的应用。

在航空航天领域,石墨烯可以用于制造运载火箭、航天器等航天设备,提升运载火箭的性能和可靠性。

在船舶制造领域,石墨烯可以用于改善船舶的耐久性和可靠性,从而提高安全性和节能效果。

最后,石墨烯还可以用于医疗领域。

它可以用于制备超微纳米药物支架,能够更好地控制药物的释放,实现更准确的投药。

石墨烯还可以用于构建生物传感器,可以用于靶向检测、阻断病毒感染以及其他医学检测。

综上所述,石墨烯在电子、光电、热能、工业和医疗等许多领域有着广泛的应用。

它可以极大地改善我们的生活质量,带来更多技术优势和发展机会。

因此,它受到各界关注,有望成为未来用于推动世界发展的新材料。

石墨烯是什么用途

石墨烯是什么用途

石墨烯是什么用途石墨烯是一种由碳原子构成的二维蜂窝状晶格结构材料,它是由一层厚度仅为一个原子的石墨片剥离而来的。

石墨烯的独特结构和性质使其具有广泛的应用前景,特别是在电子学、能源领域、生物医学、材料科学等领域。

首先,石墨烯在电子学领域有着巨大的应用潜力。

由于石墨烯具有高电子迁移率、高载流子流动速度和高热导率等优异的电学性能,被认为是下一代微电子器件的理想材料。

它可以用于制造高速晶体管、快速电子器件、高频电路和柔性电子器件等。

此外,由于石墨烯是有机材料,可以与有机分子相结合,具有制备新型有机太阳能电池等光电器件的潜力。

其次,石墨烯在能源领域也有重要的应用价值。

石墨烯具有优异的导电性和热导率,可以用作电池、超级电容器和储氢材料等能量存储和转换器件。

此外,石墨烯还可以用于制备太阳能电池、光催化材料和储能材料等,可以提高能量的转化效率和储存密度,并推进清洁能源的开发和利用。

此外,石墨烯还在材料科学领域发挥着重要作用。

石墨烯具有出色的力学性能,是最轻、最坚硬的材料之一,同时又具有良好的柔性和延展性。

因此,石墨烯可以用于制备高强度和轻质复合材料、纳米复合材料和柔性薄膜等。

此外,石墨烯还可以用于制备高性能的传感器、滤膜、分离膜和纳米材料等,可以解决环境污染和能源危机等重大问题。

在生物医学领域,石墨烯也被广泛应用。

石墨烯具有优异的生物相容性和生物安全性,可以作为药物传递系统、生物传感器和光学成像剂等。

石墨烯还可以用于制备生物传感器、基因传递系统和组织工程等,可以促进疾病的早期诊断、药物的靶向输送和组织的再生修复。

总之,石墨烯作为一种新型的纳米材料,具有许多独特的物理、化学和生物学性质,因此在电子学、能源领域、生物医学、材料科学等多个领域具有广泛的应用前景。

未来,石墨烯的研究和开发将继续推动科学技术的发展和社会的进步。

石墨烯简介

石墨烯简介

石墨烯简介石墨烯是一种由碳原子构成的单层二维晶格材料,具有出奇制胜的电学、热学和力学性质。

它的发现引发了广泛的科学研究和技术应用,被誉为材料科学领域的"奇迹"。

下面是对石墨烯的详细介绍:石墨烯的结构石墨烯的结构非常简单,它是由一个层层叠加的碳原子构成,每一层都只有一个碳原子的厚度。

这些碳原子排列成六角形的蜂窝状晶格,就像蜜蜂蜂巢一样。

这种排列方式赋予石墨烯许多独特的性质。

电学性质石墨烯的电学性质令人惊叹。

它是一种半导体材料,但在室温下,电子能够在其表面以极高的移动速度自由传导,几乎没有电阻。

这使得石墨烯成为极好的导电材料,有望用于高速电子器件和新型电池。

热学性质尽管石墨烯是世界上最薄的材料之一,但它的热传导性能却非常出色。

石墨烯可以有效地传递热量,因此被广泛应用于散热材料和热导材料的领域。

机械性质石墨烯具有出色的机械强度,是世界上最坚硬的材料之一。

它的强度比钢还要高,并且非常轻薄。

这些性质使得石墨烯在材料科学和纳米技术中具有广泛的应用前景。

光学性质石墨烯对光的吸收和散射也表现出了独特的性质。

它在可见光和红外光谱范围内表现出高吸收率,但对其他波长的光几乎是透明的。

这一性质在光电子学和传感器领域具有重要应用价值。

应用领域石墨烯的独特性质使得它在许多领域都有广泛的应用潜力。

目前,石墨烯已经在电子器件、柔性显示屏、电池技术、传感器、材料强化、医疗设备等领域取得了重要突破。

总之,石墨烯是一种具有革命性潜力的材料,其独特的电学、热学、力学和光学性质使其在科学研究和技术创新中备受瞩目。

随着对石墨烯的深入研究和应用的不断推进,我们可以期待看到更多令人兴奋的发现和应用。

石墨烯

石墨烯

石墨烯石墨烯声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。

详情>> 石墨烯(二维碳材料)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。

石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。

英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。

石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。

[1] 由于其十分良好的强度、柔韧、导电、导热、光学特性,在物理学、材料学、电子信息、计算机、航空航天等领域都得到了长足的发展。

作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。

极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

中文名石墨烯外文名Graphene 发现时间2004年主要制备方法机械剥离法、气相沉积法、氧化还原法、SiC外延法主要分类单层、双层、少层、多层(厚层)基本特性强度柔韧性、导热导电、光学性质应用领域物理、材料、电子信息、计算机等目录1 研究历史2 理化性质? 物理性质? 化学性质3 制备方法? 粉体生产方法? 薄膜生产方法4 主要分类? 单层石墨烯? 双层石墨烯? 少层石墨烯? 多层石墨烯5 主要应用? 基础研究? 晶体管? 柔性显示屏? 新能源电池? 航空航天? 感光元件? 复合材料6 发展前景? 中国? 美国? 欧洲? 韩国? 西班牙? 日本研究历史编辑实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。

石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。

石墨烯 深度研究报告

石墨烯 深度研究报告

石墨烯深度研究报告【石墨烯深度研究报告】第一篇石墨烯是一种非常特殊的材料,由于其出色的性质,引起了广泛的关注和研究。

本文将深入探讨石墨烯的结构、性质以及应用领域。

首先,我们来介绍一下石墨烯的基本结构。

石墨烯由一个由碳原子构成的二维晶格组成,具有类似蜂窝状的结构。

每个碳原子都与周围三个碳原子形成共价键,因此石墨烯的结构非常稳定。

石墨烯的性质也非常引人注目。

首先,石墨烯是一种非常薄的材料,其厚度仅为一个碳原子的厚度。

此外,它具有出色的导电性和热导性,比铜导电性高约200倍,热导性高约100倍。

这使得石墨烯成为电子器件和热管理领域的理想材料。

此外,石墨烯还具有很高的强度和韧性。

尽管它只有一个原子的厚度,但石墨烯的强度比钢还要高。

这使得石墨烯在材料领域具有巨大的应用潜力,可以用于制作轻质而坚固的材料。

石墨烯的应用领域非常广泛。

首先,它在电子领域有着巨大的潜力。

石墨烯的高导电性使得它可以用于制作更小、更快的电子器件。

此外,石墨烯还可以用于制作柔性电子器件,如可弯曲的显示屏和智能穿戴设备。

同时,石墨烯还在能源领域有着广阔的应用前景。

由于石墨烯的热导性和高表面积特性,它可以用于制作高效的太阳能电池和催化剂。

此外,石墨烯还可以用于制作超级电容器,提供更高存储容量和更快充电速度。

另外,石墨烯在材料科学领域也有着巨大的潜力。

由于其强韧的特性,石墨烯可以用于制作高强度的复合材料,如碳纤维复合材料。

这种材料在航空航天和汽车工业中有着重要的应用。

总之,石墨烯作为一种新兴材料,在科学界引起了无尽的兴趣和研究。

它的独特结构和出色性质使得它在电子、能源和材料领域具有广阔的应用前景。

随着科技的发展,相信石墨烯的应用将会越来越广泛,为人们生活带来更多的便利和创新。

【石墨烯深度研究报告】第二篇虽然石墨烯具有很多出色的性质和广阔的应用前景,但它目前还面临一些挑战和限制。

本文将继续探讨石墨烯的制备方法、稳定性以及可能的解决方案。

首先,石墨烯的制备是一个较为复杂的过程。

石墨烯简介

石墨烯简介
抗热震性:石墨在高温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积 变化不大,不会产生裂纹。
石墨烯的特性
石墨烯是目前已知的世界上最薄的材料,也是有史以来被证实的最结实的材料,其强度可达130 GPa,是钢的100多倍,,其断裂强度达到了惊人的42NM-1;最新的研究表明,石墨烯具有 10 倍于商用硅片的高载流子迁移率(15000 cm2V-1s-1) ,石墨烯的热导率可达5000W/ m·K, 是室温下纯金刚石的 3倍。目前试验还证实了石墨烯中的电子和空穴成对现象(ElectronHole Symmetry),半整数量子霍尔效应(Half-integer Quantum Hall Effect),室温量子霍尔 效应(Room-Temperature Quantum Hall Effect)等多种独特的电子结构和性质。
化学稳定性:石墨在常温下具有良好的化学稳定性,能耐酸碱、耐有机溶剂的腐蚀。
润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。石 墨为层状耐磨矿物,其Bond粉碎功指数高达45.03kw/t,相较于粘土的7.1kw/t、黄铁矿的 8.9kw/t,以及石英的12.77kw/t高出许多.
目前有三种方法制备石墨烯,一种是SiC的高温热解外延法或过渡族金属催化外延法,另一 种是轻微摩擦法或撕胶带法.第三种是化学修饰分散/还原法.
石墨烯是之中。用来开发制造出纸片般薄的超轻型飞机材料、超坚韧的防弹衣和“太空电梯” 用的超韧缆线,研究表明石墨烯增强聚乙烯醇(PVA)复合材料,只需要添加0.7%(重量 比)的石墨烯,就可以使复合材料的拉伸强度提高76 %,同时其杨氏模量增加62%;另 外,在功能化石墨烯增强的聚氨酯复合材料中,石墨烯含量为1%时,其复合材料的强度 提高75%,模量提高120 %。

石墨烯简介

石墨烯简介

石墨烯简介石墨烯简介(网络摘抄)概述2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯(Graphene),证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。

石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。

石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。

同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。

它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。

石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。

用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。

另外,石墨烯几乎是完全透明的,只吸收2.3%的光。

另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。

这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。

作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为"黑金",是"新材料之王",科学家甚至预言石墨烯将"彻底改变21世纪"。

极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

石墨烯基本特性电子运输在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为石墨烯,热力学涨落不允许任何二维晶体在有限温度下存在。

所以,它的发现立即震撼了凝聚态物理界。

虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。

这些可能归结于石墨烯在纳米级别上的微观扭曲。

石墨烯还表现出了异常的整数量子霍尔行为。

其霍尔电导=2e2/h,6e2/h,10e2/h.... 为量子电导的奇数倍,且可以在室温下观测到。

这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。

石墨烯的应用场景

石墨烯的应用场景

石墨烯的应用场景
石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的晶体,在物理、化学、力学等方面都具有重要的应用价值。

它的电子结构和普通石墨烯大不相同。

电子结构是指电子在二维空间中的排布方式,决定了其行为特征。

目前,电子结构已经成为材料领域和半导体研究领域的研究热点,它对于电子器件性能起到了至关重要的作用。

石墨烯是一种二维晶体,其独特的结构和优异的物理性能,使其在许多领域具有广泛应用前景。

石墨烯具有极为优异的性能,是一种性能极佳的二维纳米材料,被称为“黑钻石”、“新材料之王”。

它具有很强的比表面积,是传统材料比表面积的1000倍。

石墨烯能做什么?
石墨烯被称为“新一代‘王者’材料”,它具有非常优异的
性能,它可以作为超级电容器、电池、催化剂、光学器件、半导体器件等一系列材料。

石墨烯在超级电容器方面可发挥重要作用:石墨烯电容器比传统电容器有更高的储能密度,循环寿命更长。

—— 1 —1 —。

石墨烯百科

石墨烯百科

石墨烯百科石墨烯石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。

简介石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料。

是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。

石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖[2]。

石墨烯目前是世上最薄却也是最坚硬的纳米材料[3] ,它几乎是完全透明的,只吸收2.3%的光"[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm²/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。

因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。

由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。

石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。

石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。

石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。

石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。

石墨烯被认为是平面多环芳香烃原子晶体。

石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42Å。

石墨烯基础知识简介

石墨烯基础知识简介

1.石墨烯〔Graphene〕的构造石墨烯是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。

如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞有两个原子,分别位于A和B的晶格上。

C原子外层3个电子通过sp²杂化形成强σ键〔蓝〕,相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键〔紫〕。

石墨烯的碳-碳键长约为0.142nm,每个晶格有三个σ键,所有碳原子的p轨道均与sp²杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。

如图1.2所示,石墨烯是富勒烯〔0维〕、碳纳米管〔1维〕、石墨〔3维〕的根本组成单元,可以被视为无限大的芳香族分子。

形象来说,石墨烯是由单层碳原子严密堆积成的二维蜂巢状的晶格构造,看上去就像由六边形网格构成的平面。

每个碳原子通过sp²杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都奉献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。

图 1.1〔a〕石墨烯中碳原子的成键形式〔b〕石墨烯的晶体构造。

图1.2石墨烯原子构造图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。

前两类具有相似的电子谱,均为零带隙构造半导体〔价带和导带相较于一点的半金属〕,具有空穴和电子两种形式的载流子。

双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙构造;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅构造,能使其晶体管呈示出明显的关态。

单层石墨烯〔Graphene〕:指由一层以苯环构造〔即六角形蜂巢构造〕周期性严密堆积的碳原子构成的一种二维碳材料。

双层石墨烯〔Bilayer or double-layer graphene〕:指由两层以苯环构造〔即六角形蜂巢构造〕周期性严密堆积的碳原子以不同堆垛方式〔包括AB堆垛,AA堆垛,AA‘堆垛等〕堆垛构成的一种二维碳材料。

石墨烯的应用前景

石墨烯的应用前景

石墨烯的应用前景石墨烯是一种奇特的材料,它是由碳原子构成的二维材料,厚度仅为一个原子。

它的出现引起了全世界的科学热潮,因为它具有多种超乎寻常的物理、化学和机械性质。

石墨烯的应用前景非常广泛,下面就让我们一起来了解一下。

一、强度和硬度极高石墨烯的强度和硬度都非常高,是目前世界上最强的物质之一。

这就表明了它可以被用来制造高强度的材料,比如说航空和汽车零部件,甚至可以被用来制造防弹衣和高性能的卫星等。

同时,石墨烯还具有出色的柔韧性,这意味着它可以被用来制造更加紧凑和高效的电子设备。

二、电子设备石墨烯的导电性非常好,远远超过其他材料。

这意味着它可以被用来制造更快、更紧凑的电子设备。

各种传感器、太阳能电池板、LED灯、记忆芯片等都可以通过使用石墨烯来实现更高的效率和性能。

另外,石墨烯也可以被用来制造高速计算机芯片。

三、能源相关石墨烯在能源方面的应用也非常广泛。

首先,石墨烯可以被用来制造更高效和更持久的电池,在电动汽车、智能手机等领域有着重要的应用。

其次,石墨烯还可以被用来制造太阳能板,使得太阳能转化效率更高、成本更低。

此外,石墨烯还可以被用来制造氢燃料电池等清洁能源技术。

四、生物医学石墨烯的多种物理和化学运动特性使其在生物医学领域有着广泛的应用。

它可以用来制造更高效的药物递送系统、组织培养器官和诊断检测器。

石墨烯的生物相容性和低毒性也使得它在生命科学研究中受到广泛关注。

因此,石墨烯在未来的医疗保健方面前景十分广阔。

总的来说,石墨烯作为一种未来十分重要的材料,将继续被广泛研究和应用于各个领域。

未来,随着人们对石墨烯性质和特点的进一步了解,石墨烯新的应用领域也将不断被发现。

石墨烯材料介绍

石墨烯材料介绍

石墨烯材料介绍1、简述石墨烯(Graphene)是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。

石墨烯的理论比表面积高达2 600m2Pg,具有突出的导热性能(3000W·m- 1·K- 1)和力学性能(1 060GPa),以及室温下较高的电子迁移率(15000cm2·V-1·s-1)。

此外,它的特殊结构,使其具有半整数的量子霍尔效应、永不消失的电导率等一系列性质,因而备受关注。

Graphene(石墨烯)是2004年由曼彻斯特大学科斯提亚·诺沃谢夫(Kostya Novoselov)和安德烈·盖姆(Andre Geim)发现的,他们使用的是一种被称为机械微应力技术(micromechanical cleavage)的简单方法。

正是这种简单的方法制备出来的简单物质一石墨烯推翻了科学界的一个长久以来的错误认识—任何二维晶体不能在有限的温度下稳定存在。

现在石墨火烯这种二维晶体不仅可以在室温存在,而且十分稳定的存在于通常的环境下。

石墨烯被称为“推动人类第四次工业革命”,“改变世界格局的材料之王”。

2、石墨烯特点1、力学性质——比钻石还要硬数据转换分析∶在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。

据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。

如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。

换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。

打个比方说单层石墨烯的强度,就像把大象的重量铅笔才能够用这支铅笔刺穿仅像保鲜膜一样厚度的石墨烯。

石墨烯 发现过程

石墨烯 发现过程

石墨烯发现过程摘要:一、石墨烯的发现背景二、石墨烯的发现过程三、石墨烯的重要性和应用前景正文:石墨烯是一种单层的、由碳原子构成的二维晶体,它是目前世界上最薄、最坚硬、导电性能最好的纳米材料之一。

石墨烯的发现过程充满了偶然和惊喜,下面我们来了解一下石墨烯的发现过程以及它的重要性和应用前景。

石墨烯的发现背景可以追溯到20 世纪40 年代,当时科学家们发现了石墨这种材料,并指出石墨中每个碳原子只与周围三个碳原子形成化学键,这种特殊的结构使得石墨具有良好的导电性和其他优异的性能。

然而,由于石墨的层间相互作用力较弱,剥离出单层的石墨非常困难,因此长期以来,石墨烯被认为是假设性的结构,无法单独稳定存在。

直到2004 年,英国曼彻斯特大学的物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫改变了这一观念。

他们通过一种简单易行的方法,从石墨中分离出单层的石墨烯。

具体过程是,他们将石墨放入一种特殊的胶带上,然后撕开胶带,这样就能把石墨片一分为二,得到单层的石墨烯。

这一突破性的发现为他们赢得了2010 年的诺贝尔物理学奖。

石墨烯的诞生引起了科学界的广泛关注,因为它具有许多令人瞩目的性质。

首先,石墨烯是透明的,只吸收2.3% 的光,这意味着它可以用作高透光性的材料。

其次,石墨烯具有很高的强度和韧性,是目前已知最坚硬的纳米材料之一。

此外,石墨烯的导电性能极好,甚至超过了铜的导电性能。

这些优异的性能使得石墨烯在许多领域都有广泛的应用前景。

目前,石墨烯已经广泛应用于制备多功能分离膜、高导高强纤维、超轻超弹性气凝胶等多种功能材料。

在电化学储能、催化、生物医药、复合材料等方面,石墨烯也表现出良好的应用前景。

石墨烯发展历程

石墨烯发展历程

石墨烯发展历程石墨烯是一种由碳原子构成的二维晶体结构,具有极高的导电性、导热性和机械强度,被誉为“未来材料之王”。

石墨烯的发现和研究历程可以追溯到20世纪60年代,但直到2004年才被成功分离出来,随后引起了全球科学界的广泛关注和研究。

石墨烯的发现石墨烯的发现可以追溯到20世纪60年代,当时科学家们通过电子显微镜观察到了一种由碳原子构成的薄膜结构,但由于当时技术条件的限制,无法对其进行深入的研究和应用。

直到2004年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功地将石墨烯从石墨中分离出来,并发现了其独特的物理和化学性质,这一发现被誉为“二十一世纪最重要的科学发现之一”。

石墨烯的研究自石墨烯被发现以来,全球科学界对其进行了广泛的研究和探索。

研究表明,石墨烯具有极高的导电性、导热性和机械强度,可以应用于电子器件、传感器、储能材料等领域。

此外,石墨烯还具有良好的光学性质和化学稳定性,可以应用于光电器件、催化剂等领域。

石墨烯的应用随着石墨烯的研究不断深入,其应用领域也在不断扩展。

目前,石墨烯已经应用于电子器件、传感器、储能材料、光电器件、催化剂等领域。

其中,石墨烯在电子器件领域的应用最为广泛,可以用于制造高性能的晶体管、集成电路等器件。

此外,石墨烯还可以用于制造柔性电子器件,具有广阔的应用前景。

石墨烯的未来石墨烯作为一种具有广泛应用前景的新型材料,其未来发展前景十分广阔。

随着石墨烯的研究不断深入,其应用领域也将不断扩展。

未来,石墨烯有望应用于更多的领域,如生物医学、环境保护等领域。

此外,石墨烯的制备技术也将不断改进和完善,使其在工业化生产中得到更广泛的应用。

总结石墨烯的发现和研究历程可以追溯到20世纪60年代,但直到2004年才被成功分离出来。

自此以后,全球科学界对石墨烯进行了广泛的研究和探索,发现了其独特的物理和化学性质,并将其应用于电子器件、传感器、储能材料、光电器件、催化剂等领域。

你知道石墨烯吗?它为何会被誉为“新材料之王”?

你知道石墨烯吗?它为何会被誉为“新材料之王”?

你知道石墨烯吗?它为何会被誉为“新材料之王”?如今科技迅速发展,新材料的发展日新月异,产业升级和材料换代步伐加快。

尽管很多新材料离产业化还有很大距离,不过石墨烯这种新材料之王还是受到了很多人的关注,很多媒体都报道过关于这种材料的文章,但是很多人看过后还是不明白石墨烯究竟是什么,所以这次小编就带大家简单了解一下石墨烯身世。

首先,石墨烯是一种由碳原子以sp²杂化轨道组成的六角型呈蜂巢晶格的二维碳纳米材料。

它是目前发现的最薄、最坚硬的一种新型纳米材料,并且具有优异的光学和电学特性,在材料学、能源、生物医学等多个方面具有重要的应用前景,被誉为“黑金”,是一种未来革命性的材料。

不过石墨烯的诞生并没有使用多少“高大上”的科学技术,实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。

石墨烯一层层叠起来就是石墨,厚度为1毫米的石墨就大约包含了300万层石墨烯。

2004年,英国曼彻斯特大学的物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫用微机械剥离法从石墨中分离出的石墨烯。

在此之前,大多数物理学家认为热力学涨落不允许任何二维晶体在有限温度下存在,所以石墨烯的发现立即震撼了凝聚体物理学学术界。

目前石墨烯的研究与应用开发持续升温,与石墨烯有关的材料广泛的应用于电池电极材料、半导体器件、透明显示屏、传感器、电容器、晶体管等多个方面。

比如用石墨烯取代硅,计算机处理器的运行速度将会提高数百倍;锂电池的电极中加入石墨烯,同等体积的电容可扩充5倍以上的容量。

美国麻省理工学院的科学家通过研究还发现,在特定情况下石墨烯能够被转化成具有独特功能的拓扑绝缘体,这一研究发现有望带来制造量子计算机的新方法。

鉴于石墨烯材料优异的性能和潜在的应用价值,研究者们致力于在不同领域的尝试使用不同的方法以求制备高质量、大面积的石墨烯材料。

并通过对石墨烯制备工艺的不断优化和改进,以降低石墨烯制备成本使其优异的材料性可以在更广泛的方面得到应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳世界的珍宝——石墨烯
一、新材料之王——石墨烯
碳世界的珍宝——石墨烯,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个原子厚的单层二维晶体碳材料,既是最薄的材料,也是最强韧的材料。

它的硬度是钢的200倍,具备超薄、超坚硬、超导电导热等优异性能,集“声、光、电、热、力、磁”等特性于一身。

2004年,英国曼彻斯特大学物理学家安德烈•盖姆和康斯坦丁•诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。

“珍宝”石墨烯又被称为“新材料之王”,被誉为即将“改变21世纪的神奇材料”!
二、“珍宝”的应用领域
由于具备特殊性能,石墨烯已经成为各领域的“新贵”,不仅在航空航天、太阳能电池、纳米电子学、高性能纳电子器件、生物医疗、复合材料、场发射材料、气体传感器及能量存储等专业科学领域具有广泛的应用前景;在触摸屏、储能电池、显示器、半导体等领域同样“大展拳脚”。

近几年,由于其卓越而特殊的特性,在服饰、日用品等商业应用方面也逐渐被开发,被全球产经界看好。

中国对石墨烯产业发展的重视程度也上升到前所未有的高度,在技术和产业化规划发展方面,与世界一流水平基本同步。

面对美好前景,中央政府和地方政府在推动石墨烯产业化发展方面的相关规划接踵而至。

最近每年都支持了数百个石墨烯相关的研究课题,累计已经支持了
一千多个项目。

发改委、工信部、科技部等部门对石墨烯产业都非常重视。

三、市场潜力巨大
做为经济学界和科技界专家普遍认为的革命性新材料,应用广泛,发展前景巨大的石墨烯如同珍宝一般耀眼,吸引着国内外一波又一波资本投身其中。

在政府政策不遗余力地推动下,我国石墨烯产业发展初见成效:产业规模上,形成了以江苏省(常州、无锡、南京等地)为中心,宁波、青岛、重庆、德阳、河北、北京等地活跃分散发展的格局;技术专利上,我国在国际上已经申请2200多项石墨烯专利技术,约为全球石墨烯专利技术的三分之一;技术成果上,我国已有石墨烯智能手机、以及石墨烯柔性显示屏等。

符合国家战略,政策大力扶持,石墨烯正面临着前所未有的巨大的发展机遇。

随着“十三五”到来,预计石墨烯产业将在未来持续收获政策利好,在5至10年内产业规模有望突破1000亿元。

石墨烯相关产业企业与科研院所密切关注石墨烯产品与下游产业应用的有机结合。

尤其值得注意的是,金融资本越来越多地介入石墨烯整个产业链及其应用的角逐。

据预计,随着金融资本的进入,石墨烯行业有望与此前的互联网行业发展一样,迎来产业化加速破局。

相关文档
最新文档