SPSS数据分析问题提出与实例导学 第5章 单因素方差分析
SPSS——单因素方差分析详解
SPSS——单因素方差分析详解单因素方差分析(One-Way ANOVA)常用于比较两个或更多组之间的平均差异是否显著。
本文将详细介绍单因素方差分析的原理、步骤和结果解读。
一、原理:单因素方差分析通过比较组间方差(Treatment Variance)与组内方差(Error Variance)的大小来判断不同组间的平均差异是否显著。
组间方差反映了不同组之间的平均差异,而组内方差反映了同一组内个体之间的随机波动。
如果组间方差显著大于组内方差,则可以判断不同组间的平均差异是显著的。
二、步骤:1.收集数据:首先确定研究问题和目的,然后根据实际情况设计并收集数据。
例如,我们想比较三个不同品牌的手机的待机时间是否有显著差异,需要收集每个品牌手机的待机时间数据。
2.建立假设:根据研究问题和数据的特点,建立相应的零假设(H0)和备择假设(Ha)。
在单因素方差分析中,零假设通常是所有组的平均值相等,备择假设则是至少有一组平均值与其他组不等。
4.分析结果解读:SPSS输出了一系列统计结果,包括方差分析表、平均值表、多重比较和效应大小等信息。
关键的统计结果包括F值、P值和ETA方。
-方差分析表:用于比较组间方差和组内方差的大小。
方差分析表中的F值表示组间方差除以组内方差的比值,F值越大说明组间差异越显著。
-P值:用于判断F值的显著性。
如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,即认为不同组间的平均差异是显著的。
-ETA方:代表效应大小程度。
ETA方越大说明组间的差异对总变异的解释程度越大,即差异的效应越显著。
5. 多重比较:如果方差分析结果显著,需要进行多重比较来确定具体哪些组之间存在显著差异。
SPSS提供了多种多重比较方法,包括Tukey HSD、Scheffe和Bonferroni等。
三、结果解读:对方差分析的结果进行解读时,需要综合考虑F值、P值、ETA方和多重比较结果。
1.F值和P值:-如果F值显著(P值小于设定显著性水平),则可以得出不同组间的平均差异是显著的结论。
SPSS 教程 第五章 方差分析
目录1、单因素方差分析1)准备分析数据2)启动分析过程3)设置分析变量4)设置多项式比较5)多重比较6)提交执行7)结果与分析2、多因素方差分析1)准备分析数据2)调用分析过程3)设置分析变量4)选择分析模型5)选择比较方法6)选择均值图7)选择多重比较8)保存运算值9)选择输出项10)提交执行11)结果分析方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和 SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
单因素方差分析spss
单因素方差分析 SPSS简介SPSS(统计软件包社会科学)是一款功能强大的统计软件,广泛应用于社会科学研究领域。
在此文档中,我们将介绍如何使用SPSS进行单因素方差分析(One-way ANOVA)。
单因素方差分析单因素方差分析是一种统计方法,用于比较两个或更多个组之间的均值差异。
它的基本原理是将总体均值差异分解为组内变异和组间变异两部分。
通过比较组间变异与组内变异的大小,我们可以判断组之间是否存在显著差异。
在进行单因素方差分析之前,我们需要满足以下前提条件: 1. 数据应该来自正态分布的总体。
2. 等方差性:各组之间的方差应该是相等的。
3. 独立性:不同组之间的个体应该是相互独立的。
SPSS使用步骤以下是在SPSS中进行单因素方差分析的步骤。
步骤1:导入数据首先,打开SPSS软件并导入包含需要进行单因素方差分析的数据的文件。
选择“打开文件”选项,然后选择相应的数据文件。
步骤2:设置变量在SPSS中,我们需要将需要进行单因素方差分析的变量设置为“因子变量”(Factor Variable)。
选择“数据”菜单中的“变量视图”,然后选择需要进行单因素方差分析的变量,在“类型”一栏中选择“因子”。
步骤3:进行单因素方差分析选择“分析”菜单中的“比较手段”选项,然后选择“单因素方差”。
步骤4:指定变量在单因素方差分析对话框中,将需要进行分析的因子变量移动到“因子”框中。
步骤5:选项设置在单因素方差分析对话框中,可以设置一些可选参数,如:显示描述性统计信息、绘制盒须图等。
根据需要对这些选项进行设置。
步骤6:结果解读点击“确定”按钮后,SPSS将执行单因素方差分析并生成结果输出。
在输出窗口中,可以看到各组的均值、标准差和方差等统计指标。
同时,还会显示组间变异和组内变异的F统计量、p值和显著性水平。
结论单因素方差分析是一种用于比较多个组间均值差异的统计方法。
通过SPSS软件,我们可以轻松地进行单因素方差分析,并获取分析结果。
SPSS中的单因素方差分析
SPSS中的单因素方差分析单因素方差分析(One-way ANOVA)是一种常用的统计方法,用于比较不同组之间的平均数差异是否显著。
本文将介绍SPSS中进行单因素方差分析的步骤和结果解读。
首先,我们需要准备数据。
假设我们有一个实验,想要比较三种不同根据不同学习方法进行学习的组之间的学习成绩差异。
我们随机选择了30个参与者,将他们以随机方式分成三组,分别进行不同训练方法的学习。
每个参与者在学习结束后会得到一个学习成绩。
我们将数据录入SPSS,将每个组的学习成绩作为一个变量,并将组别作为因素变量。
确保数据已经正确输入后,我们可以进行单因素方差分析。
1. 打开SPSS软件,点击"Analyze",然后选择"General Linear Model",再选择"One-Way ANOVA"。
2. 在弹出的对话框中,将变量选择为因变量,将因素选择为分组变量。
点击"Options"来选择分析的选项,比如描述性统计和效应大小指标。
3.点击"OK"进行分析。
在分析结果会显示出表格,其中包含了各个组的均值、方差、诸如F值和p值等统计指标。
根据分析结果,我们可以得到以下结论:-F值:根据单因素方差分析的结果表格,我们可以看到F值。
F值是一种比较不同组均值变异性的度量。
F值越大,说明组之间的平均差异越显著。
-p值:p值是用来判断组别之间的差异是否显著的指标。
在单因素方差分析中,我们通常关注的是p值是否小于0.05(或者0.01,根据研究需要),小于这个阈值说明组别之间的差异是显著的。
根据我们的假设,在我们的实验中,不同学习方法对学习成绩有显著影响。
通过SPSS的单因素方差分析,我们可以得到以下结论:-F值:在我们的实验中,F值为10.41、这个结果意味着不同学习方法组之间的学习成绩有显著差异。
-p值:p值为0.001,在我们的显著水平0.05下,p值小于阈值,说明组别之间的学习成绩差异是显著的。
spss中的单因素方差分析
SPSS中的单因素方差分析一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。
二、实验工具 SPSS for Windows 三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。
在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。
灯泡灯丝 1 2 3 4 5 6 7 8 甲 1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙 1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是:filament 变量,数值型,取值1、2、3、4 分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。
Hours 变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。
(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。
(3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。
(4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。
(5)在主对话框中,单击“OK”提交进行。
五、输出结果及分析灯泡使用寿命的单因素方差分析结果 ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部分说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。
spss统计分析及应用教程-第5章 方差分析
单因素方差分析由SPSSl7.0的比较均值过程过程中的单 因素ANOVA子过程实现。下面以案例说明单因素方差分 析的单因素ANOVA子过程的基本操作步骤。
实验一 单因素方差分析
实验步骤
(1)准备工作 在SPSSl7.0中打开数据文件4-1.sav,通过选择“ 文件—打开”命令将数据调入SPSSl7.0的工作文件窗 口,结果如图。
实验二 多因素方差分析
准备知识 多因素方差分析定义
多因素方差分析用来研究两个及两个以上控制变量是否对观测 变量产生显著影响。多因素方差分析不仅能够分析多个控制变 量对观测变量的独立影响,还能够分析多个控制变量的交互作 用能否对观测变量的结果产生显著影响,进而最终找到有利于 观测变量的最优组合。
Sidak:Sidak法,根据t统计量进行配对多重比较,调整多重比 较的显著性水平。 Scheffe:塞弗检验法,对所有可能的组合进行同步进入的配对 检验。
R-E-G-WF:Ryan-Einot-Gabriel-Welsch F法,根据F检验的 多重下降过程。
R-E-G-WO:Ryan-Einot-Gabriel-Welsch Q法,根据 Student极差的多重下降过程。
多因素方差分析基本原理
多因素方差分析中,观测变量取值的变动会受到控制变 量独立作用、控制变量交互作用和随机变量三方面的影 响,据此,将观测变量总的离差平方和分解为三部分内 容:控制独立作用引起的变差,控制变量交互作用引起 的变差和随机因素引起的变差。以两个控制变量为例
1
组内离差平方和
定义组内离差平方和(SSE)为:
缺失值选框提供了两种缺失值的处 理方法。 按分析排序排除个案:剔除各 分析中含有缺失值的个案。 按列表排除个案:剔除含有缺 失值的全部个案。
SPSS单因素方差分析案例
百度文库
1 单因素方差分析
步骤:
1.如图,进入单因素方差分析。
2.将“销售额”选入,“广告形式”选入。
3.将中的“广告形式”换成“地区”。
结果呈现:
表一广告形式对销售额的单因素方差分析结果
表二地区对销售额的单因素方差分析结果
分析:
1.如果仅仅考虑广告形式单个因素对销售额的影响,从“广告形式对销售额的单因素方差
分析结果”可以看出,统计量F对应的概率P-值为0.000,小于显著性水平a=0.05(a=0.01),所以,拒绝原假设,即,认为不同广告形式对销售额产生了显著的影响。
2.如果仅仅考虑地区单个因素对销售额的影响,从“地区对销售额的单因素方差分析结果”
可以看出,统计量F对应的概率P-值为0.000,小于显著性水平a=0.05(a=0.01),所以,拒绝原假设,即,认为不同地区对销售额产生了显著的影响。
3. 从上述两表可以看出,“广告形式对销售额的单因素方差分析结果”中的F值为13.483,“地区对销售额的单因素方差分析结果”中的F值为
4.062,而13.483>4.062,所以,如果从单因素考虑,广告形式对销售额的影响较地区有更明显的作用。
SPSS单因素方差分析案例
SPSS单因素方差分析案例
一、案例简介
本案例主要探讨不同年龄组对对不同种类游戏的不同评价。
采用
SPSS软件进行单因素方差分析,研究对象为50名参与游戏评测的受试者,其中25名为年龄段20-30,25名为年龄段30-40。
每位受试者都被分配3
种不同类型的游戏来评价,评价方式为3分制,值得1,2,3分,分别表
示很差,一般,不错。
二、SPSS分析
1.数据的输入
①打开SPSS软件,点击“文件”-“打开”,选择需要进行分析的数据;
②若原始数据是excel格式,选择“所有的excel文件”,点击“打开”;
③若原始数据是文本格式,选择“所有文本文件”,点击“打开”;
④若原始数据是spss格式,选择“spss 调查”,点击“打开”;
⑤若原始数据是SAS格式,选择“所有SAS文件”,点击“打开”。
2.数据分析
①点击“统计”菜单,在下拉菜单中选择“多元统计分析”;
②在多元统计分析对话框中,在“因变量”栏中选择需要分析的评测
结果;
③在“自变量”栏中选择“受试者的年龄”;
④点击“确定”按钮,开始进行单因素方差分析;
⑤点击“分析”按钮,在下拉菜单中选择“单因素方差分析”;
⑥点击“分析”按钮。
心理统计SPSS-第五章 因素型实验设计及方差分析过程剖析
1 2
A1
8 12
A2
16 11
A3
21 16
3
4 5
11
7 13
15
10 12
18
19 22
6
9
14
18
练习
One Way方差分析程序的适用条件: 1.三个以上相等独立被试组在不同条件下接受观测得 到三组以上的独立数据组; 2.来自三个以上不同总体的独立被试组在相同条件下 接受同样的观测,得到三组以上的独立数据组; 3.一般要求因变量必须是连续测量的数据或近似于连
究会得到多组数据,而这些数据必然存在变异。被试差异、测量误 差、其他额外变量的变化等。因素型实验的目的就是考察自变量或准自
变量变化是否引起了因变量数据足够大的改变,以至于可以认为其不同
水平间因变量的差异性并非误差因素造成,而且这种评估是与误差因素 引起数据的变化量相比较而完成的。数据变异可以通过离差平方和或方 差来反映,所以关于数据变异的分析叫方差分析。
续变化的数据;
4.数据总体为正态分布、各数据样本方差齐性。
二、多因素完全随机实验设计方差分析(GLM 方差分析)
当研究的自变量或准自变量不只一个,每个自变量的水平在两个 以上时,就会结合出四个以上的实验处理。将选取来的被试分成四个 独立组,每个组被试只接受一种条件下的实验观察,则构成多因素完 全随机实验设计。其数据分析则要使用SPSS程序中的“General Linear Model-Univariate”模块。 如果进行简单效应检验,可执行类似于下的句法命令: MANOVA SCORE by A(1,2) B(1,2) /design(此句要求先输出完整的方差分析表) /design=A within B(1) A within B(2) B within A(1) B within A(2). (ANOVA命令中不能做简单效应检验)
SPSS统计分析第五章方差分析
单因素方差分析的选择项
Contrasts:可以指定一种要用t检验来检验的Priori对比,即进 行均值的多项式比较选项; Post Hoc:可以指定一种多重比较检验; Option:可以指定要输出项〕
Polynomial<多项式比较>:均值的多项式比较是包括 两个或更多个均值的比较.单因素方差分析的Oneway ANOVA过程允许进行高达5次的均值多项式比 较.Linear线性、Quadratic二次、 Cubic三次、 4th 四次、 5th五次多项式
2.水平
因素的不同等级称作水平. 例如,性别因素在一般情况下只研究两个水平:男、女.化学实验或 生物实验中的"剂量"必须离散化为几个有限的水平数.如:1ml、 2ml、4ml三个水平. 应该特别注意的是在SPSS数据文件中,作为因素出现的变量不能 是字符型变量,必须是数值型变量.例如性别变量SEX,定义为数值 型,取值为0、1.换句话说,因素变量的值实际上是该变量实际值的 代码,代码必须是数值型的.可以定义值标签F、M〔或Fema1e、 ma1e〕来表明0、1两个值的实际含义,以便在打印方差分析结果 时使用.使结果更加具有可读性.
6.协方差分析
在一般进行方差分析时,要求除研究的因素外应该 保证其他条件的一致.作动物实验往往采用同一胎 动物分组给予不同的处理,研究各种处理对研究对 象的影响就是这个道理. 例如研究身高与体重的关系时要求按性别分别进 行分析.这样消除性别因素的影响.不同年龄的身 高对体重的关系也是有区别的,被测对象往往是不 同年龄的.要消除年龄的影响,应该采用协方差分 析.
2.方差分析的假设检验
假设有m个样本,如果原假设H0:样本均数都相同 μ1=μ2=μ3=········=μm=μ,m个样本有共同的方差σ2. 则m个样本来自具有共同的方差σ2和相同的均数μ的 总体. 如果经过计算结果组间均方远远大于组内均方的F> F0.05<f组间,f组内>,〔括号中的两个f是自由度〕则p <0.05,推翻原假设,说明样本来自不同的正态总体,说 明处理造成均值的差异,有统计意义.否则,F<F0.05<f 组间,f组内>,P>0.05承认原假设,样本来自相同总体, 处理无作用.
熟练使用SPSS进行单因素方差分析
熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。
它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。
单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。
二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。
SPSS数据分析—单因素及多因素方差分析
SPSS数据分析—单因素及多因素方差分
析
T检验可以用于解决单个样本或两个样本的均值比较问题。
但是,当涉及到两个以上的样本时,就不能使用T检验,而
需要使用方差分析。
方差分析是基于变异分解的思想,利用F
分布进行比较。
在算法方面,由于线性模型的引入,在SPSS中,方差分
析可以在比较均值和一般线性模型菜单中完成。
在适用条件方面,方差分析和两个独立样本的T检验一样,也需要满足独立性、正态性和方差齐性。
方差分析的原假设是n个样本的均值相同或n个样本来自同一个总体,或自变量对因变量没有影响。
由于涉及到两组以上的样本进行分析,因此除了需要说明多个样本均值是否有差异之外,还需要进一步说明哪些样本存在差异,因此需要进行多重比较。
在SPSS中,可以通过分析-比较均值-单因素ANOVA或
分析-一般线性模型-单变量来进行方差分析。
在一般线性模型
菜单中,方差分析更加具体细致,可以根据线性模型的思想进行分析。
利用SPSS进行单因素方差分析
利用SPSS进行单因素方差分析
一、启动SPSS
二、在数据窗中建立数据文件
定义两个变量:因素变量f,取值1,2,…r,代表因素的r 个水平;因变量y,样本观测值。
三、单击Analyze菜单,选择Compare Means中的One-Way ANOV A打
开单因素分析主对话框:
(1)将变量f和y分别放入Factor栏和Dependent List栏。
击活Post Hoca对话框确定检验的显著性水平α的值,系统默认值为
0.05,单击continue返回单因素分析主对话框。
其他选项默认即可。
(2)单击Ok可得结果清单。
四、若Sig大于检验的显著性水平α,则认为因素f的各水平无显著性差异;
若Sig小于或等于检验的显著性水平α,则认为因素F的各水平有显著性差异。
(或根据方差分析表中提供的F值和临界值大小关系得出结论)。
统计学实验—SPSS与R软件应用与实例-第5章方差分析-SPSS
2020/7/23
《统计学实验》第5章方差分析
5-16
【统计理论】
注意到 i j 0与 j i 0是等价的。因此
该假设中共有r(r 1)/ 2个不同的成对比较。
多重比较的特点是它同时对多个成对假设进 行比较。多种比较的思想有两种,一是寻找每一 个成对假设的检验统计量,给出检验临界值,通 过比较界定显著程度;二是使用同时置信区间 (simultaneous confidence interval)的概念。
5-6
5.1 单因素方差分析
【例5.1】(数据文件为li5.1.sav)为研究咖啡因对人 体的影响,进行如下的试验:咖啡因剂量取三个 水平:0 mg, 100mg, 200mg。挑选同一年龄,体 质大致相同的30名健康的男大学生进行手指叩击 训练。训练结束后,对每个水平随机的选定其中 10个人,在服用咖啡因2小时后,请每个人做手指 叩击,记录下每分钟叩击的次数。该试验进行双 盲试验,即试验者和生物学家均不知道他们接受 的是哪一种剂量的咖啡因,只有统计人员知道。 试验数据如下表:
(数据来源:费宇等,《统计学》第5章,高等教育 出版社,2019)
(1)给定显著性水平 0.05 ,比较试验中咖啡因用量是
否对人体神经功能有显著影响?
(2)如果有显著差异,在0.05的显著性水平下,说明试 验中咖啡因用量在哪些水平上有显著差异?
2020/7/23
《统计学实验》第5章方差分析
5-8
【统计理论】
2020/7/23
《统计学实验》第5章方差分析
5-13
【统计理论】
为了检验 H 0 ,定义F统计量
F M S A S S A /(r 1 )~F (r 1 ,n r r) M S ES S E /(n r r)
spss方差分析操作示范-步骤-例子
第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。
数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。
2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。
从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。
单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。
3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。
①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。
设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。
③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。
单因素方差分析,我见过的最详细SPSS教程
单因素方差分析,我见过的最详细SPSS教程一、问题与数据有研究者认为,体力活动较多的人能更好地应对职场的压力。
为了验证这一理论,某研究招募了31名受试者,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间数,受试者被分为4组:久坐组、低、中、高体力活动组,变量名为group。
利用Likert量表调查的总得分来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强,变量名为coping_stress。
应对职场压力的能力,可以简写为CWWS 得分。
研究者想知道,CWWS得分的高低是否取决于体力活动的时间,即coping_stress变量的平均得分是否随着group变量的不同而不同(部分数据如下图)?二、对问题的分析研究者想分析不同group间的coping_stress得分差异,可以采用单因素方差分析。
单因素方差分析适用于2种类型的研究设计:1)判断3个及以上独立的组间均数是否存在差异;2)判断前后变化的差值是否存在差异。
使用单因素方差分析时,需要考虑6个假设。
假设1:因变量为连续变量;假设2:有一个包含2个及以上分类、且组别间相互独立的自变量;假设3:每组间和组内的观测值相互独立;假设4:每组内没有明显异常值;假设5:每组内因变量符合正态分布;假设6:进行方差齐性检验,观察每组的方差是否相等。
那么进行单因素方差分析时,如何考虑和处理这6个假设呢?三、思维导图(点击图片可查看大图) 四、对假设的判断1. 假设1:因变量为连续变量;假设2:有一个包含2个及以上分类、且组别间相独立的自变量;假设3:每组间及组内的观测值相互独立。
和研究设计有关,需根据实际情况判断。
2. 假设4:每组内没有明显异常值。
如果某个组别中的某些因变量取值和其他值相比特别大或者特别小,则称之为异常值。
异常值会影响该组的均数和标准差,因此会对最终的统计检验结果产生很大的负面影响。
对于小样本研究,异常值的影响尤其显著,必须检查每组内是否存在明显异常值。
SPSS详细操作:单因素方差分析
SPSS详细操作:单因素方差分析一、问题与数据为调查A、B、C三种治疗措施对患者谷丙转氨酶(ALT)的影响,某科室将45名患者随机分为三组,每组15人,分别采取A、B、C三种治疗措施。
治疗后ALT水平(U/L)如下。
试问应用三种治疗措施后,患者的ALT水平是否有差异?表1. 三组患者治疗后的ALT水平(U/L)二、对数据结构的分析整个数据资料涉及3组患者,每组15人,测量指标为血常规报告的ALT水平,因此属于多组设计的定量资料。
要想知道不同治疗措施对ALT水平的影响是否相同,则要比较3组的总体均数之间的差异是否具有统计学意义。
若各组观察值满足独立性,服从正态分布或近似正态分布,并且各组之间的方差齐,可选用单因素方差分析。
三、SPSS分析方法1. 数据录入SPSS(1=A组,2=B组,3=C组)2. 选择Analyze→General Linear Model→Univariate (假设三组数据服从正态分布)3. 选项设置1)主对话框设置:将分析变量(ALT)送入Dependent Variable 框中→将分组变量(Group)送入Fixed Factor(s) 框中。
2)Options设置:点击Options按钮,勾选Descriptive statistics(显示统计描述)和Homogeneity tests(方差齐性检验)→Continue→OK。
四、结果解读Descriptive Statistics表格给出了三组和总体ALT水平的部分统计信息,包括组别(Group)、均数(Mean)、标准差(Std. Deviation)和例数(N)。
Levene’s Test of Equality of Error Variances表格给出了方差齐性检验的结果。
F值=0.791,P(Sig.)=0.460,说明三组数据方差齐,满足方差分析的适用条件。
Tests of Between-Subjects Effects表格给出了方差分析的结果。
SPSS单因素方差分析步骤(单因素显著性分析步骤)
spss教程:单因素方差分析用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。
方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。
所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。
统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。
方法/步骤1.计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。
2.方差齐性检验:控制变量不同水平下各观察变量总体方差是否相等进行分析。
采用方差同质性检验方法(Homogeneity of variance),原假设“各水平下观察变量总体的方差无显著差异,思路同spss两独立样本t检验中的方差分析”。
图中相伴概率0.515大于显著性水平0.05,故认为总体方差相等。
趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。
趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察变量总体作用的程度。
图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。
3.多重比较检验:单因素方差分析只能够判断控制变量是否对观察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。
常用LSD、S-N-K方法。
LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。
4.相似性子集:由图可知,划分的子集结果是一样的。
通常在相似性子集划分时多采用S-N-K方法的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自尊
Shapiro-Wilk Statistic df .987 5 .987 5 .987 5
Sig. .967 .967 .967
*. This is a lower bound of the true significance. a. Lilliefors Significance Correction
由于各组p=0.967>0.05,所以各组自 尊得分服从正态分布。
2、方差分析的计算过程 (1)菜单选择
(2)自变量、因变量选择 Dependent List中移入因变量自尊; Factor中移入自变量反馈类型。
(3)事后多重比较选择
选择Equal variances assumed中的LSD 选项,选择Equal variances not assumed 中的Dunnett’s C选项 。
【理论计算过程】 解:表中有7名被试,即7个区组(如果每个区组不是1人 而是更多的人,分别接受4种处理中的一种,则表中数据 均代表分配到每种条件下每个人数据的平均值。横向看, 对于被试1,有5,6,6,5四个数据,其和∑R等于22。 其他的6名被试也一样。如果这7名被试“同质”,则表中 7个∑R的值应该相同,而实际结果从17到36这7个数据都 不尽相同,很明显这个差异就是7名被试的个体差异。当 整个实验中的个体差异知道后,就可以算出个体差异造成 的变异,即区组变异。如果将上面的表格做90度旋转,可 以发现求区组平方和与求组间平方和实质上差不多。)
SPSS数据分析: 问题提出与实例导学 (第五部分)
主讲:赵小军(安庆师范学院) 祁禄(广州大学)
第五章 单因素方差分析
第一节 单因素方差分析基本过程 一、单因素方差分析的前提条件 (一)总体正态分布 当有证据表明总体分布不是正态时,可以将数据做正态转 化,或采用非参数检验法; (二)变异的相互独立性; (三)各实验处理内的方差要一致。进行方差分析时,各 实验组内部的方差彼此无显著差异,这是最重要的一个假 定,为满足这一假定,在做方差分析前要对各组内方差做 齐性检验。Fmax= s 2 ,查Fmax临界值表,当Fmax
【SPSS操作指南】 1、正态检验 选择菜单Analyze →Descriptive Statistics →Explore…;
(2)结果输出
Tests of Normality 反 馈 类型 积 极 反馈 组 消 极 反馈 组 控制组 Kolmogorov-Smirnov Statistic df Sig. .136 5 .200* .136 5 .200* .136 5 .200*
2)方差分析表结果
ANOVA 自尊 Sum of Squares 43.333 30.000 73.333 df 2 12 14 Mean Square 21.667 2.500 F 8.667 Sig. .005
Between Groups Within Groups Total
由于F=8.667,p=0.005<0.01,所以 反馈类型对自尊有显著性的影响。
下面是具体计算过程: 设:
H 0 : 1 2 3 4 H1 : 1 2 3 4 (下标1、、、表示四个不同的时间 2 3 4 )
小提示:本例由于方差齐性检验结果为齐 性,所以事后多重比较的结果只需要LSD检 验的结果。
[例5.2]动手动脑 从某高校随机抽取了45个本科生 参加了实验,并随机分为3组,每组15人,每一 组被试仅对一组实验材料进行命名(三组材料为 规则形声字、不规则形声字和非形声字)。实验 得到的原始数据见数据文件SPSS第5章实例5.2 (参考丁国盛、李涛编著,《SPSS统计教程:从 实验设计到数据分析》,机械工业出版社,2006 年),请问声旁提供的信息对汉字命名时间是否 有影响?请对以上数据进行SPSS分析,并解释结 果。
(4)方差of variance test。
(5)结果输出 1)方差齐性检验解释
Test of Homogeneity of Variances 自尊 Levene Statistic .000 df1 2 df2 12 Sig. 1.000
第三节 单因素随机区组实验设计的 SPSS分析
一、SPSS操作方法 使用菜单为Analyze→General Linear Model→Univariate...
二、实例分析 [例5.3]为了测查刺激呈现的时间长短在记忆过程 中的作用,一名认知心理学家把10个无意义音节 以不同长度的时间呈现给被试。每种情况下这组 音节呈现30S,中间间隔10M,要求被试完成一 些简单的数学题,以避免被试练习记忆无意义音 节,然后要求被试在60S内尽可能多的回忆他记 住的音节。上表是7个被试的实验结果,问呈现时 间长短是否显著影响无意义音节的回忆量。(实 例见张厚粲、徐建平著,《现代心理与教育统计 学》,北京师范大学出版社,2004年)
max
小于表中相应的临界值,就认为要比较的样本方差两两之 间均无显著差异。
s 2 min
二、单因素方差分析的计算过程
第二节 单因素完全随机实验设计 的SPSS分析 使用Analyze→Compare Means→OneWay ANOVA...菜单进行单因素完全随机设 计的方差分析。
[例5.1] 有人研究自尊与个人表现的反馈类型之间 的关系。让15名被试参加一项知识测验,每组各 5名被试。在积极反馈组,不管被试在测验中的实 际表现如何,都告诉他们水平很高。对消极反馈 组的被试,告诉他们表现都很差。对控制组的被 试,不管测验分数如何,都不提供任何反馈信息。 最后,让所有的被试都参加一个自尊测验,测验 总分为10分,得到的分数越高,表示自尊心越强。 实验结果见数据文件SPSS第5章实例5.1,试检验 不同反馈类型与自尊之间的关系如何?(实例见 张厚粲、徐建平著,《现代心理与教育统计学》, 北京师范大学出版社,2004年)