2011全国中考数学真题解析120考点汇编 平行四边形的判定
中考数学真题解析_四边形综合题.(含答案)2
全国中考真题解析120考点汇编四边形综合题一、选择题1. (2011重庆江津区,10,4分)如图,四边形ABCD 中,AC =a ,BD =b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( )①四边形A 2B 2C 2D 2是矩形;②四边形A 4B 4C 4D 4是菱形;③四边形A 5B 5C 5D 5的周长是4a b +错误!未找到引用源。
④四边形A n B n C n D n 的面积是12n ab +错误!未找到引用源。
.A 、①②B 、②③C 、②③④D 、①②③④考点:三角形中位线定理;菱形的判定与性质;矩形的判定与性质。
专题:规律型。
分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD 中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A 5B 5C 5D 5 的周长;④根据四边形A n B n C n D n 的面积与四边形ABCD 的面积间的数量关系来求其面积.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.2. (2011重庆市,9,4分)如图,在平行四边形 ABCD 中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO=BO ;②OE=OF ; ③△EAM ∽△EBN ;④△EAO ≌△CNO ,其中正确的是A. ①②B. ②③C. ②④D.③④考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质. 分析:①根据平行四边形的对边相等的性质即可求得AO≠BO ,即可求得①错误; ②易证△AOE ≌△COF ,即可求得EO=FO ;③根据相似三角形的判定即可求得△EAM ∽△EBN ;④易证△EAO ≌△FCO ,而△FCO 和△CNO 不全等,根据全等三角形的传递性即可判定该选项错误.点评:本题考查了相似三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE ≌△COF 是解题的关键.3. (2010重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( ) 9题图BA .1B .2C .3D .4 考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理分析:根据翻折变换的性质和正方形的性质可证△ABG ≌△AFG ;在直角△ECG 中,根据勾股定理可证BG =GC ;通过证明∠AGB =∠AGF =∠GFC =∠GCF ,由平行线的判定可得AG ∥CF ;由于S △FGC =S △GCE ﹣S △FEC ,求得面积比较即可.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.4. (2011山东省潍坊, 11,3分)己知直角梯形ABCD 中,AD ∥BC .∠BCD=90°,BC=CD=2AD ,E 、F 分别是BC 、CD 边的中点.连接BF 、DF 交于点P .连接CP 并延长交AB 于点Q ,连揍AF ,则下列结论不正确...的是( ). A .CP 平分∠BCDB .四边形ABED 为平行四边形C ,CQ 将直角梯形ABCD 分为面积相等的两部分D .△ABF 为等腰三角形A B C DFEG10题图【考点】直角梯形;全等三角形的判定与性质;平行四边形的判定与性质.【专题】证明题;几何综合题.【分析】本题可用排除法证明,即证明A、B、D正确,C不正确;易证△BCF≌△DCE (SAS),得∠FBC=∠EDC,∴△BPE≌△DPF,∴BP=DP;∴△BPC≌△DPC,∴∠BCP=∠DCP,∴A正确;∵AD=BE且AB∥BE,所以,四边形ABED为平行四边形,B正确;∵BF=ED,AB=ED,∴AB=BF,即D正确;【点评】本题考查了等腰三角形、平行四边形和全等三角形的判定,熟记以上图形的性质,并能灵活运用其性质,是解答本题的关键,本题综合性较好.5.(2011•河池)如图,在平行四边形ABCD中,E为AB的中点,F为AD上一点,EF交AC于G,AF=2cm,DF=4cm,AG=3cm,则AC的长为()A、9cmB、14cmC、15cmD、18cm考点:平行线分线段成比例;平行四边形的性质。
2011中考数学知识点梳理试题分类汇编(17)四边形解读
2011中考数学试题分类汇编(17四边形按住ctrl 键点击查看更多中考数学资源知识点:一、多边形1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。
今后所说的多边形,如果不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
9、n 边形的对角线共有3(21n n 条。
说明:利用上述公式,可以由一个多边形的边数计算出它的对角线的条数,也可以由一个多边形的对角线的条数求出它的边数。
10、多边形内角和定理:n 边形内角和等于(n -2180°。
11、多边形内角和定理的推论:n 边形的外角和等于360°。
说明:多边形的外角和是一个常数(与边数无关,利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。
无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算方法。
二、平行四边形1、平行四边形:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形性质定理1:平行四边形的对角相等。
3、平行四边形性质定理2:平行四边形的对边相等。
4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。
5、平行四边形性质定理3:平行四边形的对角线互相平分。
2011-2023北京中考真题数学汇编:平行四边形
2011-2023北京中考真题数学汇编平行四边形上述结论中,所有正确结论的序号是(A.①②B.①③2.(2015北京中考真题)如图,公路的长为1.2km,则M、C两点间的距离为(A.0.5km B.0.6km二、填空题3.(2021北京中考真题)如图,在矩形即可证明四边形AECF是菱形,这个条件可以是4.(2019北京中考真题)在矩形重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.6.(2013北京中考真题)如图,O 是矩形ABCD 的对角线AC 的中点,则四边形ABOM 的周长为.三、证明题7.(2022北京中考真题)在ABC 中,90ACB ∠= ,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.8.(2022北京中考真题)如图,在ABCD Y 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.9.(2020北京中考真题)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF .(1)求证:四边形OEFG 是矩形;(2)若AD =10,EF =4,求OE 和BG 的长.10.(2015北京中考真题)在 ABCD BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5 11.(2013北京中考真题)如图,在CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°证:DA=DE.18.(2011北京中考真题)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.20.(2018北京中考真题)下面是小东设计的已知:直线及直线外一点P.求作:PQ,使得PQ l P.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l P(____________)(填推理的依据).21.(2011北京中考真题)如图,在平面直角坐标系xOy中,我把由两条射线AE,BF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(﹣1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上.(1)求两条射线AE,BF所在直线的距离;(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,写出b的取值范围;(3)已知▱AMPQ(四个顶点A,M,P,Q按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.五、问答题22.(2011北京中考真题)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE =∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,EBD ∠=∴BDE △是等腰直角三角形,由勾股定理得,22BE AB AE =+∵AB AE BE +>,∴22a b a b +>+,②正确,故符合要求;由勾股定理得222DE BD BE =+,即∴()2222c a b a b =⨯+<+,③正确,故符合要求;故选:D .【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.2.D【分析】根据直角三角形斜边上的中线等于斜边的一半即可求得.【详解】解:根据题意可得,AM =1.2∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC 设OA=x,OB=y,由题意得:51x yx y+=⎧⎨-=⎩,解得:∴AC=2OA=6,BD=2OB∴菱形ABCD的面积=1 2故答案为12.【点睛】本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.6.20【分析】先由5AB=,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF AB∥,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵EG CGBEG DCG BE DC=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(20.(1)作图见解析(2)PA,【详解】分析:根据作图过程,补全图形即可详解:(1)尺规作图如下图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.点睛:考查尺规作图,三角形中位线定理,熟练掌握三角形的中位线定理是解题的关键.21.解:(1)分别连接AD、DB,则点D在直线AE上,如图1,∵点D在以AB为直径的半圆上,∴∠ADB=90°,∴BD⊥AD,在Rt△DOB中,由勾股定理得,BD=,∵AE∥BF,∴两条射线AE、BF所在直线的距离为.(2)当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围是b=或﹣1<b<1;当一次函数y=x+b的图象与图形C恰好只有两个公共点时,b的取值范围是1<b<(3)假设存在满足题意的平行四边形AMPQ,根据点M的位置,分以下四种情况讨论:①当点M在射线AE上时,如图2.∵AMPQ四点按顺时针方向排列,∴直线PQ必在直线AM的上方,∴PQ两点都在弧AD上,且不与点A、D重合,∴0<PQ<.∵AM∥PQ且AM=PQ,∴0<AM<<.<.。
中考数学复习----《平行四边形的判定》知识点总结与专项练习题(含答案解析)
中考数学复习----《平行四边形的判定》知识点总结与专项练习题(含答案解析)知识点总结1.平行四边形的判定:①一组对边平行且相等的四边形是平行四边形。
∵AB∥DC,AB=DC,∴四边行ABCD是平行四边形②两组对边分别相等(两组对边分别平行)的四边形是平行四边形。
符号语言:∵AB=DC,AD=BC(AB∥DC,AD∥BC),∴四边行ABCD是平行四边形.③两组对角分别相等的四边形是平行四边形。
∵∠ABC=∠ADC,∠DAB=∠DCB,∴四边行ABCD是平行四边形④对角线相互平行的四边形是平行四边形。
∵OA=OC,OB=OD,∴四边行ABCD是平行四边形专项练习题1、(2022•河北)依据所标数据,下列一定为平行四边形的是()A.B.C.D.【分析】根据平行四边形的判定定理做出判断即可.【解答】解:A、80°+110°≠180°,故A选项不符合条件;B、只有一组对边平行不能确定是平行四边形,故B选项不符合题意;C、不能判断出任何一组对边是平行的,故C选项不符合题意;D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;故选:D.2、(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=AC,A、当∠B=∠F,不能判定AD∥CF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;B、∵DE=EF,∴DE=DF,∴AC=DF,∵AC∥DF,∴四边形ADFC为平行四边形,故本选项符合题意;C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;D、∵AD=CF,AD=BD,∴BD=CF,由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF∥AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;故选:B.3、(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠F AN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).【分析】①连接AD,交BE于点O,证出OM=ON,由对角线互相平分的四边形是平行四边形可得出结论;②证明△AON≌△DOM(ASA),由全等三角形的性质得出AN=DM,根据一组对边平行且相等的四边形是平行四边形可得出结论;③不能证明△ABM与△DEN全等,则可得出结论;④证明△ABM≌△DEN(AAS),得出AM=DN,根据一组对边平行且相等的四边形是平行四边形可得出结论.【解答】解:①连接AD,交BE于点O,∵正六边形ABCDEF中,∠BAO=∠ABO=∠OED=∠ODE=60°,∴△AOB和△DOE是等边三角形,∴OA=OD,OB=OE,又∵BM=EN,∴OM=ON,∴四边形AMDN是平行四边形,故①符合题意;②∵∠F AN=∠CDM,∠CDA=∠DAF,∴∠OAN=∠ODM,∴AN∥DM,又∵∠AON=∠DOM,OA=OD,∴△AON≌△DOM(ASA),∴AN=DM,∴四边形AMDN是平行四边形,故②符合题意;③∵AM=DN,AB=DE,∠ABM=∠DEN,∴△ABM与△DEN不一定全等,不能得出四边形AMDN是平行四边形,故③不符合题意;④∵∠AMB=∠DNE,∠ABM=∠DEN,AB=DE,∴△ABM≌△DEN(AAS),∴AM=DN,∵∠AMB+∠AMN=180°,∠DNM+∠DNE=180°,∴∠AMN=∠DNM,∴AM∥DN,∴四边形AMDN是平行四边形,故④符合题意.故答案为:①②④.4、(2022•益阳)如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为()A.5B.4C.3D.2【分析】根据平行四边形的性质可知CD=AB=8,已知AE=3,则BE=5,再判定四边形DEFC是平行四边形,则DC=EF=8,BF=EF﹣BE,即可求出BF.【解答】解:在▱ABCD中,AB=8,∴CD=AB=8,AB∥CD,∵AE=3,∴BE=AB﹣AE=5,∵CF∥DE,∴四边形DEFC是平行四边形,∴DC=EF=8,∴BF=EF﹣BE=8﹣5=3.故选:C.5、(2022•赤峰)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形ABCD周长不变B.AD=CDC.四边形ABCD面积不变D.AD=BC【分析】由条件可知AB∥CD,AD∥BC,可证明四边形ABCD为平行四边形,可得到AD=BC.【解答】解:由题意可知:AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴AD=BC,故选:D.6、(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是()A.8B.16C.24D.32【分析】由EF∥AC,GF∥AB,得四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,再由AB=AC=8和等量代换,即可求得四边形AEFG的周长.【解答】解:∵EF∥AC,GF∥AB,∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,∵AB=AC,∴∠B=∠C,∴∠B=∠EFB,∠GFC=∠C,∴EB=EF,FG=GC,∵四边形AEFG的周长=AE+EF+FG+AG,∴四边形AEFG的周长=AE+EB+GC+AG=AB+AC,∵AB=AC=8,∴四边形AEFG的周长=AB+AC=8+8=16,故选:B.。
2011全国中考数学真题解析120考点汇编 平行四边形的性质
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆平行四边形的性质一、选择题1.(2011某某某某,12,3分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点0.若AC=6,则线段AO的长度等于_______.考点:平行四边形的判定与性质.专题:计算题.分析:根据在四边形ABCD中,AB∥CD,AD∥BC,求证四边形ABCD是平行四边形,然后即可求解.解答:解:∵在四边形ABCD中,AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC=6,∴AO= 12AC=12×6=3.故答案为:3.点评:此题主要考查学生对平行四边形的判定与性质的理解和掌握,难度不大,属于基础题.2.(2011某某,2,3分)已知□ABCD的周长为32,AB=4,则BC=()A. 4B. 12C. 24D. 28【考点】平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.【点评】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.3.(2011某某某某,12,3分)在平面直角坐标系中,□ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2)则顶点D的坐标为()A.(7,2) B. (5,4) C.(1,2) D. (2,1)考点:平行四边形的性质;坐标与图形性质。
分析:首先根据题意作图,然后由四边形ABCD是平行四边形,根据平行四边形的性质,即可求得顶点D的坐标.解答:解:如图:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、B、C的坐标分别是(0,0)、(3,0)、(4,2),∴顶点D的坐标为(1,2).故选C.点评:此题考查了平行四边形的性质.注意数形结合思想的应用是解此题的关键.4.(2011某某某某 5,3分)如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1F E DC B AA .40°B .50°C.60° D .80°考点:平行四边形的性质 角平分线定义专题:四边形分析::根据平行四边形的对边平行和角平分线的定义,以及平行线的性质求∠1的度数即可.由AD ∥BC ,∠B =80°得∠BAD =180°-∠B =100°.由AE 平分∠BAD 得∠DAE =21∠BAD =50°,从而∠AEB =∠DAE =50°.由CF ∥AE ,得∠1=∠AEB =50°. 解答:B点评:此题主要考查平行四边形的性质和角平分线的定义,属于基础题型.5. (2011•某某,5,3分)如图,在平行四边形ABCD 中,∠B=80°,AE 平分∠BAD 交BC 于点E ,CF∥AE 交AE 于点F ,则∠1=( )A 、40°B 、50°C 、60°D 、80°考点:平行四边形的性质。
初中数学知识点精讲精析 平行四边形的判别
4·2 平行四边形的判别1.平行四边形的判别(1)平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形2. 平行四边形的判定方法和性质的应用(1)平行四边形的判定方法和性质的综合应用.在解决问题时,不只是孤立地判定一个四边形是平行四边形,往往是判定出一个四边形是平行四边形后,要利用平行四边形的性质.所以,要把平行四边形的判定方法和平行四边形的性质区别开来.(2)平行四边形的判定方法的记忆.有些同学采用死记硬背的方法,但仍不会应用,有的同学把判别方法记混了,分不清是哪个判定方法,学习判定方法后,把几种方法进行整理,用几何语言表示出每一条判定方法.此外,不要把判定方法与性质混淆.比如已知四边形ABCD对角线AC、BD交于点O,且OA=OC,OB=OD,说明AB=CD.有的同学解为:据平行四边形的性质可得四边形ABCD是平行四边形,所以AB=CD.正确解答:∵OA=OC,OB=OD∴四边形ABCD是平行四边形∴AB=CD例1. 如图所示,在平行四边形ABCD中,点E、F分别在对角线AC上,且AE=CF,连结DE、BE、DF、BF,则四边形DEBF是平行四边形吗?为什么?解法一:是.∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∴∠DAE=∠BCF在△ADE 和△CBF 中∴△ADE ≌△CBF (SAS )∴DE =BF同理可知:△ABE ≌△CDF∴BE =DF∴四边形DEBF 是平行四边形解法二:是.同解法一,△ADE ≌△CBF∴DE =BF ,∠AED =∠CFB∴∠DEF =∠BFE∴DE ∥BF∴四边形DEBF 是平行四边形解法三:连结BD 与AC 相交于点O∵ABCD 是平行四边形∴OA =OC ,OB =OD又∵AE =CF ,∴OE =OF∴四边形DEBF 是平行四边形点拨:结合以上解法,解法三较为简单,在平常解题中,要训练自己解题的简捷性. 例2. 如图所示,平行四边形ABCD 中,E 、F 分别是BC 、AD 上的点,且AF =CE ,则BD 与EF 互相平分吗?说明理由.解:互相平分.理由如下:∵四边形ABCD 是平行四边形∴AD =BC ,AD ∥BC又∵AF =CE ,∴BE =DF又∵BE ∥DF ,∴四边形BEDF 是平行四边形∴BD 、EF 互相平分一变:平行四边形ABCD 中,E 、F 、G 、H 分别是BC 、CD 、DA 、AB 上的点,且BE =DG ,CF =AH ,EG 与HF 相交于O 点,则EG 与HF 互相平分吗?说明理由.一变解:利用三角形全等可得GH =FE ,GF =HE ,四边形GHEF 是平行四边形,从而EG 与HF 互相平分.DA BC DAE BCFAE CF =∠=∠=⎧⎨⎪⎩⎪点拨:利用平行四边形的判定条件.。
2011全国中考数学真题解析120考点汇编 线段和角
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆线段和角一、选择题1.(2011某某崇左,5,2分)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.2.(2011某某,6,3分)已知∠α=35°,则∠α的余角是()A.35°B.55°C.65°D.145°考点:余角和补角.专题:计算题.分析:根据互为余角的两个角的和为90度作答.解答:解:根据定义∠α的余角度数是90°﹣35°=55°.故选.点评:本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单.3.(2011•某某)已知∠α=20°,则∠α的余角等于70°.考点:余角和补角。
分析:若两个角的和为90°,则这两个角互余;根据已知条件可直接求出角α的余角.解答:解:∵∠α=20°,∴∠α的余角=90°﹣20°=70°.故答案为:70°.点评:本题考查了余角的定义,解题时牢记定义是关键.4.(2011•某某)如图,在所标识的角中,互为对顶角的两个角是()A、∠2和∠3B、∠1和∠3C、∠1和∠4D、∠1和∠2考点:对顶角、邻补角。
专题:推理填空题。
分析:两条直线相交后,所得的只有一个公共顶点,且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.解答:解:根据同位角、同旁内角、邻补角、对顶角的定义进行判断,A 、∠2和∠3是对顶角,正确;B 、∠1和∠3是同旁内角,错误;C 、∠1和∠4是同位角,错误;D 、∠1和∠2的邻补角是内错角,错误.故选A .点评:解答此类题确定三线八角是关键,可直接从截线入手.对平几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5. (2011某某某某8,3分)已知线段AB =10cm ,点C 是线段AB 的黄金分割点(AC >BC ),则AC 的长为( )A cm )1055(-B cm )5515(-C cm )555(-D cm )5210(- 考点:黄金分割。
【史上最全】2011中考数学真题解析88_梯形(含答案)
∴▱EDCN是菱形;故A正确;
同理:四边形BCDM是菱形,
∴CN=DE,DM=BC,
∴CN=DM,
∴四边形MNCD是等腰梯形,故B正确;
∴EN=ED=DM=AE=CN=BM=CD,
∵AN=AC﹣CN,EM=BE﹣BM,
∵BE=AC,
∴△AEN≌△EDM(SSS),故D正确.
【解答】解:
连接BE,∵正五边形ABCDE,∴BC=DE=CD=AB=AE,
根据多边形的内角和定理得:∠A=∠ABC=∠C=∠D=∠AED= =108°,
∴∠ABE=∠AEB= (180°-∠A)=36°,∴∠CBE=∠ABC-∠ABE=72°,
∴∠C+∠CBE=180°,∴BE∥CD,
∴四边形BCDE是等腰梯形,即事件M是必然事件,故选B.
3.(2011•贵港)如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是( )
A、40B、30C、20D、10
考点:梯形;全等三角形的判定与性质。
分析:作延长DE交AB延长线上点G,过点G作GH⊥FE,交FE的延长线上于点H,然后将梯形ABCD的面积转化为梯形HGFA的面积,根据条件首先证明GE=ED,再证出GH=DF,进而得到GH+AF)的长,HF的长,即可得到答案.
∵等腰梯形ABCD,AD∥BC,AB=CD,∴∠ABC=∠DCB,
∵BC=BC,∴△ABC≌△DCB,∴∠DBC=∠ACB,
∵AC⊥BD,∴∠BOC=90°,∴∠DBC=∠ACB=45°,∴OB=OC,
∵OF⊥BC,∴OF=BF=CF= BC= ,由勾股定理得:OB= ,
∵∠BAC=60°,∴∠ABO=30°,由勾股定理得:OA=1,AB=2,
中考数学平行四边形的判定经典题型精编
中考数学平行四边形的判定经典题型精编平行四边形的判定方法有五种:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等;⑤对角线互相平分。
平行四边形性质可以用来解决许多问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等。
还可以通过判别一个四边形为平行四边形,从而得到两直线平行,或者先判别一个四边形是平行四边形,然后再用平行四边形的特征去解决某些问题。
例1中,不能判别四边形是平行四边形的条件是两组对角分别相等的四边形。
在选项中,选B。
另一个问题是不能确定四边形ABCD是平行四边形的条件,选项中选C。
例2中,要证明四边形BEDF是平行四边形,已知AE=CF,可以通过证明BE=DF来得到结论。
因为ABCD是平行四边形,所以AE=CD,CF=AB。
因此,BE=AE+AB=CD+CF=DF。
因此,四边形BEDF是平行四边形。
例3中,要证明四边形EGFH是平行四边形,可以通过证明EG∥FH和EG=FH来得到结论。
因为G和H分别是OA和OC的中点,所以EG∥FH。
因为AC和BD是对角线,所以它们互相平分。
因此,OE=OC和OF=OA。
又因为G和H分别是OA和OC的中点,所以EG=GH=FH。
因此,四边形EGFH是平行四边形。
同步练A组中,第一题中,若OA=OC,OB=OD,则四边形ABCD是平行四边形,根据两组对边分别相等的判定方法。
第二题中,AC=BD,AB=CD=EF,CE=DF,可以得到AB∥EF和AD∥CF。
第三题中,平行四边形的三个内角的度数依次为88°,92°,92°。
因此,选项D是平行四边形。
第四题中,要证明四边形ABCD是平行四边形,可以通过证明AD∥BC和AB=CD来得到结论。
因为AD=BC,所以∠ADE=∠BCF。
因为AF=CE,所以∠AFE=∠CED。
因此,四边形ADEF是平行四边形。
因为AD∥EF,所以∠AED=∠XXX。
【备战2013中考】2011和2012年各地中考数学试题分考点解析汇编探索规律型问题
探索规律型问题一、选择题1.(2011重庆4分)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为A 、55B 、42C 、41D 、29【答案】【考点】分类归纳(图形的变化类)。
【分析】找出规律:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41。
故选C 。
2.(2011重庆綦江4分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中 所填整数之和都相等,则第2011个格子中的数为A 、3【答案】A 。
【考点】分类归纳(数字的变化类)。
【分析】首先由已知和表求出a 、b 、c ,再观察找出规律求出第2011个格子中的数.已知其中任意三个相邻格子中 所填整数之和都相等,则,3+a +b =a +b +c ,a +b +c=b +c ﹣1,解得a =﹣1,c =3,按要求排列顺序为,3,﹣1,b ,3,﹣1,b ,…,结合已知表得b =2,所以每个小格子中都填入一个整数后排列是:3,﹣1,2,3,﹣1,2,…,其规律是每3个数一个循环。
∵2011÷3=670余1,∴第2011个格子中的数为3。
故选A 。
3.(2011重庆江津4分)如图,四边形ABCD 中,AC=a ,BD=b ,且AC 丄BD ,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn .下列结论正确的有 ①四边形A2B2C2D2是矩形; ②四边形A4B4C4D4是菱形;③四边形A5B5C5D5的周长是4a b+ ④四边形AnBnCnDn 的面积是12n ab+.A 、①②B 、②③C 、②③④D 、①②③④【答案】C 。
2011全国中考数学真题解析120考点汇编 网格专题
A.B 两点在网格格点上,若点 C 也在网格格点上,以 A.B.C 为顶点的三角形面积为 2,则
满足条件的点 C 个数是( )
A.2
B.3C.4
D.5
考点:三角形的面积.
分析:根据三角形 ABC 的面积为 2,可知三角形的底边长为 4,高为 1,或者底边为 2,高为
4 / 38
word
2,可通过在正方形网格中画图得出结果. 解答:解:C 点所有的情况如图所示:故选 C.
D、逆时针旋转 45°
考点:旋转的性质。
分析:此题根据给出的图形先确定出旋转中心,再确定出旋转的方向和度数即可求出答案.
解答:解:根据图形可知:将△ABC 绕点 A 逆时针旋转 90°可得到△ADE.
故选 B.
点评:本题主要考查旋转的性质,在解题时,一定要明确三个要素:旋转中心、旋转方向、
旋转角度.
10 / 38
word
【解答】解:A∵沿某直线折叠,分成的两部分能互相重合 ∴它是轴对称图形 B、∵沿某直线折叠,分成的两部分能互相重合 ∴它是轴对称图形 C、∵绕某一点旋转 180°以后,能够与原图形重合 ∴它是轴对称图形 D、根据轴对称定义 它不是轴对称图形 故选 D. 【点评】本题主要考查了轴对称图形的有关概念,在解题时要注意轴对称图形的概念与 实际相结合是本题的关键. 15. (2011 某某某某 9,4 分)下列各个选项中的网格都是边长为 1 的小正方形,利用函数 的图象解方程 5x﹣1=2x+5,其中正确的是( )
A、2
B、 5 C、2 2 D、3
考点:垂径定理的应用;勾股定理。
专题:网格型。
分析:再网格中找两点 A、B(如图),根据 OC⊥AB 可知此圆形镜子的圆心在 OC 上,由于 O
浙江省2011年中考数学试题分类解析汇编 专题10 四边形
某某2011年中考数学试题分类解析汇编专题10:四边形一、选择题1.(某某某某、某某3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为(A )48cm(B )36cm (C )24cm (D )18cm 【答案】A 。
【考点】菱形的性质,平行四边形的性质。
【分析】根据①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,从图可求出⑤的面积: 2ABCD 1S S S 2cm ⑤四边形①+②+③+④=-=11-7=4。
从而可求出菱形的面积:2EFGH S S 14418cm ==+=①+②+③+④+⑤菱形。
又∵∠EFG=30°,∴菱形的边长为6cm 。
从而根据菱形四边都相等的性质得:①②③④四个平行四边形周长的总和=2(AE+AH+HD+DG+GC+CF+FB+BE )=2(EF+FG+GH+HE )=48cm 。
故选A 。
2.(某某某某4分)如图,在矩形ABCD 中,对角线AC ,BD 交与点O .已知∠AOB=60°,AC=16,则图中长度为8的线段有A 、2条B 、4条C 、5条D 、6条 【答案】D 。
【考点】矩形的性质。
等边三角形的判定和性质。
【分析】因为矩形的对角线相等且互相平分,AC=16,所以AO=BO=CO=DO=8;又由∠AOB=60°,所以三角形AOB 是等边三角形,所以AB=AO=8;又根据矩形的对边相等得,CD=AB=AO=8.从而可求出线段为8的线段有6条。
故选D。
3.(某某某某4分)在梯形ABCD中,AD∥BC,∠ABC=90º,对角线AC、BD相交于点O.下列条件中,不能..判断对角线互相垂直的是A.∠1=∠2 B.∠1=∠3C.∠2=∠3 D.OB2+OC2=BC2【答案】B。
2011年中考数学真题汇编:平行四边形
2011中考数学真题汇编多边形与平行四边形一、选择题1.(2011安徽,6,4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11【答案】D2. (2011广东广州市,2,3分)已知□ABCD的周长为32,AB=4,则BC=().A.4B.12C.24D.28【答案】B3. (2011山东威海,3,3分)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:5【答案】A4. (2011四川重庆,9,4分)下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为( )……图①图②图③图④A.55 B.42 C.41 D.29【答案】C5. (2011江苏泰州,7,3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有A.1组B.2组C.3组D.4组【答案】C中,对角线AC,BD相交于6. (2011湖南邵阳,7,3分)如图(二)所示,ABCD点O,且AB≠AD,则下列式子不正确的是()A.AC⊥BDB.AB=CDC. BO=ODD.∠BAD=∠BCD【答案】A.7. (2011重庆市潼南,9,4分)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是A. ①②B. ②③C. ②④D.③④【答案】B8. (2011广东东莞,5,3分)正八边形的每个内角为( )[来源:学科网]A .120°B .135°C .140°D .144°【答案】B[来源:学&科&网Z&X&X&K]9. (2011浙江省,8,3分)如图,在五边形ABCDE 中,∠BAE=120°, ∠B=∠E=90°,AB=BC ,AE=DE ,在BC ,DE 上分别找一点M,N ,使得△AMN 的周长最小时,则∠AMN+∠ANM 的度数为( )A . 100°B .110°C . 120°D . 130°【答案】C10. (2011台湾台北,33)图(十五)为一个四边形ABCD ,其中AC 与BD 交于E 点,且两灰色区域的面积相等。
西北5省自治区2011年中考数学试题分类解析汇编 专题10 四边形
西北5省自治区2011年中考数学试题分类解析汇编专题10:四边形一、选择题1. (某某省3分)如图,在ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,它们相交于点G,延长BE交CD的延长线于点H,则图中相似三角形共有A、2对B、3对C、4对D、5对【答案】C。
【考点】平行四边形的性质,相似三角形的判定。
【分析】由四边形ABCD是平行四边形,根据平行四边形的性质,利用相似三角形的判定定理,对各对三角形逐一分析:∵在ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,∴△AGB∽△HGF,△HED∽△HBC,△HED∽△EBA,△AEB∽△HBC,共4对。
故选C。
2.(某某自治区3分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AB的长是A.2 B.4 C.2 3 D.4 3【答案】C。
【考点】矩形的性质,等边三角形的判定和性质,直角三角形两锐角的关系,锐角三角函数定义,特殊角的三角函数值。
【分析】∵在矩形ABCD中,AO=12AC,DO=12BD,AC=BD(矩形的性质),∴AO=DO(等量代换)。
又∵∠AOD=60°,∴△AOD是等边三角形(等边三角形的判定)。
∴∠ADB=60°(等边三角形的性质)。
∴∠ABD=30°(直角三角形两锐角互余)。
∴ADtan30AB︒=(正切函数定义),即323AB=(特殊角的三角函数值)。
∴AB=23。
故选C。
3.(某某自治区3分)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是A、5cmB、6cmC、7cmD、8cm【答案】B。
【考点】等腰梯形的性质,平行四边形的判定和性质,平行的性质,等边三角形的判定和性质。
【分析】过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形(平行四边形的定义)。
广东省2011年中考数学试题分类解析汇编专题10 四边形
某某2011年中考数学试题分类解析汇编专题10:四边形一、选择题1. (某某3分)依次连接菱形的各边中点,得到的四边形是A、矩形B、菱形C、正方形D、梯形【答案】A。
【考点】菱形的性质,矩形的判定,三角形中位线定理,平行线的性质。
【分析】如图,E、F、G、H是菱形ABCD四边的中点,根据三角形中位线定理,HE和GH平行且等于DB的一半,所以HE和GH平行且相等,所以四边形EFGH是平行四边形。
又因为EG=AD,HF=AB,而由菱形的性质AB=AD,所以EG=HF,所以根据对角线相等的平行四边形是矩形的判定定理知道,四边形EFGH是矩形。
故选A。
2.(某某3分)已知ABCD的周长为32,AB=4,则BC=A、4B、12C、24D、28【答案】B。
【考点】平行四边形的性质。
【分析】根据平行四边形的性质得到AB=CD,AD=BC,由已知ABCD的周长为32,AB=4可得2(AB+BC)=32,即2(4+BC)=32,BC=12。
故选B。
3.(某某3分)如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂 A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是A、3公里B、4公里C、5公里D、6公里【答案】B。
【考点】角平分线的性质,菱形的性质。
【分析】根据菱形的对角线平分对角,作出辅助线,即可求得:连接AC,作CF⊥l1,CE⊥l2;∵AB=BC=CD=DA=5公里,∴四边形ABCD是菱形,∴∠CAE=∠CAF,∴CE=CF=4公里。
故选B。
C 4.(某某3分)如图,若要使平行四边形 ABCD 成为菱形,则需要添加的条件是A .AB =CDB .AD =BC C .AB =BCD .AC =BD 【答案】C 。
【考点】菱形的判定。
【分析】根据一组邻边相等的平行四边形是菱形的定义,直接得出结果。
故选C 。
二、填空题1. (某某3分)在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,若AB=OB=4,则AD= ▲ ;【答案】43。
数学中考真题解析——平行四边形(解答题1)
数学中考真题解析——平行四边形(解答题1)1. (2011浙江义乌,18,6分)如图,已知E 、F 是□ABCD 对角线AC 上的两点,且BE ⊥AC ,DF ⊥AC .(1)求证:△ABE ≌△CDF ;(2)请写出图中除△ABE ≌△CDF 外其余两对全等三角形(不再添加辅助线).【答案】(1)∵四边形ABCD 是平行四边形∴AB =CDAB ∥CD∴∠BAE =∠FCD又∵BE ⊥AC DF ⊥AC∴∠AEB =∠CFD =90°∴△ABE ≌△CDF (AAS )(2)①△ABC ≌△CDA ②△BCE ≌△DAF2. (2011湖南常德,21,7分)如图5,已知四边形ABCD 是平行四边形.(1)求证:△MEF ∽△MBA ;(2)若AF ,BE 分别,∠CBA 的平分线,求证DF =EC【答案】 (1) 证明:在□ABCD 中,CD ∥AB∴∠MEF =∠MBA ,∠MFE =∠MAB∴△MEF ∽△MBA FE AB C D图5B D E F M(2)证明:∵在□ABCD中,CD∥AB∠DFA=∠FAB又∵AF是∠DAB的平分线∴∠DAF=∠FAB∴∠DAF=∠DFA∴AD=DF同理可得EC=BC∵在□ABCD中,AD=BC∴DF=EC3. (2011四川成都,20,10分)如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=52KC,求ABCD的值;(2)连接BE,若BE平分∠ABC,则当AE=12AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=1nAD (2n),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.KEC DA B【答案】解:(1)∵AB∥CD,BK=52KC,∴ABCD=BKCK=52.(2)如图所示,分别过C、D作BE∥CF∥DG分别交于AB的延长线于F、G三点,∵BE∥DG,点E是AD的点,∴AB=BG;∵CD∥FG,CD∥AG,∴四边形CDGF是平行四边形,∴CD=FG;∵∠ABE=∠EBC,BE∥CF,∴∠EBC=∠BCF,∠ABE=∠BFC,∴BC=BF,∴AB-CD=BG-FG=BF=BC,∴AB=BC+CD.KEC DA B GF当AE=1nAD (2>n)时,(1-n)AB=BC+CD.4. (2011四川宜宾,17⑶,5分)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H 在BD上,AF=CE,BH=DG.求证:GF∥HE.【答案】证明:∵平行四边形ABCD中,OA=OC,由已知:AF=CEAF-OA=CE-OC ∴OF=OE同理得:OG=OH∴四边形EGFH是平行四边形∴GF∥HE5. (2011江苏淮安,20,8分)如图,四边形ABCD是平行四边形,EF分别是BC、AD上的点,∠1=∠2.求证:△ABE≌△CDF.HA(17(3)题图) CBDOEGF【答案】∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=DC ,又∵∠1=∠2,∴△ABE ≌△CDF (ASA ).6. (2011四川凉山州,20,7分)如图,E F 、是平行四边形ABCD 的对角线AC 上的点,CE AF =,请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明。
2011福建中考数学试题分类解析汇编专题10-四边形(精)
福建省2011年中考数学试题分类解析汇编专题10:四边形、选择题1. (福建莆田4分)如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD, 使点B 落在AD 边上的点F 处,若AB=4, BC=5,贝U tan /AFE 的值为 由折叠的性质得:/ EFC=/ B=90°, CF=BC=5AFE+/ DFC=90 , / DFC+/ FCD=90。
•••/ DCF=/ AFE•••在 Rt A DCF 中,CF=5, CD=4,「. DF=.CF 2- CD^ 52-4—3 DF 3• tan / AFE=tan / DCF= 。
故选 c 。
DC 4、填空题1.(福建福州4分)如图,直角梯形ABCD 中, AD // BC, / C=90°,则/ A+/ B+/ C= ▲ 度.【答案】270°。
【考点】直角梯形的性质,平行线的性质,【分析】 根据平行线的性质得到/ A+/ B=180°,由已知/ C=9C °,相加即可求出答案:/ A+/ B+/ C=180 +90°=270°02. (福建三明4分)如图,L ABCD 中,对角形 AC , BD 相交于点O , 添加一个条件,能使丨丨ABCD 成为菱形.你添加的条件是▲ (不再添加辅助线和字母)【答案】AB=BC (答案不唯一)。
【考点】平行四边形的性质,菱形的判定。
【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等; ③对角线互相垂直平分的四边形是菱形。
所以 AB=BC 或AC 丄BD 等。
A. 4 B.- C . 3 D.- 35 4 5 【答案】 Co 【考点】 翻折变换 (折叠问题), 矩形的性质, 勾股定理,锐角三角函数的定义。
【分析】 •••四边形 ABCD 是矩形,• / A=/ B=/ D=90 , CD=AB=4, AD=BC=5 DC(第14题)3.(福建龙岩3分)如图,菱形ABCD周长为8 cm. / BAD=60°,贝U AC=一▲______ c m。
2011中考数学专题复习 平行四边形2 人教新课标版
2011中考数学专题复习:平行四边形2【复习要点】1、矩形的性质:(1)四个角都是 ;(2)对角线 且 .2、菱形的性质:(1)四条边 ;(2)对角线 且 ;每一条对角线平分 .3、正方形的性质:(1)四条边都 ;四个角都是 . (2)结角线互相 且相等,每一条对角线平分一组对角.4、对称性:矩形、菱形、正方形既是 对称图形又是 对称图形.5、矩形的判定:(1)有一个角是 的平行四边形. (2)有三个角是 的四边形. (3)对角线相等的 . 6、菱形的判定:(1)一组 相等的平行四边形. (2)四条边都 的四边形.(3)结角线互相 平行四边形. 7、正方形的判定:(1)有一个角是 且有一组邻边 的平行四边形. (2)有一组邻边相等的 . (3)有一个角是直角的 .(4)对角线 , 且 的四边形.【实弹射击】 一、选择题。
1、用两块完全相同的直角三角形拼下列图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰三角形 ⑥等边三角形,一定能拼成的图形是( ) A 、①④⑤ B 、②⑤⑥ C 、①②③ D 、①②⑤2、如图1,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果35CEF ∠=,则BAF ∠=( )65 B 、55 C 、45A 、35D 、3、如图2,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高是( )A .32B .310.35.454、在菱形ABCD 中,AC 与BD 相交于点O ,则下列说法不正确的是( ) A .AO ⊥BO B .∠ABD=∠CBD C .AO=BO D .AD=CD5、下列命题中,真命题是( )A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形二、填空题。
1、如图3,菱形ABCD 的对角线24,10AC BD ==,则菱形的周长L = .2、如图4,正方形ABCD 中,,AF CE CF EF ⊥=且,则E ∠= .3、菱形ABCD 的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为____________。
中考数学考点:平行四边形考点详解
中考数学考点:平行四边形考点详解关于初中生来说中考就是一个重要的转机点,那么怎样才干在中考这场战役中取得成功呢?别担忧,看了中考数学考点:平行四边形考点详解以后你会有很大的收获:
中考数学考点:平行四边形考点详解
1、平行四边形的概念
两组对边区分平行的四边形叫做平行四边形。
平行四边形用符号□ABCD表示,如平行四边形ABCD记作
□ABCD,读作平行四边形ABCD。
2、平行四边形的性质
〔1〕平行四边形的邻角互补,对角相等。
〔2〕平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。
〔3〕平行四边形的对角线相互平分。
〔4〕假定不时线过平行四边形两对角线的交点,那么这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
〔1〕定义:两组对边区分平行的四边形是平行四边形〔2〕定理1:两组对角区分相等的四边形是平行四边形〔3〕定理2:两组对边区分相等的四边形是平行四边形〔4〕定理3:对角线相互平分的四边形是平行四边形
〔5〕定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离
两条平行线中,一条直线上的恣意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积S平行四边形=底边长高=ah
经过阅读中考数学考点:平行四边形考点详解这篇文章,小编置信大家对中考数学考点又有了更进一步的了解,希望大家学习轻松愉快!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆平行四边形的判定一、选择题1.(2011•郴州)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A、AB=DC,AD=BCB、AB∥DC,AD∥BCC、AB∥DC,AD=BCD、AB∥DC,AB=DC考点:平行四边形的判定。
分析:平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.解答:解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.点评:此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.2.(2011•泰州,7,3分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A、.1组B、.2组C、.3组D、.4组考点:平行四边形的判定。
专题:几何综合题。
分析:根据平行四边形的判断定理可作出判断.解答:解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:两组对边分别相等的四边形是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形,故选:C,点评:此题主要考查了平行四边形的判定定理,准确无误的掌握定理是做题的关键.3.(2011•柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有()A、12个B、9个C、7个D、5个考点:平行四边形的判定与性质。
专题:证明题。
分析:根据根据平行四边形的定义即可求解.解答:解:根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边DEOH、DEFC、DHGA、BGOF、BGHC、BAEF、AGOE、CHOF和ABCD都是平行四边形,共9个.故选B.点评:此题考查的知识点是平行四边形的判定和性质,本题可根据平行四边形的定义,直接从图中数出平行四边形的个数,但数时应有一定的规律,以避免重复.4.(2011江苏苏州,12,3分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点0.若AC=6,则线段AO的长度等于_______.考点:平行四边形的判定与性质.专题:计算题.分析:根据在四边形ABCD中,AB∥CD,AD∥BC,求证四边形ABCD是平行四边形,然后即可求解.解答:解:∵在四边形ABCD中,AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵AC=6,∴AO= 12AC=12×6=3.故答案为:3.点评:此题主要考查学生对平行四边形的判定与性质的理解和掌握,难度不大,属于基础题.5.(2011•湖南张家界,6,3)顺次连接任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形考点:平行四边形的判定;三角形中位线定理。
分析:顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.解答:解:根据三角形中位线定理,可知边连接后的四边形的两组对边相等,再根据平行四边形的判定可知,四边形为平行四边形.故选A.点评:本题用到的知识点为:三角形的中位线平行于第三边,且等于第三边的一半.二、填空题1.(2011天津,14,3分)如图,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、FD,则图中平行四边形的个数为 3 .考点:平行四边形的判定;三角形中位线定理。
专题:推理填空题。
分析:由已知点D、E、F分别是△ABC的边AB、BC、CA的中点,根据三角形中位线定理,可以推出EF∥AB且EF=AD,EF=DB,DF∥BC且DF=CE,所以得到3个平行四边形.解答:解:已知点D、E、F分别是△ABC的边AB、BC、CA的中点,∴EF∥AB且EF=AD,EF=DB,DF∥BC且DF=CE,∴四边形ADEF、四边形BDFE和四边形CEDF为平行四边形,故答案为:3.点评:此题考查的是平行四边形的判定及三角形中位线定理,关键是有三角形中位线定理得出四边形的对边平行且相等而判定为平行四边形.2.(2011辽宁沈阳,14,3分)如图,在▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若∠EBF=45°,则∠EDF的度数是度.考点:平行四边形的判定与性质。
分析:由四边形ABCD是平行四边形,可得AD∥BC,又由BE∥DF,即可证得四边形BFDE是平行四边形,根据平行四边形的对角相等,即可求得∠EDF的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∵BE∥DF,∴四边形BFDE是平行四边形,∴∠EDF=∠EBF=45°.故答案为:45.点评:此题考查了平行四边形的判定与性质.注意平行四边形的对角相等,两组对边分别平行的四边形是平行四边形.三、解答题1.(2011•江苏徐州,23,8)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.考点:平行四边形的判定与性质;全等三角形的判定与性质。
分析:(1)由BF=DE,可得BE=CF,由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由AB=CD,在直角三角形中利用HL即可证得:△ABE≌△CDF;(2)由△ABE≌△CDF,即可得∠ABE=∠CDF,根据内错角相等,两直线平行,即可得AB∥CD,又由AB=CD,根据有一组对边平行且相等的四边形是平行四边形,即即可证得四边形ABCD 是平行四边形,则可得AO=CO.解答:证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=CF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,∴Rt△ABE≌Rt△CDF(HL);(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.点评:此题考查了全等三角形的判定与性质与平行四边形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.2. (2011•宁夏,22,6分)已知,E、F是四边形ABCD的对角线AC上的两点,AE=CF,BE=DF,BE∥DF.求证:四边形A BCD是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质。
专题:证明题。
分析:因为AE=CF,DF=BE,DF∥BE,所以可根据SAS判定△ADF≌△CBE,即有AD=BC,AD∥BC,故可根据一组对边平行且相等的四边形是平行四边形进行判定.解答:证明:∵DF∥BE∴∠DFA=∠BEC∵DF=BE,EF=EF∴AF=CE∵AE=CF∴△ADF≌△CBE(SAS)∴AD=BC∴∠DAC=∠BCA∴AD∥BC∴四边形ABCD是平行四边形.点评:此题主要考查平行四边形的判定以及全等三角形的判定.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.3.如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证四边形ABFC是矩形.考点:等腰梯形的性质;全等三角形的判定与性质;平行四边形的判定与性质;矩形的性质;相似三角形的判定与性质.专题:证明题.分析:(1)连接BD,利用等腰梯形的性质得到AC=BD,再根据垂直平分线的性质得到DB=FB,从而得到AC=BF,然后证得AC∥BF,利用一组对边平行且相等判定平行四边形;(2)利用题目提供的等积式和两直角相等可以证得两直角三角形相似,得到对应角相等,从而得到直角来证明有一个角是直角的平行四边形是矩形.解答:证明:(1)连接BD,∵梯形ABCD中,AD∥BC,AB=DC,∴AC=BD,∠ACB=∠DBC∵DE⊥BC,EF=DE,∴BD=BF,∠DBC=∠FBC,∴AC=BF,∠ACB=∠CBF∴AC∥BF,∴四边形ABFC是平行四边形;(2)∵DE2=BE•CE∴,∵∠DEB=∠DEC=90°,∴△BDE∽△DEC∴∠BDC=∠BFC=90°, ∴四边形ABFC 是矩形.点评:本题考查了等腰梯形的性质、全等及相似三角形的判定及性质等,是一道集合了好几个知识点的综合题,但题目的难度不算大.4. (2011新疆建设兵团,21,8分)请判断下列命题是否正确?如果正确,请给出证明;如果不正确,请举出反例.(1)一组对边平行且相等的四边形是平行四边形;(2)一组对角相等,一条对角线被另一条对角线平分的四边形是平行四边形. 考点:平行四边形的判定;反证法. 专题:证明题.分析:(1)作出草图,连接一条对角线,然后证明三角形全等,根据全等三角形的对应角相等在证明另一组对边也平行,然后根据平行四边形的定义即可证明; (2)不正确,可以做出一个“筝形”图形说明.解答:(1)已知:如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,求证:四边形ABCD 是平行四边形, 证明:连接BD ,∵AB ∥CD ,∴∠ABD =∠BDC ,在△ABD 和△CDB 中,⎩⎪⎨⎪⎧AB =CD ∠ABD =∠BDC BD =BD,∴△ABD ≌△CDB (SAS ),∴∠ADB =∠DBC (全等三角形对应角相等), ∴AD ∥BC (内错角相等,两直线平行), ∴四边形ABCD 是平行四边形;(2)一组对角相等,一条对角线被另一条对角线平分的四边形是平行四边形不正确. 如图,∠BAD =∠BCD ,对角线AC 被BD 平分,但四边形ABCD 不是平行四边形.点评:本题主要考查了平行四边形的判定定理的证明,连接对角线构造出全等三角形是解题的关键.5. (2011•河池)如图1,在△ABO 中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为一边,在△OAB 外作等边三角形OBC ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.考点:翻折变换(折叠问题);坐标与图形性质;等边三角形的性质;平行四边形的判定与性质。