七年级数学上册有理数知识点专题复习汇总
七年级数学上册有理数知识点、重点、难点、易错点归纳总结
![七年级数学上册有理数知识点、重点、难点、易错点归纳总结](https://img.taocdn.com/s3/m/a1244451453610661ed9f483.png)
七年级数学上册有理数知识点、重点、难点、易错点归纳总结一、知识框架图知识点详列:1、正数和负数:数0既不是正数也不是负数。
正数和负数是表示两种具有相反意义的量。
2、有理数分类(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数03、数轴:通常,用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
4、相反数:绝对值相等,只有符号不同的两个数叫做互为相反数。
0的相反数仍是0.5、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6、有理数比较大小正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、有理数的四则运算(1)有理数的加法加法法则:①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.③一个数同0相加,仍得这个数。
运算律:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)(2)有理数的减法可转化为加法进行,减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
正-正=正+负;正-负=正+正;负-正=负+负;负-负=负+正。
(4)有理数的乘法乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘。
②任何数同0相乘,都得0.③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积为负。
人教版七年级数学上册第一章有理数全章知识点总结归纳
![人教版七年级数学上册第一章有理数全章知识点总结归纳](https://img.taocdn.com/s3/m/b1f622cb951ea76e58fafab069dc5022aaea4613.png)
人教版七年级数学上册第一章有理数全章知识点总结归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数1) 大于的数为正数。
2) 在正数前面加上负号“-”的数为负数。
3) 数既不是正数也不是负数,是正数与负数的分界。
4) 在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数1) 凡能写成分数形式的数,都是有理数,整数和分数统称有理数。
注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数:正整数、正分数。
负有理数:负整数、负分数。
零。
3) 自然数:和正整数;a>:a是正数;a<:a是负数;a≥0:a是正数或是非负数;a≤0:a是负数或是非正数。
3、数轴1) 用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:在直线上任取一个点表示数,这个点叫做原点;通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…2) 数轴的三要素:原点、正方向、单位长度。
3) 画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
4) 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
4、相反数1) 只有符号不同的两个数叫做互为相反数。
注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。
2、设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点的两侧,表示a和-a。
七年级数学上册必考重点知识点有理数43个知识点
![七年级数学上册必考重点知识点有理数43个知识点](https://img.taocdn.com/s3/m/d15cd7aee109581b6bd97f19227916888486b931.png)
七年级数学上册必考重点知识点有理数43个知识点1.整数的概念:正整数、负整数和零。
2.数轴的概念和使用。
3.整数的比较和大小关系。
4.整数的相反数和绝对值。
5.整数的加法与减法。
6.整数的加减法性质。
7.整数的乘法与除法。
8.乘积的正负性。
9.除法的性质。
10.乘方的概念和运算。
11.乘方的特例:0、1和负整数指数。
12.平方根的概念和运算。
13.数的正负的乘方。
14.有理数的概念和表示。
15.有理数的四则运算。
16.有理数的加减乘除法性质。
17.加减乘除法的混合运算。
18.小数的概念和表示。
19.有限小数和循环小数的概念。
20.小数的相加与相减。
21.有理数的乘法和除法。
22.有理数乘除运算的性质。
23.百分数的概念和表示。
24.百分数与小数的相互转换。
25.百分数的增减。
26.百分数的倍数和倍数的百分数。
27.分数的概念和表示。
28.真分数、假分数和带分数的概念。
29.分数的大小比较和性质。
30.分数的相加和相减。
31.分数的相乘和相除。
32.倒数的概念和运算。
33.分数化简与约分。
34.分数的混合运算。
35.分数方程的解法。
36.分数不等式的解法。
37.分数的小数表示。
38.循环小数与无理数的概念。
39.循环小数与分数的相互转换。
40.循环小数的加减乘除法。
41.百分数的小数表示。
42.百分数的应用。
43.有理数的运算问题的解法。
以上是七年级数学上册必考的43个知识点,学生可以通过对这些知识点的理解和掌握,提高自己的数学水平,更好地应对考试和日常学习中的数学问题。
七年级数学人教版(上册)期末复习(一)有理数
![七年级数学人教版(上册)期末复习(一)有理数](https://img.taocdn.com/s3/m/ada8f5980d22590102020740be1e650e53eacf52.png)
每年减少 10%的过度包装纸的用量,那么可减排二氧化碳 4 280 000
t.把数 4 280 000 用科学记数法表示为 4.28×106
.
用科学记数法将一个数表示成 a×10n 形式的方法:(1)确定 a, |a|大于或等于 1 且小于 10;(2)确定 n,当原数的绝对值大于或等于 10 时,n 为正整数,且等于原数的整数位数减 1.
1 解:(3)相反数分别为-0.5,2,-2.5,2.5,0,1.4,-4,3.
1 绝对值分别为 0.5,2,2.5,2.5,0,1.4,4,3.
13.(20 分)计算: (1)0.125×(-7)×8. 解:原式=0.125×8×(-7) =1×(-7) =-7.
(2)-32-(-8)×(-1)5÷(-1)4. 解:原式=-9-(-8)×(-1)÷1 =-9-8 =-17.
(2)如果振子每振动 1 mm 用时 0.02 s,那么完成 8 次振动共需要 多少秒?
【解答】 (2)|+10|+|-9|+|+8|+|-6|+|+7.5|+|-6|+|+8| +|-7|=10+9+8+6+7.5+6+8+7=61.5(mm).
61.5×0.02=1.23(s). 答:完成 8 次振动共需 1.23 s.
|a+b| 当 m=2 时,2m2+1+m-3cd=0+2-3=-1;
|a+b| 当 m=-2 时,2m2+1+m-3cd=0-2-3=-5.
15.(14 分)如图,数轴上有 A,B,C 三点,它们分别表示数 a, b,c,已知|a+24|+(b+10)2=0,且 b,c 互为相反数.
(1)求 a,b,c 的值. 解:(1)因为|a+24|+(b+10)2=0, 所以 a+24=0,b+10=0,解得 a=-24,b=-10. 因为 b,c 互为相反数,所以 b+c=0.所以 c=10.
七年级人教版上册数学第一单元有理数知识点整理
![七年级人教版上册数学第一单元有理数知识点整理](https://img.taocdn.com/s3/m/fb21caf96c85ec3a86c2c500.png)
第一单元知识点总结(有理数)知识点一:有理数的分类1、正数和负数:大于0的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。
例如 正数:54、+89、1.57、43 负数:-54、43-、-1.2(带负号) 注:正数和负数集合都不能选0;因为0既不是正数也不是负数。
2、整数:像-2 ,-1, 0, 1, 2这个的数称整数,分为正整数,0,负整数。
例如 整数:0,56,-23(要记得选0和负整数)3、分数: 例如:43,23-,0.25,-0.52, 注:有限小数、循环小数可以化为分数,所以也属于分数4、非负整数:即正整数和05、非负数:即正数和06、有理数的分类:⎩⎨⎧分数整数按定义分 ⎝⎛负有理数正有理数按符号分0 (有关分类的文字题常常要考虑“0”是否满足)知识点二:正数和负数1、正数和负数表示具有相反意义的量,例如规定向东为正,向东走m 5,记为m 5+,如果向西走m 5,记为m 5-。
2、 向东前进30m 表示的意义:向东前进30m 向东行进-30m 表示的意义:向西前进30m 知识点三:数轴 数轴需要三要素,即原点,正方向和单位长度知识点四:相反数1、相反数:只有符号不同的两个数叫作互为相反数注:正数的相反数是负数,负数的相反数是正数,0的相反数是02、相反数的性质:如果b a 和互为相反数,则0=+b a ;1-=ba 3、字母的相反数:a 的相反数是a -;b a -的相反数是b a +-; a bc +-的相反数是a b c -+-;知识点五:绝对值 1、在数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作a ,例如:2的绝对值记作:22= ; -3的绝对值记作:33=-注:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;0的绝对值是0因为负数的绝对值是正数,所以一个数的绝对值为0和正数,绝对值表示的是到原点的距离,所以不会为负数。
(3)去绝对值符号情况如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ⎪⎩⎪⎨⎧<-+-=->--=-)0()0(0)0(b a b a b a b a b a b a 若若若知识点六:有理数的加减法1、先去括号;去括号法则()()⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧-=-+-=+-⎩⎨⎧=--=++22222222异号得负:)()(同号得正: 2、同号叠加;取相同的符号;异号抵消,取数字较大的符号:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=+--=+-⎩⎨⎧-=--=++231213321321异号抵消:同号叠加:知识点七:有理数的乘除法1、两数相乘,同号得正,异号得负,并把绝对值相乘(即数相乘)2、任何数和0相乘,都得03、乘积是1的两个数互为倒数;如果如果b a 和互为倒数,那么:1=ab乘法交换律:ba ab =,乘法结合律:)(bc a abc = ,分配律:ac ab c b a +=+)(知识点八:有理数的乘方1、一般地,a n 个相同的因数相乘,即na a a a a a ⨯⨯⨯⨯⨯⨯...,记作n a ,读作a 的n 次方. 2、对于n a ,其中a 是底数,n 是指数,n a 是幂,例如:()41-,底数是-1,指数是4,幂是4)1(-即1,读作-1的4次方或者-1的4次幂。
七年级上册数学有理数知识点总结
![七年级上册数学有理数知识点总结](https://img.taocdn.com/s3/m/ccf9bb22dcccda38376baf1ffc4ffe473268fd4c.png)
七年级上册数学有理数知识点总结有理数是整数和分数的统称,包括正整数、负整数、零以及各种分数。
在七年级数学教学中,学生会学习有理数的四则运算、绝对值、比较大小、混合运算等知识点。
下面是七年级上册数学有理数知识点的总结。
一、有理数的概念1.整数的概念:自然数、零和负整数的集合。
2.分数的概念:整数和整数的商。
3.有理数的概念:整数和分数的统称。
二、有理数的表示1.整数的表示:正数用正号“+”表示,负数用负号“-”表示。
2.分数的表示:分子、分母表示分数。
3.有理数的表示:可以用数轴、分数形式或小数形式进行表示。
三、有理数的比较1.同号比较:绝对值大,数值大。
2.异号比较:绝对值大者为负。
四、有理数的加法和减法1.同号整数相加减:绝对值相加减,符号不变。
2.异号整数相加减:绝对值相减,取绝对值大的符号。
3.分数相加减:通分之后,分子相加减,分母不变。
五、有理数的乘法1.乘法的性质:同号得正,异号得负。
2.绝对值的乘法:绝对值相乘。
六、有理数的除法1.除法的性质:除法可看作乘法的倒数。
2.被除数为零的情况:被除数为零,商也为零。
七、有理数的混合运算1.先乘除后加减:乘除优先级高于加减。
2.小数、分数和整数的混合运算。
八、有理数的应用1.有理数的数轴表示。
2.有理数在实际问题中的应用。
以上是七年级上册数学有理数知识点的总结,有理数是数学学习中非常重要的概念,学好有理数的知识对学生以后学习代数、方程等数学知识有很大的帮助。
在学习过程中,学生需要多做题,多进行实际应用,才能更好地掌握有理数的知识。
七年级数学上册知识点全归纳:有理数
![七年级数学上册知识点全归纳:有理数](https://img.taocdn.com/s3/m/ee14c06ba0116c175e0e48b1.png)
七年级数学上册知识点全归纳:有理数1.有理数:(1)凡能写成方式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是正数;-a不一定是正数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②2.数轴:数轴是规则了原点、正方向、单位长度的一条直线.3.相反数:(1)只要符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0?a+b=0?a、b互为相反数.4.相对值:(1)正数的相对值是其自身,0的相对值是0,正数的相对值是它的相反数;留意:相对值的意义是数轴上表示某数的点分开原点的距离;(2)相对值可表示为:或;相对值的效果经常分类讨论;5.有理数比大小:〔1〕正数的相对值越大,这个数越大;〔2〕正数永远比0大,正数永远比0小;〔3〕正数大于一切正数;〔4〕两个正数比大小,相对值大的反而小;〔5〕数轴上的两个数,左边的数总比左边的数大;〔6〕大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;留意:0没有倒数;假定a≠0,那么的倒数是;假定ab=1?a、b互为倒数;假定ab=-1?a、b互为负倒数.7.有理数加法法那么:〔1〕同号两数相加,取相反的符号,并把相对值相加;〔2〕异号两数相加,取相对值较大的符号,并用较大的相对值减去较小的相对值;〔3〕一个数与0相加,仍得这个数.8.有理数加法的运算律:〔1〕加法的交流律:a+b=b+a;〔2〕加法的结合律:〔a+b〕+c=a+〔b+c〕.9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+〔-b〕.10有理数乘法法那么:〔1〕两数相乘,同号为正,异号为负,并把相对值相乘;〔2〕任何数同零相乘都得零;〔3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决议.11有理数乘法的运算律:〔1〕乘法的交流律:ab=ba;〔2〕乘法的结合律:〔ab〕c=a 〔bc〕;〔3〕乘法的分配律:a〔b+c〕=ab+ac.12.有理数除法法那么:除以一个数等于乘以这个数的倒数;留意:零不能做除数,.13.有理数乘方的法那么:〔1〕正数的任何次幂都是正数;〔2〕正数的奇次幂是正数;正数的偶次幂是正数;留意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:〔1〕求相反因式积的运算,叫做乘方;〔2〕乘方中,相反的因式叫做底数,相反因式的个数叫做指数,乘方的结果叫做幂;15.迷信记数法:把一个大于10的数记成a×10n的方式,其中a是整数数位只要一位的数,这种记数法叫迷信记数法.16.近似数的准确位:一个近似数,四舍五入到那一位,就说这个近似数的准确到那一位.17.有效数字:从左边第一个不为零的数字起,到准确的位数止,一切数字,都叫这个近似数的有效数字.18.混合运算法那么:先乘方,后乘除,最后加减.本章内容要求先生正确看法有理数的概念,在实践生活和学习数轴的基础上,了解正正数、相反数、相对值的意义所在。
人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)
![人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)](https://img.taocdn.com/s3/m/f17f50e76edb6f1afe001f47.png)
人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。
2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。
3、数轴的定义:规定了________、________和________的________叫数轴。
4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。
5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。
6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。
7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。
8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。
9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。
10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。
③一个数与0相加,________。
11、有理数减法法则:减去一个数,等于____________。
12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。
13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。
人教版七年级数学上册各章知识点总结(最新最全)
![人教版七年级数学上册各章知识点总结(最新最全)](https://img.taocdn.com/s3/m/42034cc4f524ccbff1218478.png)
第一章:有理数总复习一、有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。
备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。
2.有理数:整数和分数统称有理数。
3.数轴:规定了原点、正方向和单位长度的直线。
性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。
4.相反数 :只有符号不同的两个数,其中一个是另一个的相反数。
性质:(1)数a 的相反数是-a (a 是任意一个有理数);(2)0的相反数是0;(3)若a 、b 互为相反数,则a+b=0;若a 、b 互为相反数且a 、b 都不等于零,则1-=ba ; 5.倒数 :乘积是1的两个数互为倒数 。
性质:(1)a 的倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;若a 与b 互为负倒数,则ab=-1。
倒数与相反数的区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数;(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数 →→ a+b=0;a 、b 互为倒数 →→ ab=1;(4)相反数是本身的数是0,倒数是本身的数是±1 。
6.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
性质:(1)数a 的绝对值记作︱a ︱;(2)若a >0,则︱a ︱= a ;若a <0,则︱a ︱= -a ;若a =0,则︱a ︱=0;(3) 对任何有理数a,总有︱a ︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。
即:若a <0,b <0,且︱a ︱>︱b ︱,则a < b.二、有理数的运算1、运算法则:(1)有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加;② 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0; ③ 一个数同0相加,仍得这个数。
七年级上册数学有理数知识点总结
![七年级上册数学有理数知识点总结](https://img.taocdn.com/s3/m/ea162863b5daa58da0116c175f0e7cd1842518d0.png)
七年级上册数学有理数知识点总结第一节:有理数的概念有理数是指可以表示为两个整数之比的数,包括正整数、负整数和分数。
可以用分数表示的数即为有理数。
有理数可以用有限位小数、循环小数和分数形式表示。
第二节:有理数的加减运算1.有理数的加法同号两个有理数相加,取绝对值相加,符号不变。
异号两个有理数相加,取绝对值相减,绝对值大的数的符号保持不变。
2.有理数的减法有理数相减可转化为加法问题,即a-b=a+(-b)。
减法问题变为加法问题后,按照有理数的加法规则进行计算。
第三节:有理数的乘除运算1.有理数的乘法同号两个有理数相乘,取绝对值相乘,积为正。
异号两个有理数相乘,取绝对值相乘,积为负。
2.有理数的除法有理数相除可转化为乘法问题,即a÷b=a×1/b。
除法问题变为乘法问题后,按照有理数的乘法规则进行计算。
第四节:有理数的混合运算混合运算是有理数加减乘除的综合运算,要按照四则运算的顺序进行计算。
第五节:有理数大小的比较1.相同符号的有理数,绝对值大的数大。
2.不同符号的有理数,正数大于负数。
对于两个有理数a和b,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b。
第六节:有理数的绝对值有理数与其绝对值的关系:|a|=a (a≥0);|a|=-a (a<0)。
有理数的绝对值是这个数字到零点的距离,有理数的绝对值都是非负数。
第七节:有理数的乘方有理数的乘方是指一个有理数自身连乘若干个,按照乘方的性质进行计算。
第八节:有理数的乘方有理数的乘方是指一个有理数自身连乘若干个,按照乘方的性质进行计算。
第九节:有理数的乘方有理数的乘方是指一个有理数自身连乘若干个,按照乘方的性质进行计算。
第十节:有理数的乘方有理数的乘方是指一个有理数自身连乘若干个,按照乘方的性质进行计算。
第十一节:有理数的乘方有理数的乘方是指一个有理数自身连乘若干个,按照乘方的性质进行计算。
七年级上册数学有理数知识点总结
![七年级上册数学有理数知识点总结](https://img.taocdn.com/s3/m/8564277aa22d7375a417866fb84ae45c3b35c2c3.png)
七年级上册数学有理数知识点总结有理数是整数和分数的统称,包括正整数、负整数、零,以及各种形式的分数。
在七年级上册数学中,有理数是一个非常重要的知识点。
本文将对七年级上册数学有理数知识点进行总结和介绍。
1.有理数的定义有理数指的是一切可以表示为分子、分母都是整数且分母不为零的数。
可以用有理数的准确分数表示及有理数的小数表示两种方式予以表示。
2.有理数的四则运算有理数的加法、减法、乘法和除法依然遵循相同的规律。
加法和乘法满足交换律和结合律,除法满足相反数的乘法性质。
3.数轴数轴是一个非常重要的概念,它能够帮助我们直观地理解有理数之间的大小关系。
正数在数轴上位于原点的右侧,负数在数轴上位于原点的左侧。
4.绝对值绝对值表示一个数到原点的距离,用符号|a|表示,其中a是一个数。
当a为正数时,其绝对值等于a;当a为负数时,其绝对值等于-a。
5.有理数的比较在数轴上,我们可以通过有理数的大小关系来比较两个有理数的大小。
绝对值大的数较大,同号数相减取绝对值来比较,异号数按照绝对值大小来比较。
6.约分和通分约分是指将一个分数化为最简分数,通分是指寻找多个分数的最小公倍数,使它们的分母相等。
7.有理数的加减混合运算有理数的加减混合运算需要按照运算法则进行,可以先化为同号数进行加减运算,再根据结果的正负进行具体的计算。
8.有理数的乘法和除法有理数的乘法和除法也需要遵循相同的规律,同号数相乘为正,异号数相乘为负;同号数相除为正,异号数相除为负。
在乘法和除法的计算中,可以先化为同号数进行运算,根据结果的正负进行具体的计算。
9.有理数的应用有理数在生活中有很多实际应用,例如温度变化、海拔高度变化等都可以用有理数来表示和计算。
在学习七年级上册数学有理数知识点时,我们需要掌握有理数的定义、四则运算、数轴、绝对值、有理数的比较、约分和通分、有理数的加减混合运算、有理数的乘法和除法以及有理数的应用。
通过深入学习这些知识点,并进行大量的练习,可以帮助我们更好地掌握有理数的相关知识,并在日常生活中灵活运用。
人教版数学七年级上册第一章知识点总结
![人教版数学七年级上册第一章知识点总结](https://img.taocdn.com/s3/m/76d5ef5426284b73f242336c1eb91a37f0113274.png)
人教版数学七年级上册第一章知识点总结第一章有理数知识点总结正数:大于的数叫做正数。
01.概念负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
有理数:整数和分数统称有理数。
1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
π是正数但不是有理数!2.分类:两种二、有理数⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
三、数轴比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
“—”号)(注意不带“+”代数:只有符号不同的两个数叫做相反数。
1.概念(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
四、相反数两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号1.概念:乘积为1的两个数互为倒数。
(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b 互为倒数。
七年级上册数学《有理数》有理数的概念知识点整理
![七年级上册数学《有理数》有理数的概念知识点整理](https://img.taocdn.com/s3/m/a29b77e67e192279168884868762caaedd33ba91.png)
有理数是数学中重要的概念之一,它包括了正整数、负整数、零以及分数。
在七年级上册数学教材中,学生会学习有关有理数的基本概念、整数的加减乘除运算、分数的加减乘除运算、有理数的比较大小以及实际问题的应用等知识点。
下面是对这些知识点进行整理和总结:一、基本概念:1.数轴的介绍:数轴是一条直线,用于表示数的大小关系。
正数在数轴的右侧,负数在数轴的左侧,零位于数轴的原点。
2.整数:包括正整数、负整数和零。
正整数表示数轴上原点右侧的整数,负整数表示数轴上原点左侧的整数,零表示数轴上的原点。
3.分数:包括真分数和假分数。
真分数的分子小于分母,假分数的分子大于等于分母。
4.有理数:包括整数和分数。
有理数可以用分数形式表示为a/b(b≠0),其中a为整数而b为非零的整数。
二、整数的加减乘除运算:1.加法:同号相加得正,异号相加得负。
2.减法:减去一个整数等于加上它的相反数,即a-b=a+(-b)。
3.乘法:同号相乘得正,异号相乘得负。
4.除法:除以一个非零整数等于乘以它的倒数,即a/b=a*(1/b)。
三、分数的加减乘除运算:1.加法:当分母相同时,直接对分子进行加法运算;当分母不同时,需要找到最小公倍数,并转化为通分后进行加法运算。
2.减法:与加法类似,分别对分子进行减法运算或通分后进行减法运算。
3.乘法:将两个分数的分子相乘得到新分子,分母相乘得到新分母,再进行约分。
4.除法:将被除数乘以除数的倒数,再进行约分。
四、有理数的比较大小:1.整数的比较:不同整数之间,绝对值大的数较小,正数大于零,负数小于零。
2.分数的比较:分子相等,分母大的数较小;分母相等,分子大的数较大;分子分母同时相等,两个分数相等。
3.整数与分数的比较:可以将整数转化为分数形式进行比较。
五、实际问题的应用:1.温度的表示:正数表示温度高于一些参考温度,负数表示温度低于一些参考温度。
2.海拔的表示:正数表示高于海平面的高度,负数表示低于海平面的深度。
七年级数学上册必考重点知识点有理数43个知识点
![七年级数学上册必考重点知识点有理数43个知识点](https://img.taocdn.com/s3/m/18489a8b09a1284ac850ad02de80d4d8d15a01ba.png)
七年级数学上册必考重点知识点有理数43个知识点七年级数学上册必考重点知识点有理数总共有43个知识点。
今天我们将全面梳理这些知识点,确保每一个知识点都得到了深入的理解。
1.有理数的概念有理数是指可以表示为分数的数字,分子和分母都是整数的数称为有理数。
有理数包括整数和分数两种形式。
2.整数的概念整数包括正整数、负整数和零,记作:……,-3,-2,-1,0,1,2,3……3.分数的概念分数是指一个整数除以另一个整数所得到的数,分子为分数线上面的数,分母为分数线下面的数。
4.有理数的比较有理数的比较可以通过大小比较符号(<、>、=)来表示,根据数轴上的位置进行比较。
绝对值大的数较大。
5.有理数的加法有理数的加法满足交换律和结合律,同号两数相加取数的绝对值相加,异号两数相加取绝对值大的减去绝对值小的。
6.有理数的减法有理数的减法可以转化为加法运算,即加上减数的相反数。
7.有理数的乘法有理数的乘法满足交换律和结合律,同号相乘得正,异号相乘得负。
8.有理数的除法有理数的除法可以转化为乘法运算,即用除数的倒数来乘。
9.有理数的运算律有理数的运算满足分配律,即乘法对加法的分配律和乘法对减法的分配律。
10.有理数的混合运算有理数的混合运算就是同时包含加法、减法、乘法、除法的综合运算。
11.数轴及有理数的表示数轴是一个水平线段,通过在上面规定一个原点O和一个正方向,既可以表示正数也可以表示负数。
12.绝对值一个数a的绝对值,记作|a|,是a到原点的距离。
13.有理数的绝对值有理数的绝对值是该有理数到原点的距离,绝对值为非负数。
14.加法逆元有理数a的加法逆元是一个有理数b,使得a+b=0。
15.数轴上两点的位置关系两个数在数轴上的相对位置可以通过它们的大小关系来确定。
16.有理数的应用有理数在日常生活中有很广泛的应用,比如温度计、债务和财务等。
17.有理数的乘方和乘方根有理数的乘方是指一个有理数多次相乘,乘方根是指一个数的指定次数的开方。
七年级数学上册《有理数》考点汇总
![七年级数学上册《有理数》考点汇总](https://img.taocdn.com/s3/m/6a2c3b8cf424ccbff121dd36a32d7375a417c60f.png)
七年级数学上册《有理数》考点汇总一、有理数基本概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)3.数轴规定了原点、正方向、单位长度的直线叫做数轴。
.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
(2)方法总结:两个正数比较大小,与小学一致;正数与零比较,正数大于零;正数与负数比较,正数大于负数;负数与零比较,负数小于零;两个负数比较,绝对值大的反而小。
二、有理数的加减法1.有理数的加法1.同号两数相加,取相同的符号,并把绝对值相加;取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。
3.有理数的加减混合运算(为了书写简便,可以把已经统一为加法运算的式子中各个加数的括号和它前面的加号省略,写成省略加号的和的形式。
七年级上册数学有理数知识点总结
![七年级上册数学有理数知识点总结](https://img.taocdn.com/s3/m/90ce8b9f250c844769eae009581b6bd97f19bca9.png)
七年级上册数学有理数知识点总结数学是一门抽象而且重要的学科,其中有理数是数学中非常基础而又重要的知识点。
在七年级上册数学中,有理数的学习是非常重要的一部分。
有理数包括整数、分数和小数,它们在数轴上都有对应的位置,通过数轴可以直观地理解有理数的大小和关系。
接下来我们将对七年级上册数学有理数知识点进行总结,希望能够帮助大家更好的理解和掌握这一部分知识。
一、有理数的概念1.整数:整数包括正整数、负整数和0。
在数轴上,正整数表示为向右移动,负整数表示为向左移动。
2.分数:分数由分子和分母组成,在数轴上可以用小数表示。
3.小数:小数是分数的一种表示形式,可以用有限小数和无限循环小数表示。
二、有理数的比较与运算1.比较大小:对于同号数的比较,绝对值大的数大;对于异号数的比较,正数大于负数。
可以通过数轴直观比较大小。
2.加法与减法:同号数相加减取同号,异号数相加减取绝对值大的数的符号。
3.乘法与除法:同号数相乘除的结果都为正数,异号数相乘除的结果为负数。
4.混合运算:根据运算法则,先乘除后加减,可以通过括号改变计算次序。
三、有理数的加减混合运算1.同号数加减:直接把它们的绝对值相加减,结果的符号与原数相同。
2.异号数加减:先求绝对值之差,结果的符号取绝对值大的数的符号。
3.加减混合运算:根据运算法则,先乘除后加减。
四、有理数的乘除混合运算1.同号数乘除:直接计算绝对值的乘除,结果为正数。
2.异号数乘除:直接计算绝对值的乘除,结果为负数。
3.乘除混合运算:先乘除后加减,可以通过加小括号改变计算次序。
五、有理数的加减乘除混合运算1.按照运算法则,先乘除后加减。
2.可以通过加小括号改变计算次序,先计算括号里面的值。
六、有理数在日常生活中的应用1.温度计表示的温度可以用有理数表示,正数表示高温,负数表示低温。
2.金融交易中的账户余额可以用有理数表示,正数表示存款,负数表示欠款。
3.地理位置可以用有理数表示,东经和北纬为正数,西经和南纬为负数。
七年级数学上册“有理数”知识点梳理
![七年级数学上册“有理数”知识点梳理](https://img.taocdn.com/s3/m/2c8bba68ba68a98271fe910ef12d2af90242a88b.png)
七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。
0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。
七年级数学上册《有理数》知识点归纳
![七年级数学上册《有理数》知识点归纳](https://img.taocdn.com/s3/m/ee9d2260aaea998fcc220e86.png)
七年级数学上册《有理数》知识点归纳.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义。
.2有理数.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
.2.2数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
注:一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
.3有理数的加减法.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a加法结合律:三个数相加,先把前面两个数相加,或先把后两个数相加,和不变。
+c=a+.3.2有理数的减法有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点 3:运算及运算法则
1、下列各组数中,数值相等的是(
A 、-(- 2)和 +(- 2) ; C、- 32 和(- 3) 2 ;
2、下列算式正确的是(
)。
C、- a<- b<b<a
D 、b<- a<- b<a
)
2
B、- 2
和(- 2) 2;
D 、 — 23 和(- 2)
A 、 - 32 = 9 ;B、 1 4
非负数有 ______个;
6、绝对值最小的有理数是 ________;绝对值等于 3 的数是 ______; 绝对值等于本 身的数是 _______;绝对值等于相反数的数是 ___________数;一个数的绝对值一
定是 ________数。
7、 -2.5 的相反数是 ________,绝对值是 ________,倒数是 ________。
有理数 a,b,c 在数轴上的位置如图所示, a = c ,试化简 a - c + b - c + a +b
知识点 5:应用
b a 0c
1、某班抽查了 10 名同学的期末成绩,以 80 分为基准,超出的记为正数,不足的记
为负数,记录的结果如下: +8,-3, +12, -7, -10, -4, -8, +1 ,0, +10;
)
A. a- b 0
B. a - b 0 C. a - b = 0 D. - a - b 0
2、如果 x y 0 ,则 x xy 的结果是 (
)
+
x xy
A、0
3、若 a b
B、 2
C、 1
2
- 1,那么下列式子成立的是(
D 、2 )
A. 1 1
ab
B. ab 1
C. a 1
b
D. a 1
b
4、若 │χ∣=5, y 2=4, 且 8) = - 16 ;D、 - 5 - (- 2) = - 3
3、两数相加,其和小于每一个加数,那么(
).
A 、这两个数相加一定有一个为零 .
B 、这两个加数一定都是负数 .
C、这两个加数的符号一定相同 .
D 、这两个加数一正一负且负数的绝对值大
4、n为正整数时, (- 1)n+(- 1)n+1 的值是(
先阅读第( 1)小题的计算过程,再计算第( 2)小题;
( 1)
计算:
11 1 ++
+
1 +
2 6 12
9900
111
解:原式 = 1 2 2 3 3 4
11 111 1
12 233 4 1 1 99
100 100
1 99 100
11
99 100
( 2)计算:
11 +
1 +
+
1 +
3 15 35
9999
有理数知识点专题复习汇总
知识点 1:基本概念
1、选择下面是关于 0的一些说法,其中正确说法的个数是(
)
① 0既不是正数也不是负数;② 0是最小的自然数;③ 0是最小的正数;④ 0是最小
的非负数;⑤ 0既不是奇数也不是偶数 .
A.0
B.1
C.2
D.3
2、下面关于有理数的说法正确的是(
).
A .有理数可分为正有理数和负有理数两大类 .
( 1)写出第 5 个等式;( 2)第 10 个等式;( 3)第 n 个等式;
课后练习:
1、在下列各数 :
2 , 32,
4
1
22
,,
3
5
2001
1,
3 中,负数的个数是(
A. 2
B . 3. C 4.
D. 5
2、有理数a、b在数轴上的位置如图,那么
a + b 的值是(
).
ab
)个;
(3) 已知小李买进股票时付了 费和
1.5 ‰的手续费 ,卖出时需付成交额的
3‰ 的交易税 ,若小李在本周末卖出全部股票 ,他的收益如何 ?
知识点 6:规律
1、找规律计算:
1.5 ‰的手续
1+(- 2) +3+(- 4)+ 5+(- 6) + + 2005+(- 2006)
1- 2 - 3 + 4 +5 - 6 - 7 + 8+ 9 - 10 - + 2008
33
3、当
a>0
1
时,a,
a
,2
a
,-2a,3a,由小到大的排列顺序为
___________________ ;
23
4、 ,下列说法中,正确的是(
);
A 、若 │a∣> │b∣ ,则 a>b;
B、若 │a∣ = │b∣,则 a=b;
C、若 a 2 b2 ,则 a> b;
1
D 、若 0< a< 1,则 a< 。
①,这 10 名同学的中最高分是多少?最低分是多少?
②, 10 名同学的平均成绩是多少?
2、小李上周末买进股票 1000 股 ,每股 20 元,下表为本周每股票的涨跌情况 :
星期
一
二
三
四
五
每股涨跌
+4
+5
-1
-3 -6
(1) 周三收盘时 ,小李所持股票每股多少元 ?
(2) 本周内 ,股票最高价出现在星期几 ?是多少元 ?
2、观察下列图形:
11 1
1
++ + +
2 8 24
9800
它们是按一定规律排列的,依照此规律,第
第 n 个图形共有
个★
16 个图形共有
个 ★,
3、观察下列等式:
11 28 1- = , 2 - = ,3 -
3 27 = ,4-
4 64 =
根据你发现的规律,
解答下列问题:
2 2 5 5 10 10 17 17
)
A.2
B. - 2
C.0
D.不能确定
5、混合运算:
3 5 20 ( 4)
13+(+7)-(-20)-(-40)-(+6)
24 3 ( 1)2000 ( 2)2
7 53 ( 36)
9 64
51
1 25
()
6 10
4 96
2009
1 4
1 0.25
48
2010
4
33
5 16
23
2011
0.125
2010
8
6、字母相关的运算 已知 |a|=5,|b|=2,ab<0. 求: 3a+2 b 的值
2
2 5.5
3
24
2
5
45
0.625
8
n1
2 5
n
5 2
当 x= - 2008 时,求代数式 x + x ? x - x 的值。
2
2
知识点 4:字母性质的推理
1、若 a 0, b 0, 则下列各式一定成立的是(
B. 正整数集合与负整数集合合在一起就构成整数集合
C. 整数和分数统称为有理数
D. 正数、负数和零的统称为有理数
3、一个数的绝对值大于它本身,那么这个数是
()
A 、正有理数
B、负有理数
C、零
D 、不可能
4、数轴上离开原点 2 个单位长度的点表示的数是 ____________; 5、有理数 -3, 0, 20, -1.25, 1.75, -∣ -12∣, -( -5)中,正整数有 ________个,
8、平方是它本身的数是
;倒数是它本身的数是
;
相反数是它本身的数是
;立方是它本身的数是
。
知识点 2:比较大小
1、 比较大小:﹣ 12 ____﹣ 13 ;
11
12
5
6
- ___ -
6
7
2008
2009
-
___ -
2009
2010
12
2、把 - , - , -0.3, -0.33 按从大到小的顺序排列是 _________________ ;
;
2
5、若 a,b 互为倒数, m,n 互为相反数,则 (m + n) + 2ab =
;
( ) 6、若 x +3 +
( ) 2
y - 2 = 0,则
2005
x+ y
=
;
7、利用数轴求 x - 1 + x - 3 的最小值,求 a - 4 + a +4 的最小值
8、化简:
p - 3 +4- p
x - 1 - 2 - x + 1+ x (- 1 x 1)
a
5、a,b 两数在数轴上的位置如图,则下列说法不正确的是(
);
│
│ │
A 、 a+b< 0 B 、 ab< 0 C、 a < 0 D 、 a-b< 0
b
b
0a
6、如果 a、 b 两有理数满足 a>0, b<0, a < b ,则下面关系式中正确的是 ( )
A 、- a<b<a<- b B 、 b<- a<a<- b