冶金传输原理复习总结
冶金传输原理
1.不压缩流体:指流体密度不会随压强改变而变化,或该变化可忽略的流体。
2.速度边界层:指在靠近边壁处速度存在明显差异的一层流体,即从速度为零到0.99倍的地方称为速度边界层。
3.雷诺准数及其物理意义:uLRe ρμ=,表征惯性力与粘性力之比。
是流态的判断标准。
4.傅立叶准数及其物理意义:2s a Fo τ=,也称时间准数,表示非稳定传热所进行的时间与其达到平衡状态所需要的总时间之比;或τ时间内非稳态传热的传热量与其达到稳态(平衡)时传输的总热量之比。
5.热通量与传质通量:单位时间内通过单位面积的热量称为热(量)通量;单位时间通过单位面积的物质量称为传质通量。
6.角系数:由表面1投射到表面2的辐射能量21→Q 占离开表面1的总辐射能量1Q 的份数称为表面1对表面2的角系数,用符号12ϕ表示,即:12112Q Q→=ϕ。
7.流向传质与非流向传质:与流体流动方向相同的传质叫做流向传质;与流体流向垂直的传质叫做非流向传质。
8. 层流流体质点在流动方向上分层流动,各层互不干扰和掺混,这种流线呈平等状态的流动称为层流。
9. 表面力作用于流体微元界面(而非质点)上的力,该力与作用面的大小成比例 10.粘性系数表征流体变形的能力,由牛顿粘性定律所定义的系数:yxx du dyτμ=±,速度梯度为1时,单位面积上摩擦力的大小。
11.温度梯度:在温度场中某点P 的温度梯度定义为该点所在等温面或等温线法线方向,单位长度上的温度增量。
12.修伍德准数的表达式:DLk Sh c ⋅=13.傅立叶准数的物理意义:2s a Foτ=,傅立叶准数又称时间准数,表征不稳态传热趋于稳态的程度,或者说是不稳态传热进行的时间与由不稳态传热达到稳态所用总时间之比。
14.黑度(辐射率、发射率):实际物体的辐射力与相同温度下黑体的辐射力之比称为物体的黑度,也叫发射率、辐射率。
15.角系数:由表面1投射到表面2的辐射能量21→Q 占离开表面1的总辐射能量1Q 的份额称为表面1对表面2的角系数。
冶金传输原理课程知识总结
第七章第二节归纳总结一、 气固两相流动固相:粒状固体料块和有料块堆集的散料层料块在气体中的受力情况:设有处于静止状态的一个球形料块,气体自下向上从其周围流过,其中的料块下降力为:()16)(3s sd gG πρρ-=气体对料块的拖力为:)2(4222sd v k F πρ=受力分析:当G>F 时,料块在气流中下降;G=F 时,料块处于受力平衡状态,将在气流中悬浮不动;G<F 时,料块随气流上升。
气体通过散料层的与上述情况相似,有三种不同流动状态: 1、固定料层流动(G>F ) 2、流化料层流动(G=F ),沸腾状态 3、气动输送过程(G<F ),料块随气流流动 4、二、 固定料层流动气体流过固定料层时的压力降己埃根方程在工程计算中,通常以气体的体积流量和料层的总截面积(容器的总截面积)来定义流速,按流量公式有:)3(q 0v 0A =ν式中, v q 为气体的体积流量,s3m,0A 为料层的总截面积,2m 。
气流在孔隙中的的流速也可按流量公式定义:)4(q vA=ν式中,A 为孔隙通道的总截面积,2m 。
由(3)、(4)两式得:)(500A A =νν料层孔隙率:)6(00a b A A A L A L V V =••==ω式中,b V 为料层中孔隙的总体积,a V 料层总体积,L 为料层高度,比值ω为孔隙率料层孔隙的当量直径:)(74bb k A V D =式中,b A 为料层中孔隙的总表面积。
料块总体积:)()(81-a a ab a s V V V V V V ωω-=-==单位料块所具有的表面积为比表面积,有:)9(-10s 0b aV S V S A )(ω==把式(6)、(9)代入(7)的:)10(-14-140a 0a k )()(ωωωωS V S V D ==根据管束摩阻公式推得,气体通过散料层的压降(P ∆)公式,即埃根方程,为:)11()1(292.0)1(2.432030220ωυωρωυωμ-+-=∆S S H P H 为散料层高度,μ为气体粘度,0υ为定义流速,ρ为气体密度。
《传输原理》复习提纲(DOC)
《冶金传输原理》复习提纲Ⅰ、基本概念一、动量传输1、流体;连续介质模型;流体模型;动力粘度、运动粘度、恩式粘度;压缩性、膨胀性2、表面力、质量力;静压力特性;压强(相对压强、绝对压强、真空度);等压面3、Lagrange 法、Euler法,迹线、流线4、稳定流、非稳定流,急变流、缓变流,均匀流、非均匀流5、运动要素:流速、流量,水力要素:过流断面、湿周、水力半径、当量直径6、动压、静压、位压;速度能头、位置能头、测压管能头、总能头;动能、动量修正系数7、层流、湍流;自然对流、强制对流8、沿程阻力、局部阻力;沿程损失、局部损失9、速度场;速度梯度;速度边界层二、热量传输1、温度场、温度梯度、温度边界层;热流量、热流密度2、导热、对流、辐射3、导热系数、对流换热系数、辐射换热系数、热量传输系数4、相似准数Fo、Bi、Re、Gr、Pr、Nu5、黑体、白体、透热体;灰体;吸收率、反射率、透过率、黑度6、单色辐射力、全辐射力、方位辐射力;角系数;有效辐射;表面网络热阻、空间网络热阻7、解析法、数值分析法、有限差分法、集总参数法、网络元法三、质量传输1、质量传输;扩散传质、对流传质、相间传质2、浓度、速度、传质通量;浓度场、浓度梯度、浓度边界层3、扩散系数、对流传质系数4、Ar、Sc、Sh准数Ⅱ、基本理论与定律一、动量传输1、Newton粘性定律2、N-S方程3、连续方程、能量方程、动量方程、静力学基本方程二、热量传输1、F-K方程2、Fourier定律3、Newton冷却(加热)公式4、Planck定律、Wien定律、Stefen-Boltzman定律、Kirchhoff定律、Beer定律、余弦定律5、相似原理及其应用三、质量传输1、传质微分方程、Fick第一、二定律2、薄膜理论、双膜理论、渗透理论、更新理论Ⅲ、基本理论与定律在工程中的应用一、动量传输1、连通容器2、连续方程、能量方程、动量方程的应用、烟囱计算3、流体阻力损失计算二、热量传输1、平壁、圆筒壁导热计算2、相似原理在对流换热中的应用3、网络单元法在表面辐射换热中的应用4、通过炉墙的综合传热、火焰炉炉膛热交换、换热器5、不稳态温度场计算:解析法;有限差分法三、质量传输1、平壁、圆筒壁扩散计算2、相似原理在对流传质中的应用3、炭粒、油粒的燃烧过程4、相间传质(气—固、气—液、多孔材料)Ⅳ、主要参考题型一、填空1、当体系中存在着(、、)时,则发生动量、热量和质量传输,既可由分子(原子、粒子)的微观运动引起,也可以由旋涡混合造成的流体微团的宏观运动引起。
冶金传输原理1-8[1].2.
冶金传输原理1-8[1].2.冶金传输原理(Principles of Transfer in Metallurgy)绪论1、冶金的分类:钢铁冶金、有色冶金共同特点(1)发生物态变化固?液态(2)物理化学变化原料与产品的性质、化学成分截然不同钢铁冶金:原料是矿石产品是钢铁钢铁工艺流程:(1)长流程:高炉、转炉、轧机(2)短流程:直接还原或熔融还原、电炉、轧机(1)高炉炼铁:烧结矿或球团矿(铁矿石造块)、焦炭(煤炼焦)、熔剂铁水(2)非高炉炼铁:天然块矿、粉矿或造块、块煤或气体还原剂、熔剂海绵铁(3)转炉炼钢:铁水、废钢、铁合金、氧气、造渣剂钢水(4)电炉炼钢:废钢(海绵铁)、铁水、铁合金、造渣剂钢水2.有色冶金:原料是矿石产品是有色金属(1)重金属:铜(造锍熔炼)、铅(还原熔炼)、锌(湿法冶炼)、锡(火法精炼)(2)轻金属:铝冶金、镁冶金(3)稀贵金属:锂冶炼、铍冶炼、钙锶钡制取、金银提炼3、课程概况一、课程性质专业基础课,是基础课和专业课之间的桥梁。
二、课程内容传输原理(动量、热量、质量传输)简称“三传”传输是指流体的(输送、转移、传递)动力过程、传热过程、物质传递过程的统称热量、动量、质量的传递与输送,热量传输、质量传输、动量传输(类似统一性)传输原理类似性:基本概念、运动规律、解析方法类似。
冶炼过程:高温、多相条件下进行的复杂物理化学过程。
传输过程:?冶炼过程中的物理过程,不涉及化学反应。
动量、热量、质量传递的过程。
(TransportPhenomena)举例:高炉炼铁的气固两相流动。
高炉强化冶炼,目的就是改善传输条件。
转炉炼钢的气液两相流动。
转炉底吹,目的也是改善传输条件。
冶金传输原理已成为现代冶金过程理论的基础!研究对象:动量、热量、质量传输(传递)过程的速率。
研究方法:理论研究(简单问题)、实验研究、数值计算(复杂问题)习题与思考题:如何加深对所学传输理论的理解和应用。
三、课程特点物理概念抽象,数学推导繁琐,计算公式多,计算过程复杂。
冶金原理复习
冶金原理复习冶金原理是一门非常重要的学科,涉及到金属材料的制备、提纯、加工和性能研究等方面。
所以,在应对考试或者实际应用时,复习和掌握冶金原理知识是非常必要的。
本文将从以下几个方面展开冶金原理的复习和总结。
一、结构与性能的关系金属材料的物理、化学性质和内部结构之间有着密切的关系。
常见的金属材料内部结构包括晶体结构、晶粒大小和晶界等,而这些结构的变化会直接影响到材料的力学性能、塑性和热稳定性等方面。
因此,在复习冶金原理时,应该着重理解金属结构与性能之间的关系,并将其应用到实际生产和加工中。
二、冶金流程冶金流程是指将矿物原料加工成金属材料的过程。
其中包括矿物提取、矿石熔炼、金属提取、金属纯化、合金制备和加工等过程。
在复习冶金原理时,需要了解这些流程中的基本原理、步骤和影响因素,以及各个流程之间的关系。
这些知识对于理解和解决生产中的实际问题至关重要。
三、金属材料的制备与加工金属材料的制备与加工是冶金学的重要部分,通常包括原材料的熔炼、铸造、锻造、挤压、淬火和退火等过程。
在复习时,需要掌握这些过程中的基本原理、工艺参数和影响因素。
此外,还需要学习金属材料的热处理和物理性能测试等方面的知识,以全面掌握材料的特性和优缺点。
四、合金制备合金是由两种或多种金属或非金属元素相结合而形成的材料。
在实际生产和研究中,需要掌握合金制备的基本原理和方法,了解不同成分的合金成分之间的性能差异,并能够有效地选择和优化合金的配方,满足实际需求。
综上所述,冶金原理是一门非常重要的学科,涉及到金属材料的各个方面,包括内部结构、冶金流程、金属材料的制备和加工,以及合金制备等方面。
在复习时,需要系统学习和掌握这些知识,同时也需要注重实践、实验和实际应用,以提高自己的理论和实践能力。
希望大家能够通过复习和总结,掌握冶金原理的核心知识,为实际应用和发展做出更大的贡献。
冶金传输原理复习
流体:流体是一种受任何微小剪切应力作用能持续变形的一种物质流体的粘性:流体在变形或流动时,其本身所具有的阻滞流动或变形的性质。
流体的粘度:衡量流体粘性大小的物理量;可压缩性:指在压力作用下,流体的体积发生明显的变化。
理想流体: 粘性为0的流体(实际并不真正存在)实际流体: 具有粘性的流体压强:垂直作用于单位面积流体上的压力,称为压强。
压强表示方法:一个标准大气压的精确值为101.325Pa,它是指一个标准大气压比绝对零压高101.325Pa。
绝对压强:凡是用绝对零压作起点计算的压强,称为绝对压强。
表压:表示流体的绝对压强比大气压高出的数值。
表压强=绝对压强-大气压强表面力:指作用在所研究流体表面上的力,是流体微团与周围环境在界面产生的相互作用力,如压力、粘性力和表面张力等。
表面力的大小与其表面积的大小呈正比,是作用在表面上的力。
体积力(质量力):指作用在流体内所有流体质点上,且与质量成正比的力,它本身是一种非接触力。
如重力、惯性力、电磁力等。
质量力的大小与其质量的大小呈正比,它可以远距离作用在流体内部的每一个质点上。
故称远程力。
流体流动的起因及分类:自然流动:无外力作用,由于流体本身的性质导致的流动。
(河水,风…)。
强制流动:在外力作用下产生的流体的流动。
(自来水管,水泵…)h强制>h自然速度场:速度在空间和时间上的分布状态。
速度梯度:垂直于流体运动方向的速度变化率,或称速度梯度。
边界层:受固体壁面的影响速度急骤变化的区域0≤y≤δ(x)为边界层稳态流动:在流体的任何空间点处,流体的速度即其他物理量均不随时间而改变,仅与空间位置有关非稳态流动:在流体的任何空间点处,流体的速度和其他物理量只要有一项随时间而改变,这时运动要素就不仅与这些点的空间位置有关,而且与时间有关动量通量:单位时间通过单位面积的动量量,称为动量通量。
动量通量=mu/(t.A) =ρu2流动量通量:由于流体流动引起的动量传输,即前述定义式;其传输方向与流体流动方向一致。
冶传总复习1-2
§2.3
流体的粘性及其内摩擦定律
一、粘性的概念
动板
定板
在做相对运动的两流体层的接触面上,存在一对等值反向的 作用力来阻碍两相邻流体层作相对运动,流体的这种性质称流体 的粘性。由粘性产生的作用力叫做粘性阻力或内摩擦力。原因。
二、牛顿粘性定律
当流体的流层之间存在相对位移时,即存在速度梯度时,由于流体的粘 性作用,在其速度不相等的流层之间以及流体与固体表面之间所产生的粘性 阻力的大小与速度梯度和接触面积成正比,与流体的粘性有关。
粘度或切应力
牛顿流体
触变性流体
时间 触变性流体的特性曲线
例1: 两平行板相距3.2mm,下板不动,而上板以1.52m/s的速度运动。 欲使上板保持运动状态,需要施加2.39N/m2的力。求板间流体的动力 粘度。 解:两板间的距离较小,可以将速度梯度当作线性变化处理。
F/A v0 / Y
例2:某种可压缩液体在圆柱形容器中,当压强为2MN/m2时体 积为995cm3,当压强为1MN/m2时体积为1000 cm3,问它的等 温压缩率kT为多少?
个“负号”。
传输过程的研究方法:
理论研究法、实验研究法、数值计算研究法
第二章
流体的性质
§2.1
流体的概念和连续介质模型
一、流体的概念
能够自由流动的物体,统称流体,如液体和气体。从力学角度 来看,流体是一种剪切抗力极低的物质,受剪切力时发生显著 的变形,即流动。 共 同 特 征
分子间距和分子的运动范围 比较大 只能承受压力,不能承受拉力和切力; 分子的移动和转动为其主要运动形式; 没有一定的形状;
“三传”的类似性
流场中速度分布不均的时候 产生了切应力; 分子传递 温度分布不均的时候 产生了热传导; 在多组分的混合流中,某组分 的浓度分布不均的时候 产生了质量的传输; 湍流传递 旋涡混合造成的流体微团的宏观 运动引起。
冶金传输原理复习试题库
一、名词解释1 流体:能够流动的物体。
不能保持一定的形状,而且有流动性。
2 脉动现象:在足够时间,速度始终围绕一平均值变化,称为脉动现象。
3 水力粗糙管:管壁加剧湍流,增加了流体流动阻力,这类管称为水力粗糙管。
4 牛顿流:符合牛顿粘性定律的流体。
5 湍流:流体流动时,各质点在不同方向上做复杂无规那么运动,相互干扰的运动。
这种流动称为湍流。
6 流线:在同一瞬时,流场中连续不同位置质点的流动方向线。
7 流管:在流场取任意封闭曲线,通过该曲线上每一点,作流线,组成的管状封闭曲面,称流管。
8 边界层:流体通过固体外表流动时,在紧靠固体外表形成速度梯度较大的流体薄层称边界层。
9 伪塑性流:其特征为〔〕,当n<1时,为伪塑型流。
10非牛顿流体:不符合牛顿粘性定律的流体,称之为非牛顿流体,主要包括三类流体。
11宾海姆塑流型流体:要使这类流体流动需要有一定的切应力ι时流体处于固结状态,只有当切应力大于ι时才开场流动。
12稳定流:运动参数只随位置改变而与时间无关,这种流动就成为稳定流。
13非稳定流:流场的运动参数不仅随位置改变,又随时间不同而变化,这种流动就称为非稳定流。
14迹线:迹线就是流体质点运动的轨迹线,特点是:对于每一个质点都有一个运动轨迹,所以迹线是一族曲线,而且迹线只随质点不同而异,与时间无关。
16 水头损失:单位质量〔或体积〕流体的能量损失。
17 沿程阻力:它是沿流动路程上由于各流体层之间的摩擦而产生的流动阻力,也叫摩擦阻力。
18 局部阻力:流体在流动中因遇到局部障碍而产生的阻力。
19脉动速度:脉动的真实速度与时均速度的差值成为脉动速度。
20 时均化原那么:在某一足够长时间段以平均值的速度流经一微小有效断面积的流体体积,应该等于在同一时间段以真实的有脉动的速度流经同一微小有效断面积的流体体积。
21热传导:物体各局部之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动进展的热量传递称为热传导。
冶金传输原理-复习总结
度升高。
辐射换热特点
第5章 热量传递的基本概念
2、斯蒂芬—波尔茨曼定律 (1)黑体在某一温度下的辐射能
斯蒂芬—波尔茨曼定律(四次方定律)
A 0T 4 W (5.14) 式中, 0 5.67 108W / m 2 K 4 黑体辐射常数.
(2)实际物体的辐射能
A 0T 4
7.2 求压力的作用点
(2.46)
即压力P为浸水面积与形心处的液体静压强的乘积
JC y D yC yC A
8、静止液体对曲面壁的压力
(2.49)
px hC Ax pz V
(2.53)
P Px2 Py2
(2.54)
第2章 流体静力学
Pz 压力的倾斜角为 arctan Px
面上呈现出具有速度差异(滑差速度)的流体薄层。
层流起始段——层流稳定之前的一段。 4.3 园管中的湍流运动 1、湍流的脉动现象 2、速度的时均化原则及时均速度
第4章 流动状态及能量损失 3. 湍流边界层
湍流边界层
4. 水力光滑管和水力粗糙管 水力光滑管:δ>Δ,Δ对流动影响小,类似完全光滑管。 水力粗糙管:δ<Δ,Δ对流动影响大,消耗能量。
对不可压缩流体,空间连续性方程
u x u y u z 0 x y z
(3.27)
第3章 流体动力学 3.2.2 沿总流的连续性方程
1mv1 A1 2mv2 A2
对不可压缩流体
(3.33)
物理意义:对可压缩流体稳定流,沿流程的质量流量保持不变。
v1 A1 v2 A2
第4章 流动状态及能量损失 5. 湍流沿程损失的基本关系式
l v p d 2
(2020年7月整理)冶金传输原理总复习.doc
第一章动量传输的基本概念 1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2 连续介质流体是在空间上和时间上连续分布的物质。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算) 4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为dydv x yx μτ±==A Fτyx 说明动量传输的方向(y 向)和所讨论的速度分量(x 向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s 运动粘度η,单位m 2/s 。
ρμη=例题1-16.温度对粘度的影响粘度是流体的重要属性,它是流体温度和压强的函数。
在工程常用温度和压强范围内,温度对流体的粘度影响很大,粘度主要依温度而定,压强对粘性的影响不大。
当温度升高时,一般液体的粘度随之降低;但是,气体则与其相反,当温度升高时粘度增大。
这是因为液体的粘性主要是由分子间的吸引力造成的,当温度升高时,分子间的吸引力减小,μ值就要降低;而造成气体粘性的主要原因是气体内部分子的杂乱运动,它使得速度不同的相邻气体层之间发生质量和动量的交换,当温度升高时,气体分子杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以μ值将增大。
冶金传输原理总复习教学内容
冶金传输原理总复习第一章动量传输的基本概念1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2 连续介质流体是在空间上和时间上连续分布的物质。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算)4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为dydv x yx μτ±==A Fτyx 说明动量传输的方向(y 向)和所讨论的速度分量(x 向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s 运动粘度η,单位m 2/s 。
ρμη= 例题1-16.温度对粘度的影响粘度是流体的重要属性,它是流体温度和压强的函数。
在工程常用温度和压强范围内,温度对流体的粘度影响很大,粘度主要依温度而定,压强对粘性的影响不大。
当温度升高时,一般液体的粘度随之降低;但是,气体则与其相反,当温度升高时粘度增大。
这是因为液体的粘性主要是由分子间的吸引力造成的,当温度升高时,分子间的吸引力减小,μ值就要降低;而造成气体粘性的主要原因是气体内部分子的杂乱运动,它使得速度不同的相邻气体层之间发生质量和动量的交换,当温度升高时,气体分子杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以μ值将增大。
冶金传输原理
名词解释
1、传输现象:传输现象为流体动力过程
2、研究方法:(1)物理研究方法:确定简化的物理模型——建立数学模型——数学求导(精确解、数值解)(2)数值计算法(3)实验研究法
3、流体作用力分类:表面力、体积力表面力(
4、等压面:在平衡流体中,静压力相等的各个点组成的面,称为等值面
5、连续介质:将流体视为连续不断的质点群组成,内部不存在间隙的介质,是流体运动的一种模型概念
6、流体微团:又称微元体或元体,可视为由质点点组成的、微小的流体单元
7、控制体:是指流场中某一确定的空间区域,这个区域的这个区域的周界称为控制体
8、相似理论:具有相同运动规律的同类物理现象所类似现象中,表征过程的各固类物理量之间彼此相似
9、因次分析法:将物理过程有关的物理量组成呢个因次准数,以确定准数的方法
10、因次和谐原理:任何物理量都是以相关物理量和这些物理量之间的关系来表征运动规律的11、温度梯度:温度场中任意一点沿等温面法线方向温度增加率称为改点的温度梯度12、。
(完整word版)冶金传输原理总复习
第一章动量传输的基本概念 1.流体的概念物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2 连续介质流体是在空间上和时间上连续分布的物质。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算) 4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为dydv x yx μτ±==A Fτyx 说明动量传输的方向(y 向)和所讨论的速度分量(x 向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s 运动粘度η,单位m 2/s 。
ρμη=例题1-16.温度对粘度的影响粘度是流体的重要属性,它是流体温度和压强的函数。
在工程常用温度和压强范围内,温度对流体的粘度影响很大,粘度主要依温度而定,压强对粘性的影响不大。
当温度升高时,一般液体的粘度随之降低;但是,气体则与其相反,当温度升高时粘度增大。
这是因为液体的粘性主要是由分子间的吸引力造成的,当温度升高时,分子间的吸引力减小,μ值就要降低;而造成气体粘性的主要原因是气体内部分子的杂乱运动,它使得速度不同的相邻气体层之间发生质量和动量的交换,当温度升高时,气体分子杂乱运动的速度加大,速度不同的相邻气体层之间的质量和动量交换随之加剧,所以μ值将增大。
冶金传输原理
1传输过程:传输过程是从非平衡状态朝平衡状态转移的过程。
2连续介质模型:将流体看成是由无数多个流体质点所组成的密集而无间隙的连续介质,也叫做流体连续性的基本假设。
3流体的粘性:在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动。
6迹线:迹线就是流体质点运动的轨迹线。
7流线:在同一瞬时流场中的不同位置质点的流动方向线。
8流管:在流场内取任意封闭曲线L,通过曲线L 上每一点连续地作流线,则流线族构成一个管状表面叫流管。
9流束:在流管内取一微小曲面dA,通过dA上每个点作流线,这族流线叫流束。
10层流:流体在运动方向上分层运动,各层互不干扰和渗混,这种流线呈平行状态的流动成为层流。
11紊流:各质点在不同方向上作复杂的无规则运动,互相干扰地向前运动,这种流动成为湍流。
13沿程阻力:它是沿流动路程上由于各流体层之间的内摩擦而产生的流动阻力,因此也叫做摩擦阻力。
14局部阻力:流体在流动中因遇到局部障碍而产生的阻力称为局部阻力。
16数学分析法:数学分析法是从物理概念出发进行数学分析,建立起物理过程的数学方程式来揭示各有关物理参数之间的联系,然后在一定边界条件下求解。
17实验法则:实验法则是对某一具体的物理过程以实验测试为手段,直接对过程的有关物理量进行测定,然后根据测定结果找出各相关物理量之间的联系及变化规律。
18相似准数:在相似系统的对应点上,由不同物理量所组成的量纲为1的综合数群的数值必须相等,这个量纲为1的量往往称为无量纲量,综合数群叫相似准数。
19:量纲:物理量所属于的种类,称为这个物理量的量纲。
20:热量传输:热量传输是研究不同物体之间或者同一物体不同部分之间存在温差时热量的传递规律。
21:导热:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动进行的热量传递称为热传导,简称导热。
22:对流:对流是指流体各部分之间发生的相对位移,冷热流体相互掺混所引起的热量传递方式。
冶金传输原理知识点
1.流体的概念:物质不能抵抗切向力,在切向力的作用下可以无限地变形,这种变形称为流动,这类物质称为流体,其变形的速度即流动速度与切向力的大小有关,气体和液体都属于流体。
2.什么是连续介质,在流体力学中为什么要建立连续介质这一理论模型?答:(1)连续介质是指质点毫无空隙的聚集在一起,完全充满所占空间的介质。
(2)引入连续介质模型的必要性:把流体视为连续介质后,流体运动中的物理量均可以看为空间和时间的连续函数,就可以利用数学中的连续函数分析方法来研究流体运动,实践表明采用流体的连续介质模型,解决一般工程中的流体力学问题是可以满足要求的。
3流体的主要物理性质密度;比容(比体积);相对密度;重度(会换算)4.流体的粘性在作相对运动的两流体层的接触面上,存在一对等值而反向的作用力来阻碍两相邻流体层作相对运动,流体的这种性质叫做流体的粘性,由粘性产生的作用力叫做粘性力或内摩擦力。
1) 由于分子作不规则运动时,各流体层之间互有分子迁移掺混,快层分子进入慢层时给慢层以向前的碰撞,交换能量,使慢层加速,慢层分子迁移到快层时,给快层以向后碰撞,形成阻力而使快层减速。
这就是分子不规则运动的动量交换形成的粘性阻力。
2) 当相邻流体层有相对运动时,快层分子的引力拖动慢层,而慢层分子的引力阻滞快层,这就是两层流体之间吸引力所形成的阻力。
5.牛顿粘性定律在稳定状态下,单位面积上的粘性力(粘性切应力、内摩擦应力)为τyx说明动量传输的方向(y 向)和所讨论的速度分量(x向)。
符号表示动量是从流体的高速流层传向低速流层。
动力粘度μ,单位Pa·s运动粘度η,单位m2/s6.牛顿流体和非牛顿流体凡是切应力与速度梯度的关系服从牛顿粘性定律的流体,均称为牛顿流体。
常见的牛顿流体有水、空气等,非牛顿流体有泥浆、纸浆、油漆、沥青等。
对于不符合牛顿粘性定律的流体,称之为非牛顿流体。
1.研究流体运动的方法拉格朗日(Lagrange)法及欧拉法。
传输原理总结hunanuniversity of technology
学为辅)重点掌握基本概念、基本定律、基本解析
方法。
理论联系实际
类比
15:46:13
冶金工程学院《冶金传输原理》绪论
17
冶金与传输
现代冶金学是研究从自然资源中提取有用金属和制造材 料的科学,包括两大领域,即提取冶金和物理冶金。
提取冶金:从矿石中提取金属 冶金工程 材料成型与控制
物理冶金:通过成型、加工制造金属材料
通过本课程的教学使学生掌握冶金传输理论的基本概念基本定律及基本解析方法理解强化冶金生产过程和改进生产工艺的传输理论基础为理解材料与冶金工艺过程奠定理论基础对改进和为理解材料与冶金工艺过程奠定理论基础对改进和优化各种设备的设计操作及控制提供理论依据
冶金传输原理
Principles of Transfer in Metallurgy
15:46:13
冶金工程学院《冶金传输原理》绪论
15
研究方法
实验研究方法
用于理论计算结果正确性的验证、解决建立传输方程不易或方程
难于求解的复杂问题。采用的实验方法主要是基于相似理论的模 型实验法。
在研究传输问题时,理论、计算和实验三种研究方法相互补充
,取长补短。 本课程主要介绍理论研究方法和一些实验研究方法,即以质量
15:46:13 冶金工程学院《冶金传输原理》绪论 19
冶金与传输
2
热量传输
冶金过程一般是高温过程,这就要求我们调整和保持冶金容器 (反应器)内温度,从而有必要对热量传递和温度分布进行研究。 3
动量传输
冶金过程离不开气体、液体(统称为流体),它们的流动状况
(速度分布)对质量传递和热量传递构成影响,且一般情况下又 控制其它两项的传输过程,这就要求我们对动量传递过程(主要
冶金传输原理总复习
传输系统的自动化控制与优化
自动化
优化设计
目的在于提高传输系统的稳定性、 可靠性、安全性和经济性。
对传输系统的结构和工艺参数进 行优化设计,以提高整个系统的 效率和性能。
传感器
在传输和控制过程中,通过各种 传感器获取实时数据反馈,以调 整工艺参数和保障安全。
连铸传输系统及其原理
连铸传输系统是冶金工业中的一个重要环节,它负责将熔化金属从炉外传输到连铸机辊道上,并通过铸钢流方 式制备板带材。
冶金传输原理总复习
总复习中,我们还涉及了氧气传输、冷却水传输、压缩空气传输、真空传输、 电力传输、水处理传输和废气处理传输和废水处理传输系统及其原理。
冶金传输原理总复习
这是一份关于冶金传输原理的总复习,涵盖了传输原理概述和物质的基本特 性和传输方式,以及传输过程中的物理现象分析和冶金物料的传输特点。
传输设备的分类与特点
1
提升机
2
适合纵向或倾斜角度不大于20度、粒径
较细的物料。
3
螺旋输送机
4
适合输送粉、颗粒、小块等物料,可以 与输送机、提升机组合使用。
热轧传输系统及其原理
1
高温传输
热带钢坯自转炉出炉后,通过众多辊道传至热连轧机,终经轧制成各种规格的板带材。
2
冷却方式
热轧后的板材在多环节进行冷却,以获得适合各种加工和使用条件的成品。
3
加工工艺
涉及到板材的切割、弯曲、折边、压花、表面处理和成品检验等多方面问题。
铁水传输系统及其原理
铁水传输是指将冶金车间高炉出鼓的铁水送到钢铁车间各种转炉和铸造设备的过程。
输送机
适合无需转换传输方向、量大、距离短、 经济性好的物料。
输送车
总复习
图1
图2
21:02:38
冶金工程学院《冶金传输原理》总复习
9
《冶金传输原理》总复习
5、如图3 小管直径D1=0 .2 m,大管直径D2=0.4 m。 P1=70 KN/ m2,P2=40 KN/m2 ,2-2断面流速为1 m/s。 1、2断面高度差为1 m。试判断水在管中的流动方向, 并求水流经两断面间的水头损失。 6、水箱侧面壁接出一直径D=0.20m的管路,如图4所示, 已知H1=2.0m,H2=3.0m,不计任何损失, 求A点的压强及出流流速。 7、某冶金炉墙分别由耐火砖、硅藻土砖、保温板、 金属薄板组成,厚度分别为125, 125, 60, 4 mm, 导热系数分别为0.4, 0.14, 0.10, 45 W/m.℃。已知炉内、 外侧壁温分别为600℃,50℃,求炉墙单位面积上的热损 失及炉墙的温度分布。 8、某热风管道的内、外径分别为200、220mm,管外包扎 厚度为50mm的隔热材料,管壁与隔热材料的导热系数分别 为50.6 , 0.2 W/m.℃。已知管内、外表面温度分别为250℃, 50℃,求通过管道的单位长度上的热损失及两层接触界面的 温度。
21:02:38 冶金工程学院《冶金传输原理》总复习 2
《冶金传输原理》总复习
二、热量传输 1、温度场、温度梯度、温度边界层;热流量、热流密度 2、导热、对流、辐射 3、导热系数、对流换热系数、辐射换热系数、热量传输系数 4、相似准数Fo、Bi、Re、Gr、Pr、Nu 5、黑体、白体、透热体;灰体;吸收率、反射率、透过率、 黑度 6、单色辐射力、全辐射力、方位辐射力;角系数;有效辐射 ;表面网络热阻、空间网络热阻 7、解析法、数值分析法、有限差分法、集总参数法、网络元 法 三、质量传输 质量传输;扩散传质、对流传质、相间传质 浓度、速度、传质通量;浓度场、浓度梯度、浓度边界层 扩散系数、对流传质系数 Ar、Sc、Sh准数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际流体总流的贝努利方程
2 v12 P2 v2 z1 g 1 z2 g 2 hW 2 2
P 1
第3章 流体动力学 贝努利方程的几何意义、物理意义 理想流体的几何意义
u2 H z 2g P
' u 2 hw H z 2g g
实际流体的几何意义
3.4
(3.40)
实际流体动量传输方程——纳维尔-斯托克斯方程
du x 1 P X 2 u x dt x du y 1 P Y 2 u y dt y du z 1 P Z 2 u z dt z
(3.47) 纳维尔—斯托克斯方程 (N—S方程)
c
(2.27)
(1)同一静止液体中,各点的测压管水头是相等的,各点的静 压水头也是相等的。(几何意义) (2)总比势能不变,但比压能和比位能可以互相转化。(能量 意义)。
第2章 流体静力学 7、静止液体对平面壁的压力
7.1 求压力的大小
P h C A
7.2 求压力的作用点
(2.46)
即压力P为浸水面积与形心处的液体静压强的乘积
第3章 流体动力学 3.5 理想流体和实际流体的贝努利方程 理想流体的贝努利方程
u P2 u z1 z2 2g 2g
实际流体的贝努利方程
2 u12 P2 u2 z1 z2 hw 2g 2g
P 1
2 1
2 2
(3.55)
P 1
(3.62)
影响的因素:物质种类、温度
第2章 流体静力学 1、作用在流体上的力 质量力、表面力(法向力、切向力) 2、流体静压强 流体静压强——单位面积上的流体静压力 流体压强的特性 3、流体平衡微分方程
1 p X 0 x
1 p 0 y 1 p Z 0 z
P
物理意义
u2 ' E gz ghW 2 P
3.6
贝努利方程的应用
第4章 流动状态及能量损失 4.1 流动形态及阻力分类 1、流动形态:层流流动、湍流流动、 2、流动状态判别准则——雷诺数
Re
vC d
惯性力 粘性力
vC d
(4.1)
流体绕过固体流动时的雷诺数 Re vL 临界雷诺数:圆管、非圆形管、平板 3、能量损失的两种形式 沿程阻力和沿程损失、局部阻力和局部损失、总能量损失
(3.27)
第3章 流体动力学 3.2.2 沿总流的连续性方程
1m v1 A1 2 m v2 A2
对不可压缩流体
(3.33)
物理意义:对可压缩流体稳定流,沿流程的质量流量保持不变。
v1 A1 v2 A2
(3.34)
物理意义:对不可压缩流体沿流程体积流量不变,流速与管截 面积成反比。
第3章 流体动力学 3.3 理想流体动量传输方程——欧拉方程
1 V V V T P
(1.9)
3、 气体的压缩性和膨胀性
PV=RT
第1章 流体的主要物理性质 4、 粘性 粘性——流体抵抗剪切变形的能力 粘性阻力(内摩擦力) ——由粘性产生的作用力 5、 牛顿粘性定律
F du A dy
(1.11)
6、粘度 ——动力粘度 /Pa· s, ——运动粘度/ m2/s,又称“动量扩散系数”。
u x u x u x 1 P u x X x t u x x u y y u z z u y u y u y 1 P u y ux uy uz Y y t x y z Z 1 P u z u u z u u z u u z x y z x t x y z
当已知液面压强p0和液面距基准面的距离z0,
p p0 g ( z0 z ) p0 gh
(2.30)
或
p p0 ( z0 z ) p0 h
(2.31)
第2章 流体静力学
6、静力学方程的能量意义与几何意义
根据 z 可知:
p
c 或 z
p'
p' p pa
(2)、、DAB三个扩散系数具有相同的因次: m 2 s;
(3)“-” 号意义相同,即通量与浓度梯度方向相反。
第1章 流体的主要物理性质 1、 流体的概念及连续介质模型 流体、连续介质模型
2、液体的压缩性和膨胀性
1 V 等温压缩率 kT V P T
体胀系数
(1.8)
第3章 流体动力学 3.1 流体运动的基本概念
速度、加速度、稳定流与非稳定流、迹线、流线、流管、流束、 流量 3.2 连续性方程 3.2.1 直角坐标系的连续性方程
1 d u x u y u z 0 dt x y z
对不可压缩流体,空间连续性方程
u x u y u z 0 x y z
冶金传输原理
绪
论
传输—— 物理量从非平衡态向平衡态的转移过程 1、三种传输现象的基本定律
牛顿粘性定律
d ( v) dy
(0.2)
傅里叶导热定律
菲克扩散定律
q a
d ( C pT ) dy
d A dy
(0.4)
(0.5)
j A DAB
2、三种传输现象普遍规律(类比关系) (1)通量=-扩散系数×浓度梯度(各自量的浓度梯度);
(2-14) 欧拉静平衡方程
第2章 流体静力学
4、平衡微分方程的积分
p p0 (W W0 )
5、静止流体中的压强分布规律
(2.22)
p1 p2 z1 z2 g g p1 p2 z1 z 2
(2.28)
流体静力学基本方程
JC y D yC yC A
8、静止液体对曲面壁的压力
(2.49)
p x hC Ax p z V
(2.53)
P Px2 Py2
(2.54)
第2章 流体静力学
Pz 压力的倾斜角为 arctan Px
(2.55)
P的作用点(压力中心)D的确定:见图2.16