Time-DependentPerturbationTheroy(Cont.)含时微扰理论(续)
(英文)量子力学-时间相关微扰理论
M
b a
+ t2
M - molecule with dipole moment
surface
+ t1
x
I+
1. Molecule, M, weakly phys. absorbed on surface. Not translating or rotating. (Example, CO on Cu surface.) 2. Dipole moment points out of wall. Interaction with wall very weak; can be ignored. 3. When not interacting with ion – vibrations harmonic. 4. M has – side to right.
opposite
+ t2
+ t1 x
I+
Qualitatively Correct Model
+ M
M +
–
b a
+ t2
surface
Ion causes cubic perturbation of molecule Correct symmetry, odd.
– end of M always closer to I+ than positive end of M.
Bond stretch energy lowered – closer to I+. + further from I+.
+ M
M +
–
b a
surface
Bond contracted Energy raised.
物理学博士研究生培养方案
物理学博士研究生培养方案(专业代码:0702)一、学科概况西北师范大学的物理学专业为教育部特色建设专业,甘肃省重点学科;具有物理学博士后科研流动站、物理学一级博士点。
建立了原子分子物理与功能材料省级重点实验室,与中科院近物所联合建立了极端环境原子分子物理实验室。
学科点凝聚了一批高学历、高水平、结构合理的学科带头人和学术梯队。
具有享受国务院特殊津贴专家1人,省优秀专家1人,省领军人才5人,省科技创新人才4人,留学回国人员20 余人。
在原子分子物理、理论物理、凝聚态物理、等离子体物理等方向形成了明显特色与优势,在国内外产生了一定影响。
近五年承担国家自然科学基金30余项、省部级项目20余项、国际合作项目2项,年科研经费近一千万元;每年在SCI收录期刊发表论文60多篇,在Phys. Rev.系列等标志性刊物上的论文数逐年增加。
研究成果获甘肃省自然科学奖2项、甘肃省高校科技进步奖7项。
研究生招生规模、培养质量、对外影响稳步提升,与多所国内外著名大学和研究机构建立了稳定的交流合作及研究生联合培养机制;在近几年的《中国研究生教育分专业排行榜》上,原子与分子物理专业被评为A级,物理学一级学科被评价为B+级。
本学科涵盖理论物理、原子与分子物理、等离子体物理、凝聚态物理、光学5个二级学科。
二、培养目标本专业培养的博士研究生应是热爱祖国、学风良好、治学严谨、身心健康,掌握本专业坚实宽广的理论基础和系统深入的专门知识及技能,有较强的创新能力,熟练掌握一门外语,并具有独立从事与物理学专业相关的教学、科研工作的高级专门人才。
三、研究方向1.非线性物理2. 玻色-爱因斯坦凝聚3. 原子结构与原子碰撞4. 强激光场中的原子分子物理5. 基于加速器的原子物理6. 大气环境中的原子分子过程7. 团簇的结构与性质8. 功能薄膜材料结构与物性9. 纳米结构的光电性质四、学习年限及应修学分全日制博士研究生的学习年限一般为3年,在职攻读博士学位研究生的学习年限原则上为4年。
柏格森的时间理论
中文摘要f时间问题既是哲学问题也是科学问题。
时间在柏格森的哲学中占、———:}着核心地位。
时间、空间与意识状态是柏格森时间哲学中的三个核心概念。
他的空间观是为他的时间观服务的,而意识状态则是一个贯穿其理论始终的主体词。
尽管对康德的时间观颇有微词,笔者认为柏格森继承了康德的空间观,并试图解决康德的时间与自由的矛盾问题。
柏格森完成了时间理论的视角转换:从本来意义上的时间概念来理解空间,而不是从机械的空间概念来理解时间。
将时间与生命、意识相联系。
在这一点上,柏格森的时间与奥古斯丁的时间十分相似,二者试图描述时间的相同的性质;时间的神秘性和时间与精神的联系。
在奥古斯丁那里,时间的心灵化还只是觉醒,而且这心灵是上帝的心灵;康德将时间主体化为人的内在感性形式,康德的时间也是人的时间,他发现了时间与自由的矛盾,而柏格森则真正完成了时间的心灵化,并试图以纯绵延(柏格森的时间观)来解释时间与自由意志的关系。
柏格森的时间是人的时间,与传统的客观时间观认为时间是运动的度量不同,在柏格森这里,运动是时间的表达,生命的本质是时间。
马克思主义关于时间的基本观点是:时间和空间是运动着的物体的存在方式。
二者的时间观存在着唯物与唯心的载然对立,但在运动与时间的关系的理解上却有相通之处。
I柏格森的时间观是“直觉主义”的,更多基于我们的个人经验,基于活生生的人和活生生的人的生活。
柏格森在传统时间观向现代时间观的转折中起了重要作用,开启了现代时间观的先河。
在评价柏格森的时间时,不能只着眼于他的时间观的缺陷,而要联系其时间观的产生原因与时代局限,同时我们要看到他的时间观对后人的影响,从而作出客观的评价。
柏格森的时间理论是一个历史中的概念系统。
人们只能选取一个或若干可能的角度来看待它。
在写作的过程中,我试图在哲学史中来还原柏格森的时间,详细考察其理论渊源和历史影响:在他的整个理论体系中来把握其时间理论的基本概念的含义和逻辑关系。
㈡全文共分为六部分:第一部分:介绍桕整查堑堂的背景:十九世纪末的非理性主义思潮;近代哲学对主客二分思维方式的抛弃和向主体性的回归。
Time-dependent Density Functional Theory
Time-dependent Density Functional Theory Miguel A.L.Marques and E.K.U.Gross1IntroductionTime-dependent density-functional theory(TDDFT)extends the basic ideas of ground-state density-functional theory(DFT)to the treatment of excita-tions or more general time-dependent phenomena.TDDFT can be viewed an alternative formulation of time-dependent quantum mechanics but,in contrast to the normal approach that relies on wave-functions and on the many-body Schr¨o dinger equation,its basic variable is the one-body electron density,n(r,t).The advantages are clear:The many-body wave-function,a function in a3N-dimensional space(where N is the number of electrons in the system),is a very complex mathematical object,while the density is a simple function that depends solely on3variables,x,y and z.The standard way to obtain n(r,t)is with the help of afictitious system of non-interacting electrons,the Kohn-Sham system.Thefinal equations are simple to tackle nu-merically,and are routinely solved for systems with a large number of atoms. These electrons feel an effective potential,the time-dependent Kohn-Sham potential.The exact form of this potential is unknown,and has therefore to be approximated.The scheme is perfectly general,and can be applied to essentially any time-dependent situation.Two regimes can however be observed:If the time-dependent potential is weak,it is sufficient to resort to linear-response theory to study the system.In this way it is possible to calculate,e.g.optical absorp-tion spectra.It turns out that,even with the simplest approximation to the Kohn-Sham potential,spectra calculated within this framework are in very good agreement with experimental results.On the other hand,if the time-dependent potential is strong,a full solution of the Kohn-Sham equations is required.A canonical example of this regime is the treatment of atoms or molecules in strong laserfields.In this case,TDDFT is able to describe non-linear phenomena like high-harmonic generation,or multi-photon ionization.Our purpose,while writing this chapter,is to provide a pedagogical in-troduction to TDDFT1.With that in mind,we present,in section2,a quite detailed proof of the Runge-Gross theorem[5],i.e.the time-dependent generalization of the Hohenberg-Kohn theorem[6],and the corresponding2Miguel A.L.Marques and E.K.U.GrossKohn-Sham construction[7].These constitute the mathematical foundations of TDDFT.Several approximate exchange-correlation(xc)functionals are then reviewed.In section3we are concerned with linear-response theory, and with its main ingredient,the xc kernel.The calculation of excitation en-ergies is treated in the following section.After giving a brief overlook of the competing density-functional methods to calculate excitations,we present some results obtained from the full solution of the Kohn-Sham scheme,and from linear-response theory.Section5is devoted to the problem of atoms and molecules in strong laserfields.Both high-harmonic generation and ion-ization are discussed.Finally,the last section is reserved to some concluding remarks.For simplicity,we will write all formulae for spin-saturated systems.Ob-viously,spin can be easily included in all expressions when necessary.Hartree atomic units(e=¯h=m=1)will be used throughout this chapter.2Time-dependent DFT2.1PreliminariesA system of N electrons with coordinates r∂tΨ(r,t)Ψ(r,t)|2, is interpreted as the probability offinding the electrons in positions r)+ˆW(r,t).(2) Thefirst term is the kinetic energy of the electronsˆT(r2Ni=1∇2i,(3)whileˆW accounts for the Coulomb repulsion between the electronsˆW(r2N i,j=1i=j1,t).The Hamiltonian(2)is completely general and describesTime-dependent Density Functional Theory3 a wealth of physical and chemical situations,including atoms,molecules,and solids,in arbitrary time-dependent electric or magneticfields,scattering ex-periments,etc.In most of the situations dealt with in this article we will be concerned with the interaction between a laser and matter.In that case,we can write the time-dependent potential as the sum of the nuclear potential and a laserfield,ˆV TD=ˆU en+ˆV laser.The termˆU en accounts for the Coulomb attraction between the electrons and the nuclei,ˆU en (r|r i−Rν(t)|,(5)where Zνand Rνdenote the charge and position of the nucleusν,and N n stands for the total number of nuclei in the system.Note that by allowing the Rνto depend on time we can treat situations where the nuclei move along a classical path.This may be useful when studying,e.g.,scattering experiments, chemical reactions,etc.The laserfield,ˆV laser,reads,in the length gauge,ˆVlaser(r4Miguel A.L.Marques and E.K.U.Grossthe calculation of a“simple”two electron system(the Helium atom)in a laser field takes several months in a modern computer[8](see also the work on theH+2[9]molecule and the H++3molecule[10]).The effort to solve Eq.(1)growsexponentially with the number of particles,therefore rapid developments re-garding the exact solution of the Schr¨o dinger equation are not expected.In these circumstances,the natural approach of the theorist is to trans-form and approximate the basic equations to a manageable level that still retains the qualitative and(hopefully)quantitative information about the system.Several techniques have been developed throughout the years in the quantum chemistry and physics world.One such technique is TDDFT.Its goal,like always in density-functional theories,is to replace the solution of the complicated many-body Schr¨o dinger equation by the solution of the much simpler one-body Kohn-Sham equations,thereby relieving the computational burden.Thefirst step of any DFT is the proof of a Hohenberg-Kohn type theo-rem[6].In its traditional form,this theorem demonstrates that there exists a one-to-one correspondence between the external potential and the(one-body)density.With the external potential it is always possible(in princi-ple)to solve the many-body Schr¨o dinger equation to obtain the many-body wave-function.From the wave-function we can trivially obtain the density. The second implication,i.e.that the knowledge of the density is sufficient to obtain the external potential,is much harder to prove.In their seminal paper,Hohenberg and Kohn used the variational principle to obtain a proof by reductio ad absurdum.Unfortunately,their method cannot be easily gen-eralized to arbitrary DFTs.The Hohenberg-Kohn theorem is a very strong statement:From the density,a simple property of the quantum mechani-cal system,it is possible to obtain the external potential and therefore the many-body wave-function.The wave-function,by its turn,determines every observable of the system.This implies that every observable can be written as a functional of the density.Unfortunately,it is very hard to obtain the density of an interacting sys-tem.To circumvent this problem,Kohn and Sham introduced an auxiliary system of non-interacting particles[7].The dynamics of these particles are governed by a potential chosen such that the density of the Kohn-Sham system equals the density of the interacting system.This potential is local (multiplicative)in real space,but it has a highly non-local functional de-pendence on the density.In non-mathematical terms this means that the potential at the point r can depend on the density of all other points(e.g. through gradients,or through integral operators like the Hartree potential). As we are now dealing with non-interacting particles,the Kohn-Sham equa-tions are quite simple to solve numerically.However,the complexities of the many-body system are still present in the so-called exchange-correlation(xc) functional that needs to be approximated in any application of the theory.Time-dependent Density Functional Theory5 2.2The Runge-Gross theoremIn this section,we will present a detailed proof of the Runge-Gross theorem[5], the time-dependent extension of the ordinary Hohenberg-Kohn theorem[6]. There are several“technical”differences between a time-dependent and a static quantum-mechanical problem that one should keep in mind while try-ing to prove the Runge-Gross theorem.In static quantum mechanics,the ground-state of the system can be determined through the minimization of the total energy functionalE[Φ]= Φ|ˆH|Φ .(7) In time-dependent systems,there is no variational principle on the basis of the total energy for it is not a conserved quantity.There exists,however,a quantity analogous to the energy,the quantum mechanical actionA[Φ]= t1t0dt Φ(t)|i∂2If the two potentials differ solely by a time-dependent function,they will produce wave-functions which are equal up to a purely time-dependent phase.This phase6Miguel A.L.Marques and E.K.U.Grossdensity,n(r,t),i.e.v(r,t)=v (r,t)+c(t)⇒ρ(r,t)=ρ (r,t).(9) This statement immediately implies the one-to-one correspondence between the potential and the density.In the following we will utilize primes to dis-tinguish the quantities of the systems with external potentials v and v .Due to technical reasons that will become evident during the course of the proof, we will have to restrict ourselves to external potentials that are Taylor ex-pandable with respect to the time coordinate around the initial time t0v(r,t)=∞k=0c k(r)(t−t0)k,(10)with the expansion coefficientsc k(r)=1dt kv(r,t) t=t0.(11)We furthermore define the functionu k(r)=∂k2i ∇ˆψ†(r) ˆψ(r)−ˆψ†(r) ∇ˆψ(r) .(15) We now use the quantum-mechanical equation of motion,which is valid for any operator,ˆO(t),i d∂tˆO(t)+ ˆO(t),ˆH(t) |Ψ(t) ,(16)Time-dependent Density Functional Theory7 to write the equation of motion for the current density in the primed and unprimed systemsdij (r,t)= Ψ (t)| ˆj(r),ˆH (t) |Ψ (t) .(18)dtAs we start from afixed initial many-body state,at t0the wave-functions, the densities,and the current densities have to be equal in the primed and unprimed systems|Ψ(t0) =|Ψ (t0) ≡|Ψ0 (19)n(r,t0)=n (r,t0)≡n0(r)(20)j(r,t0)=j (r,t0)≡j0(r).(21) If we now take the difference between the equations of motion(17)and(18) we obtain,when t=t0,didt k+1 j(r,t)−j (r,t) t=t0=n0(r)∇u k(r).(23) The right-hand side of Eq.(23)differs from zero,which again implies that j(r,t)=j (r,t)for t>t0.In a second step we prove that j=j implies n=n .To achieve that purpose we will make use of the continuity equation∂[n(r,t)−n (r,t)]=−∇· j(r,t)−j (r,t) .(25)∂t8Miguel A.L.Marques and E.K.U.GrossAs before,we would like an expression involving the k th time derivative of the external potential.We therefore take the(k+1)st time-derivative of the previous equation to obtain(at t=t0)∂k+2∂t k+1 j(r,t)−j (r,t) t=t0=−∇·[n0(r)∇u k(r)].(26) In the last step we made use of Eq.(23).By the hypothesis(13)we have u k(r)=const.hence it is clear that if∇·[n0(r)∇u k(r)]=0,(27) then n=n ,from which follows the Runge-Gross theorem.To show that Eq.(27)is indeed fulfilled,we will use the versatile technique of demonstra-tion by reductio ad absurdum.Let us assume that∇·[n0(r)∇u k(r)]=0with u k(r)=const.,and look at the integrald3r n0(r)[∇u k(r)]2=− d3r u k(r)∇·[n0(r)∇u k(r)](28)+ S n0(r)u k(r)∇u k(r)·d S.This equality was obtained with the help of Green’s theorem.Thefirst term on the right-hand side is zero by assumption,while the second term vanishes if the density and the function u k(r)decay in a“reasonable”manner when r→∞.This situation is always true forfinite systems.We further notice that the integrand n0(r)[∇u k(r)]2is always positive.These diverse conditions can only be satisfied if either the density n0or∇u k(r)vanish identically. Thefirst possibility is obviously ruled out,while the second contradicts our initial assumption that u k(r)is not a constant.This concludes the proof of the Runge-Gross theorem.2.3Time-dependent Kohn-Sham equationsAs mentioned in section2.1,the Runge-Gross theorem asserts that all observ-ables can be calculated with the knowledge of the one-body density.Nothing is however stated on how to calculate that valuable quantity.To circumvent the cumbersome task of solving the interacting Schr¨o dinger equation,Kohn and Sham had the idea of utilizing an auxiliary system of non-interacting (Kohn-Sham)electrons,subject to an external local potential,v KS[7].This potential is unique,by virtue of the Runge-Gross theorem applied to the non-interacting system,and is chosen such that the density of the Kohn-Sham electrons is the same as the density of the original interacting system.In the time-dependent case,these Kohn-Sham electrons obey the time-dependentTime-dependent Density Functional Theory9 Schr¨o dinger equationi ∂2+v KS(r,t) ϕi(r,t).(29)The density of the interacting system can be obtained from the time-dependentKohn-Sham orbitalsn(r,t)=occi|ϕi(r,t)|2.(30)Eq.(29),having the form of a one-particle equation,is fairly easy to solve numerically.We stress,however,that the Kohn-Sham equation is not a mean-field approximation:If we knew the exact Kohn-Sham potential,v KS,we would obtain from Eq.(29)the exact Kohn-Sham orbitals,and from these the correct density of the system.The Kohn-Sham potential is conventionally separated in the following wayv KS(r,t)=v ext(r,t)+v Hartree(r,t)+v xc(r,t).(31) Thefirst term is again the external potential.The Hartree potential accounts for the classical electrostatic interaction between the electronsv Hartree(r,t)= d3r n(r,t)δn(r,τ) n(r,t),(33) whereτstands for the Keldish pseudo-time.Inevitably,the exact expression of v xc as a functional of the density is unknown.At this point we are obliged to perform an approximation.It is im-portant to stress that this is the only fundamental approximation in TDDFT. In contrast to stationary-state DFT,where very good xc functionals exist, approximations to v xc(r,t)are still in their infancy.Thefirst and simplest of these is the adiabatic local density approximation(ALDA),reminiscent of the ubiquitous LDA.More recently,several other functionals were proposed,from which we mention the time-dependent exact-exchange(EXX)functional[13], and the attempt by Dobson,B¨u nner,and Gross[14]to construct an xc func-tional with memory.In the following section we will introduce the above mentioned functionals.10Miguel A.L.Marques and E.K.U.Gross2.4xc functionalsAdiabatic approximations There is a very simple procedure that allows the use of the plethora of existing xc functionals for ground-state DFT in the time-dependent theory.Let us assume that˜v xc[n]is an approximation to the ground-state xc density functional.We can write an adiabatic time-dependent xc potential asv adiabatic xc (r,t)=˜v xc[n](r)|n=n(t).(34)I.e.we employ the same functional form but evaluated at each time with the density n(r,t).The functional thus constructed is obviously local in time. This is,of course,a quite dramatic approximation.The functional˜v xc[n]is a ground-state property,so we expect the adiabatic approximation to work only in cases where the temporal dependence is small,i.e.,when our time-dependent system is locally close to equilibrium.Certainly this is not the case if we are studying the interaction of strong laser pulses with matter.By inserting the LDA functional in Eq.(34)we obtain the so-called adi-abatic local density approximation(ALDA)v ALDA xc (r,t)=v HEGxc(n) n=n(r,t).(35)The ALDA assumes that the xc potential at the point r,and time t is equal to the xc potential of a(static)homogeneous-electron gas(HEG)of density n(r,t).Naturally,the ALDA retains all problems already present in the LDA. Of these,we would like to emphasize the erroneous asymptotic behavior of the LDA xc potential:For neutralfinite systems,the exact xc potential decays as−1/r,whereas the LDA xc potential falls offexponentially.Note that most of the generalized-gradient approximations(GGAs),or even the newest meta-GGAs have asymptotic behaviors similar to the LDA.This problem gains particular relevance when calculating ionization yields(the ionization potential calculated with the ALDA is always too small),or in situations where the electrons are pushed to regions far away from the nuclei(e.g.,by a strong laser)and feel the incorrect tail of the potential.Despite this problem,the ALDA yields remarkably good excitation ener-gies(see sections4.2and4.3)and is probably the most used xc functional in TDDFT.Time-dependent optimized effective potential Unfortunately,when one is trying to write v xc as explicit functionals of the density,one encoun-ters some difficulties.As an alternative,the so-called orbital-dependent xc functionals were introduced several years ago.These functionals are written explicitly in terms of the Kohn-Sham orbitals,albeit remaining implicit den-sity functionals by virtue of the Runge-Gross theorem.A typical member of this family is the exact-exchange(EXX)functional.The EXX action is ob-tained by expanding A xc in powers of e2(where e is the electronic charge),Time-dependent Density Functional Theory11 and retaining the lowest order term,the exchange term.It is given by the Fock integralA EXX x=−1|r−r |.(36) From such an action functional,one seeks to determine the local Kohn-Sham potential through a series of chain rules for functional derivatives.The pro-cedure is called the optimized effective potential(OEP)or the optimized potential method(OPM)for historical reasons[15,16].The derivation of the time-dependent version of the OEP equations is very similar to the ground-state case.Due to space limitations we will not present the derivation in this article.The interested reader is advised to consult the original paper[13],one of the more recent publications[17,18],or the chapter by E.Engel contained in this volume.Thefinal form of the OEP equation that determines the EXX potential is0=occj t1−∞dt d3r [v x(r ,t )−u x j(r ,t )](37)×ϕj(r,t)ϕ∗j(r ,t )G R(r t,r t )+c.c.The kernel,G R,is defined byi G R(r t,r t )=∞k=1ϕ∗k(r,t)ϕk(r ,t )θ(t−t ),(38)and can be identified with the retarded Green’s function of the system.More-over,the expression for u x is essentially the functional derivative of the xc action in relation to the Kohn-Sham wave-functionsu x j(r,t)=1δϕj(r,t).(39)Note that the xc potential is still a local potential,albeit being obtained through the solution of an extremely non-local and non-linear integral equa-tion.In reality,the solution of Eq.(37)poses a very difficult numerical prob-lem.Fortunately,by performing an approximationfirst proposed by Krieger, Li,and Iafrate(KLI)it is possible to simplify the whole procedure,and ob-tain an semi-analytic solution of Eq.(37)[19].The KLI approximation turns out to be a very good approximation to the EXX potential.Note that both the EXX and the KLI potential have the correct−1/r asymptotic behavior for neutralfinite systems.A functional with memory There is a very common procedure for the construction of approximate xc functionals in ordinary DFT.It starts with12Miguel A.L.Marques and E.K.U.Grossthe derivation of exact properties of v xc,deemed important by physical ar-guments.Then an analytical expression for the functional is proposed,such that it satisfies those rigorous constraints.We will use this recipe to generate a time-dependent xc potential which is non-local in time,i.e.that includes the“memory”from previous times[14].A very important condition comes from Galilean invariance.Let us look at a system from the point of view of a moving reference frame whose origin is given by x(t).The density seen from this moving frame is simply the density of the reference frame,but shifted by x(t)n (r,t)=n(r−x(t),t).(40) Galilean invariance then implies[20]v xc[n ](r,t)=v xc[n](r−x(t),t).(41) It is obvious that potentials that are both local in space and in time,like the ALDA,trivially fulfill this requirement.However,when one tries to deduce an xc potential which is non-local in time,onefinds condition(41)quite difficult to satisfy.Another rigorous constraint follows from Ehrenfest’s theorem which re-lates the acceleration to the gradient of the external potentiald2dt2 d3r r n(r,t)=− d3r n(r,t)∇v ext(r).(43)In the same way we can write Ehrenfest’s theorem for the Kohn-Sham system d2Time-dependent Density Functional Theory13 i.e.the total xc force of the system is zero.This condition reflects Newton’s third law:The xc effects are only due to internal forces,the Coulomb inter-action among the electrons,and should not give rise to any net force on the system.A functional that takes into account these exact constraints can be con-structed[14].The condition(46)is simply ensured by the expression1F xc(r,t)=R(t |r,t)=j(R,t )∂tdt Πxc(n(R,t ),t−t ).(50)n(r,t)∇Finally,an expression for v xc can be obtained by direct integration of F xc (see[14]for details).2.5Numerical considerationsAs mentioned before,the solution of the time-dependent Kohn-Sham equa-tions is an initial value problem.At t=t0the system is in some initial state described by the Kohn-Sham orbitalsϕi(r,t0).In most cases the initial state will be the ground state of the system(i.e.,ϕi(r,t0)will be the solution of the ground-state Kohn-Sham equations).The main task of the computational physicist is then to propagate this initial state until somefinal time,t f.14Miguel A.L.Marques and E.K.U.GrossThe time-dependent Kohn-Sham equations can be rewritten in the inte-gral formϕi(r,t f)=ˆU(t f,t0)ϕi(r,t0),(51) where the time-evolution operator,ˆU,is defined byˆU(t ,t)=ˆT exp −i t t dτˆH KS(τ) .(52)Note thatˆH KS is explicitly time-dependent due to the Hartree and xc po-tentials.It is therefore important to retain the time-ordering propagator,ˆT, in the definition of the operatorˆU.The exponential in expression(52)is clearly too complex to be applied directly,and needs to be approximated in some suitable manner.To reduce the error in the propagation from t0 to t f,this large interval is usually split into smaller sub-intervals of length ∆t.The wave-functions are then propagated from t0→t0+∆t,then from t0+∆t→t0+2∆t and so on.The simplest approximation to(56)is a direct expansion of the exponen-tial in a power series of∆tˆU(t+∆t,t)≈kl=0 −iˆH(t+∆t/2)∆t lTime-dependent Density Functional Theory15 i)Obtain an estimate of the Kohn-Sham wave-functions at time t+∆t by propagating from time t using a“low quality”formula forˆU(t+∆t,t).The expression(53)expanded to third or forth order is well suited for this purpose. ii)With these wave-functions construct an approximation toˆH(t+∆t)and toˆU(t+∆t/2,t+∆t).iii)Apply Eq.(55).This procedure leads to a very stable propagation.The split-operator method In afirst step we neglect the time-ordering in Eq.(52),and approximate the integral in the exponent by a trapezoidal rule ˆU(t+∆t,t)≈exp −iˆH KS(t)∆t =exp −i(ˆT+ˆV KS)∆t .(56) We note that the operators exp −iˆV KS∆t and exp −iˆT∆t are diagonal respectively in real and Fourier spaces,and therefore trivial to apply in those spaces.It is possible to decompose the exponential(56)into a form involving only these two operators.The two lowest order decompositions are exp −i(ˆT+ˆV KS)∆t =exp −iˆT∆t exp −iˆV KS∆t +O(∆t2)(57) andexp −i(ˆT+ˆV KS)∆t =exp −iˆT∆t2+O(∆t3).(58) For example,to apply the splitting(58)toϕ(r,t)we start by Fourier trans-forming the wave-function to Fourier space.We then apply exp −iˆT∆t16Miguel A.L.Marques and E.K.U.GrossInstead perturbation theory may prove sufficient to determine the behavior of the system.We will focus on the linear change of the density,that allows us to calculate,e.g.,the optical absorption spectrum.Let us assume that for t<t0the time-dependent potential v TD is zero–i.e.the system is subject only to the nuclear potential,v(0)–and furthermore that the system is in its ground-state with ground-state density n(0).At t0 we turn on the perturbation,v(1),so that the total external potential now consists of v ext=v(0)+v(1).Clearly v(1)will induce a change in the density. If the perturbing potential is sufficiently well-behaved(like almost always in physics),we can expand the density in a perturbative seriesn(r,t)=n(0)(r)+n(1)(r,t)+n(2)(r,t)+ (60)where n(1)is the component of n(r,t)that depends linearly on v(1),n(2) depends quadratically,etc.As the perturbation is weak,we will only be con-cerned with the linear term,n(1).In frequency space it readsn(1)(r,ω)= d3r χ(r,r ,ω)v(1)(r ,ω).(61)The quantityχis the linear density-density response function of the sys-tem.In other branches of physics it has other names,e.g.,in the context of many-body perturbation theory it is called the reducible polarization func-tion.Unfortunately,the evaluation ofχthrough perturbation theory is a very demanding task.We can,however,make use of TDDFT to simplify this process.We recall that in the time-dependent Kohn-Sham framework,the density of the interacting system of electrons is obtained from afictitious system of non-interacting electrons.Clearly,we can also calculate the linear change of density using the Kohn-Sham systemn(1)(r,ω)= d3r χKS(r,r ,ω)v(1)KS(r ,ω).(62)Note that the response function that enters Eq.(62),χKS,is the density re-sponse function of a system of non-interacting electrons and is,consequently, much easier to calculate than the full interactingχ.In terms of the unper-turbed stationary Kohn-Sham orbitals it readsχKS(r,r ,ω)=limη→0+∞jk(f k−f j)ϕj(r)ϕ∗j(r )ϕk(r )ϕ∗k(r)Time-dependent Density Functional Theory17 v(1)KS.This latter quantity can be calculated explicitly from the definition of the Kohn-Sham potentialv(1)KS(r,t)=v(1)(r,t)+v(1)Hartree(r,t)+v(1)xc(r,t).(64) The variation of the external potential is simply v(1),while the change in the Hartree potential isv(1)(r,t)= d3r n(1)(r ,t)Hartreen(1)(r ,t ).(66)δn(r ,t )It is useful to introduce the exchange-correlation kernel,f xc,defined byδv xc(r,t)f xc(r t,r t )=n(1)(r ,ω).|x−r |+f xc(x,r ,ω)From Eq.(61)and Eq.(68)trivially follows the relationχ(r,r ,ω)=χKS(r,r ,ω)+(69) d3x d3x χ(r,x,ω) 118Miguel A.L.Marques and E.K.U.Gross3.2The xc kernelAs we have seen in the previous section,the main ingredient in linear response theory is the xc kernel.f xc,as expected,is a very complex quantity that includes–or,in other words,hides–all non-trivial many-body effects.Many approximate xc kernels have been proposed in the literature over the past years.The most ancient,and certainly the simplest is the ALDA kernelf ALDA xc (r t,r t )=δ(r−r )δ(t−t )f HEGxc(n) n=n(r,t),(70)wheref HEG xc (n)=dn(r,t)[u x k(r,t)+c.c].(72)Using the definition(67)and after some algebra we arrive at thefinal form of the PGG kernelf PGG x (r t,r t )=−δ(t−t )1|r−r || occ kϕk(r)ϕ∗k(r )|2dn2 n HEG xc(n) ≡f0(n),(74)Time-dependent Density Functional Theory19where HEGxc ,the xc energy per particle of the homogeneous electron gas,isknown exactly from Monte-Carlo calculations[23].Also the infinite frequency limit can be written as a simple expressionlim q→0f HEGxc(q,ω=∞)=−43dn2/3 +6n1dnHEG xc(n)πf HEGxc(q,ω)πf HEGxc(q,ω)−f HEGxc(q,∞)15ω3/2.(79)The real part can be obtained with the help of the Kramers-Kronig relationslim ω→∞ f HEGxc(q=0,ω)=f∞(n)+23π(1+β(n)ω2)520Miguel A.L.Marques and E.K.U.GrossFig.1.Real and imaginary part of the parametrization for f HEGxc.Figure reproduced from Ref.[25].The coefficientsαandβare functions of the density,and can be determined uniquely by the zero and high frequency limits.A simple calculation yieldsα(n)=−A[f∞(n)−f0(n)]53,(83) where A,B>0and independent of n.Once again,by applying the Kramers-Kronig relations we can obtain the corresponding real part of f HEGxcf HEGxc (q=0,ω)=f∞+2√π√√2Π 1−r√2Π 1+r√1+βω2and E andΠare the elliptic integrals of second andthird kind.In Fig.1we plot the real and imaginary part of f HEGxc for twodifferent densities(r s=2and r s=4,where r s is the Wigner-Seitz radius, 1/n=4πr3s/3).The ALDA corresponds to approximating these curves by their zero frequency value.For very low frequencies,the ALDA is naturally a good approximation,but at higher frequencies it completely fails to reproducethe behavior of f HEGxc .To understand how the ALDA can yield such good excitation energies, albeit exhibiting such a mediocre frequency dependence,we will look at a spe-cific example,the process of photo-absorption by an atom.At low excitation frequencies,we expect the ALDA to work.As we increase the laser frequency, we start exciting deeper levels,promoting electrons from the inner shells of the atom to unoccupied states.The atomic density increases monotonically as we approach the nucleus.f xc corresponding to that larger density(lower。
美国另类相对论-站得越高 老得越快
美国另类相对论:站得越高老得越快The higher up you are, the faster time passes - by bringing relativity back to Earth.如果把相对论应用到地球上来,你站的越高,时间流逝得越快。
Past experiments have confirmed Albert Einstein's theory of relativity by comparing atomic clocks on the Earth's surface with ones placed in high-altitude jets and rockets.以往的试验论证了艾尔波特·爱因斯坦的相对论,试验将地面上的原子钟和高空火箭和喷气式飞机上的原子钟进行比较。
资料图:美国另类相对论:站得越高老得越快But ABC Science reported on September 22 that Dr James Chin-Wen Chou and colleagues from the National Institute of Standards and Technology (NIST) in the US, have used the latest generation of atomic clocks to measure changes in time at a more down-to-Earth scale.美国国家标准与技术研究院物理实验室的詹姆斯·周钦文(音译)教授和同事一起,用最新一代的原子钟在较为接近地面的位置测量时间的流逝。
The researcher's first experiment involved lifting one clock above the other allowing them to measure the change in the Earth's gravitational pull over distances of less than a metre.在第一项试验中,研究人员将两个钟分别放在距离不到一米的地方,在地球引力之下测量时间的流逝。
SNOM(理论与应用)
1
第2章
动力学方程的类比——模型引入的可行性
在量子隧穿的模型中,非相对论形式的动力学方程是著名的 Schrö dinger 方程
(
可变形为
2
2m
2 V ) E
( 2-1 )
(2
2m( E U )
2
) 0
( 2-2 )
此即
(2 k 2 ) 0
( 2-3 )
而对于作为电磁场的光场,又有 Helmholtz 方程
(2 k 2 ) E 0
( 2-4 )
由此,借用 STM 中的 s-波针尖模型,我们可以做如下图的模型
样品表面波函数为周期性的平面场 , 针尖的波函数由于其复杂性 , 我们将其简化 为半径为 R 的球形模型,其允许进入的波的模式为球波.成像信号为这两种模式的 光场的耦合,可以认为是能量在这两种模式的波场中的传递.
( 3-5 )
G 2 ( f x , f y )
( 3-6 )
3
为波矢的水平空间分量. 考虑到光场能量远小于样品的表面激发能量的情形,我们取
k/ / 0
( 3-7 )
为第一 Brillouin 区的原点, 则由如上代换可以直接得到光场的周期平面场的衰 逝部分
E( x, y, z ) E( f x , f y ,0)e
3.2
1s 球波与球形光场的衰逝部分
从众所周知的对量子力学中的球方势阱问题束缚态的求解中,给出在
ra
时,势阱外存在解
R( r ) Bk ' l
( 3-19 )
2k ' r
K
l
1 2
(k ' r )
( 3-20 )
8个管理定律精解
8个管理定律精解以下是一些管理定律的精解:1. 帕累托法则(Pareto's Law):也被称为“80/20法则”,指出80%的问题往往源自于20%的原因。
这意味着在管理中,我们应该关注那些主要贡献问题的核心原因,而不是浪费时间和资源处理一些次要问题。
2. 彼得原理(Peter Principle):该原理认为,人们在工作中会不断晋升,直到达到他们无法胜任的职位为止。
这意味着在管理中,我们应该注意员工的能力和适应能力,以确保他们能够在适当的职位上发展和实现。
3. 增量主义(Incrementalism):这个原则认为,管理者应该通过一些小的、逐步的改进来实现目标,而不是试图一次性地实现所有目标。
这种渐进的方法可以更容易地适应变化,并减少风险和不确定性。
4. 赫茨伯格-穆斯洛需求层次理论(Maslow's Hierarchy of Needs):该理论认为人们有五种基本的需求,分别是生理需求、安全需求、社交需求、尊重需求和自我实现需求。
在管理中,我们可以根据员工的需求层次来帮助他们实现个人和组织目标。
5. 公平原则(Equity Theory):该原理认为人们在工作中的满意度与其对待公平的感知程度有关。
在管理中,我们应该确保员工之间的工作分配、奖励和机会是公平的,以提高员工的满意度和绩效。
6. 麦格雷戈尔理论(McGregor's Theory X and Theory Y):该理论认为管理者对员工的态度会影响其工作表现。
理论X认为员工懒惰且需要严格控制,而理论Y则认为员工有责任感和自我激励。
在管理中,我们应该采用理论Y的态度来激励和发展员工。
7. 决策树(Decision Tree):决策树是一种管理工具,用于帮助管理者做出复杂的决策。
它通过将决策分解为一系列的选择和结果,在不同的路径上评估各种影响因素,以找到最佳的决策方案。
8. 变革管理(Change Management):变革管理是管理中的一个重要概念,涉及到组织内部的变化,例如战略转变、结构改革等。
量子力学英文课件格里菲斯Charter9
If, for example, the particle started out in the state a, so that ca(0)=1 and cb(0)=0. At some later time t1 we find that ca(t1)=0, cb(t1)=1, we shall report that the system underwent a transition from a to b. We solve for ca(t) and cb(t) by demanding that (t) satisfy the time-dependent Schrö dinger equation,
and hence
Eqs.[9.10] and [9.11] determine ca(t) and cb(t); taken together, they are completely equivalent to the (time-dependent) Schrodinger equation, for a twolevel system.
From Eqs.[9.6] and [9.7], we find
Inview of Eq.[9.1], the first two terms on the left cancel the last two terms on the right and hence
(1) To isolate dca /dt, we use the standard trick: Take the inner product with a, and exploit the orthogonality of a and b (Eq.[9.2]), from Eq.[9.8] we have :
量子力学英语词汇
.量子力学专业英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能.42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢.86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性.。
绪论讲稿
Chapter 0 Introduction (绪论)120世纪物理学取得的两个划时代的进展是相对论和量子力学。
相对论的建立,从根本上改变了人们原有的时空观,并指明了牛顿力学的适用范围。
量子力学的建立,开辟了人们认识微观世界的道路。
原子和分子之谜被揭开了。
物质的属性以及在原子水平上的物质结构这个古老而又基本的问题才原则上得以解决(例如,物体为何有导体、半导体和绝缘体之分?为何有顺磁体、反磁体和铁磁体之分?等)。
在量子力学中人们找到了化学和物理学的紧密联系(搞清楚了原子周期律和分子键的本质)。
大量事实证明,离开了量子力学,任何一门近代物理学科及相关的边缘学科的发展都是不可思议的。
可以毫不夸张地说,没有量子力学的建立,就没有人类的现代物质文明。
2·Unlike Newton's mechanics, or Maxwell's electrodynamics, or Einstein's relativity, quantum theory was not created—or even definitively packaged—by one individual. (Preface, ix)(与牛顿力学、麦克斯韦电动力学、爱因斯坦广义相对论不同。
量子理论不是由单个人创立,或集大成。
)Planck (1900), Einstein (1905), Bohr (1912)de Broglie (1923), Heisenberg (1925), Schrodinger (1926), Born (1926), Dirac (1927)“量子英雄”3·If you are not confused by quantum mechanics then you haven’t really understood quantum mechanics. —N. Bohr(如果你没有被量子力学搞糊涂的话,那么你还没有真正理解量子力学。
(完整版)量子力学英语词汇
1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
二能级系统中的布居数反转
DOI: 10.1103/PhysRevA.88.033406
PACS number(s): 32.80.Qk, 32.80.Xx, 33.80.Be, 03.65.Yz
I. INTRODUCTION
The coherent manipulation of quantum systems with time-dependent interacting fields is a major goal in atomic, molecular, and optical physics, as well as in solid-state devices, for fundamental studies, nuclear magnetic resonance and other spectroscopic techniques, metrology, interferometry, or quantum-information applications [1–6]. Two-level systems are ubiquitous in these areas, and the driving of a population inversion is an important operation that should be typically fast, faithful, stable with respect to different types of noise and perturbations, and of course “feasible in practice.” The later requirement depends on the specific system but may be sensibly quantified by setting constraints on the possible values of the control parameters. These constraints imply quantum speed limits that could be satisfied by optimized protocols.
(完整版)量子力学英语词汇
(完整版)量子力学英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation 角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
物理化学中的电子结构计算方法
物理化学中的电子结构计算方法物理化学作为化学学科的一个重要分支,负责研究物质的物理性质与化学性质,其中电子结构计算是物理化学研究的重要内容,其主要针对的是物质中的电子结构及其性质的计算和预测。
本文旨在介绍物理化学中常用的电子结构计算方法,以及它们的优缺点和应用范围。
一、电子结构计算方法简介电子结构计算方法指的是通过计算来确定分子或物质中电子的位置、能量、密度和波函数等信息,并推导出化学反应、光谱和热力学等化学性质。
电子结构计算方法一般可分为两类:基于量子化学理论的方法和基于密度泛函理论的方法。
其中基于量子化学理论的方法主要包括Hatree-Fock (HF)方法、Configuration Interaction (CI) 和 Møller-Plesset Perturbation Theory (MPPT) 方法,而基于密度泛函理论的方法则主要分为Kohn-Sham Density Functional Theory (DFT) 和 Time-Dependent Density Functional Theory (TDDFT) 两种方法。
二、基于量子化学理论的方法1.HF方法HF(Hatree-Fock)方法是传统的计算分子电子结构的方法之一,该方法基于Hartree-Fock近似,将多体问题转化为单体问题,并假设电子的运动都是单独的,非常适合在小分子中使用。
方法的优势在于精度高、准确度较高,能够用来计算小分子的能量以及各种物理化学性质,但是该方法计算的量非常大,需要消耗大量计算时间和计算资源,因此对于大分子结构计算非常不适用。
2.CI方法CI(Configuration Interaction)方法是在HF方法的基础上开发的一种方法,该方法在基态能量的算法基础上允许电子直接相互作用,以求得更精确的结果。
该方法很好地解决了分子中电子相互作用的问题,准确度更高,并且可以计算多重态问题,但是计算难度较大,计算时间较长,限制了其应用范围。
griffiths d.j.introduction to quantum mechanics..s
25 25 − 21 = 4
σ2 = 1 N
(∆j)2N (j) = 1 (−7)2 + (−6)2 + (−5)2 · 3 + (1)2 · 2 + (3)2 · 2 + (4)2 · 5 14
= 1 (49 + 36 + 75 + 2 + 18 + 80) = 260 = 18.571.
14
14
CHAPTER 1. THE WAVE FUNCTION
3
Chapter 1
The Wave Function
Problem 1.1
(a) j 2 = 212 = 441.
j2 = 1 N
j2N (j) = 1 (142) + (152) + 3(162) + 2(222) + 2(242) + 5(252) 14
4
CHAPTER 1. THE WAVE FUNCTION
Problem 1.2
(a)
x2 =
h
x2
√1
dx =
√1
2 x5/2
h h2 =.
0 2 hx
2h 5
05
σ2 = x2 − x 2 = h2 −
Contents
Preface
2
1 The Wave Function
3
2 Time-Independent Schrödinger Equation
14
3 Formalism
62
4 Quantum Mechanics in Three Dimensions
87
5 Identical Particles
数学英文论文
070451 Controlling chaos based on an adaptive nonlinear compensatingmechanism*Corresponding author,Xu Shu ,email:123456789@Abstract The control problems of chaotic systems are investigated in the presence of parametric u ncertainty and persistent external distu rbances based on nonlinear control theory. B y designing a nonlinear compensating mechanism, the system deterministic nonlinearity, parametric uncertainty and disturbance effect can be compensated effectively. The renowned chaotic Lorenz system subject to parametric variations and external disturbances is studied as an illustrative example. From Lyapu nov stability theory, sufficient conditions for the choice of control parameters are derived to guarantee chaos control. Several groups of experiments are carried out, including parameter change experiments, set-point change experiments and disturbance experiments. Simulation results indicate that the chaotic motion can be regulated not only to stead y states but also to any desired periodic orbits with great immunity to parametric variations and external distu rbances.Keywords: chaotic system, nonlinear compensating mechanism, Lorenz chaotic systemPACC: 05451. IntroductionChaotic motion, as the peculiar behavior in deterministic systems, may be undesirable in many cases, so suppressing such a phenomenon has been intensively studied in recent years. Generally speaking chaos suppression and chaos synchronization[1-4 ]are two active research fields in chaos control and are both crucial in application of chaos. In the following letters we only deal with the problem of chaos suppression and will not discuss the chaos synchronization problem.Since the early 1990s, the small time-dependent parameter perturbation was introduced by Ott,Grebogi, and Y orke to eliminate chaos,[5]many effective control methods have been reported in various scientific literatures.[1-4,6-36,38-44,46] There are two lines in these methods. One is to introduce parameter perturbations to an accessible system parameter, [5-6,8-13] the other is to introduce an additive external force to the original uncontrolled chaotic system. [14-37,39-43,47] Along the first line, when system parameters are not accessible or can not be changed easily, or the environment perturbations are not avoided, these methods fail. Recently, using additive external force to achieve chaos suppression purpose is in the ascendant. Referring to the second line of the approaches, various techniques and methods have been proposed to achieve chaos elimination, to mention only a few:(ⅰ) linear state feedback controlIn Ref.[14] a conventional feedback controller was designed to drive the chaotic Duffing equation to one of its inherent multiperiodic orbits.Recently a linear feedback control law based upon the Lyapunov–Krasovskii (LK) method was developed for the suppression of chaotic oscillations.[15]A linear state feedback controller was designed to solve the chaos control problem of a class of new chaotic system in Ref.[16].(ⅱ) structure variation control [12-16]Since Y u X proposed structure variation method for controlling chaos of Lorenz system,[17]some improved sliding-mode control strategies were*Project supported by the National Natural Science Foundation of C hina (Grant No 50376029). †Corresponding au thor. E-mail:zibotll@introduced in chaos control. In Ref.[18] the author used a newly developed sliding mode controller with a time-varying manifold dynamic to compensate the external excitation in chaotic systems. In Ref.[19] the design schemes of integration fuzzy sliding-mode control were addressed, in which the reaching law was proposed by a set of linguistic rules. A radial basis function sliding mode controller was introduced in Ref.[20] for chaos control.(ⅲ) nonlinear geometric controlNonlinear geometric control theory was introduced for chaos control in Ref.[22], in which a Lorenz system model slightly different from the original Lorenz system was studied considering only the Prandtl number variation and process noise. In Ref.[23] the state space exact linearization method was also used to stabilize the equilibrium of the Lorenz system with a controllable Rayleigh number. (ⅳ)intelligence control[24-27 ]An intelligent control method based on RBF neural network was proposed for chaos control in Ref.[24]. Liu H, Liu D and Ren H P suggested in Ref.[25] to use Least-Square Support V ector Machines to drive the chaotic system to desirable points. A switching static output-feedback fuzzy-model-based controller was studied in Ref.[27], which was capable of handling chaos.Other methods are also attentively studied such as entrainment and migration control, impulsive control method, optimal control method, stochastic control method, robust control method, adaptive control method, backstepping design method and so on. A detailed survey of recent publications on control of chaos can be referenced in Refs.[28-34] and the references therein.Among most of the existing control strategies, it is considered essentially to know the model parameters for the derivation of a controller and the control goal is often to stabilize the embedded unstable period orbits of chaotic systems or to control the system to its equilibrium points. In case of controlling the system to its equilibrium point, one general approach is to linearize the system in the given equilibrium point, then design a controller with local stability, which limits the use of the control scheme. Based on Machine Learning methods, such as neural network method[24]or support vector machine method,[25]the control performance often depends largely on the training samples, and sometimes better generalization capability can not be guaranteed.Chaos, as the special phenomenon of deterministic nonlinear system, nonlinearity is the essence. So if a nonlinear real-time compensator can eliminate the effect of the system nonlinearities, chaotic motion is expected to be suppressed. Consequently the chaotic system can be controlled to a desired state. Under the guidance of nonlinear control theory, the objective of this paper is to design a control system to drive the chaotic systems not only to steady states but also to periodic trajectories. In the next section the controller architecture is introduced. In section 3, a Lorenz system considering parametric uncertainties and external disturbances is studied as an illustrative example. Two control schemes are designed for the studied chaotic system. By constructing appropriate L yapunov functions, after rigorous analysis from L yapunov stability theory sufficient conditions for the choice of control parameters are deduced for each scheme. Then in section 4 we present the numerical simulation results to illustrate the effectiveness of the design techniques. Finally some conclusions are provided to close the text.2. Controller architectureSystem differential equation is only an approximate description of the actual plant due to various uncertainties and disturbances. Without loss of generality let us consider a nonlinear continuous dynamic system, which appears strange attractors under certain parameter conditions. With the relative degree r n(n is the dimension of the system), it can be directly described or transformed to the following normal form:121(,,)((,,)1)(,,,)(,,)r r r z z z z za z v wb z v u u d z v u u vc z v θθθθθθθθ-=⎧⎪⎪⎪=⎪=+∆+⎨⎪ ++∆-+⎪⎪ =+∆+⎪=+∆⎩ (1) 1y z =where θ is the parameter vector, θ∆ denotes parameter uncertainty, and w stands for the external disturbance, such that w M ≤with Mbeingpositive.In Eq.(1)1(,,)T r z z z = can be called external state variable vector,1(,,)T r n v v v += called internal state variable vector. As we can see from Eq.(1)(,,,,)(,,)((,,)1)d z v w u a z v w b z v uθθθθθθ+∆=+∆+ ++∆- (2)includes system nonlinearities, uncertainties, external disturbances and so on.According to the chaotic system (1), the following assumptions are introduced in order to establish the results concerned to the controller design (see more details in Ref.[38]).Assumption 1 The relative degree r of the chaotic system is finite and known.Assumption 2 The output variable y and its time derivatives i y up to order 1r -are measurable. Assumption 3 The zero dynamics of the systemis asymptotically stable, i.e.,(0,,)v c v θθ=+∆ is asymptotically stable.Assumption 4 The sign of function(,,)b z v θθ+∆is known such that it is always positive or negative.Since maybe not all the state vector is measurable, also (,,)a z v θθ+∆and (,,)b z v θθ+∆are not known, a controller with integral action is introduced to compensate theinfluenceof (,,,,)d z v w u θθ+∆. Namely,01121ˆr r u h z h z h z d------ (3) where110121112100ˆr i i i r r r r i i ii r i i d k z k k k z kz k uξξξ-+=----++-==⎧=+⎪⎪⎨⎪=----⎪⎩∑∑∑ (4)ˆdis the estimation to (,,,,)d z v w u θθ+∆. The controller parameters include ,0,,1i h i r =- and ,0,,1i k i r =- . Here011[,,,]Tr H h h h -= is Hurwitz vector, such that alleigenvalues of the polynomial121210()rr r P s s h sh s h s h --=+++++ (5)have negative real parts. The suitable positive constants ,0,,1i h i r =- can be chosen according to the expected dynamic characteristic. In most cases they are determined according to different designed requirements.Define 1((,,))r k sign b z v θμ-=, here μstands for a suitable positive constant, and the other parameters ,0,,2i k i r =- can be selected arbitrarily. After011[,,,]Tr H h h h -= is decided, we can tune ,0,,1i k i r =- toachievesatisfyingstaticperformances.Remark 1 In this section, we consider a n-dimensional nonlinear continuous dynamic system with strange attractors. By proper coordinate transformation, it can be represented to a normal form. Then a control system with a nonlinear compensator can be designed easily. In particular, the control parameters can be divided into two parts, which correspond to the dynamic characteristic and the static performance respectively (The theoretic analysis and more details about the controller can be referenced to Ref.[38]).3. Illustrative example-the Lorenz systemThe Lorenz system captures many of the features of chaotic dynamics, and many control methods have been tested on it.[17,20,22-23,27,30,32-35,42] However most of the existing methods is model-based and has not considered the influence ofpersistent external disturbances.The uncontrolled original Lorenz system can be described by112121132231233()()()()x P P x P P x w x R R x x x x w xx x b b x w =-+∆++∆+⎧⎪=+∆--+⎨⎪=-+∆+⎩ (6) where P and R are related to the Prendtl number and Rayleigh number respectively, and b is a geometric factor. P ∆, R ∆and b ∆denote the parametric variations respectively. The state variables, 1x ,2x and 3x represent measures of fluid velocity and the spatial temperature distribution in the fluid layer under gravity , and ,1,2,3i w i =represent external disturbance. In Lorenz system the desired response state variable is 1x . It is desired that 1x is regulated to 1r x , where 1r x is a given constant. In this section we consider two control schemes for system (6).3.1 Control schemes for Lorenz chaotic system3.1.1 Control scheme 1The control is acting at the right-side of the firstequation (1x), thus the controlled Lorenz system without disturbance can be depicted as1122113231231x Px Px u xRx x x x x x x bx y x =-++⎧⎪=--⎨⎪=-⎩= (7) By simple computation we know system (7) has relative degree 1 (i.e., the lowest ordertime-derivative of the output y which is directly related to the control u is 1), and can be rewritten as1122113231231z Pz Pv u vRz z v v v z v bv y z =-++⎧⎪=--⎨⎪=-⎩= (8) According to section 2, the following control strategy is introduced:01ˆu h z d=-- (9) 0120010ˆ-d k z k k z k uξξξ⎧=+⎪⎨=--⎪⎩ (10) Theorem 1 Under Assumptions 1 toAssumptions 4 there exists a constant value *0μ>, such that if *μμ>, then the closed-loop system (8), (9) and (10) is asymptotically stable.Proof Define 12d Pz Pv =-+, Eq.(8) can be easily rewritten as1211323123z d u v Rz z v v vz v bv =+⎧⎪=--⎨⎪=-⎩ (11) Substituting Eq.(9) into Eq.(11) yields101211323123ˆz h z d dv R z z v v v z v bv ⎧=-+-⎪=--⎨⎪=-⎩ (12) Computing the time derivative of d and ˆdand considering Eq.(12) yields12011132ˆ()()dPz Pv P h z d d P Rz z v v =-+ =--+- +-- (13) 0120010000100ˆ-()()ˆ=()d k z k k z k u k d u k d k z k d d k dξξξ=+ =--++ =-- - = (14)Defining ˆdd d =- , we have 011320ˆ()()dd d P h P R z P z v P v P k d=- =+- --+ (15) Then, we can obtain the following closed-loop system101211323123011320()()z h z dvRz z v v v z v bv d Ph PR z Pz v Pv P k d⎧=-+⎪=--⎪⎨=-⎪⎪=+---+⎩ (16) To stabilize the closed-loop system (16), a L yapunovfunction is defined by21()2V ςς=(17)where, ςdenotes state vector ()123,,,Tz v v d, isthe Euclidean norm. i.e.,22221231()()2V z v v dς=+++ (18) We define the following compact domain, which is constituted by all the points internal to the superball with radius .(){}2222123123,,,2U z v v d zv v dM +++≤(19)By taking the time derivative of ()V ςand replacing the system expressions, we have11223322*********01213()()(1)V z z v v v v dd h z v bv k P d R z v P R P h z d P v d P z v d ς=+++ =----++ +++-- (20) For any ()123,,,z v v d U ∈, we have: 222201230120123()()(1)V h z v b v k P dR z v PR Ph z d P v d d ς≤----+ ++++ ++ (21)Namely,12300()(1)22020V z v v dPR Ph R h R P ς⎡⎤≤- ⎣⎦++ - 0 - - 1 - 2⨯00123(1)()2Tb PR Ph P k P z v v d ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥0 ⎢⎥2⎢⎥++⎢⎥- - - +⎢⎥⎣22⎦⎡⎤⨯ ⎣⎦(22) So if the above symmetrical parameter matrix in Eq.(22) is positive definite, then V is negative and definite, which implies that system (16) is asymptotically stable based on L yapunov stability theory.By defining the principal minor determinants of symmetrical matrix in Eq.(22) as ,1,2,3,4i D i =, from the well-known Sylvester theorem it is straightforward to get the following inequations:100D h => (23)22004RD h =-> (24)23004R b D bh =-> (25)240302001()(1)(2)821[2(1)]08P M D k P D b PR Ph PR D Pb Ph R PR Ph =+-+++--+++>(26)After 0h is determined by solving Inequalities (23) to (25), undoubtedly, the Inequalities (26) can serve effectively as the constraints for the choice of 0k , i.e.20200031(1)(2)821[2(1)]8P M b PR Ph PR D Pb Ph R PR Ph k P D ++++ ++++>- (27)Here,20200*31(1)(2)821[2(1)]8P M b PR Ph PR D Pb Ph R PR Ph P D μ++++ ++++=-.Then the proof of the theorem 1 is completed. 3.1.2 Control scheme 2Adding the control signal on the secondequation (2x ), the system under control can be derived as112211323123x P x P x x R x x x x u xx x bx =-+⎧⎪=--+⎨⎪=-⎩ (28) From Eq.(28), for a target constant 11()r x t x =,then 1()0xt = , by solving the above differential equation, we get 21r r x x =. Moreover whent →∞,3r x converges to 12r x b . Since 1x and 2x havethe same equilibrium, then the measured state can also be chosen as 2x .To determine u , consider the coordinate transform:122133z x v x v x=⎧⎪=⎨⎪=⎩ and reformulate Eq.(28) into the following normal form:1223121231231zRv v v z u vPz Pv v z v bv y z =--+⎧⎪=-⎨⎪=-⎩= (29) thus the controller can be derived, which has the same expression as scheme 1.Theorem 2 Under Assumptions 1, 2, 3 and 4, there exists a constant value *0μ>, such that if *μμ>, then the closed-loop system (9), (10) and (29) is asymptotically stable.Proof In order to get compact analysis, Eq.(29) can be rewritten as12123123z d u v P z P v vz v bv =+⎧⎪=-⎨⎪=-⎩ (30) where 2231d Rv v v z =--Substituting Eq.(9) into Eq.(30),we obtain:1012123123ˆz h z d dv P z P v v z v bv ⎧=-+-⎪=-⎨⎪=-⎩ (31) Giving the following definition:ˆdd d =- (32) then we can get22323112123212301()()()()dRv v v v v z R Pz Pv Pz Pv v v z v bv h z d =--- =--- ----+ (33) 012001000ˆ-()d k z k k z k u k d u k dξξ=+ =--++ = (34) 121232123010ˆ()()()(1)dd d R Pz Pv Pz Pv v v z v bv h z k d=- =--- --+-+ (35)Thus the closed-loop system can be represented as the following compact form:1012123123121232123010()()()(1)zh z d v Pz Pv v z v bv d R Pz Pv Pz Pv v v z v bv h z k d⎧=-+⎪⎪=-⎪=-⎨⎪=---⎪⎪ --+-+⎩(36) The following quadratic L yapunov function is chosen:21()2V ςς=(37)where, ςdenotes state vector ()123,,,Tz v v d , is the Euclidean norm. i.e.,22221231()()2V z v v dς=+++ (38) We can also define the following compact domain, which is constituted by all the points internalto the super ball with radius .(){}2222123123,,,2U z v v d zv v dM =+++≤ (39)Differentiating V with respect to t and using Eq.(36) yields112233222201230011212322321312()(1)(1)()V z z v v v v dd h z P v bv k dP R h z d P z v z v v P b v v d P v d P z v d z v d ς=+++ =----+ +++++ ++--- (40)Similarly, for any ()123,,,z v v d U ∈, we have: 2222012300112133231()(1)(1)(2V h z P v b v k dPR h z d P z v v P b d P v d d M z dς≤----+ +++++ ++++ + (41)i.e.,12300()(12)22V z v v dPR M h P h P Pς⎡⎤≤- ⎣⎦+++ - -2 - 0 ⨯ 001230(12)(1)2TP b PR M h P k z v v d ⎡⎤⎢⎥⎢⎥⎢⎥ - ⎢⎥⎢⎥⎢⎥ ⎢⎥22⎢⎥⎢⎥ +++ - - -+⎢⎥⎣22⎦⎡⎤⨯ ⎣⎦(42) For brevity, Let1001(12)[(222)82(23)]P PR M h b PR P h M P b α=++++++ ++(43) 2201[(231)(13)]8P M P b b PR h α=+-+++ (44)230201(2)[2(12)8(2)(4)]PM P b P P PR M h P b Ph P α=++ +++ ++- (45)Based on Sylvester theorem the following inequations are obtained:100D h => (46)22004PD h P =-> (47)3202PMD bD =-> (48)403123(1)0D k D ααα=+---> (49)where,1,2,3,4i D i =are the principal minordeterminants of the symmetrical matrix in Eq.(42).*0k μ>*12331D αααμ++=- (50)The theorem 2 is then proved.Remark 2 In this section we give two control schemes for controlling chaos in Lorenz system. For each scheme the control depends on the observed variable only, and two control parameters are neededto be tuned, viz. 0h and 0k . According to L yapunov stability theory, after 0h is fixed, the sufficient condition for the choice of parameter 0k is also obtained.4. Simulation resultsChoosing 10P =,28R =, and 8/3b =, the uncontrolled Lorenz system exhibits chaotic behavior, as plotted in Fig.1. In simulation let the initial values of the state of thesystembe 123(0)10,(0)10,(0)10x x x ===.x1x 2x1x 3Fig.1. C haotic trajectories of Lorenz system (a) projected on12x x -plane, (b) projected on 13x x -plane4.1 Simulation results of control the trajectory to steady stateIn this section only the simulation results of control scheme 2 are depicted. The simulation results of control scheme 1 will be given in Appendix. For the first five seconds the control input is not active, at5t s =, control signal is input and the systemtrajectory is steered to set point2121(,,)(8.5,8.5,27.1)T Tr r r x x x b =, as can be seen inFig.2(a). The time history of the L yapunov function is illustrated in Fig.2(b).t/sx 1,x 2,x 3t/sL y a p u n o v f u n c t i o n VFig.2. (a) State responses under control, (b) Time history of the Lyapunov functionA. Simulation results in the presence ofparameters ’ changeAt 9t s =, system parameters are abruptly changed to 15P =,35R =, and 12/3b =. Accordingly the new equilibrium is changedto 2121(,,)(8.5,8.5,18.1)T Tr r r x x x b =. Obviously, aftervery short transient duration, system state converges to the new point, as shown in Fig.3(a). Fig.4(a) represents the evolution in time of the L yapunov function.B. Simulation results in the presence of set pointchangeAt 9t s =, the target is abruptly changedto 2121(,,)(12,12,54)T Tr r r x x x b =, then the responsesof the system state are shown in Fig.3(b). In Fig.4(b) the time history of the L yapunov function is expressed.t/sx 1,x 2,x 3t/sx 1,x 2,x 3Fig.3. State responses (a) in the presence of parameter variations, (b) in the presence of set point changet/sL y a p u n o v f u n c t i o n Vt/sL y a p u n o v f u n c t i o n VFig.4. Time history of the Lyapunov fu nction (a) in the presence of parameter variations, (b) in the presence of set point changeC. Simulation results in the presence ofdisturbanceIn Eq.(5)external periodic disturbance3cos(5),1,2,3i w t i π==is considered. The time responses of the system states are given in Fig.5. After control the steady-state phase plane trajectory describes a limit cycle, as shown in Fig.6.t/sx 1,x 2,x 3Fig.5. State responses in the presence of periodic disturbancex1x 3Fig.6. The state space trajectory at [10,12]t ∈in the presence ofperiodic disturbanceD. Simulation results in the presence of randomnoiseUnder the influence of random noise,112121132231233xPx Px x Rx x x x u xx x bx εδεδεδ=-++⎧⎪=--++⎨⎪=-+⎩ (51) where ,1,2,3i i δ= are normally distributed withmean value 0 and variance 0.5, and 5ε=. The results of the numerical simulation are depicted in Fig.7,which show that the steady responses are hardly affected by the perturbations.t/sx 1,x 2,x 3t/se 1,e 2,e 3Fig.7. Time responses in the presence of random noise (a) state responses, (b) state tracking error responses4.2 Simulation results of control the trajectory to periodic orbitIf the reference signal is periodic, then the system output will also track this signal. Figs.8(a) to (d) show time responses of 1()x t and the tracking trajectories for 3-Period and 4-period respectively.t/sx 1x1x 2t/sx 1x1x 2Fig.8. State responses and the tracking periodic orbits (a)&( b)3-period, (c)&(d) 4-periodRemark 3 The two controllers designed above solved the chaos control problems of Lorenz chaoticsystem, and the controller design method can also beextended to solve the chaos suppression problems of the whole Lorenz system family, namely the unified chaotic system.[44-46] The detail design process and close-loop system analysis can reference to the author ’s another paper.[47] In Ref.[47] according to different positions the scalar control input added,three controllers are designed to reject the chaotic behaviors of the unified chaotic system. Taking the first state 1x as the system output, by transforming system equation into the normal form firstly, the relative degree r (3r ≤) of the controlled systems i s known. Then we can design the controller with the expression as Eq.(3) and Eq.(4). Three effective adaptive nonlinear compensating mechanisms are derived to compensate the chaotic system nonlinearities and external disturbances. According toL yapunov stability theory sufficient conditions for the choice of control parameters are deduced so that designers can tune the design parameters in an explicit way to obtain the required closed loop behavior. By numeric simulation, it has been shown that the designed three controllers can successfully regulate the chaotic motion of the whole family of the system to a given point or make the output state to track a given bounded signal with great robustness.5. ConclusionsIn this letter we introduce a promising tool to design control system for chaotic system subject to persistent disturbances, whose entire dynamics is assumed unknown and the state variables are not completely measurable. By integral action the nonlinearities, including system structure nonlinearity, various disturbances, are compensated successfully. It can handle, therefore, a large class of chaotic systems, which satisfy four assumptions. Taking chaotic Lorenz system as an example, it has been shown that the designed control scheme is robust in the sense that the unmeasured states, parameter uncertainties and external disturbance effects are all compensated and chaos suppression is achieved. Some advantages of this control strategy can be summarized as follows: (1) It is not limited to stabilizing the embeddedperiodic orbits and can be any desired set points and multiperiodic orbits even when the desired trajectories are not located on the embedded orbits of the chaotic system.(2) The existence of parameter uncertainty andexternal disturbance are allowed. The controller can be designed according to the nominal system.(3) The dynamic characteristics of the controlledsystems are approximately linear and the transient responses can be regulated by the designer through controllerparameters ,0,,1i h i r =- .(4) From L yapunov stability theory sufficientconditions for the choice of control parameters can be derived easily.(5) The error converging speed is very fast evenwhen the initial state is far from the target one without waiting for the actual state to reach the neighborhood of the target state.AppendixSimulation results of control scheme 1.t/sx 1,x 2,x 3t/sL y a p u n o v f u n c t i o n VFig.A1. (a) State responses u nder control, (b) Time history of the Lyapunov functiont/sx 1,x 2,x 3t/sx 1,x 2,x 3Fig.A2. State responses (a) in the presence of parameter variations, (b) in the presence of set point changet/sL y a p u n o v f u n c t i o n Vt/sL y a p u n o v f u n c t i o n VFig.A3. Time history of the L yapu nov fu nction (a) in the presence of parameter variations, (b) in the presence of set point changet/sx 1,x 2,x 3Fig.A4. State responses in the presence of periodic disturbanceresponsest/sx 1,x 2,x 3Fig.A5. State responses in the presence of rand om noiset/sx 1x1x 2Fig.A6. State response and the tracking periodic orbits (4-period)References[1] Lü J H, Zhou T S, Zhang S C 2002 C haos Solitons Fractals 14 529[2] Yoshihiko Nagai, Hua X D, Lai Y C 2002 C haos Solitons Fractals 14 643[3] Li R H, Xu W , Li S 2007 C hin.phys.16 1591 [4]Xiao Y Z, Xu W 2007 C hin.phys.16 1597[5] Ott E ,Greb ogi C and Yorke J A 1990 Phys.Rev .Lett. 64 1196 [6]Yoshihiko Nagai, Hua X D, Lai Y C 1996 Phys.Rev.E 54 1190 [7] K.Pyragas, 1992 Phys. Lett. A 170 421 [8] Lima,R and Pettini,M 1990 Phys.Rev.A 41 726[9] Zhou Y F, Tse C K, Qiu S S and Chen J N 2005 C hin.phys. 14 0061[10] G .Cicog na, L.Fronzoni 1993 Phys.Rew .E 30 709 [11] Rakasekar,S. 1993 Pramana-J.Phys.41 295 [12] Gong L H 2005 Acta Phys.Sin.54 3502 (in C hinese) [13] Chen L,Wang D S 2007 Acta Phys.Sin.56 0091 (in C hinese) [14] C hen G R and Dong X N 1993 IEEE Trans.on Circuits andSystem-Ⅰ:Fundamental Theory and Applications 40 9 [15] J.L. Kuang, P.A. Meehan, A.Y.T. Leung 2006 C haos SolitonsFractals 27 1408[16] Li R H, Xu W, Li S 2006 Acta Phys.Sin.55 0598 (in C hinese) [17] Yu X 1996 Int.J.of Systems Science 27 355[18] Hsun-Heng Tsai, C hyu n-C hau Fuh and Chiang-Nan Chang2002 C haos,Solitons Fractals 14 627[19] Her-Terng Yau and C hieh-Li C hen 2006 C hao ,SolitonsFractal 30 709[20] Guo H J, Liu J H, 2004 Acta Phys.Sin.53 4080 (in C hinese) [21] Yu D C, Wu A G , Yang C P 2005 Chin.phys.14 0914 [22] C hyu n-C hau Fuh and Pi-Cheng Tu ng 1995 Phys.Rev .Lett.752952[23] Chen L Q, Liu Y Z 1998 Applied Math.Mech. 19 63[24] Liu D, R en H P, Kong Z Q 2003 Acta Phys.Sin.52 0531 (inChinese)[25] Liu H, Liu D and Ren H P 2005 Acta Phys.Sin.54 4019 (inChinese)[26] C hang W , Park JB, Joo YH, C hen GR 2002 Inform Sci 151227[27] Gao X, Liu X W 2007 Acta Phys.Sin. 56 0084 (in C hinese) [28] Chen S H, Liu J, Lu J 2002 C hin.phys.10 233 [29] Lu J H, Zhang S. 2001 Phys. Lett. A 286 145[30] Liu J, Chen S H, Xie J. 2003 C haos Solitons Fractals 15 643 [31] Wang J, Wang J, Li H Y 2005 C haos Solitons Fractals 251057[32] Wu X Q, Lu JA, C hi K. Tse, Wang J J, Liu J 2007 ChaoSolitons Fractals 31 631[33] A.L.Fradkov , R .J.Evans, 2002 Preprints of 15th IF AC W orldCongress on Automatic Control 143[34] Zhang H G 2003 C ontrol theory of chaotic systems (Shenyang:Northeastern University) P38 (in C hinese)[35] Yu-Chu Tian, Moses O.Tadé, David Levy 2002Phys.Lett.A.296 87[36] Jose A R , Gilberto E P, Hector P, 2003 Phys. Lett. A 316 196 [37] Liao X X, Yu P 2006 Chaos Solitons Fractals 29 91[38] Tornambe A, V aligi P.A 1994 Measurement, and C ontrol 116293[39] Andrew Y.T.Leung, Liu Z R 2004 Int.J.Bifurc.C haos 14 2955 [40] Qu Z L, Hu,G .,Yang,G J, Qin,G R 1995 Phys.Rev .Lett.74 1736 [41] Y ang J Z, Qu Z L, Hu G 1996 Phys.Rev.E.53 4402[42] Shyi-Kae Yang, C hieh-Li Chen, Her-Terng Yau 2002 C haosSolitons Fractals 13 767。
(完整版)量子力学英语词汇
1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。
时间管理的心理学原理如何克服拖延和拖延
时间管理的心理学原理如何克服拖延和拖延导言:时间管理是现代社会中一个重要的技能。
好的时间管理能帮助我们合理规划时间,提高效率,从而更好地实现我们的目标。
然而,许多人常常陷入拖延和拖延的陷阱,无法合理安排时间。
本文将介绍时间管理的心理学原理,并提供一些应对拖延和拖延的有效策略,帮助读者克服这一问题。
一、时间管理的心理学原理1. 自我调节理论(Self-Regulation Theory)自我调节理论认为,人们的行为往往受到短期奖励和长期目标之间的冲突影响。
具体来说,拖延行为往往是因为人们更喜欢立即享受短期奖励,而不是追求长期目标所带来的潜在回报。
要克服这种情况,我们可以采取以下策略:- 设定明确的目标:明确自己的长期目标,将其分解为可行的短期目标,以提高动力和自我调节的能力。
- 制定奖励机制:将奖励与完成目标相结合,让短期奖励与长期目标相一致,从而更有动力去克服拖延。
2. 认知失调理论(Cognitive Dissonance Theory)认知失调理论认为,当我们的行为与我们的信念和价值观不一致时,会产生一种不愉快的心理状态,即认知失调。
要克服拖延行为,我们可以运用以下策略:- 改变我们的认知:重塑我们对任务的认知,将其视为与我们的价值观和目标相一致的行为,从而减少认知失调。
- 寻找外部压力:向他人承诺完成任务,这种公开的承诺会带来一定的外部压力,减少拖延的可能性。
二、克服拖延和拖延的有效策略1. 制定明确的计划制定明确的计划是克服拖延和拖延的重要步骤。
具体的计划可以包括:- 将目标分解为具体的任务和子任务;- 设定截止日期和时间表;- 设置提醒和报警,提醒自己完成任务。
2. 设置优先级根据任务的重要性和紧急性,合理地设置优先级,将时间和精力集中在最重要的任务上。
我们可以使用工具如《时间管理矩阵》,将任务划分为四个象限,帮助确定优先级。
3. 克服拖延的心理障碍拖延往往是由于一些心理障碍导致的,如恐惧、压力、完美主义等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lecture 34Relevant sections in text:§5.6Time-dependent perturbation theory (cont.)We are constructing an approximation scheme for solvingi ¯h d dt c n (t )= me i ¯h (E n −E m )t V nm (t )c m (t ),V nm = n |V (t )|m .For simplicity we shall suppose (as is often the case)that the initial state is an eigen-state of H 0.Setting |ψ(0) =|i ,i.e.,taking the initial state to be one of the unperturbed energy eigenvectors,we get as our zeroth-order approximation:c n (t )≈c (0)n =δni .We get our “first-order approximation”c (1)n (t )by improving our approximation of the right-hand side of the differential equations to be accurate to first order.This we do by using the zeroth order approximation of the solution,c (0)n in the right hand side of the equation.So,we now approximate the differential equation asi ¯h d dt c n (t )≈e i ¯h (E n −E i )t V ni (t ),with solutionc n (t )≈c (0)n +c (1)n (t )=δni +1i ¯h t 0dt e i ¯h (E n −E i )t V ni (t ).Successive approximations are obtained by iterating this procedure.We shall only deal with the first non-trivial approximation,which defines first-order time-dependent perturbation theory .We assumed that the system started offin the (formerly stationary)state |i defined by H 0.Of course,generally the perturbation will be such that |i is not a stationary state for H ,so that at times t >0the state vector will change.We can still ask what is the probability for finding the system in an eigenstate |n of H 0.Assuming that n =i this isP (i →n,i =n )=|1¯h t 0dt e i ¯h (E n −E i )t V ni (t )|2.This is the transition probability to first-order in TDPT.The probability for no transition is,in this approximation,P (i →i )=1− n =i P (i →n,i =n ).TDPT is valid so long as the transition probabilities are all much less than unity.Other-wise,our approximation begins to fail.The transition probability for i→n is only non-zero if there is a non-zero matrix element V ni“connecting”the initial andfinal states.Otherwise,we say that the transition is“forbidden”.Of course,it is only forbidden in the leading order approximation.If a particular transition i→n is forbidden in the sense just described,then physically this means that the transition may occur with very small probability compared to other,non-forbidden transitions.To calculate this very small probability one would have to go to higher orders in TDPT.Example:time-independent perturbationAs ourfirst application of TDPT we consider what happens when the perturbation V does not in fact depend upon time.This means,of course,that the true Hamiltonian H0+V is time independent,too(since we assume H0is time independent).If we can solve the energy eigenvalue problem for H0+V we can immediately write down the exact solution to the Schr¨o dinger equation and we don’t need to bother with approximation methods.But we are assuming,of course,that the problem is not exactly soluble.Now,in the current example of a time-independent perturbation,we could use the approximate eigenvalues and eigenvectors from time independent perturbation theory to get approximate solutions to the Schr¨o dinger equation.This turns out to be equivalent to the results we will obtain below using time dependent perturbation theory.It’s actually quite a nice exercise to prove this,but we won’t bother.Assuming V is time independent,the integral appearing in the transition probability can be easily computed and we get(exercise)P(i→n,i=n)=4|V ni|2(E n−E i)2sin2(E n−E i)t2¯h.Assuming this matrix element V ni does not vanish,we see that the transition probability oscillates in time.The amplitude of this oscillation is small provided the magnitude of the transition matrix element of the perturbation is small compared to the unperturbed energy difference between the initial andfinal states.This number had better be small or the perturbative approximation is not valid.Let us consider the energy dependence of the transition probability.The amplitude of the temporally oscillating transition probability decreases quickly as the energy of the final state differs from the energy of the initial state.The dominant transition probabilities occur when E n=E i,i=n.For this to happen,of course,the states|n and|i must correspond to a degenerate or nearly degenerate eigenvalue.When E n≈E i we haveP(i→n,i=n,E n=E i)=1¯h2|V ni|2t2.Because of the growth in time,our approximation breaks down eventually in this case. Still,you can see that the transition probability is peaked about those states such that E n≈E i,with the peak having height proportional to t2and width proportional to1/t. Thus as the time interval becomes large enough the principal probability is for transitions of the“energy conserving type”,E n≈E i.For shorter times the probabilities for“energy non-conserving”transitions are less negligible.Indeed,the probability for a transition with an energy difference∆E at time t is appreciable once the elapsed time satisfiest∼π¯h ∆E,as you can see by inspecting the transition probability.This is just a version of the time-energy uncertainty principle expressed in terms of the unperturbed stationary states.One sometimes characterizes the situation by saying that one can“violate energy conservation by an amount∆E provided you do it over a time interval∆t such that∆t∆E∼¯h”.All this talk of“energy non-conservation”is of course purelyfigurative.The true energy,represented by H0+V is conserved,as always in quantum mechanics when the Hamiltonian is time independent.It is only because we are considering the dynamics in terms of the unperturbed system,using the unperturbed“energy”defined by H0,that we can speak of energy non-conservation from the unperturbed point of view.You can see, however,why slogans like“you can violate conservation of energy if you do it over a short enough time”might arise and what they really mean.You can also see that such slogans can be very misleading.。