三角函数图像和性质练习题

合集下载

三角函数的图象和性质练习题及答案

三角函数的图象和性质练习题及答案

1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。

三角函数图像和性质练习题(附答案)

三角函数图像和性质练习题(附答案)

三角函数的图像与性质【1】一、选择题1.已知函数f(x)=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于( )A.32 B.23C.2D.3 2.若函数cos()3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于. A .12B .12C .2D .43.将函数sin()()6yx x R π=+∈的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈ C .sin()()212x y x R π=-∈ D .5sin()()224x y x R π=+∈4.函数2)62cos(-+=πx y 的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于A.)2,6(-π B.)2,6(π C.)2,6(--π D.)2,6(π-5.将函数sin y x =的图象向左平移(02)ϕϕπ≤≤个单位后,得到函数sin()6yx π=-的图象,则ϕ等于( )A .6πB .76πC .116πD .56π6.函数x x y 2cos 32sin -=)66(ππ≤≤-x 的值域为A.[]2,2- B. []0,2- C. []2,0 D. ]0,3[-7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是 ( )A .B .C.D.8.函数f(θ ) =sin θ-1cos θ-2的最大值和最小值分别是()(A) 最大值 43 和最小值0(B)最大值不存在和最小值 34(C) 最大值 -43 和最小值0(D) 最大值不存在和最小值-349.ααcos sin +=t且αα33cos sin +<0,则t 的取值范围是( )A. [)0,2-B. []2,2-C. ()(]2,10,1 -D. ()()+∞-,30,310.把函数)(x f y =的图象沿着直线0=+y x 的方向向右下方平移22个单位,得到函数x y 3sin =的图象,则()A 、2)23sin(--=x yB 、2)63sin(--=x yC 、2)23sin(++=x yD 、2)63sin(++=x y二、填空题11.设函数).0)(3cos()(πϕϕ<<+=x x f 若)()(x f x f '+是奇函数,则ϕ=. 12.方程2cos()14x π-=在区间(0,)π内的解是.13.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间14.已知x R ∈,则函数sin cos ()max sin ,cos ,2x x f x x x +⎧⎫=⎨⎬⎩⎭的最大值与最小值的和等于。

三角函数的图像和性质(含答案)

三角函数的图像和性质(含答案)

.三角函数的图像和性质1.函数)62sin(21π+=x y 的单增区间是___________. 【答案】Z k k k ∈⎥⎦⎤⎢⎣⎡+-6,3ππππ2.函数y =cos 24x π⎛⎫-⎪⎝⎭的单调递增区间是________. 【答案】388k k ππππ⎡⎤⎢⎥⎣⎦-+,+(k∈Z)3.函数3sin(2)3y x π=+图象的对称中心是_______.【答案】(,0)32k ππ-+4.若函数f(x)=sin(ωx+6π)(ω>0)的最小正周期是5π,则ω=_________。

【答案】105.函数)4tan()(π+=x x f 单调增区间为( )A .Z k k k ∈+-),2,2(ππππ B .Z k k k ∈+),,(πππC .Z k k k ∈+-),4,43(ππππD .Z k k k ∈+-),43,4(ππππ 【答案】C6.下列函数中周期为π且为偶函数的是 ( ) A .)22sin(π-=x y B. )22cos(π-=x y C. )2sin(π+=x y D. )2cos(π+=x y【答案】A7.设函数()sin(2)3f x x π=+,则下列结论正确的是A .()f x 的图像关于直线3x π=对称 B .()f x 的图像关于点(,0)4π对称C .()f x 的最小正周期为2πD .()f x 在[0,]12π上为增函数【答案】D8.如果函数)4cos(ax y +=π的图象关于直线π=x 对称,则正实数a 的最小值是( )A .41=a B .21=a C .43=a D .1=a【答案】C9.已知ω>0,0<φ<π,直线x =4π和x =54π是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )(A )4π (B )3π (C )2π(D )34π【答案】A【解析】试题分析:函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴间的距离等于半个周期,所以2,1T πω==.由sin()14πϕ+=得4πϕ=满足0ϕπ<<,故选A.考点:三角函数的图象及其性质. 10.若当4x π=时,函数()sin()(0)f x A x A ϕ=+>取得最小值,则函数()4y f x π=-是( )A.奇函数且图像关于点(,0)2π对称 B.偶函数且图像关于直线2x π=对称C.奇函数且图像关于直线2x π=对称 D.偶函数且图像关于点(,0)2π对称【答案】D【解析】由题意知sin()14πϕ+=-,即324k πϕπ=-; 函数3()sin(2)cos 444y f x A x k A x ππππ=-=-+-=-,所以是偶函数且图像关于点(,0)2π对称.11.函数()sin 24f x x π⎛⎫=-⎪⎝⎭在区间[0,]2π上的最小值是A .-l B.2 C.2- D .0 【答案】C【解析】因为[0,]2x π∈,所以32[,],444x πππ⎛⎫-∈- ⎪⎝⎭因此()sin 2[4f x x π⎛⎫=-∈ ⎪⎝⎭即函数最小值是2-.12.函数y =2sinx 263x ππ⎛⎫≤≤ ⎪⎝⎭的值域是________.【答案】[1,2]【解析】根据正弦函数图象,可知x =6π时,函数取到最小值1;x =2π时,函数取到最大值2. 13.当7,66x ππ⎡⎤∈⎢⎥⎣⎦时,函数23sin 2cos y x x =--的最小值是_______,最大值是________。

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。

三角函数的图像和性质练习题(基础)

三角函数的图像和性质练习题(基础)

三角函数的图像和性质练习题(基础) 三角函数的图像和性质练题1.若cosx=0,则角x等于A。

kπ(k∈Z)解析:cosx=0时,x为cos函数的零点,即x=kπ+π/2(k∈Z),所以选项A正确。

2.使cosx=(1-m)/(2+m),有意义的m的值为C。

-1<m<1解析:由于-1≤cosx≤1,所以1-m≤2+m,解得-1<m<1,所以选项C正确。

3.函数y=3cos(2πx-5π/6)的最小正周期是B。

5π/2解析:cos函数的最小正周期为2π,但当系数为2π/b时,函数的最小正周期为b。

所以y=3cos(2πx-5π/6)的系数为2π/(5π/2)=4/5,故最小正周期为5π/2,所以选项B正确。

4.函数y=2sinx+2cosx-3的最大值是B。

1/2解析:将y=2sinx+2cosx-3转化为y=2√2(sin(x+π/4)-3/√2),所以最大值为2√2-3,即1/2,所以选项B正确。

5.下列函数中,同时满足①在(-π/2,π/2)上是增函数,②为奇函数,③以π为最小正周期的函数是C。

y=tan(x/2)解析:y=tan(x/2)在(-π/2,π/2)上是增函数,且为奇函数,而y=cos(x)在(-π/2,π/2)上不是增函数,y=sin(x)不是奇函数,y=tan(x)不是以π为最小正周期的函数,所以选项C 正确。

6.函数y=sin(2x+π/6)的图象可看成是把函数y=sin2x的图象向左平移π/12得到。

解析:y=sin(2x+π/6)的系数为2,所以它的周期为π,而y=sin2x的周期为π/2,所以y=sin(2x+π/6)的图象相当于把y=sin2x的图象向左平移π/12,所以选项B正确。

7.函数y=sin(-2x)的单调增区间是C。

[kπ-。

kπ+]。

(k∈Z)解析:y=sin(-2x)相当于y=-sin(2x),而y=sin(2x)的单调增区间为[kπ。

(k+1)π],所以y=sin(-2x)的单调增区间为[kπ-。

三角函数图像及性质-图像变换习题

三角函数图像及性质-图像变换习题

考点测试20 三角函数的图象和性质一、基础小题1.已知f(x)=sin ⎝⎛⎭⎫x +π2,g(x)=cos ⎝⎛⎭⎫x -π2,则f(x)的图象( ) A .与g(x)的图象相同 B .与g(x)的图象关于y 轴对称 C .向左平移π2个单位,得到g(x)的图象 D .向右平移π2个单位,得到g(x)的图象解析 因为g(x)=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sinx ,所以f(x)向右平移π2个单位,可得到g(x)的图象,故选D. 2.函数y =sin 2x +sinx -1的值域为( )A .[-1,1]B .⎣⎡⎦⎤-54,-1C .⎣⎡⎦⎤-54,1 D .⎣⎡⎦⎤-1,54 答案 C 解析(数形结合法)y =sin 2x +sinx -1,令sinx =t ,则有y =t2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1可得y ∈⎣⎡⎦⎤-54,1. 3.函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[-π,0])的单调递增区间是( ) A .⎣⎡⎦⎤-π,-5π6 B .⎣⎡⎦⎤-π3,0 C .⎣⎡⎦⎤-2π3,-π6 D .⎣⎡⎦⎤-π3,-π6 答案 C 解析 因为y =2sin ⎝⎛⎭⎫π6-2x =-2sin ⎝⎛⎭⎫2x -π6,所以函数y =2sin ⎝⎛⎭⎫π6-2x 的单调递增区间就是函数y =sin ⎝⎛⎭⎫2x -π6的单调递减区间.由π2+2kπ≤2x -π6≤3π2+2kπ(k ∈Z),解得π3+kπ≤x≤5π6+kπ(k ∈Z),即函数y =2sin ⎝⎛⎭⎫π6-2x 的单调递增区间为⎣⎡ π3+kπ,⎦⎤5π6+kπ(k ∈Z),又x ∈[-π,0],所以k =-1,故函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[-π,0])的单调递增区间为⎣⎡⎦⎤-2π3,-π6. 4.使函数f(x)=sin(2x +φ)为R 上的奇函数的φ的值可以是( ) A .π4 B .π2C .πD .3π2答案 C 解析 若f(x)是R 上的奇函数,则必须满足f(0)=0,即sinφ=0.∴φ=kπ(k ∈Z),故选C. 5.已知函数f(x)=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f(x)的值域是⎣⎡⎦⎤-12,1,则a 的取值范围是( ) A .⎝⎛⎦⎤0,π3 B .⎣⎡⎦⎤π3,π2 C .⎣⎡⎦⎤π2,2π3 D .⎣⎡⎦⎤π3,π 解析 若-π3≤x≤a ,则-π6≤x +π6≤a +π6.因为当x +π6=-π6或x +π6=7π6时,sin ⎝⎛⎭⎫x +π6=-12,当x +π6=π2时,sin ⎝⎛⎭⎫x +π6=1,所以要使f(x)的值域是⎣⎡⎦⎤-12,1,则有π2≤a +π6≤7π6,即π3≤a≤π,即a 的取值范围是⎣⎡⎦⎤π3,π.故选D.二、高考小题6.[2015·全国卷Ⅰ]函数f(x)=cos(ωx +φ)的部分图象如图所示,则f(x)的单调递减区间为( )A .⎝⎛⎭⎫kπ-14,kπ+34,k ∈Z B.⎝⎛⎭⎫2kπ-14,2kπ+34,k ∈ZC .⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z D 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f(x)的一个周期)内,函数f(x)的单调递减区间为⎝⎛⎭⎫-14,34.由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 7.[2015·四川高考]下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin2x +cos2x D .y =sinx +cosx答案 A 解析 选项A ,y =cos ⎝⎛⎭⎫2x +π2=-sin2x ,符合题意,故选A. 三、模拟小题8.[2016·广州调研]函数f(x)=sinx +x 在区间[0,+∞)内( )A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点答案 B 解析 在同一坐标系中画出函数y =sinx 与y =-x 的图象,由图象知这两个函数图象有1个交点,∴函数f(x)=sinx +x 在区间[0,+∞)内有且仅有1个零点.9.[2017·河北邢台调研]已知定义在R 上的函数f(x)满足:当sinx≤cosx 时,f(x)=cosx ,当sinx>cosx 时,f(x)=sinx.给出以下结论:①f(x)是周期函数;②f(x)的最小值为-1;③当且仅当x =2kπ(k ∈Z)时,f(x)取得最小值;④当且仅当2kπ-π2<x<(2k +1)π(k ∈Z)时,f(x)>0;⑤f(x)的图象上相邻两个最低点的距离是2π.其中正确的结论序号是________.答案 ①④⑤解析 易知函数f(x)是周期为2π的周期函数.函数f(x)在一个周期内的图象如图所示. 由图象可得,f(x)的最小值为-22,当且仅当x =2kπ+5π4(k ∈Z)时,f(x)取得最小值;当且仅当2kπ-π2<x<(2k +1)π(k ∈Z)时,f(x)>0;f(x)的图象上相邻两个最低点的距离是2π.所以正确的结论的序号是①④⑤.四、模拟大题10.[2017·江西上饶模拟]设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)图象的一条对称轴是直线x =π8.(1)求φ的值;(2)求函数y =f(x)的单调递增区间.解 (1)由f ⎝⎛⎭⎫π8=±1得sin ⎝⎛⎭⎫π4+φ=±1,∵-π<φ<0,∴-3π4<φ+π4<π4,∴φ+π4=-π2,φ=-3π4. (2)由(1)得f(x)=sin ⎝⎛⎭⎫2x -3π4,令-π2+2kπ≤2x -3π4≤π2+2kπ,k ∈Z , 可解得π8+kπ≤x≤5π8+kπ,k ∈Z.因此y =f(x)的单调增区间为⎣⎡⎦⎤π8+kπ,5π8+kπ,k ∈Z.函数y =Asin(ωx +φ)的图象和性质一、基础小题1.将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫12x -π20C .y =sin ⎝⎛⎭⎫2x -π5 D .y =sin ⎝⎛⎭⎫12x -π10 答案 B 解析 将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y =sin 12x ,再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π10=sin ⎝⎛⎭⎫12x -π20.故选B. 2.要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位 D .向右平移π3个单位答案 B 解析 y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12,故要将函数y =sin4x 的图象向右平移π12个单位.故选B. 3.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin2x +cos2x D .y =sinx +cosx答案 A 解析 采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin2x ,可知该函数的最小正周期为π且为奇函数,故选A. 4.函数f(x)=sin(ωx +φ)⎝⎛⎭⎫x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f(x)的解析式为( ) A .f(x)=sin ⎝⎛⎭⎫2x +π4B .f(x)=sin ⎝⎛⎭⎫2x -π4C .f(x)=sin ⎝⎛⎭⎫4x +π4D .f(x)=sin ⎝⎛⎭⎫4x -π4 答案 A 解析 由题图可知,函数y =f(x)的最小正周期为T =2πω=⎝⎛⎭⎫3π8-π8×4=π,所以ω=2,又函数f(x)的图象经过点⎝⎛⎭⎫π8,1,所以sin ⎝⎛⎭⎫π4+φ=1,则π4+φ=2kπ+π2(k ∈Z),解得φ=2kπ+π4,又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎫2x +π4,故选A. 5.函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1D .-1- 3答案 A 解析 ∵0≤x≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝⎛⎭⎫π6x -π3≤1,∴-3≤2sin ⎝⎛⎭⎫π6x -π3≤2, ∴函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为2- 3.6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( )A .π4B .π3C .π2D .3π4答案 A 解析 由题意可知函数f(x)的周期T =2×⎝⎛⎭⎫5π4-π4=2π,故ω=1,∴f(x)=sin(x +φ),令x +φ=kπ+π2(k ∈Z),将x =π4代入可得φ=kπ+π4(k ∈Z),∵0<φ<π,∴φ=π4.7.已知函数f(x)=sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则( ) A .函数f(x)的图象关于点⎝⎛⎭⎫π3,0对称 B .函数f(x)的图象关于直线x =π3对称 C .函数f(x)的图象向右平移π3个单位后,图象关于原点对称 D .函数f(x)在区间(0,π)内单调递增答案 C 解析 因为函数的周期T =2πω=4π,所以ω=12,所以f(x)=sin ⎝⎛⎭⎫12x +π6.当x =π3时,f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫12×π3+π6=sin π3=32,所以A 、B 错误.将函数f(x)的图象向右平移π3个单位后得到g(x)=sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π3+π6=sin x2的图象,关于原点对称,所以C 正确.由-π2+2kπ≤12x +π6≤π2+2kπ(k ∈Z),得-4π3+4kπ≤x≤2π3+4kπ(k ∈Z),所以f(x)=sin ⎝⎛⎭⎫12x +π6的单调递增区间为⎣⎡ -4π3+4kπ,⎦⎤2π3+4kπ,k ∈Z ,当k =0时,增区间为⎣⎡⎦⎤-4π3,2π3,所以D 错误.故选C.8.已知函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6=________. 答案 ±2解析 函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则其对称轴为x =π6,所以f ⎝⎛⎭⎫π6=±2. 二、高考小题9.[2016·全国卷Ⅱ]若将函数y =2sin2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =kπ2-π6(k ∈Z)B .x =kπ2+π6(k ∈Z)C .x =kπ2-π12(k ∈Z)D .x =kπ2+π12(k ∈Z)答案 B 解析 将函数y =2sin2x 的图象向左平移π12个单位长度得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12=2sin ⎝⎛⎭⎫2x +π6的图象,由2x +π6=kπ+π2(k ∈Z),可得x =kπ2+π6(k ∈Z).则平移后图象的对称轴为x =kπ2+π6(k ∈Z),故选B.10.[2016·北京高考]将函数y =sin ⎝⎛⎭⎫2x -π3图象上的点P ⎝⎛⎭⎫π4,t 向左平移s(s>0)个单位长度得到点P′.若P′位于函数y =sin2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3答案 A 解析 点P ⎝⎛⎭⎫π4,t 在函数y =sin ⎝⎛⎭⎫2x -π3的图象上,∴t =sin ⎝⎛⎭⎫2×π4-π3=12. 函数y =sin ⎝⎛⎭⎫2x -π3的图象向左平移π6个单位长度即可得到函数y =sin2x 的图象,故s 的最小值为π6. 11.[2016·福州一中模拟]已知函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫A>0,ω>0,|φ|<π2的部分图象如图所示,为了得到函数g(x)=Asinωx 的图象,只需要将y =f(x)的图象( ) A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度答案 D 解析 根据函数f(x)=Asin(ωx +φ)( A>0,ω>0,|φ|<π2 )的部分图象,可得A =2,T 4=2πω·14=π3-π12,求得ω=2.再根据五点法作图可得2·π12+φ=π2,求得φ=π3,∴f(x)=2sin ⎝⎛⎭⎫2x +π3,g(x)=2sin2x ,故把f(x)=2sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度,可得g(x)=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=2sin2x 的图象,故选D. 三、高考大题12.[2015·湖北高考]某同学用“五点法”画函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx +φ 0 π2 π 3π2 2π x π3 5π6 Asin(ωx +φ)5-5(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y =f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g(x)的图象.若y =g(x)图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:ωx +φ 0 π2 π 3π2 2π x π12 π3 7π12 5π6 1312π Asin(ωx +φ)5-5且函数表达式为f(x)=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f(x)=5sin ⎝⎛⎭⎫2x -π6,则g(x)=5sin ⎝⎛⎭⎫2x +2θ-π6.因为函数y =sinx 的对称中心为(kπ,0),k ∈Z. 令2x +2θ-π6=kπ,k ∈Z ,解得x =kπ2+π12-θ,k ∈Z.由于函数y =g(x)的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令kπ2+π12-θ=5π12,k ∈Z ,解得θ=kπ2-π3,k ∈Z.由θ>0可知,当k =1时,θ取得最小值π6.。

(完整版)三角函数的图象与性质练习题及答案

(完整版)三角函数的图象与性质练习题及答案

三角函数的图象与性质练习题一、选择题1.函数f (x )=sin x cos x 的最小值是( ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( )A .y=2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________. 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 15.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间.18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.三角函数的图象与性质练习题及答案一、选择题1.函数f (x )=sin x cos x 的最小值是( B ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( A ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( C ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( D ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( C )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( A )A .y =2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( A )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( D ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( D ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( A )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( A )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________.⎣⎡⎦⎤98π+3k π,21π8+3k π (k ∈Z ) 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 31415.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上) ②③16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 2 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,又-π<φ<0,则-54<k <-14,∴k =-1, 则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π, 可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合. 解 (1)f (x )=21+cos 2ωx2+sin 2ωx +1=sin 2ωx +cos 2ωx +2=2⎝⎛⎭⎫sin 2ωx cos π4+cos 2ωx sin π4+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由题设,函数f (x )的最小正周期是π2,可得2π2ω=π2, 所以ω=2.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫4x +π4+2. 当4x +π4=π2+2k π,即x =π16+k π2(k ∈Z )时,sin ⎝⎛⎭⎫4x +π4取得最大值1,所以函数f (x )的最大值是2+2, 此时x 的集合为⎩⎨⎧⎭⎬⎫x |x =π16+k π2,k ∈Z .19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.解 f (x )=32sin 2ωx +12cos 2ωx +12=sin ⎝⎛⎭⎫2ωx +π6+12. (1)因为T =π,所以ω=1. ∴f (x )=sin ⎝⎛⎭⎫2x +π6+12, 当-π6≤x ≤π3时,2x +π6∈⎣⎡⎦⎤-π6,5π6, 所以f (x )的值域为⎣⎡⎦⎤0,32. (2)因为f (x )的图象的一条对称轴为x =π3,所以2ω⎝⎛⎭⎫π3+π6=k π+π2(k ∈Z ), ω=32k +12 (k ∈Z ), 又0<ω<2,所以-13<k <1,又k ∈Z ,所以k =0,ω=12.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 解 (1)由图象可知,函数的最大值M =3,最小值m =-1, 则A =,1213,22)1(3=-==--b , 又π)6π32(2=-=πT ,∴2ππ2π2===T ω,∴f (x )=2sin(2x +φ)+1, 将x =6π,y =3代入上式,得1)3π(=+ϕ ∴π22π3πk +=+ϕ,k ∈Z , 即φ=6π+2k π,k ∈Z ,∴φ=6π, ∴f (x )=2sin )6π2(+x +1. (2)由2x +6π=2π+k π,得x =6π+21k π,k ∈Z , ∴f (x )=2sin )6π2(+x +1的对称轴方程为 216π+=x k π,k ∈Z. 21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.解 (1)由题图知A =2,T =π,于是ω=2πT=2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=-2cos ⎝⎛⎭⎫2x +π6. 故y =f (x )+g (x )=2sin ⎝⎛⎭⎫2x +π6-2cos ⎝⎛⎭⎫2x +π6 =22sin ⎝⎛⎭⎫2x -π12. 由22sin ⎝⎛⎭⎫2x -π12=6,得sin ⎝⎛⎭⎫2x -π12=32. ∵0<x <π,∴-π12<2x -π12<2π-π12. ∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π, ∴所求交点坐标为⎝⎛⎭⎫5π24,6或⎝⎛⎭⎫3π8,6. 22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值. 解 (1)由图象知A =2,T =8, ∵T =2πω=8,∴ω=π4.又图象过点(-1,0),∴2sin ⎝⎛⎭⎫-π4+φ=0. ∵|φ|<π2,∴φ=π4. ∴f (x )=2sin ⎝⎛⎭⎫π4x +π4.(2)y =f (x )+f (x +2)=2sin ⎝⎛⎭⎫π4x +π4+2sin ⎝⎛⎭⎫π4x +π2+π4=22sin ⎝⎛⎭⎫π4x +π2=22cos π4x . ∵x ∈⎣⎡⎦⎤-6,-23,∴-3π2≤π4x ≤-π6. ∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;π4x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2 2.当。

方法技巧专题18 三角函数的图像和性质(学生版)

方法技巧专题18 三角函数的图像和性质(学生版)

方法技巧专题18三角函数的图像和性质解析版一、 三角函数的图像和性质知识框架【一】化为同角同函型1.例题【例1】函数()cos cos sin 2y x x x π⎛⎫=-+ ⎪⎝⎭的单调递增区间是( ) A . 32,288k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k Z ∈ B . 3,88k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ C . ,44k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D . 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈2.巩固提升综合练习【练习1】已知函数()sin 2cos f x x x =-. ①()f x 的最大值为________ ;②设当x θ=时,()f x 取得最大值,则cos θ=______.【练习2】已知函数1)cos (sin cos 2)(+-=x x x x f ,求函数)(x f 的最小正周期和单调增区间;【练习3】已知22sin cos cos ()()x x x f x x x =--∈R ,求()f x 的最小正周期及单调递增区间.1.例题【例1】函数)2cos(62cos )(x x x f -+=π的最大值为 ____________.【例2】函数y =sin x +cos x +sin x cos x 的值域为_______2.巩固提升综合练习【练习1】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【练习2】求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值.【练习3】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________.【一】图像型1.例题【例1】已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><的部分图象如图所示,其中()()2,1,8,1M N -分别是函数()f x 的图象的一个最低点和一个最高点,则Aωϕ+=( )A. 23π-B. 6π-C. 6πD. 23π【例2】函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<的图象如图所示,则( )A . ()f x 在,313ππ⎛⎫-⎪⎝⎭上是增函数B . ()f x 在,213ππ⎛⎫-⎪⎝⎭上是增函数 C . ()f x 在27,36ππ⎛⎫⎪⎝⎭上是増函数D . ()f x 在,212ππ⎛⎫-⎪⎝⎭上是增函数【例3】已知函数()()2sin (0f x x ωϕω=+>,)x ϕ<的部分图像如图所示,已知点(A ,,06B π⎛⎫⎪⎝⎭,若将它的图像向右平移6π个单位长度,得到函数()g x 的图像,则函数()g x 图像的一条对称轴方程为( )A . 24x π=- B . 4x π=C . 3x π=D . 23x π=2.巩固提升综合练习【练习1】函数()()sin f x A x ωϕ=+ (其中0A >, 2πϕ<)的部分图象如图所示,将函数()f x 的图象( )可得()sin 24g x x π⎛⎫=+⎪⎝⎭的图象A . 向右平移12π个长度单位B . 向左平移24π个长度单位C . 向左平移12π个长度单位D . 向右平移24π个长度单位【练习2】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.【二】性质型1.例题【例1】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( ) (A )11(B )9(C )7(D )5【例2】设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上单调,且⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为( ) A .2πB .2πC .4πD .π【例3】设函数,,其中,.若,,且的最小正周期大于,则( )(A ),(B ),(C ),(D ),2.巩固提升综合练习【练习1】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________.【练习2】若函数()()()cos f x x x θθ+++的图象关于y 轴对称,则θ的一个值为( ) A . 6πB .3π C .23π D .56π【例1】已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【例2】设函数,其中.已知.(Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.2.巩固提升综合练习【练习1】函数()()sin f x x ωϕ=+(0ω>, 2πϕ<)的最小正周期是π,若其图象向左平移3π个单位后得到的函数为奇函数,则函数()f x 的图象( ) A . 关于点012π⎛⎫⎪⎝⎭,对称 B . 关于直线12x π=对称C . 关于点06π⎛⎫ ⎪⎝⎭,对称 D . 关于直线6x π=对称【练习2】已知函数1()2sin()3f x x π=+,将()y f x =的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再将图象向左平移1个单位,所得图象对应的函数为()g x ,若函数的图象在P ,Q 两处的切线都与x 轴平行,则||PQ 的最小值为( )A B .4 C .4π D .1.例题【例1】 已知函数()22sin cos 44f x x x x ππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,则()f x 在02x π⎡⎤∈⎢⎥⎣⎦,上的最大值与最小值之差为 .【例2】函数的最小值为 .【例3】函数()sin cos 2sin cos ,44f x x x x x x ππ⎛⎫⎡⎤=++∈-⎪⎢⎥⎣⎦⎝⎭的最小值是__________.【例4】求函数xxy cos 2sin 2--=的值域x x x f sin 22cos )(+=2.巩固提升综合练习【练习1】已知的定义域为[].求的最小值.【练习2】函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。

高三数学三角函数的图象与性质试题

高三数学三角函数的图象与性质试题

高三数学三角函数的图象与性质试题1.将函数的图象关于x=对称,则ω的值可能是( )A.B.C.5D.2【答案】D【解析】根据正弦型函数的性质及已知条件,有取k=0,得ω=2满足条件,选D考点:三角函数的图象及其性质2.设函数(1)求函数的周期和单调递增区间;(2)设A,B,C为ABC的三个内角,若AB=1,,,求s1n B的值.【答案】(1)周期为,单调递增区间为(2)【解析】(1)用两角和差公式、二倍角公式和化一公式将函数化简为的形式,根据周期公式求其周期;将整体角代入正弦的单调增区间内,即可解得函数的增区间。

(2)根据可得角,根据正弦定理可得。

试题解析:=(1)函数的周期为.令,则∴函数f(x)的单调递增区间为(2)由已知,因为所以,,∴s1n C =.在中,由正弦定理,,得.【考点】1三角函数的化简;2正弦定理。

3.下列函数中周期为且图象关于直线对称的函数是()A.B.C.D.【答案】B【解析】因为,所以选项A,B,C,D的周期依次为又当时,选项A,B,C,D的值依次为所以只有选项A,B关于直线对称,因此选B.【考点】三角函数性质4.函数的一条对称轴方程是()A.B.C.D.【答案】D.【解析】.令,解得.令得,故选D.【考点】1.三角恒等变换;2.三角函数图像性质.5.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m的最小值是()A.B.C.D.【答案】B【解析】由于y=cos x+sin x=2cos,向左平移m(m>0)个单位长度后得到函数y=2cos的图象.由于该图象关于y轴对称,所以m-=kπ(k∈Z,m>0),于是m=kπ+ (k∈Z,m>0),故当k=0时,m取得最小值.6.函数y=(acosx+bsinx)cosx有最大值2,最小值-1,则实数(ab)2的值为________.【答案】8【解析】y=acos2x+bsinxcosx=a·+sin 2x=sin(2x+φ)+,∴∴a=1,b2=8,∴(ab)2=8.【方法技巧】三角恒等变换的特点(1)三角恒等变换就是利用两角和与差的正弦、余弦、正切公式、倍角公式、半角公式等进行简单的恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.(2)对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角恒等变换的重要特点.7.设函数f(x)=msinx+cosx(x∈R)的图象经过点(,1).(1)求f(x)的解析式,并求函数的最小正周期.(2)若f(α+)=且α∈(0,),求f(2α-)的值.【答案】(1) f(x)= sin(x+) T=2π (2)【解析】(1)∵函数f(x)=msinx+cosx(x∈R)的图象经过点(,1),∴msin+cos=1,∴m=1,∴f(x)=sinx+cosx=sin(x+),∴函数的最小正周期T=2π.(2)f(α+)=sin(α++)=sin(α+)=cosα=,∴cosα=,又∵α∈(0,),∴sinα==,∴f(2α-)=sin(2α-+)=sin2α=2sinαcosα=.8.已知函数f(x)=sin(2x+).(1)求函数y=f(x)的单调递减区间.(2)画出函数y=f(x)在区间[0,π]上的图象.【答案】(1) [kπ+,kπ+](k∈Z) (2)见解析【解析】(1)由2kπ+≤2x+≤2kπ+(k∈Z),得kπ+≤x≤kπ+(k∈Z).∴函数的单调递减区间是[kπ+,kπ+](k∈Z).(2)∵0≤x≤π,∴≤2x+≤.列表如下:2x+画出图象如图所示:9.函数f(x)=Asin(ωx+φ) 的部分图像如图所示.(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.【答案】(1) f(x)=sin (2)【解析】解:(1)由图像得A=1,=-=,所以T=2π,则ω=1.将代入得1=sin,而-<φ<,所以φ=.因此函数f(x)=sin.(2)由于x∈,-≤x+≤,所以-1≤sin≤,所以f(x)的取值范围是.10.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象关于直线x=对称,且f=0,则ω的最小值为().A.2B.4C.6D.8【答案】A【解析】由f=0知是f(x)图象的一个对称中心,又x=是一条对称轴,所以应有解得ω≥2,即ω的最小值为2,故选A.11.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则ω,φ的值分别是().A.2,-B.2,-C.4,-D.4,【答案】A【解析】T=-,T=π,∴ω=2,∴2×+φ=2kπ+,k∈Z,∴φ=2kπ-,k∈Z,又φ∈,∴φ=-,选A.12..函数的部分图象如图所示,则的值分别是A.B.C.D.【答案】A【解析】由图知在时取到最大值,且最小正周期满足故,.所以或由逐个检验知【考点】正弦函数的图象和性质.13.函数f(x)=sin(2x+)图象的对称轴方程可以为()A.x=B.x=C.x=D.x=【答案】A【解析】对于函数的对称轴方程为,则令,解得函数的对称轴方程为,当,有.所以正确答案为A.【考点】正弦函数的对称轴14.已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求的解析式;(Ⅱ)当,求的值域.【答案】(Ⅰ);(Ⅱ)值域为.【解析】(Ⅰ)首先由函数图象上一个最低点为,得A=2.又函数图象与x轴的交点中,相邻两个交点之间的距离为,所以,由此可求得的值,进而可求得的值.利用函数图象上一个最低点为,由代入法或关键点法可求得的值,最后得函数的解析式;(Ⅱ)在(Ⅰ)的基础上首先写出的表达式,利用三角函数的有关公式,将其化为一个复合角的三角函数,利用整体思想来求函数的值域.试题解析:(1)由最低点为,得A=2.由x轴上相邻的两个交点之间的距离为,得,即,,由点在图像上得故,,又6分(2),.因为,则,所以值域为.12分【考点】1.由三角函数的图像及其性质求三角函数的解析式;2.三角函数的值域.15.已知函数,下列命题是真命题的为()A.若,则.B.函数在区间上是增函数.C.直线是函数的一条对称轴.D.函数图象可由向右平移个单位得到.【答案】C【解析】,∵,∴,∴,∴所以A错;∵,∴,∴函数在上是减函数,所以B错;函数图像可由向左平移个单位得到,所以D错;直线是函数的一条对称轴,C正确.【考点】1.三角函数的最值;2.函数的对称轴;3.函数图像的平移变换;4.函数的单调性.16.将函数f(x)=2sin的图象向左平移个单位,得到函数y="g" (x)的图象.若y=g(x)在[]上为增函数,则的最大值( )A.1B.2C.3D.4【答案】B【解析】由题意,要使其在[]为增函数,如图所示,只需,所以,选B.【考点】1、三角函数的图象变换;2、函数的单调性.17.函数的部分图象如右图所示,设是图象的最高点,是图象与轴的交点,则( )A.B.C.D.【答案】B【解析】由函数的解析式可得周期T=2,再结合图象可得A、P、B的坐标.设点P在x轴上的射影为M,得tan∠BPM=和tan∠APM=的值,再由tan∠APB=tan(∠BPM+∠APM)=,故选B.【考点】1.两角差的正切公式;2.三角函数的图像18.)已知向量=(,),=(1,),且=,其中、、分别为的三边、、所对的角.(Ⅰ)求角的大小;(Ⅱ)若,且,求边的长.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量,,和 ,利用数量积公式可求得,即;(Ⅱ)因为,且,利用正弦定理将角转化为边,利用余弦定理来求试题解析:(Ⅰ)在中,,,所以,又, 所以,所以,即;(Ⅱ)因为,由正弦定理得,,得,由余弦定理得,解得.【考点】1、向量的数量积, 2、三角恒等变形, 3、解三角形.19.函数的部分图象如图所示,则的解析式为()A.B.C.D.【答案】B【解析】将点(6,0)代入验证可知,的解析式为,故选B。

三角函数的图象和性质练习题

三角函数的图象和性质练习题

三角函数的图象和性质练习题一、选择题1.函数y =tan 35x 是A.周期为π的偶函数B.周期为53 π的奇函数C.周期为53 π的偶函数 D.周期为π的奇函数2.已知f (x )=sin(x +π2 ),g(x )=cos(x -π2),则f (x )的图象A.与g(x )的图象相同B.与g(x )的图象关于y 轴对称C.向左平移π2 个单位,得到g(x )的图象D.向右平移π2 个单位,得到g(x )的图象3.若x ∈(0,2π),函数y =sin x +-tan x 的定义域是A.( π2 ,π]B.( π2 ,π)C.(0,π)D.( 3π2 ,2π)4.函数y =sin(2x +5π2 )的图象的一条对称轴方程为A.x =5π4B.x =-π2C.x =π8D.x =π45.为得到函数cos(2)3y x π=+的图像,只需要将函数sin 2y x =的图像( )A .向左平移512π个单位 B .向右平移512π个单位 C .向左平移56π个单 D .向右平移56π个单位6.如果|x |≤π4 ,那么函数f (x )=cos 2x +sin x 的最小值是A.2-12B.1-22C.-2+12D.-17.函数f (x )=sin x +5π2 ,g (x )=cos x +5π2 ,则A.f (x )与g (x )皆为奇函数B.f (x )与g (x )皆为偶函数C.f (x )是奇函数,g (x )是偶函数D.f (x )是偶函数,g (x )是奇函数8.将函数sin(6)4y x π=+的图像上各点的横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数的一个对称中心是 ( ) A .(,0)2πB .(,0)4πC .(,0)9πD .(,0)16π9.要得到函数y =sin(2x -π4 )的图象,只要将y =sin2x 的图象A.向左平移π4B.向右平移π4C.向左平移π8D.向右平移π810.下图是函数y =2sin(ωx +ϕ)(|ϕ|<π2 )的图象,那么A .ω=1011 ,ϕ=π6B.ω=1011 ,ϕ=-π6C .ω=2,ϕ=π6D.ω=2,ϕ=-π611.在[0,2π]上满足sin x ≥12 的x 的取值范围是A.[0,π6]B.[π6 ,5π6 ]C.[π6 ,2π3]D.[5π6,π]12.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为( ). A .34π B .4π C .0D .-4π 二、填空题13.若函数y =A cos(ωx -3)的周期为2,则ω= ;若最大值是5,则A = .14.由y =sin ωx 变为y =A sin(ωx +ϕ),若“先平移,后伸缩”,则应平移 个单位;若“先伸缩,后平移”,则应平移 个单位即得y =sin(ωx +ϕ);再把纵坐标扩大到原来的A 倍,就是y =A sin(ωx +ϕ)(其中A >0). 15.不等式sin x >cos x 的解集为 . 16.函数y =sin(-2x +π3)的递增区间是 .17.已知f (x )=ax +b sin 3x +1(a ,b 为常数),且f (5)=7,则f (-5)= .三、解答题18.已知:cos (-α)tan (π+α)cos (―π―α)sin (2π-α)=3,求:2cos 2(π2+α)+3sin (π+α)cos (π+α)cos (2π+α)+sin (-α)cos (―π2 ―α)的值.19已知函数()sin(2)3f x x π=-.(1)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);(2)求函数()f x 的单调递增区间; (3)当[0,]2x π∈时,求函数()f x 的最大值和最小值及相应的x 的值.20已知函数()sin()f x A x ωϕ=+(其中0,02A πωϕ>><)的部分图象如图所示.(1)求函数的解析式; (2)求函数的单调增区间; (3)求方程的解集.21已知函数()sin()f x A x ωϕ=+(其中0,0A ωϕπ>><)的部分图象如图所示,其中点是图象的一个最高点.(1)求函数()f x 的解析式; (2)已知(,)2παπ∈且5sin 13α=,求()2f α.22函数()sin()16f x A x πω=-+(其中0,0A ω>>)的最大值为3,其图象相邻两条对称轴之间的距离为2π. (1)求函数()f x 的解析式; (2)设(0,)2πα∈,()2f α=2,求α的值.23已知函数()sin()f x A x ωϕ=+(其中0,0A ωϕπ>><)的图象的一个最高点为(,2)12π-与之相邻的与轴的一个交点为(,0)6π(1)求函数()y f x =的解析式;(2)求函数()y f x =的单调减区间和函数图象的对称轴方程; (3)用“五点法”作出函数()y f x =在长度为一个周期区间上的图象24已知函数()sin()f x A x b ωϕ=++(其中0,0,0A ωϕπ>><<)一段图像如图所示. (1)求函数的解析式;(2)将函数()y f x =的图像向左平移12π个单位,再将所得图像上各点的横坐标扩大为原来的4倍,得到函数()y g x =的图像,求函数()g x 的单调递增区间.。

专题练 第13练 三角函数的图象与性质

专题练 第13练 三角函数的图象与性质

第13练 三角函数的图象与性质1.(2019·全国Ⅱ)下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2上单调递增的是( ) A .f (x )=|cos 2x | B .f (x )=|sin 2x | C .f (x )=cos|x |D .f (x )=sin|x |2.(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12 B .sin ⎝⎛⎭⎫x 2+π12 C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 3.(2018·全国Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4D .π 4.(2022·新高考全国Ⅰ)记函数f (x )=sin ⎝⎛⎭⎫ωx +π4+b (ω>0)的最小正周期为T .若2π3<T <π,且y =f (x )的图象关于点⎝⎛⎭⎫3π2,2中心对称,则f ⎝⎛⎭⎫π2等于( ) A .1 B.32 C.52D .35.(多选)(2020·新高考全国Ⅰ)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)等于( )A .sin ⎝⎛⎭⎫x +π3B .sin ⎝⎛⎭⎫π3-2x C .cos ⎝⎛⎭⎫2x +π6 D .cos ⎝⎛⎭⎫5π6-2x 6.(2022·全国甲卷)设函数f (x )=sin ⎝⎛⎭⎫ωx +π3在区间(0,π)上恰有三个极值点、两个零点,则ω的取值范围是( )⎣⎭36⎣⎭36C.⎝⎛⎦⎤136,83D.⎝⎛⎦⎤136,1967.(多选)(2022·新高考全国Ⅱ)已知函数f (x )=sin(2x +φ)(0<φ<π)的图象关于点⎝⎛⎭⎫2π3,0中心对称,则( )A .f (x )在区间⎝⎛⎭⎫0,5π12上单调递减 B .f (x )在区间⎝⎛⎭⎫-π12,11π12上有两个极值点 C .直线x =7π6是曲线y =f (x )的对称轴D .直线y =32-x 是曲线y =f (x )的切线 8.(2021·全国甲卷)已知函数f (x )=2cos(ωx +φ)的部分图象如图所示,则满足条件⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫-7π4⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫4π3>0的最小正整数x 为________.9.(2022·郑州模拟)若直线x =5π24是函数f (x )=sin(2x +φ)⎝⎛⎭⎫0<φ<π2图象的一条对称轴,则f (x )的单调递减区间为( ) A.⎣⎡⎦⎤5π12+2k π,17π12+2k π(k ∈Z ) B.⎣⎡⎦⎤-7π12+2k π,5π12+2k π(k ∈Z ) C.⎣⎡⎦⎤5π24+k π,17π24+k π(k ∈Z ) D.⎣⎡⎦⎤-7π24+k π,5π24+k π(k ∈Z ) 10.(2022·武汉质检)已知函数y =g (x )的图象与函数y =sin 2x 的图象关于直线x =π对称,将g (x )的图象向右平移π3个单位长度后得到函数y =f (x )的图象,则函数y =f (x )在x ∈⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-1,32⎣⎦211.(多选)(2022·重庆质检)已知函数f (x )=sin(ωx +φ)+1(ω>0,0<φ<π)为偶函数,其图象与直线y =2的两个交点的横坐标分别为x 1,x 2,若|x 1-x 2|的最小值为π,将f (x )的图象向右平移π6个单位长度,得到g (x )的图象,则下列说法正确的是( ) A .g (x )=sin ⎝⎛⎭⎫2x +π6+1 B.⎝⎛⎭⎫5π6,1是函数g (x )图象的一个对称中心 C .函数g (x )在⎝⎛⎭⎫π6,2π3上单调递减D .若方程g (x )=m 在⎣⎡⎦⎤0,π2上有两个不相等的实数根,则32≤m ≤2 12.(多选)(2022·重庆模拟)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则( )A .函数f (x )的最小正周期为πB .函数f (x )的图象关于直线x =-π12对称C .函数f (x )在(-2π,2π)内的所有零点之和为2π3D .将函数f (x )图象上各点的横坐标扩大为原来的2倍,再向右平移5π6个单位长度后得到函数y =cos x 的图象13.(2022·淮南模拟)已知函数f (x )=2sin ⎝⎛⎭⎫2x +π6-m ,x ∈⎣⎡⎦⎤0,7π6有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则m (x 1+2x 2+x 3)的范围为( ) A.⎣⎡⎦⎤5π6,5π3 B.⎣⎡⎭⎫5π6,5π3 C.⎣⎡⎦⎤5π3,10π3D.⎣⎡⎭⎫5π3,10π314.(多选)(2022·邵阳模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的零点按照由小到大的顺序依次构成一个公差为π2的等差数列,函数g (x )=f (x )+12f ′(x )的图象关于原点对称,则( )A .f (x )在⎝⎛⎭⎫0,π2上单调递增 B .∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤1+ 2C .把g (x )的图象向右平移π8个单位长度即可得到f (x )的图象D .若f (x )在[0,a )上有且仅有两个极值点,则a 的取值范围为⎝⎛⎦⎤7π8,11π815.(2022·洛阳质检)已知函数f (x )=A cos(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2满足下列条件:①f (x )+f ⎝⎛⎭⎫π2-x =0;②f (x )在区间⎝⎛⎭⎫0,π12与⎝⎛⎭⎫π12,π3上具有相反的单调性;③∀x 1,x 2∈R ,f (x 1)f (x 2)≤4,并且等号能取到.则f ⎝⎛⎭⎫5π36=________.16.(2022·晋中模拟)已知函数f (x )=sin ωx +3cos ωx (ω>0),且在⎝⎛⎭⎫π3,π2上单调递增,则满足条件的ω的最大值为________.[考情分析] 高考必考内容,重点考查三角函数的图象与性质及三角函数图象变换的正用、逆用,多以选择题和填空题的形式考查,也在解答题中出现,难度中等. 一、三角函数的图象及变换 核心提炼 图象变换 (先平移后伸缩)y =sin x ―――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ)――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ)―――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). (先伸缩后平移)y =sin x ――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin ωx ――――――――→向左(φ>0)或右(φ<0)平移|φ|ω个单位长度y =sin(ωx +φ)―――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 练后反馈题目 2 10 11 14 正误错题整理:二、三角函数的解析式 核心提炼确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b ,确定函数的最大值M 和最小值m , 则A =M -m 2,b =M +m 2.(2)求ω,确定函数的最小正周期T ,则可得ω=2πT .(3)求φ,常用的方法有:五点法、特殊点法. 练后反馈题目 5 8 15 正误错题整理:三、三角函数的性质 核心提炼三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.(2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 练后反馈题目 1 3 4 6 7 9 12 13 16 正误错题整理:1.[T5补偿](2022·成都模拟)函数f (x )=2sin(2x +φ)⎝⎛⎭⎫0<φ<π2的图象如图所示,现将y =f (x )的图象向右平移π6个单位长度,所得图象对应的函数解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π6B .y =2sin ⎝⎛⎭⎫2x +π6 C .y =2cos 2xD .y =2sin 2x2.[T7补偿](2022·宝鸡模拟)已知函数f (x )=sin 2x -2sin 2x ,给出下列结论,正确的是( ) A .函数f (x )的最小正周期是2π B .函数f (x )在区间⎣⎡⎦⎤π8,5π8上单调递减 C .函数f (x )的图象关于⎝⎛⎭⎫-π8,0对称 D .函数f (x )的图象可由函数y =2sin 2x 的图象向右平移π8个单位长度,再向下平移1个单位长度得到3.[T15补偿](2022·赤峰模拟)设函数f (x )=sin ⎝⎛⎭⎫ωx +π4+b (ω>0)的最小正周期为T ,若2π3<T <π,且函数y =f (x )的图象关于点⎝⎛⎭⎫3π2,2中心对称,将y =f (x )的图象向左平移φ(φ>0)个单位长度后关于y 轴对称,则φ的最小值为( ) A.π2 B.π10 C.3π10D .π 4.[T6补偿](2022·合肥模拟)已知函数f (x )=sin πωx -3cos πωx (ω>0)在(0,1)内恰有3个极值点和4个零点,则实数ω的取值范围是( ) A.⎝⎛⎦⎤103,236 B.⎣⎡⎭⎫103,133 C.⎝⎛⎦⎤176,133D.⎝⎛⎦⎤176,2365.[T11补偿](多选)已知函数f (x )=sin|x |-3|cos x |,下列关于函数f (x )的说法正确的有( )A .函数f (x )在⎣⎡⎦⎤7π6,3π2上单调递增 B .2π是函数f (x )的周期 C .函数f (x )的值域为[-2,1]D .函数f (x )在[-2π,2π]内有4个零点6.[T16补偿](2022·南宁模拟)f (x )=3cos 2x -sin x cos x 在[-m ,m ]上单调递减,则实数m 的最大值是________.。

专题05 三角函数的图象及性质(原卷版)

专题05 三角函数的图象及性质(原卷版)

专题05三角函数的图象及性质一、单选题1.(2022·江苏海安·高三期末)函数()cos()6f x x πω=+的部分图象如图,则下列选项中是其一条对称轴的是( )A .724x π= B .38x π= C .512x π=D .1124x π=【答案】C 【分析】由给定解析式及图象确定ω值的表达式,再逐项分析判断作答. 【详解】 依题意,点2(,0)3π是函数()cos()6f x x πω=+的图象对称中心,且2π3在函数()f x 的一个单调增区间内,则22,Z 362k k πππωπ+=-∈,即31k ω=-,Z k ∈, 令函数()f x 周期为T ,由图象知2233243T T ππ⎧<⎪⎪⎨⎪>⎪⎩,即有8493T ππ<<,而2T πω=,则有3924ω<<, 因此,393124k <-<,解得513612k <<,而Z k ∈,则1k =,2ω=,()cos(2)6f x x π=+, 由2,Z 6x n n ππ+=∈得函数()f x 图象的对称轴:,Z 212n x n ππ=-∈, 当0n =时,12x π=-,当1n =时,512x π=,当2n =时,1112π=x ,即选项A ,B ,D 不满足,选项C 满足.故选:C2.(2022·江苏海安·高三期末)通信卫星与经济发展、军事国防等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为h km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为r km ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan θ=( )A2rr h + B2rr h + C2hr h+ D2hr h+ 【答案】A 【分析】根据题意作出图形,由三角形的边角关系以及正弦定理结合同角三角函数基本关系、两角差的正弦公式即可求解. 【详解】如图:30AOB ∠=,CAD θ∠=,BC h =, 在Rt AOD 中3tan 303AD OA =⋅=,2cos303OA OD ==,所以BD OD OB r =-=-=,CD BC BD h =-=, 因为180903060ADO ∠=--=,所以18060120ADC ∠=-=,18012060ACD θθ∠=--=-,在ACD △中,由正弦定理可得:sin sin CD ADCAD ACD =∠∠即()33sin sin 60h θθ=-,所以1sin sin 2h θθθ⎛⎫-=⎪ ⎪⎝⎭⎝⎭, sin 2r hθθ+=,所以sin 2tan cos rr hθθθ==+, 故选:A.3.(2022·江苏如东·高三期末)正弦信号是频率成分最为单一的一种信号,因为这种信号的波形是数学上的正弦函数而得名,很多复杂的信号都可以通过多个正弦信号叠加得到,因而正弦信号在实际中作为典型信号或测试信号获得广泛应用.已知某个信号的波形可以表示为f (x )=sin x +sin2x +sin3x .则( ) A .f (x )的最大值为3 B .π是f (x )的一个周期 C .f (x )的图像关于(π,0)对称 D .f (x )在区间0,2π⎛⎫⎪⎝⎭上单调递增【答案】C 【分析】由函数解析式判断各选项中的性质可得. 【详解】sin y x =取最大值1时,22x k ππ=+,k Z ∈,sin 2y x =取最大值1时,,4x k k Z ππ=+∈,sin3y x =取最大值1时,2,36k x k Z ππ=+∈,三者不可能同时取得,因此sin sin 2sin 33y x x x =++<,A 错; ()sin()sin(22)sin(33)sin sin 2sin3f x x x x x x x ππππ+=+++++=-+-与()f x 不可能恒相等,π不可能是周期,B 错;()()()()()2sin 2πsin 42sin 63sin sin 2sin3f x x x x x x x f x πππ-=-+-+-=---=-,所以()f x 的图象关于点(,0)π对称,C 正确; 函数图象是连续的,而3sin sin sin0222f ππππ⎛⎫=++= ⎪⎝⎭,()sin sin sin ()66322f f πππππ=++=>,因此()f x 在(0,)2π上不可能递增,D 错误. 故选:C .4.(2022·江苏如皋·高三期末)已知1sin 32πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫+ ⎪⎝⎭的值为( )A .12B .12-C D 【答案】B 【分析】利用诱导公式及二倍角的正弦公式即可求解. 【详解】1sin 32πα⎛⎫+= ⎪⎝⎭2sin 2sin 2cos 212sin 63233πππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴+=+-=-+=--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22112sin 121322πα⎛⎫⎛⎫=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭,故选:B5.(2022·江苏常州·高三期末)函数()sin 2tan f x x x =+的最小正周期是( )A .π4B .π2C .πD .2π【答案】C 【分析】分别判断函数sin 2y x =和tan y x =的最小正周期,从而可得出答案. 【详解】解:因为函数sin 2y x =的最小正周期为22ππ=,函数tan y x =的最小正周期为π, 且()()()()πsin2πtan πsin 22πtan sin2tan f x x x x x x x +=+++=++=+, πT ∴=.故选:C.6.(2022·广东揭阳·高三期末)已知函数()3sin 23f x x π⎛⎫=+ ⎪⎝⎭,则该函数的增区间为( )A .()2,222k k k ππππ⎡⎤-++∈⎢⎥⎣⎦ZB .()52,266k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z C .()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z D .()7,1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z 【答案】C 【分析】利用整体代换法和复合函数的单调性求函数的增区间. 【详解】 令222232k x k πππππ-+≤+≤+,解得5,1212k x k k ππππ-+≤≤+∈Z ,所以函数的增区间是()5,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z . 故选:C.7.(2022·广东潮州·高三期末)己知1cos 3x =,则sin(2)2x π+=( )A .79-B .79C .89-D .89【答案】A 【分析】利用诱导公式和二倍角公式化简计算. 【详解】解:217sin(2)cos 22cos 121299x x x π+==-=⨯-=-.故选:A8.(2022·广东东莞·高三期末)若π(0,)2α∈,212tan cos αα=,则tan α=( )A .12B .1C .2D 【答案】B 【分析】根据22sin cos 1αα+=,和sin tan cos ααα=,即可得到22tan tan 1αα=+,进而求出结果. 【详解】因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 0α≠,所以222221sin cos tan 1cos cos ααααα+==+, 所以22tan tan 1αα=+,即()2tan 10α-=,所以tan 1α=, 故选:B.9.(2022·广东东莞·高三期末)已知函数()sin f x x =,()x x g x e e -=+,则下列结论正确的是( ) A .()()f x g x 是偶函数 B .|()|()f x g x 是奇函数 C .()|()|f x g x 是奇函数 D .|()()|f x g x 是奇函数【答案】C 【分析】先以偶函数定义去判断选项A 的正误,再以奇函数的定义去判断选项B 、C 、D 的正误.选项A: ()()(e e )sin x x f x g x x -=+()()(e e )sin()(e e )sin ()()x x x x f x g x x x f x g x ----=+-=-+=-,是奇函数,判断错误;选项B: sin (e e )|())|(x xf x xg x -=+sin()(e e )sin (e e )|()|()()()x x x x f x g x f x x x g x ----=-++==,是偶函数,判断错误;选项C: ()|()|e e sin x xg x f x x -=+e e sin()e ()|()|()e sin ()x x x x x xf xg x f x g x --+-+=---==-, 是奇函数,判断正确;选项D: (e |()()e s |)in x xf xg x x -+=(e e )sin()(e e )si |()()||()n ()|x x x x x f x g x f x x g x --+---==+, 是偶函数,判断错误. 故选:C10.(2022·广东罗湖·高三期末)已知3sin 35πα⎛⎫+=- ⎪⎝⎭,则cos 6πα⎛⎫-= ⎪⎝⎭( )A .45B .45-C .35D .35【答案】D 【分析】利用三角函数诱导公式将所求式子转化后即可得出结论. 【详解】3sin 35πα⎛⎫+=- ⎪⎝⎭,3cos cos sin 63235ππππααα⎛⎫⎛⎫⎛⎫∴-=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D.11.(2022·广东佛山·高三期末)已知1sin ,,0222ππαα⎛⎫⎛⎫+=∈- ⎪ ⎪⎝⎭⎝⎭,则tan α等于( )A .BC .D 【答案】A利用诱导公式求出cos α,再用平方关系求出sin α即可计算作答. 【详解】因1sin 22πα⎛⎫+= ⎪⎝⎭,则1cos 2α=,而,02πα⎛⎫∈- ⎪⎝⎭,于是得sin α=所以sin tan cos ααα== 故选:A12.(2022·湖南常德·高三期末)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,则下列四个结论中正确的是( )A .若,02x ⎡⎤∈-⎢⎥⎣⎦π,则函数f (x )的值域为11,2⎡⎤-⎢⎥⎣⎦B .点,03π⎛-⎫⎪⎝⎭是函数f (x )图象的一个对称中心C .函数f (x )在区间,02π⎡⎤-⎢⎥⎣⎦上是增函数D .函数f (x )的图象可以由函数cos 2y x =的图象向右平移12π个单位长度得到 【答案】A 【分析】结合五点法求得函数解析式,然后利用正弦函数性质确定单调性、对称中心、函数值域及三角函数图象变换判断即得. 【详解】由题图及五点作图法得1A =,512πωϕπ⋅+=,2332πωϕπ⋅+=, 则2ω=,6π=ϕ,故()sin 26f x x π⎛⎫+ ⎝=⎪⎭.由,02x ⎡⎤∈-⎢⎥⎣⎦π,得52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,故()1sin 21,62f x x π⎛⎫⎡⎤=+∈- ⎪⎢⎥⎝⎭⎣⎦,函数f (x )在区间,02π⎡⎤-⎢⎥⎣⎦上不是增函数,故A 正确,C 错误;∵当3x π=-时,262x ππ+=-,所以点,03π⎛-⎫⎪⎝⎭不是函数f (x )图象的一个对称中心,故B 错误;由cos 2sin 22y x x π⎛⎫==+ ⎪⎝⎭,将函数cos 2y x =的图象向右平移12π个单位长度得到sin 2122y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦sin 23x π⎛⎫=+ ⎪⎝⎭的图象,故D 错误.故选:A .13.(2022·湖南娄底·高三期末)将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象,若()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减,则ω的最大值为( )A .14B .34C .12D .1【答案】B 【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭,由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+,结合函数()g x 的单调性可得出关于ω的不等式,由此可得出ω的最大值. 【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭,所以4444x πωπππωωπ<-+<+, 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减,所以4πωππ+≤,304ω<≤,所以ω的最大值为34.故选:B.14.(2022·湖北武昌·高三期末)已知函数()y g x =的图象与函数sin 2y x =的图象关于直线x π=对称,将()g x 的图象向右平移3π个单位长度后得到函数()y f x =的图象,则函数()y f x =在0,2x π⎡⎤∈⎢⎥⎣⎦时的值域为( )A .⎡⎢⎣⎦ B .1⎡-⎢⎣⎦C .1⎡⎤⎢⎥⎣⎦D .[]01,【答案】C 【分析】由对称性先求出()g x 的解析式,再由平移得出()y f x =的解析式,再由正弦函数的性质得出其值域. 【详解】设(),x y 为()g x 的图像上一点,则点(),x y 关于直线x π=对称的点为()2,x y π- 由题意点()2,x y π-在函数sin 2y x =的图象上,则()sin 22sin 2y x x π=-=-所以()sin 2g x x =-,则()2sin 2sin 233f x x x ππ⎛⎫⎛⎫=--=--⎪ ⎪⎝⎭⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,223323,x πππ⎡⎤-∈⎢⎥⎣⎦-,则2sin 23x π⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦所以()1f x ≤≤ 故选:C15.(2022·湖北江岸·高三期末)计算)tan 70cos10201︒︒︒-=( )A .1B .﹣1C .12D .12-【答案】B 【分析】根据诱导公式、三角恒等变换、二倍角公式可得结果,尽可能地化简为同角的三角函数值 【详解】)))()tan 70cos10201cot 20cos10201cos 20cos101sin 20cos 20cos10sin 20cos1020cos 20sin 20cos102sin10sin 20sin 20sin 201︒︒︒-=︒︒︒-︒⎫=︒⎪︒⎭︒=︒︒⎝⎭︒=︒-︒︒︒=-︒︒-︒=︒=-故选:B16.(2022·湖北江岸·高三期末)下列四个函数中,以π为最小正周期,其在,2ππ⎛⎫⎪⎝⎭上单调递减的是( )A .sin y x =B .sin y x =C .cos 2y x =D .sin 2y x =【答案】A 【分析】对于A ,sin y x =符合题中要求,对于B, sin y x =不是周期函数,对于C ,D ,sin 2y x =,cos 2y x =在,2ππ⎛⎫⎪⎝⎭上都不是单调函数,由此可判断正确答案. 【详解】sin y x =的最小正周期为π,在,2ππ⎛⎫⎪⎝⎭上单调递减,符合题意,故A 正确;sin y x =不是周期函数,故B 错误;cos 2y x =中,,2x ππ⎛⎫∈ ⎪⎝⎭,则2π,2πx,故cos 2y x =中在,2x ππ⎛⎫∈ ⎪⎝⎭时不是单调函数,故C 错误;sin 2y x =,,2x ππ⎛⎫∈ ⎪⎝⎭,则2π,2πx,故sin 2y x =中在,2x ππ⎛⎫∈ ⎪⎝⎭时不是单调函数,故D 错误,故选:A.17.(2022·湖北襄阳·高三期末)已知tan 226θπ⎛⎫-= ⎪⎝⎭,则cos 3πθ⎛⎫-= ⎪⎝⎭( )A .35B .35 C .45D .45-【答案】B 【分析】利用倍角公式可得cos 3πθ⎛⎫- ⎪⎝⎭22cos sin 2626θπθπ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,再利用弦化切,即求.【详解】∵tan 226θπ⎛⎫-= ⎪⎝⎭,∴cos 3πθ⎛⎫-= ⎪⎝⎭22cos 2cos sin 262626θπθπθπ⎛⎫⎛⎫⎛⎫-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222cos sin 2626cos sin 2626θπθπθπθπ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭221tan 1426141tan 26θπθπ⎛⎫-- ⎪-⎝⎭==+⎛⎫+- ⎪⎝⎭35=-.18.(2022·湖北省鄂州高中高三期末)已知tan 2θ=-,则sin sin cos θθθ=+( )A .2B .12-C .12D .2-【答案】A 【分析】以齐次式法去求值即可解决. 【详解】sin sin tan 2cos 2sin cos sin cos tan 121cos cos θθθθθθθθθθθ-====++-++ 故选:A19.(2022·湖北·高三期末)若点55sin ,cos 66M ππ⎛⎫ ⎪⎝⎭在角α的终边上,则cos2=α( )A .12-B .12C. D【答案】A 【分析】先将点55sin ,cos 66M ππ⎛⎫ ⎪⎝⎭化简,得1,2M ⎛ ⎝⎭,结合同角三角函数先求出cos α,再结合二倍角公式求出cos2α即可【详解】 由55sin ,cos66M ππ⎛⎫⎪⎝⎭得1,2M ⎛ ⎝⎭, 则1cos 2α=,21cos22cos 12αα=-=-.故选:A.20.(2022·山东省淄博实验中学高三期末)已知函数()() 2sin 10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭,()1f α=-,()3f β=,若αβ-的最小值为32π,且的图像关于点,14π⎛⎫ ⎪⎝⎭对称,则函数()f x 的所有对称轴中,离原点最近的对称轴方程是( ) A .34x π=-B .2x π=-C .12x π=D .4x π=【分析】根据题意分别求出ω与ϕ,即求出()f x 的解析式,再求出()f x 的对称轴,找到离原点最近的对称轴方程即可. 【详解】由()1f α=-,()3f β=,αβ-的最小值为32π知, 3T π=,223T πω==, ()22sin 13f x x ϕ⎛⎫∴=++ ⎪⎝⎭.()f x 的图像关于点,14π⎛⎫⎪⎝⎭对称, 2()2sin()11sin()04346f πππϕϕ∴=⨯++=⇒+=2πϕ<6πϕ∴=-.()22sin 136f x x π⎛⎫∴=-+ ⎪⎝⎭.()f x 的对称轴为2=,362x k k z πππ-+∈.3,2x k k z ππ⇒=+∈.当1k =-时,2x π=-是离原点最近的对称轴方程. 故选:B.21.(2022·山东青岛·高三期末)已知角α的终边上一点P 的坐标为55sin ,cos 66ππ⎛⎫⎪⎝⎭,则角α的最小正值为( ) A .6πB .23π C .76π D .53π 【答案】D 【分析】先根据角α终边上点的坐标判断出角α的终边所在象限,然后根据三角函数的定义即可求出角α的最小正值. 【详解】 因为5sin06π>,5cos 06π<,所以角α的终边在第四象限, 根据三角函数的定义,可知5sin cos6πα==, 故角α的最小正值为5233ππαπ=-=. 故选:D .22.(2022·山东枣庄·高三期末)已知圆锥的侧面展开图是一个半径为3,圆心角为120°的扇形,则该圆锥的体积为( ).A.2πB .CD .π【答案】C 【分析】设此圆锥的底面半径为r ,高为h ,母线长为l ,根据底面圆周长等于展开扇形的弧长,建立关系式解出r ,再根据勾股定理,即可求出此圆锥高,进而求得体积. 【详解】设此圆的底面半径为r ,高为h ,母线长为l , ∵圆锥的侧面展开图是一个半径为3,圆心角为23π的扇形, ∴3l =,又2223r l πππ=⨯=,解得1r =,因此,此圆锥的高h =圆锥的体积为21133V r h ππ==⨯ 故选:C .23.(2022·山东枣庄·高三期末)已知30.4tan 1,tan0.1,a b c πππ⎛⎫=+-== ⎪⎝⎭,则( ).A .b c a <<B .c a b <<C .a c b <<D .a b c <<【答案】D 【分析】 由3010.12ππ<-<<,得到3tan(1)tan0.1π-<,令()tan f x x x =-,利用导数求得()f x 在(0,1)上单调递增,得到()0f x >,得出tan ,(0,1)x x x >∈,进而得到b c < ,即可求解. 【详解】因为3010.12ππ<-<<,且tan y x =在(0,)2π为单调递增函数, 所以33tan(1)tan(1)tan0.1πππ+-=-<,即a b <,令()tan ,(0,1)f x x x x =-∈,可得()211cos f x x'=-, 当(0,1)x ∈时,21cos y x=单调递减,所以()f x '在(0,1)单调递增,且()00f '=, 所以()0f x '>在(0,1)上恒成立,所以()f x 在(0,1)上单调递增,且()00f =, 所以()0f x >,即tan 0x x ->,即tan ,(0,1)x x x >∈,所以0.1tan0.1>, 又因为0.40.1c π=>,所以a b c <<.故选:D.24.(2022·山东枣庄·高三期末)已知sin 6πα⎛⎫-= ⎪⎝⎭,则4cos 23πα⎛⎫-= ⎪⎝⎭( ). A .59- B .59 C .13- D .13【答案】A 【分析】利用三角恒等变换公式化简求值得解. 【详解】解:2cos 2cos(2)cos(2)[12sin ()]3336πππππαααα⎛⎫-+-=--=--=--- ⎪⎝⎭25(12)99=--⋅=-.故选:A25.(2022·山东枣庄·高三期末)θ为第三或第四象限角的充要条件是( ). A .sin 0<θ B .cos 0<θC .sin tan 0θθ<D .cos tan 0θθ<【答案】D 【分析】第三或第四象限角,不含终边在y 轴负半轴. 【详解】对于A :第三或第四象限角,以及终边在y 轴负半轴,故A 错误; 对于B :第二或第三象限角,以及终边在x 轴负半轴,故B 错误; 对于C :第二或第三象限角,故C 错误; 对于D :第三或第四象限角,故D 正确.故选:D26.(2022·山东莱西·高三期末)要得到cos 34y x π⎛⎫=- ⎪⎝⎭的图象,只需将sin3y x =的图象( )A .向左平行移动4π个单位长度 B .向右平行移动12π个单位长度 C .向右平行移动712π个单位长度D .向左平行移动512π个单位长度 【答案】C 【分析】首先利用诱导公式统一函数名,即3sin 3cos 32y x x π⎛⎫==+⎪⎝⎭,然后根据平移变换即可求解. 【详解】解:因为函数37sin3cos 3cos 32124y x x x πππ⎡⎤⎛⎫⎛⎫==+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以要得到cos 34y x π⎛⎫=- ⎪⎝⎭的图象,只需将sin3y x =的图象向右平行移动712π个单位长度,故选:C.27.(2022·山东青岛·高三期末)已知04παβ<<<,则下列大小关系中正确的是( )A .cos cos (sin )(sin )αβαα>B .sin sin log cos log cos αααβ>C .sin sin (cos )(cos )αβαβ>D .sin cos (cos )(sin )ββαα< 【答案】C 【分析】A.构造函数()sin xy α=,利用其单调性比较大小; B.构造函数sin log y x α=,利用其单调性比较大小;C.构造函数()cos xy α=及函数sin y x β=,利用其单调性比较大小;D.将sin cos (cos )(sin )ββαα<转化为cos tan log sin αβα>,判断cos tan ,log sin αβα的大小关系即可. 【详解】04παβ<<<,则0sin cos 1αα<<<,且cos cos αβ>,sin sin αβ<A.因为函数()sin xy α=在R 上单调递减,故cos cos sin sin αβαα<,A 错误;B.因为函数sin log y x α=在()0,∞+上单调递减,故sin sin log cos log cos αααβ<,B 错误;C.因为函数()cos xy α=在R 上单调递减,函数sin y x β=在()0,∞+上单调递增,sin sin sin (cos )(cos )(cos )αββααβ>>,C 正确;D.sin cos sin ln (cos )(sin )(cos )cos ln(sin )ββαααβαβ⇔<<cos ln(sin )tan log sin cos (c sin l s )n o αααβαββ⇔>⇔> 04πβ<<,0tan 1β∴<<又cos cos log sin log cos 1αααα>=,cos tan log sin αβα∴<,D 错误; 故选:C.28.(2022·山东德州·高三期末)若函数()cos f x x x ωω-,0>ω,x ∈R ,又()12f x =,()20f x =,且12x x -的最小值为3π8,则ω的值为( )A .43B .83C .4D .163【答案】A 【分析】利用辅助角公式化简函数()y f x =的解析式,由12x x -的最小值为函数()y f x =的最小正周期的14,可求得函数()y f x =的最小正周期,进而可求得正数ω的值. 【详解】()()cos 2sin 06πωωωω⎛⎫=-=-> ⎪⎝⎭f x x x x ,所以()22sin 26πω⎛⎫-≤=-≤ ⎪⎝⎭f x x ,因为12x x -的最小值为函数()y f x =的最小正周期的14,所以,函数()y f x =的最小正周期为33482ππ=⨯=T , 因此,222433ππωπ⨯===T . 故选:A29.(2022·山东济南·高三期末)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则( )A .()2sin 32f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 23f x x π⎛⎫=- ⎪⎝⎭C .()2sin 6f x x π⎛⎫=+ ⎪⎝⎭D .()12sin 26f x x π⎛⎫=- ⎪⎝⎭【答案】A 【分析】由函数()()sin f x A x ωϕ=+的部分图象,即可求出,,A ωϕ的值,即可求出结果. 【详解】由图象可知,327=4126πππω⎛⎫⨯-- ⎪⎝⎭,所以2ω=, 又()f x 过点7,212π⎛⎫- ⎪⎝⎭,所以2A =,且772sin 221212f ππϕ⎛⎫⎛⎫=⨯+=- ⎪⎪⎝⎭⎝⎭即7sin 16πϕ⎛⎫+=-⎪⎝⎭,所以73=2,62k k ππϕπ++∈Z ,即=2,3k k πϕπ+∈Z , 又2πϕ<,所以=3πϕ,所以()2sin 32f x x π⎛⎫=+ ⎪⎝⎭.故选:A.30.(2022·山东临沂·高三期末)已知πsin (,π)2αα=∈,则cos()6πα-=( )A .-1B .0C .12D 【答案】B 【分析】先根据πsin (,π)2αα=∈求出2π3α=,进而求出πcos()6α-∵πsin (,π)2αα=∈,∴2π3α=,故ππcos()cos 0.62α-== 故选:B31.(2022·河北深州市中学高三期末)函数()2sin 1x f x x x =++在,22ππ⎡⎤-⎢⎥⎣⎦上的图象为( ) A . B .C .D .【答案】D 【分析】利用函数的奇偶性排除部分选项,再由函数的值域判断. 【详解】∵()()f x f x -=,∴()f x 为偶函数,故排除A ,B .∵sin 1x ≤,211x x ++≥,∴()1f x <,故排除C , 故选:D .32.(2022·河北深州市中学高三期末)235cos sinsin 242412πππ=( )A .116BC .18D【分析】利用诱导公式及二倍角的正弦公式计算可得; 【详解】 解:235cos sinsin cos sin sin 2424122424212ππππππππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭ 111cossincossin cos sin 24241221212468ππππππ====. 故选:C33.(2022·河北唐山·高三期末)为了得到函数sin 2y x =的图像,只需把函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图像( )A .向左平移2π个单位 B .向右平移2π个单位 C .向左平移4π个单位 D .向右移4π个单位 【答案】D 【分析】先对函数sin 22y x π⎛⎫=+ ⎪⎝⎭的解析式进行整理,再结合三角函数的平移规律即可得到结论.【详解】因为:sin 2sin 224y x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.所以:函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位,可得到函数sin 2y x =的图象. 故选:D.34.(2022·河北保定·高三期末)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为2πB .()510log 42f <<C .()f x 的图象关于点,03π⎛-⎫⎪⎝⎭对称D .()451log log 23f f ⎛⎫< ⎪⎝⎭【答案】D根据三角函数的周期性定义和三角函数的对称性的概念,即可判断选项A ,C 是否正确;当02x π<<时,易得1()f x ⎤⎥⎝⎦∈,再根据50log 412π<<<,即可判断B 是否正确;由函数sin y x =的单调性,可知()f x 在,36ππ⎛⎫- ⎪⎝⎭上单调递增,再根据4511log log 232613ππ-<<<<-<,由单调性新即可判断D 是否正确. 【详解】因为函数()()sin =sin =sin =333f x x x x f x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()f x 的最小正周期为π,故A 错误; 当02x π<<时,5,336x πππ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以1sin ,132x π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,所以()1,12f x ⎛⎤∈ ⎥⎝⎦,而50log 412π<<<,所以()51log 412f <<,故B 错误; 若()f x 的图象关于点,03π⎛-⎫⎪⎝⎭对称,则()23f x f x π⎛⎫-=-- ⎪⎝⎭, 又22sin =sin 3333f x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,()sin =sin =sin 333f x x x x πππ⎛⎫⎛⎫⎛⎫--=--+----- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()23f x f x π⎛⎫-≠-- ⎪⎝⎭,故C 错误;由于函数sin y x =的图象是将函数sin y x =在x 轴下方的图象翻折到x 轴上方,所以可知sin y x =在,,2k k k πππ⎛⎫+∈⎪⎝⎭Z 上单调递增, 令,32k x k k ππππ<+<+∈Z ,所以()f x 在区间,,36k k k ππππ⎛⎫-++∈ ⎪⎝⎭Z 上单调递增,所以()f x 在,36ππ⎛⎫- ⎪⎝⎭上单调递增,又44511log 3log log 123263ππ<-=<<<<--,所以()451log log 23f f ⎛⎫< ⎪⎝⎭,故D 正确.故选:D.35.(2022·山东淄博·高三期末)cos102cos102sin10-=( )ABCD .2【答案】A 【分析】利用二倍角的正弦公式以及两角差的正弦公式化简可得结果. 【详解】()cos102sin 3010cos10cos104sin10cos10cos102sin 202cos102sin102sin102sin102sin10-----===()cos10cos103sin1032sin10--==.故选:A.36.(2022·湖北·恩施土家族苗族高中高三期末)已知11tan ,tan ,37αβ==-且,(0,)αβπ∈,则2αβ-=( )A .4πB .4π-C .34π-D .34π-或4π 【答案】C 【分析】根据给定条件利用三角恒等变换求出tan 2()αβ-的值,再判断2αβ-的范围即可得解. 【详解】因11tan ,tan 37αβ==-,则22122tan 33tan 211tan 41()3ααα⨯===--, 31()tan 2tan 47tan(2)1311tan 2tan 1()47αβαβαβ----===++⨯-, 因,(0,)αβπ∈,tan 0,tan 0αβ><,则0,22ππαβπ<<<<,又tan 20α>,有022πα<<,于是得20παβ-<-<,因此,324παβ-=-, 所以324παβ-=-. 故选:C37.(2022·湖南常德·高三期末)若1tan 5α=,则cos2α的值为( ) A .1213-B .126-C .1213D .2526【答案】C 【分析】根据二倍角公式以及商数关系即可求出. 【详解】2222222211cos sin 1tan 125cos 2cos sin 1tan 13115ααααααα⎛⎫- ⎪--⎝⎭====++⎛⎫+ ⎪⎝⎭. 故选:C .38.(2022·江苏扬州·高三期末)已知ππsin 136αα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,则cos2=α( )A.B .12CD【答案】B 【分析】化简已知条件,求得sin α,进而求得cos2α. 【详解】由题意可知,11sin cos 122αααα⎫-=⎪⎪⎭, 即2sin 1α=,解得1sin 2α=, 所以2211cos 212sin 1222αα⎛⎫=-=-⨯= ⎪⎝⎭.故选:B二、多选题39.(2022·江苏扬州·高三期末)已知函数()cos f x x x ωω+(ω>0),下列说法中正确的有( )A .若ω=1,则f (x )在(0,)2π上是单调增函数B .若()()66f x f x ππ+=-,则正整数ω的最小值为2C .若ω=2,则把函数y =f (x )的图象向右平移6π个单位长度,所得到的图象关于原点对称 D .若f (x )在(0,)π上有且仅有3个零点,则1723<66ω≤ 【答案】BD 【分析】化简函数f (x )的表达式,再逐一分析各个选项中的条件,计算判断作答. 【详解】依题意,()2sin()6f x x πω=+,对于A ,1ω=,()2sin()6f x x π=+,当(0,)2x π∈时,有2(,)663x πππ+∈,因sin y x =在2(,)63ππ上不单调,所以()2sin()6f x x π=+在(0,)2π上不单调,A 不正确;对于B ,因()()66f x f x ππ+=-,则6x π=是函数()f x 图象的一条对称轴,,Z 662k k πππωπ+=+∈,整理得62k ω=+,而0>ω,即有N k *∈,min 2ω=,B 正确;对于C ,2ω=,()2sin(2)6f x x π=+,依题意,函数()2sin[2()]2sin(2)6666y f x x x ππππ=-=-+=-,这个函数不是奇函数,其图象关于原点不对称,C 不正确; 对于D ,当(0,)x π∈时,(,)666x πππωωπ+∈+,依题意,3<46ππωππ+≤,解得1723<66ω≤,D 正确.故选:BD40.(2022·江苏通州·高三期末)已知函数()3sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭(A >0,0<φ<π)的图象如图所示,则( )A .π4ϕ=B .π6f x ⎛⎫- ⎪⎝⎭是偶函数C .当ππ,3x ⎡⎤∈--⎢⎥⎣⎦时,f (x )的最大值为1D .若()()()12122f x f x x x ⋅=≠,则12x x +的最小值为π【答案】AC 【分析】根据图象求得,A ϕ,根据三角函数的奇偶性、最值等知识对选项逐一分析,从而确定正确选项. 【详解】由图可知()35π5π3πsin 12ππ264240π0πk k Z ϕϕϕϕϕ⎧⎛⎫⎧⨯+=-+=+⎪⎪ ⎪⇒∈⇒=⎝⎭⎨⎨⎪⎪<<<<⎩⎩,A 选项正确. ()3πsin 24f x A x ⎛⎫=+ ⎪⎝⎭,()π0sin14f A A ==⇒= 所以()3π24f x x ⎛⎫=+ ⎪⎝⎭.π3ππ362642f x x x ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦为奇函数,B 选项错误.π33π53πππ,π,π32224244x x x -≤≤--≤≤--≤+≤-,3π3π1sin 124224x x ⎛⎫⎛⎫-≤+≤+≤ ⎪ ⎪⎝⎭⎝⎭,C 选项正确.()3π24f x x ⎛⎫⎡=+∈ ⎪⎣⎝⎭, 若()()()12122f x f x x x ⋅=≠,则11223ππ3ππ2π,2π242242x k x k +=++=+,12,Z k k ∈,11224π4ππ,π3636x k x k =+=+,12,Z k k ∈, 12124π4πππ3636x x k k +=+++()124ππ33k k =++, 当120k k +=时,12x x +取得最小值为π3,D 选项错误.故选:AC41.(2022·江苏宿迁·高三期末)将函数()()sin f x A x ωϕ=+的图象向左平移6π个单位长度后得到()y g x =的图象如图,则( )A .()f x 为奇函数B .()f x 在区间,62ππ⎛⎫⎪⎝⎭上单调递增C .方程()1f x =在()0,2π内有4个实数根D .()f x 的解析式可以是()2sin 23f x x π⎛⎫=- ⎪⎝⎭【答案】BC 【分析】利用图象可求得函数()g x 的解析式,利用函数图象平移可求得函数()f x 的解析式,可判断D 选项;计算()0f 可判断A 选项;利用正弦型函数的单调性可判断B 选项;当()0,2x π∈时,求出方程()1f x =对应的223x π-可能取值,可判断C 选项. 【详解】由图可知,函数()g x 的最小正周期为453123T πππ⎛⎫=+=⎪⎝⎭,22Tπω∴==,()max 2A g x ==, 所以,()()2sin 2g x x ϕ=+,则552sin 2126g ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,可得5sin 16⎛⎫+= ⎪⎝⎭πϕ, 所以,()52Z 62k k ππϕπ+=+∈,得()2Z 3k k πϕπ=-∈, 因为2πϕ<,则3πϕ=-,所以,()2sin 23g x x π⎛⎫=- ⎪⎝⎭,将函数()g x 的图象向右平移6π个单位可得到函数()f x 的图象,故()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.对于A 选项,因为()202sin 03f π⎛⎫=-≠ ⎪⎝⎭,故函数()f x 不是奇函数,A 错;对于B 选项,当63x ππ<<时,22033x ππ-<-<,故函数()f x 在区间,62ππ⎛⎫⎪⎝⎭上单调递增,B 对;对于C 选项,由()22sin 213f x x π⎛⎫=-= ⎪⎝⎭,可得21sin 232x π⎛⎫-= ⎪⎝⎭, 当()0,2x π∈时,22102333x πππ-<-<,所以,2513172,,,36666x πππππ⎧⎫-∈⎨⎬⎩⎭,C 对; 对于D 选项,()22sin 22sin 233f x x x ππ⎛⎫⎛⎫=-≠- ⎪ ⎪⎝⎭⎝⎭,D 错.故选:BC.42.(2022·江苏如皋·高三期末)已知函数2cos sin cos 1()()f x x x x =+-,则下列说法正确的是( )A .5()()8f x f π≥B .()()88f x f x ππ+=-C .()()088f x f x ππ++-=D .()1)(2f f >【答案】ABD 【分析】根据给定条件利用二倍角公式、辅助角公式化简函数()f x ,再逐项分析判断作答. 【详解】依题意,2()2sin cos 2cos 1sin 2cos2)4f x x x x x x x π=+-=++,对于A ,553())8842f ππππ=⨯+==min ()f x = 即R x ∀∈,5()()8f x f π≥,A 正确;对于B ,()sin(2)282f x x x ππ+=+=,()2)82f x x ππ-=-2x =,即()()88f x f x ππ+=-,B 正确;对于C ,取8x π=,()()()(0)20884f x f x f f πππ++-=+=≠,C 不正确;对于D ,因3244πππ<+<,34224πππ<+<,则10))2((f f >>,D 正确. 故选:ABD43.(2022·广东潮州·高三期末)已知函数()sin cos (*)n n f x x x n N =+∈,则( ) A .对任意正奇数n ,f (x )为奇函数B .当n =3时,f (x )在[0,2π]上的最小值为2C .当n =4时,f (x )的单调递增区间是[,]()4Z k k k πππ-+∈D .对任意正整数n ,f (x )的图象都关于直线4x π=对称【答案】BD 【分析】通过判断(0)f 的值,判断A 的正误;利用函数的导数判断函数的单调性,求解最大值,判断B 的正误;求出函数的单调增区间判断C 的正误;判断()()2f x f x π-=,判断D 的正误.【详解】解:对于A ,取1n =,则()sin cos f x x x =+,从而(0)10f =≠,此时()f x 不是奇函数,则A 错误; 对于B ,当3n =时,22()3sin cos 3cos sin 3sin cos (sin cos )f x x x x x x x x x '=-=-,当x [0,)4π∈时,()0f x '<;当(,]42x ππ∈时,()0f x '>.所以()f x 在[0,)4π上单调递减,在(,]42ππ上单调递增,所以()f x 的最小值为33()4f π=+=B 正确;对于C ,当4n =时,4422222211cos413()sin cos (sin cos )2sin cos 1sin 21cos42444x f x x x x x x x x x -=+=+-=-=-=+, 令242k x k πππ-+≤≤,则4,442k k x k Z πππ-+≤≤∈, 所以()f x 的递增区间为[,]()422k k k Z πππ-+∈,则C 错误;对于D ,因为()sin ()cos ()cos sin ()222n n n n f x x x x x f x πππ-=-+-=+=,所以()f x 的图象关于直线4x π=对称,则D 正确; 故选:BD.44.(2022·广东东莞·高三期末)已知函数()sin cos f x a x b x =+,若()0f x ∈R 都有()3f x f π⎛⎫≤ ⎪⎝⎭,则下列结论正确的是( )A .()s 3f x x π⎛⎫=+ ⎪⎝⎭B .()6πf x x ⎛⎫=+ ⎪⎝⎭C .()f x 的图象向左平移 6π个单位后,图象关于原点对称D .()f x 的图象向右平移2 3π个单位后,图象关于y 轴对称 【答案】BD 【分析】先根据条件()0f =b 值,根据()3f x f π⎛⎫≤ ⎪⎝⎭可知3f π⎛⎫⎪⎝⎭为函数最大值,据此列出关于a 的方程,求出a 值,得到函数f(x)的解析式,结合辅助角公式和诱导公式,可判断A 、B 的正误,再根据三角函数图象的变换规律,可判断B 、D 的正误. 【详解】()sin cos ,(0)f x a x b x f =+=,b ∴=,又对任意x ∈R 都有()3f x f π⎛⎫≤ ⎪⎝⎭,则()3f π为()f x 的最大值,()3f π∴== ,整理得:2(3)0a -= ,则3a = ,所以()3sin ))63f x x x x x ππ==+=- ,因此A 选项错误,B 正确;()f x 的图象向左平移6π个单位后得到的图象对应的函数解析式为:()))663g x x x πππ=++=+ ,该函数图象不关于原点对称,故C 错误;()f x 的图象向右平移23π个单位后,得到函数2())63x x x ππϕ=+-=- 的图象, 该图象关于y 轴对称,故D 正确, 故选:BD45.(2022·广东汕尾·高三期末)设函数1,0()cos ,0x xx f x e x x -⎧>⎪=⎨⎪≤⎩,下列四个结论中正确的是( )A .函数()f x 在区间[),1π-上单调递增B .函数()y f x x =-有且只有两个零点C .函数()f x 的值域是[]1,1-D .对任意两个不相等正实数12,x x ,若12()()f x f x =,则122x x +> 【答案】CD 【分析】利用导数判断0x >时,()y f x =的单调性,根据单调性可求值域,然后结合0x ≤时,()cos f x x =,从而可判断选项A ,C ;首先利用导数判断0x ≤时,()()cos g x f x x x x =-=-的零点个数;然后再利用单调性判断0x >时,()1()ex x g x f x x x -=-=-的零点个数,从而可判断选项B ;不妨设1201x x <<<,根据题意把要证明122x x +>,转化为证明()()112f x f x ->;然后构造函数112()(01)ee x xxxx x ϕ---=-<<,利用导数判断函数的单调性即可证明,从而判断选项D. 【详解】 当0x >时,1()e x x f x -=,所以()11211e e 1()e e x x x x x x f x -----='-=,所以当01x <<时,()0,()f x y f x '>=在(0,1)单调递增, 当1x >时,()0,()f x y f x '<=在(1,)+∞单调递减, 故0x >时,0()(1)1f x f <≤=,又当0x ≤时,()cos f x x =,所以(0)1f =,1()1f x -≤≤, 所以函数()f x 在[,0),(0,1)π-单调递增,所以A 错误,C 正确; 当0x ≤时,令()()cos g x f x x x x =-=-,则()sin 10g x x =-'-≤, 所以()cos g x x x =-在(,0]-∞单调递减,所以当0x ≤时,()(0)1g x g ≥=, 所以函数()y f x x =-在(,0]-∞上没有零点; 当0x >时,()1()ex x g x f x x x -=-=-,所以只需求函数11()1e x h x -=-在(0,)+∞上零点个数,又因为11()1ex h x -=-在(0,)+∞上单调递减,且111(1)10e h -=-=, 所以函数()y f x x =-在(0,)+∞上只有一个零点. 所以函数()y f x x =-有且仅有一个零点,所以B 错误;当0x >时,若()()12f x f x =,因为函数()f x 在(0,1)单调递增,在()1,+∞单调递减, 所以不妨设1201x x <<<,则1122x <-<,所以要证122x x +>,只需证122x x -<,即只需证()()122f x f x ->, 又因为()()12f x f x =,所以只需证()()112f x f x ->.因为()()111111111112111222x x x x x x x x f x f x ee e e ---------=-=-, 所以令函数112()(01)ee x xx xx x ϕ---=-<<, 则()22111(1)e e 11()0e e e xx x x x x x x ϕ--+----=-'=>,所以112()e e x xx xx ϕ---=-在(0,1)单调递增,所以1111121()(1)0e e x ϕϕ---<=-=, 即112()0(01)ee x xxxx x ϕ---=-<<<恒成立,所以1()0x ϕ<, 即()()11111111220x x x x f x f x e e -----=-<,所以()()112f x f x ->, 从而122x x +>成立. 所以选项D 正确. 故选:CD.46.(2022·广东清远·高三期末)将函数1cos (0)6⎛⎫=+> ⎪⎝⎭y x πωω图象上所有的点向右平移6π个单位长度后,得到函数2cos(2)||2⎛⎫=+< ⎪⎝⎭y x πϕϕ的图象,若函数12()f x y y =+,则( )A .()f x 的最小值是B .()f x 的图象关于直线4x π=对称C .()f x 的最小正周期是πD .()f x 的单调递增区间是,()2k k k πππ⎡⎤-∈⎢⎥⎣⎦Z【答案】ACD 【分析】根据题意先求出2y ,进而求出()f x ,然后通过两角和与差的余弦公式进行化简,最后结合三角函数值的图象和性质求得答案. 【详解】由题意知,12cos 2,cos 2cos 26666⎡⎤⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦y x y x x ππππ,则11()cos 2cos 2cos 2sin 2cos 2sin 26622f x x x x x x x ππ⎛⎫⎛⎫=++-=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭2x =,()f x 的最小值是π,故A ,C 正确;令2()x k k π=∈Z ,得()2k x k π=∈Z ,若24k ππ=,则12=∉Z k ,故B 错误;令222()-≤≤∈Z k x k k πππ,得()2-≤≤∈Z k x k k πππ,即()f x 的单调递增区间是,()2k k k πππ⎡⎤-∈⎢⎥⎣⎦Z ,故D 正确. 故选:ACD.47.(2022·广东汕尾·高三期末)以下关于函数()sin 22f x x x =的命题,正确的是( ) A .函数()y f x =的最小正周期为πB .点,012π⎛⎫⎪⎝⎭是函数()y f x =图象的一个对称中心C .直线3x π=的函数()y f x =图象的一条对称轴D .将函数()y f x =的图象向右平移6π个单位后得到的函数的图象关于原点对称 【答案】AD 【分析】整理可得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,代入周期公式,可判断A 的正误,根据212f π⎛⎫= ⎪⎝⎭可判断B 的正误,根据03f π⎛⎫= ⎪⎝⎭可判断C 的正误,求得平移后的解析式,可判断D 的正误,即可得答案. 【详解】由题意得()sin 222sin 23f x x x x π⎛⎫=+=+ ⎪⎝⎭,所以最小正周期22T ππ==,所以A 对. 2sin 2212123πππf ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以直线12x π=是函数()f x 图象的一条对称轴,所以B 错.2sin 20333πππf ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以点,03π⎛⎫ ⎪⎝⎭是函数()f x 图象的一个对称中心,所以C 错.将函数2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后得到的图象对应的函数为2sin 22sin 263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,是奇函数,所以D 对.故选:AD .48.(2022·广东·铁一中学高三期末)将函数()()πcos 02f x x ωω⎛⎫=-> ⎪⎝⎭的图象向右平移π2个单位长度后得到函数()g x 的图象,且()01g =-,则下列说法正确的是( ) A .()g x 为奇函数 B .π02g ⎛⎫-= ⎪⎝⎭。

三角函数的图象与性质综合练习题(基础、好用、值得收藏)

三角函数的图象与性质综合练习题(基础、好用、值得收藏)

三角函数的图象与性质综合练习题一、选择题1.下列函数中,最小正周期为π,且图象关于直线x=π3对称的函数是()A.y=2sin(2x+π3) B.y=2sin(2x-π6)C.y=2sin(x2+π3) D.y=2sin(2x-π3)2.函数y=tan(π4-x)的定义域是()A.{x|x≠π4} B.{x|x≠kπ+π4,k∈Z}C.{x|x≠-π4} D.{x|x≠kπ+3π4,k∈Z}3.设函数f(x)=sin 3x+|sin 3x|,则f(x)为()A.周期函数,最小正周期为2π3B.周期函数,最小正周期为π3C.周期函数,最小正周期为2πD.非周期函数4.已知函数f(x)=sin x+3cos x,设a=f(π7),b=f(π6),c=f(π3),则a,b,c的大小关系是()A.a<b<c B.c<a<bC.b<a<c D.b<c<a5.已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若f(x)的最小正周期为6π,,且当x=π2时,f(x)取得最大值,则()A.f(x)在区间[-2π,0]上是增函数B.f(x)在区间[-3π,-π]上是增函数C.f(x)在区间[3π,5π]上是减函数D.f(x)在区间[4π,6π]上是减函数二、填空题6. 已知f (x )=A sin(ωx +φ),f (α)=A ,f (β)=0,|α-β|的最小值为π3,则正数ω=________.7.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同,若x ∈[0,π2],则f (x )的取值范围是________.8.已知函数f (x )=cos x sin x (x ∈R),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间[-π4,π4]上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________.三、解答题9.已知函数f (x )=sin x cos x +sin 2x ,(1)求f (π4)的值;(2)若x ∈[0,π2],求f (x )的最大值及相应的x 值.10.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8,(1)求φ;(2)求函数y =f (x )的单调增区间.11.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg g (x )>0,求g (x )的单调区间.解析及答案一、选择题1.【解析】 函数的最小正周期为π,排除C.又图象关于直线x =π3对称,则f (π3)=2或f (π3)=-2.代入检验知选B.【答案】 B2.【解析】 y =tan(π4-x )=-tan(x -π4),由x -π4≠π2+k π,k ∈Z 得x ≠k π+3π4,k ∈Z.【答案】 D3.【解析】 f (x )=sin 3x +|sin 3x |=⎩⎨⎧2sin 3x ,sin 3x ≥0,0,sin 3x <0,周期不变. 【答案】 A4.【解析】 ∵f (x )=sin x +3cos x =2sin(x +π3),∴函数f (x )的图象关于直线x =π6对称,从而f (π3)=f (0), 又f (x )在[0,π6]上是增函数,∴f (0)<f (π7)<f (π6),即c <a <b . 【答案】 B5.【解析】 ∵T =6π,∴ω=2πT =2π6π=13, ∴13×π2+φ=2k π+π2,∴φ=2k π+π3(k ∈Z).∵-π<φ≤π,∴令k =0得φ=π3.∴f (x )=2sin(x 3+π3).令2k π-π2≤x 3+π3≤2k π+π2,k ∈Z ,则6k π-5π2≤x ≤6k π+π2,k ∈Z.易知f (x )在区间[-2π,0]上是增函数.【答案】 A二、填空题6.【解析】 由于|α-β|的最小值为π3,∴函数f (x )的周期T =43π,∴ω=2πT =32.【答案】 327.【解析】 依题意得ω=2,所以f (x )=3sin(2x -π6).由x ∈[0,π2],得2x -π6∈[-π6,56π],所以sin(2x -π6)∈[-12,1],所以f (x )∈[-32,3].【答案】 [-32,3]8.【解析】 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈[-π4,π4]时,2x ∈[-π2,π2],故③是真命题;因为f (3π4)=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.【答案】 ③④三、解答题9.【解】 (1)∵f (x )=sin x cos x +sin 2x ,∴f (π4)=sin π4cos π4+sin 2π4=(22)2+(22)2=1.(2)f (x )=sin x cos x +sin 2x =12sin 2x +1-cos 2x 2=12(sin 2x -cos 2x )+12=22sin(2x -π4)+12,由x ∈[0,π2],得2x -π4∈[-π4,3π4],所以,当2x -π4=π2,即x =38π时,f (x )取到最大值为2+12.10.【解】 (1)∵直线x =π8是函数f (x )图象的一条对称轴, ∴2×π8+φ=π2+k π,k ∈Z ,即φ=π4+k π,k ∈Z.又-π<φ<0, ∴φ=-34π. (2)由(1)知f (x )=sin(2x -34π),令-π2+2k π≤2x -34π≤π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z.因此y =f (x )的单调增区间为[π8+k π,58π+k π],k ∈Z.11.【解】(1)由x∈[0,π2],得2x+π6∈[π6,7π6].∴sin(2x+π6)∈[-12,1],从而b≤f(x)≤3a+b.又∵-5≤f(x)≤1,∴b=-5,3a+b=1,因此a=2,b=-5.(2)由(1)得f(x)=-4sin(2x+π6)-1,∴g(x)=f(x+π2)=-4sin(2x+7π6)-1=4sin(2x+π6)-1,又由lg g(x)>0得g(x)>1,∴4sin(2x+π6)-1>1,∴sin(2x+π6)>12,∴2kπ+π6<2x+π6<2kπ+5π6,k∈Z,其中当2kπ+π6<2x+π6≤2kπ+π2,k∈Z 时,g(x)单调递增,即kπ<x≤kπ+π6,k∈Z,∴g(x)的单调增区间为(kπ,kπ+π6],k∈Z.又∵当2kπ+π2<2x+π6<2kπ+5π6,k∈Z时,g(x)单调递减,即kπ+π6<x<kπ+π3,k∈Z.∴g(x)的单调减区间为(kπ+π6,kπ+π3),k∈Z.。

三角函数的图像与性质题目及答案

三角函数的图像与性质题目及答案

高三理科数学周测十六(三角函数的图像与性质)1.函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3图象的对称轴方程可以为 ( D ) A .x =5π12 B .x =π3 C .x =π6 D .x =π122.函数y =sin ⎝ ⎛⎭⎪⎫x +π3cos ⎝ ⎛⎭⎪⎫π6-x 的最大值及最小正周期分别为 ( A ) A .1,π ,π C.1,π2D .1,2π 3.函数y =2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫π4-x 是( C ) A .周期为2π的奇函数 B .周期为π的奇函数C .周期为π的偶函数D .周期为π的非奇非偶函数4.函数y =sin2x +sinx -1的值域为(C )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54] 5.对于函数f(x)=2sinxcosx ,下列选项中正确的是( B )A .f(x)在(π4,π2)上是递增的 B .f(x)的图像关于原点对称 C .f(x)的最小正周期为2π D .f(x)的最大值为26.函数f(x)=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ等于( D )A .kπ (k ∈Z)B .kπ+π6 (k ∈Z)C .kπ+π3(k ∈Z)D .kπ-π3(k ∈Z) 7. 若f (sin x )=3-cos2x ,则f (cos x )=( C )A 、3-cos2xB 、3-sin2xC 、3+cos2xD 、3+sin2x8.函数)25sin()(π-=x x x f 是( B ) A.偶函数 B.奇函数 C.非奇非偶函数 D.既奇又偶函数9. 在(,)ππ-内是增函数, 且是奇函数的是( A ) .A. sin 2x y =B. cos 2x y =C. sin 4x y =- D. sin 2y x = 1.函数1sin 2-=x y 的定义域是_______ )](652,62[z k k k ∈++ππππ__________________. 2.函数)0(sin >+=b x b a y 的最大值是23,最小值是21-,则a =_____21, __,b =__1_____.3.函数)22cos(π-=x y 的单调递减区间是___________________. 4. 下列函数中,①x x y cos 2+=,②x x y sin 1cos +=,③2tan x y =,④x x y sin 2=.不是偶函数的是____②④________.11.(本小题满分12分)已知函数f (x )=-3sin 2x +sin x cos x .(1)求函数f (x )的最小正周期;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域. 解:f (x )=-3sin 2x +sin x cos x =-3×1-cos 2x 2+12sin 2x =12sin 2x +32cos 2x -32= sin ⎝⎛⎭⎪⎫2x +π3-32. (1)函数f (x )的最小正周期是T =2π2=π. (2)∵0≤x ≤π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-3,2-32.2.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值和最小值。

(完整word版)三角函数图像与性质试题及配套答案

(完整word版)三角函数图像与性质试题及配套答案

xO y1 2 3三角函数测试题一、选择题1、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 2、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 3、如图,曲线对应的函数是 ( ) A .y=|sin x | B .y=sin |x |C .y=-sin |x |D .y=-|sin x |4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的( ). A 。

)62sin(+=x y B.sin()26x y π=+ C.sin(2)6y x π=- D.sin(2)3y x π=-5.函数)sin(ϕω+=x y 的部分图象如右图,则ω,ϕ可以取的一组值是( )。

A 。

,24ωϕππ== B.,36ωϕππ==C.5,44ωϕππ==D.,44ωϕππ==6。

要得到3sin(2)4y x π=+的图象,只需将x y 2sin 3=的图象( ).A.向左平移4π个单位B.向右平移4π个单位C 。

向左平移8π个单位 D.向右平移8π个单位7。

设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( ).A.3 B 。

13C 。

1D 。

1- 8。

A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ).A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形9.定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( ).A.21-B.23 C.23-D 。

2110.函数2cos 1y x =+的定义域是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图像和性质练习题
三角函数的图像与性质练习题一、选择题
,,1.已知函数f(x)=2sinx(>0)在区间[,]上的最小值是,2,则的最小值等于,,,,34
23A. B. C.2 D.3 32
,,2.若函数的图象相邻两条对称轴间距离为,则等于 ( yx,,cos(),,(0),,23 1A( B( C(2 D(4 122
,,3.将函数的图象上所有的点向左平行移动个单位长度,再把图象上各点的横坐标扩大到原来yxxR,,,sin()()46
的2倍(纵坐标不变),则所得到的图象的解析式为
5,x5,,,,A( B(,,, yxRsin()()yxxRsin(2)()21212
x,x5,C(yxR,,,sin()() D(,,, yxRsin()()212224
,//y,cos(2x,),24.函数的图像F按向量a平移到F,F的解析式y=f(x),当
y=f(x)为奇函数时,向量a可以等于 6
,,,,(,,2)(,2)(,,,2)(,,2)A. B. C. D. 6666
,yx,,sin()5.将函数的图象向左平移个单位后,得到函数的图象,则等于( ) ,yx,sin,,,(02),,6
7,11,5,,A. B. C. D. 6666
,,(,,x,)6.函数的值域为y,sin2x,3cos2x66
A. B. C. D. ,,,,,,,2,2,2,00,2[,3,0]
,,yx,,sin()7.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个33
单位,得到的图象对应的解析式是 ( )
111,,,yx,sinyxsin()A( B( 222
111,,,,,,yxsin(2)yxsin()C. D. 626
, ,1sin8.函数f(, ) = 的最大值和最小值分别是 ( ) cos, ,2
43 (A) 最大值和最小值0 (B) 最大值不存在和最小值 34
43(C) 最大值 , 和最小值0 (D) 最大值不存在和最小值, 34
33t,sin,,cos,sin,,cos,9.且,0,则的取值范围是( ) t
A. B. C.
D. ,,,,,,,,,,,,,2,0,2,2,1,0:1,2,3,0:3,,,complementary, and regulation freely of river lake water connected system, let library library connected, and River River communicates, ensure water resources left have live, and save of Xia, and long water, Increase the
10.把函数的图象沿着直线的方向向右下方平移个单位,得到函数的图象,则
22y,f(x)x,y,0y,sin3x
( )
A、 B、 y,sin(3x,2),2y,sin(3x,6),2
C、 D、 y,sin(3x,2),2y,sin(3x,6),2二、填空题
,11.设函数若是奇函数,则= . ,f(x),f(x)f(x),cos(3x,,)(0,,,,).
,12.方程在区间内的解是 ( 2cos()1x,,(0,),4
,13.函数为增函数的区间 y,2sin(,2x)(x,[0,,])6
sincosxx,,,xR,14.已知,则函数的最大值与最小值的和等于。

fxxx()maxsin,cos,,,,2,,
三、解答题
B,CcosA,2cos15.?ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值. 2
22316.已知函数f(x)=sinx+xcosx+2cosx,xR. ,
(1)求函数f(x)的最小正周期和单调增区间;
(2)函数f(x)的图象可以由函数y=sin2x(x?R)的图象经过怎样的变换得到,
complementary, and regulation freely of river lake water connected system, let library library connected, and River River communicates, ensure water resources left have live, and save of Xia, and long water, Increase the
cosx),b = (cosx – sinx,sinx),f (x) = a?b( 17.向量a = (cosx + sinx,22(?)求函数f (x)的单调区间;
2(?)若2x –x?0,求函数f (x)的值域( ,
1218.已知函数. fxxgxx()cos,()1sin2,,,2
,(1)若点A(,[0,])为函数与的图象的公共点,试求实数的
值; ,(,),y,fx()gx()4
(2)设是函数的图象的一条对称轴,求的值; xx,gx(2)yfx,()00
,hxfxgxx()()(),[0,],,,(3)求函数的值域。

4
complementary, and regulation freely of river lake water connected system, let library library connected, and River River communicates, ensure water resources left have live, and save of Xia, and long water, Increase the。

相关文档
最新文档