2018年农垦牡丹江管理局中考数学试卷及答案解析版
2018年黑龙江省牡丹江市中考数学试卷(解析版)
2018年黑龙江省牡丹江市中考数学试卷一.选择题(将正确选项填在相应的位置上,每小题3分,满分36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()个.A.0 B.1 C.2 D.32.(3分)下列运算正确的是()A.2a﹣3•a4=2a﹣12B.(﹣3a2)3=﹣9a6C.a2÷a×=a2D.a•a3+a2•a2=2a43.(3分)由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A.B. C.D.4.(3分)在函数y=中,自变量x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣35.(3分)一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A.3,2 B.2,2 C.2,3 D.2,46.(3分)如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.657.(3分)如图,△ABC内接于⊙O,若sin∠BAC=,BC=2,则⊙O的半径为()A.3 B.6 C.4 D.28.(3分)如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,) D.(﹣,﹣)或(,)9.(3分)将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是()A.(0,3)或(﹣2,3)B.(﹣3,0)或(1,0)C.(3,3)或(﹣1,3)D.(﹣3,3)或(1,3)10.(3分)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A.6 B.5 C.4 D.311.(3分)如图,直线y=kx﹣3(k≠0)与坐标轴分别交于点C,B,与双曲线y=﹣(x<0)交于点A(m,1),则AB的长是()A.2 B. C.2 D.12.(3分)如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:①FG=2AO;②OD∥HE;③=;④2OE2=AH•DE;⑤GO+BH=HC正确结论的个数有()A.2 B.3 C.4 D.5二.填空题(将正确的答案填在相应的横线上,每小题3分,满分24分)13.(3分)从党的“十八大”到“十九大”经历43800小时,我国的“天宫、蛟龙、天眼、悟空、墨子、大飞机”等各项科技创新成果“井喷”式发展,这些记录下了党的极不平凡的壮阔进程,请将数43800用科学记数法表示为14.(3分)如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是15.(3分)同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是.16.(3分)一列数1,4,7,10,13,……按此规律排列,第n个数是17.(3分)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为元.18.(3分)用一个圆心角为240°,半径为3的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为19.(3分)矩形ABCD中,AB=6,AD=8,点M在对角线AC上,且AM:MC=2:3,过点M作EF⊥AC交AD于点E,交BC于点F.在AC上取一点P,使∠MEP=∠EAC,则AP的长为.20.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,正确的结论是(只填序号)三.解答题(满分60分)21.(4分)先化简,再求值:•﹣,其中x=2.22.(4分)如图,在⊙O中,=2,AD⊥OC于D.求证:AB=2AD.23.(6分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:(1)求抛物线的解析式及顶点D的坐标;(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为.(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标为(﹣,)24.(6分)在四边形ABCD中,∠B=∠C=90°,AB=3,BC=4,CD=1.以AD为腰作等腰△ADE,使∠ADE=90°,过点E作EF⊥DC交直线CD于点F.请画出图形,并直接写出AF的长.25.(6分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?26.(8分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为米/分,点M的坐标为;(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.27.(8分)在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN ⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB 于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.28.(9分)某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.29.(9分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD 的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(2)若反比例函数y=(k≠0)的图象经过点H,则k=;(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2018年黑龙江省牡丹江市中考数学试卷参考答案与试题解析一.选择题(将正确选项填在相应的位置上,每小题3分,满分36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()个.A.0 B.1 C.2 D.3【分析】根据轴对称图形与中心对称图形的概念分别分析得出答案.【解答】解:等边三角形是轴对称图形,不是中心对称图形,正五边形,是轴对称图形,不是中心对称图形,正方形和正六边形既是轴对称图形又是中心对称图形,故选:C.【点评】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.2.(3分)下列运算正确的是()A.2a﹣3•a4=2a﹣12B.(﹣3a2)3=﹣9a6C.a2÷a×=a2D.a•a3+a2•a2=2a4【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案.【解答】解:A、2a﹣3•a4=2a,故此选项错误;B、(﹣3a2)3=﹣27a6,故此选项错误;C、a2÷a×=1,故此选项错误;D、a•a3+a2•a2=2a4,正确.故选:D.【点评】此题主要考查了同底数幂的乘除运算以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A.B. C.D.【分析】结合主视图、左视图可知俯视图中右上角有2层,其余1层,由此即可解决问题;【解答】解:结合主视图、左视图可知俯视图中右上角有2层,其余1层,故选:A.【点评】本题要分别对最多和最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”来分析出小长方体的个数.4.(3分)在函数y=中,自变量x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣3【分析】直接利用二次根式的定义得出x的取值范围.【解答】解:在函数y=中,x+3≥0,解得:x≥﹣3,故自变量x的取值范围是:x≥﹣3.故选:B.【点评】此题主要考查了函数自变量的取值范围,正确把握二次根式的定义是解题关键.5.(3分)一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A.3,2 B.2,2 C.2,3 D.2,4【分析】根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.【解答】解:∵一组数据4,2,x,3,9的平均数为4,∴(4+2+x+3+9)÷5=4,解得,x=2,∴这组数据按照从小到大排列是:2,2,3,4,9,∴这组数据的众数是2,中位数是3,故选:C.【点评】本题考查众数、中位数、算术平均数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.(3分)如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.65【分析】设小长方形的长为x,宽为y,观察图形可得出关于x、y的二元一次方程组,解之即可求出x、y的值,再利用阴影部分的面积=大矩形的面积﹣5×小矩形的面积,即可求出结论.【解答】解:设小矩形的长为x,宽为y,根据题意得:,解得:,∴S=15×12﹣5xy=45.阴影故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.(3分)如图,△ABC内接于⊙O,若sin∠BAC=,BC=2,则⊙O的半径为()A.3 B.6 C.4 D.2【分析】连接OB,OC.作OD⊥BC于D,根据同弧所对圆心角是圆周角的两倍,可得∠BOC=2∠A,根据等腰三角形的性质,可得CD=,∠COD=∠A,根据锐角三角函数可得圆的半径.【解答】解:如图:连接OB,OC.作OD⊥BC于D∵OB=OC,OD⊥BC∴CD=BC,∠COD=∠BOC又∵∠BOC=2∠A,BC=2∴∠COD=∠A,CD=∵sin∠BAC=∴sin∠COD=∴OC=3故选:A.【点评】本题考查了圆周角定理,等腰三角形的性质以及三角函数的定义,正确作出辅助线是关键.8.(3分)如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,) D.(﹣,﹣)或(,)【分析】根据题意只研究点B的旋转即可,OB与x轴夹角为45°,分别按顺时针和逆时针旋转75°后,与y轴负向、x轴正向分别夹角为30°,由此计算坐标即可.【解答】解:由点B坐标为(2,﹣2)则OB=,且OB与x轴、y轴夹角为45°当点B绕原点逆时针转动75°时,OB1与x轴正向夹角为30°则B1到x轴、y轴距离分别为,,则点B1坐标为(,);同理,当点B绕原点顺时针转动75°时,OB1与y轴负半轴夹角为30°,则B1到x轴、y轴距离分别为,,则点B1坐标为(﹣,﹣);故选:C.【点评】本题为坐标旋转变换问题,考查了图形旋转的性质、特殊角锐角三角函数值,解答时注意分类讨论和确定象限符号.9.(3分)将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是()A.(0,3)或(﹣2,3)B.(﹣3,0)或(1,0)C.(3,3)或(﹣1,3)D.(﹣3,3)或(1,3)【分析】先把y=x2+2x+3向下平移得到y=x2+2x,再求其与y=3的交点即可.【解答】解:将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线为y=x2+2x当该抛物线与直线y=3相交时,x2+2x=3解得:x1=﹣3,x2=1则交点坐标为:(﹣3,3)(1,3)故选:D.【点评】本题为二次函数图象问题,考查了二次函数图象平移以及函数图象求交点问题,解答时需要注意求函数图象平移后解析式的解题技巧.10.(3分)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A.6 B.5 C.4 D.3【分析】设CD=x,则AE=x﹣1,证明△ADE≌△FCD,得ED=CD=x,根据勾股定理列方程可得CD的长.【解答】解:设CD=x,则AE=x﹣1,由折叠得:CF=BC=3,∵四边形ABCD是矩形,∴AD=BC=3,∠A=90°,AB∥CD,∴∠AED=∠CDF,∵∠A=∠CFD=90°,AD=CF=3,∴△ADE≌△FCD,∴ED=CD=x,Rt△AED中,AE2+AD2=ED2,(x﹣1)2+32=x2,x=5,∴CD=5,故选:B.【点评】本题考查了翻折变换的性质、矩形的性质、全等三角形的性质;熟练掌握矩形的性质、折叠的性质,并能进行推理计算是解决问题的关键.11.(3分)如图,直线y=kx﹣3(k≠0)与坐标轴分别交于点C,B,与双曲线y=﹣(x<0)交于点A(m,1),则AB的长是()A.2 B. C.2 D.【分析】作AD⊥y轴,由点A(m,1)在y=﹣上知A(﹣2,1),即AD=2、OD=1,由y=kx﹣3可得B(0,﹣3),即BO=3、BD=4,再根据勾股定理求解可得.【解答】解:如图,过点A作AD⊥y轴于点D,∵点A(m,1)在y=﹣上,∴﹣=1,解得:m=﹣2,即A(﹣2,1),则AD=2、OD=1,由y=kx﹣3可得B(0,﹣3),即BO=3,∴BD=4,则AB===2,故选:A.【点评】本题主要考查反比例函数与一次函数的交点问题,解题的关键掌握函数图象上的点的坐标必定满足函数解析式及勾股定理的运用.12.(3分)如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:①FG=2AO;②OD∥HE;③=;④2OE2=AH•DE;⑤GO+BH=HC正确结论的个数有()A.2 B.3 C.4 D.5【分析】①作辅助线,构建三角形全等,证明△ADE≌△GKF,则FG=AE,可得FG=2AO;②证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;③设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得HO=x,AH=,所以=,根据AR∥CD,得,则;④证明△HAE∽△ODE,可得,等量代换可得OE2=AH•DE;⑤分别计算HC、OG、BH的长,可得结论.【解答】解:①如图,过G作GK⊥AD于K,∴∠GKF=90°,∵四边形ABCD是正方形,∴∠ADE=90°,AD=AB=GK,∴∠ADE=∠GKF,∵AE⊥FH,∴∠AOF=∠OAF+∠AFO=90°,∵∠OAF+∠AED=90°,∴∠AFO=∠AED,∴△ADE≌△GKF,∴FG=AE,∵FH是AE的中垂线,∴AE=2AO,∴FG=2AO,故①正确;②∵FH是AE的中垂线,∴AH=EH,∴∠HAE=∠HEA,∵AB∥CD,∴∠HAE=∠AED,Rt△ADE中,∵O是AE的中点,∴OD=AE=OE,∴∠ODE=∠AED,∴∠HEA=∠AED=∠ODE,当∠DOE=∠HEA时,OD∥HE,但AE>AD,即AE>CD,∴OE>DE,即∠DOE≠∠HEA,∴OD与HE不平行,故②不正确;③设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,∴AE=x,AO=,易得△ADE∽△HOA,∴,∴,∴HO=x,Rt△AHO中,由勾股定理得:AH==,∴BH=AH﹣AB=﹣2x=,∴=,延长CM、BA交于R,∵RA∥CE,∴∠ARO=∠ECO,∵AO=EO,∠ROA=∠COE,∴△ARO≌△ECO,∴AR=CE,∵AR∥CD,∴,∴,∴,故③正确;④由①知:∠HAE=∠AEH=∠OED=∠ODE,∴△HAE∽△ODE,∴,∵AE=2OE,OD=OE,∴OE•2OE=AH•DE,∴2OE2=AH•DE,故④正确;⑤由③知:HC==x,∵AE=2AO=OH=x,tan∠EAD=,∵AO=,∴OF=x,∵FG=AE=x,∴OG=x﹣=x,∴OG+BH=x+x,∴OG+BH≠HC,故⑤不正确;本题正确的有;①③④,3个,故选:B.【点评】本题是相似三角形的判定与性质以及勾股定理、线段垂直平分线的性质、正方形的性质的综合应用,正确作辅助线是关键,解答时证明三角形相似是难点.二.填空题(将正确的答案填在相应的横线上,每小题3分,满分24分)13.(3分)从党的“十八大”到“十九大”经历43800小时,我国的“天宫、蛟龙、天眼、悟空、墨子、大飞机”等各项科技创新成果“井喷”式发展,这些记录下了党的极不平凡的壮阔进程,请将数43800用科学记数法表示为 4.38×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将43800用科学记数法表示为:4.38×104.故答案为:4.38×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是∠A=∠B或∠ADC=∠BEC或CE=CD等【分析】根据全等三角形的判定解答即可.【解答】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或∠ADC=∠BEC或CE=CD,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或∠ADC=∠BEC或CE=CD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.(3分)同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是.【分析】列举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【解答】解:画树形图得:由树形图可知共4种情况,一枚硬币正面向上,一枚硬币反面向上的情况数有2种,所以概率是=.故答案是.【点评】本题考查了求随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.16.(3分)一列数1,4,7,10,13,……按此规律排列,第n个数是3n﹣2【分析】观察依次为1,4,7,…,的一列数,分析找出规律,据此求出第n个数.【解答】解:通过观察得出:依次为1,4,7,…,的一列数是首项为1,公差为3的等差数列,所以第n个数为:1+(n﹣1)×3=3n﹣2,故答案为:3n﹣2【点评】此题考查的知识点是数字的变化类问题,解题的关键是分析一列数找出规律,按规律求解.17.(3分)小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为160元.【分析】等量关系为:标价×0.8=标价﹣40,依此列出方程,解方程即可.【解答】解:设这双鞋的标价为x元,根据题意,得0.8x=x﹣40x=200.200﹣40=160(元)故答案是:160.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.(3分)用一个圆心角为240°,半径为3的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为2【分析】设圆锥底面的半径为r,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则2πr=,然后解方程即可.【解答】解:设圆锥底面的半径为r,根据题意得2πr=,解得r=2,故答案为:2【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.19.(3分)矩形ABCD中,AB=6,AD=8,点M在对角线AC上,且AM:MC=2:3,过点M作EF⊥AC交AD于点E,交BC于点F.在AC上取一点P,使∠MEP=∠EAC,则AP的长为或.【分析】根据题意可得AC=10,由AM:MC=2:3可得AM=4,根据三角函数求EM=3,根据∠MEP=∠EAC,则tan∠PEM=tan∠DAC=,可求PM的长,即可求AP的长.【解答】解:如图:∵矩形ABCD∴AB=CD=6,AD=BC=8∴AC=10∵AM:MC=2:3∴AM=4,MC=6∵tan∠DAC==∴∴EM=3若P在线段AM上,∵∠EAC=∠PEM∴tan∠PEM=tan∠DAC=∴∴PM=∴AP=AM﹣PM=若P在线段MC上,∵∠EAC=∠PEM∴tan∠PEM=tan∠DAC=∴∴PM=∴AP=AM+PM=∴AP的长为【点评】本题考查了矩形的性质,锐角三角函数,分类讨论思想,关键是用锐角三角函数求出EM的长.20.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,正确的结论是②③④(只填序号)【分析】根据抛物线开口方向,对称轴为直线x=﹣1,与y轴的交点,可得abc >0,则可判断①,根据图象可得x=﹣3时y<0,代入解析式可判断②,根据抛物线与x轴的交点个数可判断③.根据a﹣b=﹣a>0,可判断④【解答】解:∵抛物线开口向下∴a<0,∵对称轴为x=﹣1∴=﹣1∴b=2a<0,∵抛物线与y轴交点在y轴正半轴∴c>0∴abc>0故①错误∵由图象得x=﹣3时y<0∴9a﹣3b+c<0 故②正确,∵图象与x轴有两个交点∴△=b2﹣4ac>0 故③正确∵a﹣b=a﹣2a=﹣a>0∴a>b故④正确故答案为②③④【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点;同时运用对称性并与图形相结合进行判断三.解答题(满分60分)21.(4分)先化简,再求值:•﹣,其中x=2.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可【解答】解:原式=•﹣=﹣=﹣=,当x=2时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.22.(4分)如图,在⊙O中,=2,AD⊥OC于D.求证:AB=2AD.【分析】延长AD交⊙O于E,利用圆心角、弧、弦的关系证明即可.【解答】证明:延长AD交⊙O于E,∵OC⊥AD,∴,AE=2AD,∵,∴,∴AB=AE,∴AB=2AD.【点评】此题考查圆心角、弧、弦的关系,关键是根据圆心角、弧、弦的关系解23.(6分)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,交y 轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:(1)求抛物线的解析式及顶点D的坐标;(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为.(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣,顶点坐标为(﹣,)【分析】(1)把已知两点的坐标代入,求出b、c的值,就可以确定抛物线的解析式,配方或用公式求出顶点坐标(2)根据B、D两点的坐标确定中点H的坐标,作出H点关于y轴的对称点点H′,连接H′D与y轴交点即为P,求出H′D即可【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0)∴解得∴所求函数的解析式为:y=﹣x2+2x+3y=﹣x2+2x+3=﹣(x﹣1)2+4∴顶点D(1,4)(2)∵B(3,0),D(1,4)∴中点H的坐标为(2,2)其关于y轴的对称点H′坐标为(﹣2,2)连接H′D与y轴交于点P,则PD+PH最小且最小值为:=∴答案:【点评】此题考查了用待定系数法确定二次函数的解析式和最短路径的问题,熟练掌握待定系数法是关键.24.(6分)在四边形ABCD中,∠B=∠C=90°,AB=3,BC=4,CD=1.以AD为腰作等腰△ADE,使∠ADE=90°,过点E作EF⊥DC交直线CD于点F.请画出图形,并直接写出AF的长.【分析】分两种情形画出图形,分别求解即可解决问题;【解答】解:如图1中,作AN⊥CF于N,DM⊥AB于M.∵∠B=∠C=∠DMB=90°,∴四边形BCDM是矩形,易证四边形AMDN是矩形,∴CD=BM=1,AM=AB﹣BM=2,DM=BC=AN=4,DN=AM=2,∵∠AMD=∠DFE,∠ADM=∠FDE,DA=DE,∴△ADM≌△EDF,∴DF=DM=4,∴FN=DF﹣DN=2,在Rt△AFN中,AF==2.如图2中,作AN⊥FD交FD的延长线于N.易证AN=BC=4,△ADN≌△DEF,∴DF=AN=4,DN=CN﹣CD=2,∴FN=6,在Rt△AFN中,AF==2.【点评】本题考查作图﹣复杂作图,矩形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.25.(6分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(8分)在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为240米/分,点M的坐标为(6,1200);(2)求甲返回时距A地的路程y与时间x之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A地之前,经过多长时间两人距C地的路程相等.【分析】(1)根据路程和时间可得甲的速度,根据甲去和返回时的时间共计11分,休息了一分,所以一共用了10分钟,可得M的坐标;(2)利用待定系数法求MN的解析式;(3)先根据总路程1200米,时间为20分,计算乙的速度,根据A,C,B三地在同一直线上,计算B、C之间的路程,分情况讨论:设甲返回A地之前,经过x分两人距C地的路程相等,①因为乙从B地到C地一共需要3小时,所以第一个时间为0<x≤3,即乙在B、C之间时,列方程可知不符合题意;②3<x<6,根据两人距C地的路程相等列方程可得结论;③计算甲到B地时,符合条件;④计算乙走过C地,即乙在A、C之间时,列方程,注意此时甲用了(x﹣1)分.【解答】解:(1)由题意得:甲的骑行速度为:=240(米/分),(1分)240×(11﹣1)÷2=1200(米),则点M的坐标为(6,1200),(2分)故答案为:240,(6,1200);(2)设MN的解析式为:y=kx+b(k≠0),∵y=kx+b(k≠0)的图象过点M(6,1200)、N(11,0),∴,(3分)解得,(4分)∴直线MN的解析式为:y=﹣240x+2640;(5分)即甲返回时距A地的路程y与时间x之间的函数关系式:y=240x+2640;(3)设甲返回A地之前,经过x分两人距C地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵AB=1200,AC=1020,∴BC=1200﹣1020=180,分4种情况:①当0<x≤3时,1020﹣240x=180﹣60x,x=>3,此种情况不符合题意;。
(完整版)2018年黑龙江省牡丹江市中考数学试卷(含答案)
黑龙江省牡丹江市2018年中考数学试卷一、选择题<每小题3分,满分27分)1.<3分)<2018•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的是< )A .B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、是中心对称图形,不是轴对称图形.故此选项错误;C、既是轴对称图形,不是中心对称图形.故此选项正确;D、不是轴对称图形,是中心对称图形.故此选项错误.故答案选:C.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.<3分)<2018•牡丹江)在函数y=中,自变量x的取值范围是< )A .x≥0B.x>0C.x≠0D.x>0且x≠1考点:函数自变量的取值范围.分析:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.解答:解:根据题意得到:x>0,故选B.点评:本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.3.<3分)<2018•牡丹江)下列计算正确的是< )A .2a2+a=3a2B.2a﹣1=<a≠0)C.<﹣a2)3÷a4=﹣aD.2a2•3a3=6a5考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、2a2+a,不是同类项不能合并,故A选项错误;B、2a﹣1=<a≠0),故B选项错误;C、<﹣a2)3÷a4=﹣a2,故C选项错误;D、2a2•3a3=6a5,故D选项正确.故选:D.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题关键是熟记法则.4.<3分)<2018•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是< )b5E2RGbCAPA .3B.4C.5D.6考点:由三视图判断几何体.分析:根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.解答:解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.点评:本题考查了由几何体判断三视图,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.5.<3分)<2018•牡丹江)将抛物线y=<x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是< )p1EanqFDPwA .<0,2)B.<0,3)C.<0,4)D.<0,7)考点:二次函数图象与几何变换.专题:几何变换.分析:先根据顶点式确定抛物线y=<x﹣1)2+3的顶点坐标为<1,3),在利用点的平移得到平移后抛物线的顶点坐标为<0,3),于是得到移后抛物线解读式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标.解答:解:抛物线y=<x﹣1)2+3的顶点坐标为<1,3),把点<1,3)向左平移1个单位得到点的坐标为<0,3),所以平移后抛物线解读式为y=x2+3,所以得到的抛物线与y轴的交点坐标为<0,3).故选B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解读式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解读式;二是只考虑平移后的顶点坐标,即可求出解读式.6.<3分)<2018•牡丹江)若x:y=1:3,2y=3z,则的值是< )A .﹣5B.﹣C.D.5考点:比例的性质.分析:根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.解答:解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选A.点评:本题考查了比例的性质,利用“设k法”分别表示出x、y、z 可以使计算更加简便.7.<3分)<2018•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是< )DXDiTa9E3dA .30°B.45°C.60°D.75°考点:圆周角定理;含30度角的直角三角形.分析:由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.解答:解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sinB=,∴∠B=30°,∴∠A=∠D=60°,故选:C.点评:本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.8.<3分)<2018•牡丹江)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是< )RTCrpUDGiTA .B.C.D.考点:动点问题的函数图象.分析:根据∠A的度数求出菱形的高,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.解答:解:∵∠A=60°,AB=4,∴菱形的高=4×=2,点P在AB上时,△APD的面积S=×4×t=t<0≤t≤4);点P在BC上时,△APD的面积S=×4×2=4<4<t≤8);点P在CD上时,△APD的面积S=×4×<12﹣t)=﹣t+12<8<t≤12),纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,菱形的性质,根据点P的位置的不同,分三段求出相应的函数解读式是解题的关键.9.<3分)<2018•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:5PCzVD7HxA①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是< )A .1B.2C.3D.4考点:菱形的判定与性质;全等三角形的判定与性质;矩形的性质.分析:①根据已知得出△OBF≌△CBF,可求得△OBF与△CBF关于直线BF对称,进而求得FB⊥OC,OM=CM;②因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM.③先证得∠ABO=∠OBF=30°,再证得OE=OF,进而证得OB⊥EF,因为BD、EF互相平分,即可证得四边形EBFD是菱形;④根据三角函数求得MB=OM/,OF=OM/,即可求得MB:OE=3:2.解答:解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中∴△OBF≌△CBF<SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,易证△AOE≌△COF,∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∴△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∵∠OMB=∠BOF=90°,∠OBF=30°,∴MB=OM/,OF=OM/,∵OE=OM,∴MB:OE=3:2,正确;故选C.点评:本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.二、填空题<每小题3分,满分33分)10.<3分)<2018•牡丹江)2018年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为8.79×1010.jLBHrnAILg考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值是易错点,由于87900000000有11位,所以可以确定n=11﹣1=10.解答:解:87 900 000 000=8.79×1010.故答案为:8.79×1010.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.11.<3分)<2018•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE<答案不唯一),使△ABC≌△DEF.xHAQX74J0X考点:全等三角形的判定.专题:开放型.分析:可选择利用AAS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可.解答:解:添加AB=DE.∵BE=CF,∴BC=EF,∵AB∥DE,∴∠B=∠DEF,∵在△ABC和△DEF中,,∴△ABC≌△DEF<SAS).故答案可为:AB=DE<答案不唯一).点评:本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理.12.<3分)<2018•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为160 元.LDAYtRyKfE考点:一元一次方程的应用.分析:设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利10%,列方程求解.解答:解:设这种商品每件的进价为x元,由题意得,240×0.8﹣x=10%x,解得:x=160,即每件商品的进价为160元.故答案是:160.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.13.<3分)<2018•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是 3 .Zzz6ZB2Ltk考点:中位数;算术平均数;众数.分析:先根据数据2,3,x,y,12的平均数是6,求出x+y=13,再根据数据2,3,x,y,12中,唯一的众数是12,求出x,y的值,最后把这组数据从小到大排列,即可得出答案.解答:解:∵数据2,3,x,y,12的平均数是6,∴<2+3+x+y+12)=6,解得:x+y=13,∵数据2,3,x,y,12中,唯一的众数是12,∴x=12,y=1或x=1,y=12,把这组数据从小到大排列为:1,2,3,12,12,则这组数据的中位数是3;故答案为:3.点评:本题考查了众数、平均数与中位数的意义,中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<最中间两个数的平均数),给定一组数据,出现次数最多的那个数,称为这组数据的众数.14.<3分)<2018•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .dvzfvkwMI1考点:垂径定理;勾股定理.专分类讨论.题:分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即<)2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.15.<3分)<2018•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是.rqyn14ZNXI考点:列表法与树状图法.分析:列举出所有情况,看两次取出的小球的标号之和是3的倍数情况数占总情况数的多少即可.解答:解:树状图如下:共9种情况,两次取出的小球的标号之和是3的倍数的情况数有3种,所以两次取出的小球的标号之和是3的倍数的概率为=.故答案为:.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到两次取出的小球的标号之和是3的倍数的情况数是解决本题的关键.16.<3分)<2018•牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为n2+2 .EmxvxOtOco考点:规律型:图形的变化类.分析:分析数据可得:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…则知第n个图形中小圆的个数为3+3+5+7+…+<2n﹣1).据此可以求得答案.解答:解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+<2n﹣1)=n2+2.故答案为:n2+2.点评:此题考查图形与数字结合规律的题目.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.17.<3分)<2018•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC 中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE= 28 .SixE2yXPq5考点:旋转的性质.分析:利用旋转的性质得出∠B=∠BDE=45°,BD=4,进而由S四边形ACDE=S△ACB﹣S△BDE求出即可.解答:解:由题意可得:∠B=∠BDE=45°,BD=4,则∠DEB=90°,∴BE=DE=2,∴S△BDE=×2×2=4,∵S△ACB=×AC×BC=32,∴S四边形ACDE=S△ACB﹣S△BDE=28.故答案为:28.点评:此题主要考查了旋转的性质以及三角形面积求法,得出S△BDE 是解题关键.18.<3分)<2018•牡丹江)抛物线y=ax2+bx+c经过点A<﹣3,0),对称轴是直线x=﹣1,则a+b+c= 0 .6ewMyirQFL考点:二次函数的性质.分析:根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为<1,0),由此求出a+b+c的值.解答:解:∵抛物线y=ax2+bx+c经过点A<﹣3,0),对称轴是直线x=﹣1,∴y=ax2+bx+c与x轴的另一交点为<1,0),∴a+b+c=0.故答案为0.点评:本题考查了二次函数的性质,根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为<1,0)是解题的关键.19.<3分)<2018•牡丹江)如图,在平面直角坐标系中,点A<0,4),B<3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解读式为y=﹣x+ .kavU42VRUs考点:翻折变换<折叠问题);待定系数法求一次函数解读式.专题:计算题.分析:在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=<4﹣t)2,解得t=,则C点坐标为<0,),然后利用待定系数法确定直线BC的解读式.解答:解:∵A<0,4),B<3,0),∴OA=4,OB=3,在Rt△OAB中,AB==5,∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′﹣OB=5﹣3=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+22=<4﹣t)2,解得t=,∴C点坐标为<0,),设直线BC的解读式为y=kx+b,把B<3,0)、C<0,)代入得,解得,∴直线BC的解读式为y=﹣x+.故答案为y=﹣x+.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理和待定系数法求一次函数解读式.20.<3分)<2018•牡丹江)矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE=﹣2或+2 .y6v3ALoS89考点:矩形的性质;等腰三角形的判定与性质;勾股定理.专题:分类讨论.分析:依题意画出图形:以点D为圆心,DA长为半径作圆,与直线BC 交于点P<有2个),利用等腰三角形的性质分别求出CE的长度.解答:解:矩形ABCD中,AB=2,AD=1,由勾股定理得:BD=.如图所示,以点D为圆心,DA长为半径作圆,交直线BD于点P1、P2,连接AP1、P2A并延长,分别交直线BC于点E1、E2.∵DA=DP1,∴∠1=∠2.∵AD∥BC,∴∠4=∠3,又∵∠2=∠3,∴∠3=∠4,∴BE1=BP1=,∴CE1=BE1﹣BC=﹣2;∵DA=DP2∴∠5=∠6∵AD∥BC,∴∠5=∠7,∴∠6=∠7,∴BE2=BP2=+1,∴CE2=BE2+BC=+2.故答案为:﹣2或+2.点评:本题考查了矩形的性质、勾股定理、等腰三角形等知识点.考查重点是分类讨论的数学思想,本题所求值有2个,注意不要漏解.三、解答题<满分60分)21.<5分)<2018•牡丹江)先化简,再求值:<x﹣)÷,其中x=cos60°.考点:分式的化简求值;特殊角的三角函数值.分析:先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.解答:解:原式=÷=•=,当x=cos60°=时,原式==﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.<6分)<2018•牡丹江)如图,抛物线y=ax2+2x+c经过点A<0,3),B<﹣1,0),请解答下列问题:M2ub6vSTnP<1)求抛物线的解读式;<2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c<a≠0)的顶点坐标是<﹣,).考点:待定系数法求二次函数解读式;二次函数的性质.专题:计算题.分析:<1)将A与B代入抛物线解读式求出a与c的值,即可确定出抛物线解读式;<2)利用顶点坐标公式表示出D坐标,进而确定出E坐标,得到DE与OE的长,根据B坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长.解答:解:<1)∵抛物线y=ax2+2x+c经过点A<0,3),B<﹣1,0),∴将A与B坐标代入得:,解得:,则抛物线解读式为y=﹣x2+2x+3;<2)由D为抛物线顶点,得到D<1,4),∵抛物线与x轴交于点E,∴DE=4,OE=1,∵B<﹣1,0),∴BO=1,∴BE=2,在Rt△BED中,根据勾股定理得:BD===2.点评:此题考查了待定系数法求二次函数解读式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.23.<6分)<2018•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF 的长,并画出体现解法的辅助线.0YujCfmUCw考点:作图—应用与设计作图;全等三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.分析:根据题意画出两个图形,再利用勾股定理得出AF的长.解答:解:如图1所示:∵AB=AC=5,BC=6,∴AM=4,∵∠ACM+∠DCF=90°,∠MAC+∠ACM=90°,∴∠CAM=∠DCF,在△AMC和△CFD中,∴△AMC≌△CFD<AAS),∴AM=CF=4,故AF==,如图2所示:∵AB=AC=5,BC=6,∴AM=4,MC=3,∵∠ACM+∠DCF=90°,∠MAC+∠ACM=90°,∴∠CAM=∠DCF,在△AMC和△CFD中,∴△AMC≌△CFD<AAS),∴AM=FC=4,∴FM=FC﹣MC=1,故AF==.注:每图1分<图1中没有辅助线、没有直角符号均不给分;图2中没有辅助线、没有直角符号、点B在正方形外均不给分).点评:此题主要考查了应用设计与作图,利用分类讨论得出是解题关键.24.<7分)<2018•牡丹江)某校为了了解本校九年级学生的视力情况<视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.eUts8ZQVRd请你根据以上信息解答下列问题:<1)求本次调查的学生人数;<2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是144 度;<3)若该校九年级学生有1050人,请你估计该校九年级近视<包括轻度近视,中度近视,重度近视)的学生大约有多少人.sQsAEJkW5T考点:条形统计图;用样本估计总体;扇形统计图.分析:<1)根据轻度近视的人数是14人,占总人数的28%,即可求得总人数;<2)设中度近视的人数是x人,则不近视与重度近视人数的和2x,列方程求得x的值,即可求得不近视的人数,然后利用360°乘以对应的百分比即可求得圆心角的度数;<3)利用总人数乘以对应的百分比即可求解.解答:解:<1)本次调查的学生数是:14÷28%=50<人);<2)设中度近视的人数是x人,则不近视与重度近视人数的和2x,则x+2x+14=50,解得:x=12,则中度近视的人数是12,不近视的人数是:24﹣4=20<人),则“不近视”对应扇形的圆心角度数是:360°×=144°;<3)1050×=630<人).答:该校九年级近视<包括轻度近视,中度近视,重度近视)的学生大约630人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.25.<8分)<2018•牡丹江)快、慢两车分别从相距480千M路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地<快车掉头的时间忽略不计),快、慢两车距乙地的路程y<千M)与所用时间x<小时)之间的函数图象如图,请结合图象信息解答下列问题:GMsIasNXkA<1)直接写出慢车的行驶速度和a的值;<2)快车与慢车第一次相遇时,距离甲地的路程是多少千M?<3)两车出发后几小时相距的路程为200千M?请直接写出答案.考点:一次函数的应用.分析:<1)根据行程问题的数量关系速度=路程÷时间及路程=速度×时间就可以得出结论;<2)由<1)的结论可以求出点D的坐标,再由题意可以求出快车的速度就可以求出点B的坐标,由待定系数法求出AB的解读式及OD的解读式就可以求出结论;<3)根据<2)的结论,由待定系数法求出求出直线BC的解读式和直线EF的解读式,再由一次函数与一元一次方程的关系建立方程就可以求出结论.解答:解:<1)由题意,得慢车的速度为:480÷<9﹣1)=60千M/时,∴a=60×<7﹣1)=360.答:慢车的行驶速度为60千M/时和a=360千M;<2)由题意,得5×60=300,∴D<5,300),设yOD=k1x,由题意,得300=5k1,∴k1=60,∴yOD=60x.∵快车的速度为:<480+360)÷7=120千M/时.∴480÷120=4小时.∴B<4,0),C<8,480).设yAB=k2x+b,由题意,得,解得:,∴yAB=﹣120x+480∴,解得:.∴480﹣160=320千M.答:快车与慢车第一次相遇时,距离甲地的路程是320千M;<3)设直线BC的解读式为yBC=k3x+b3,由题意,得,解得:,∴yBC=120x﹣480;设直线EF的解读式为yEF=k4x+b4,由题意,得,解得:,∴yEF=60x﹣60.当60x﹣<﹣120x+480)=200时,解得:x=;当60x﹣<﹣120x+480)=﹣200时解得:x=;当120x﹣480﹣<60x﹣60)=200时,解得:x=>9<舍去).当120x﹣480﹣<60x﹣60)=﹣200时解得:x=<4<舍去);当120x﹣480﹣60x=﹣200时解得:x=.综上所述:两车出发小时、小时或小时时,两车相距的路程为200千M.点评:本题考查了行程问题的数量关系路程=速度×时间的运用,待定系数法求一次函数的解读式的运用,一次函数与一元一次方程的关系的运用,解答时求出一次函数的解读式是关键.26.<8分)<2018•牡丹江)如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.TIrRGchYzg<1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;<提示:过点F作FM∥BC交射线AB于点M.)<2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB 的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;7EqZcWLZNX<3)在<2)的条件下,若∠ADC=30°,S△ABC=4,则BE= 8 ,CD= 4或8 .。
2018年黑龙江省牡丹江市中考数学试卷(带答案解析)
∴OD 与 HE 不平行,
故②不正确;
③设正方形 ABCD 的边长为 2x,则 AD=AB=2x,DE=EC=x,
√5
,
2
易得△ADE∽△HOA,
∴AE=√5x,AO=
∴
=
,
2
∴
= 5 ,
√
2
∴HO=√5x,
√5 2 5
2
Rt△AHO 中,由勾股定理得:AH=√(√5) + ( 2 ) = ,
故答案为:4.38×104.
14.
(3 分)如图,AC=BC,请你添加一对边或一对角相等的条件,使 AD=BE.你
所添加的条件是 ∠A=∠B 或∠ADC=∠BEC 或 CE=CD 等
【考点】KD:全等三角形的判定与性质.
菁优网版权所有
第10页(共28页)
.
【解答】解:因为 AC=BC,∠C=∠C,所以添加∠A=∠B 或∠ADC=∠BEC 或 CE=CD,
13.(3 分)从党的“十八大”到“十九大”经历 43800 小时,我国的“天宫、蛟龙、
天眼、悟空、墨子、大飞机”等各项科技创新成果“井喷”式发展,这些记录下了
党的极不平凡的壮阔进程,请将数 43800 用科学记数法表示为
4.38×104
【考点】1I:科学记数法—表示较大的数.
菁优网版权所有
【解答】解:将 43800 用科学记数法表示为:4.38×104.
第7页(共28页)
故①正确;
②∵FH 是 AE 的中垂线,
∴AH=EH,
∴∠HAE=∠HEA,
∵AB∥CD,
∴∠HAE=∠AED,
黑龙江省牡丹江市2018届中考数学一模考试试题-有答案
黑龙江省牡丹江市 2018届中考数学一模考试试题温馨提示:1.请考生将各题答案均涂或写在答题卡上,答在试卷上无效. 2.数学试卷共三道大题,总分120分,考试时间120分钟. 一、填空题(每题3分,满分30分)1.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为 元. 2.函数y =中,自变量x 的取值范围是 . 3.如图,已知AC=BD ,要使△ABC≌△DCB,则只需添加一个适当的条件是 .(填一个即可) 4.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是 . 5.若不等式组⎩⎨⎧-+142x x ax <>的解集为x >1,则a 的取值范围是 .6.商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品 的进价是 元.7.如图:在△ABC 和△DCE 是全等的三角形,∠ACB =90°,AC =6,BC =8,点F 是ED 的中点,点P 是线段AB上动点,则线段PF 最小时的长度 .8.圆锥的底面半径为1,它的侧面展开图的圆心角为180°,则这个圆锥的侧面积为 . 9.矩形纸片ABCD ,AB=9,BC=6,在矩形边上有一点P ,且DP=3.将矩形纸片折叠,使点B 与点P 重合,折痕所在直线交矩形两边于点E ,F ,则EF 长为 .10.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于 点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2 M 1,对角线A 1 M 1和A 2B 2 交于点M 2; 以M 2A 1为对角线作第三个正方形A 3A 1B 3 M 2,对角线A 1 M 2和A 3B 3 交于点M 3;……, 依次类推,这样作的第n 个正方形对角线交点的坐标为M n _______________.P FEDB CA第7题图第3题图二、选择题(每题3分,满分30分,请将各题答案均涂或写在答题卡上.) 11.下列计算中,正确的是( )A .532632a b a =⨯B .()2242a a -=- C .()725a a = D .221x x =- 12.下列图形中既是轴对称图形又是中心对称图形的是( )13.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( ) A .3 B .4 C .5 D .614.一组数据1,2,a 的平均数为2,另一组数据-l ,a ,1,2,b 的唯一众数为-l ,则数据-1,a ,b ,1,2的中位数为( )A .-1B .1C .2D .315.一水池有甲、乙、丙三个水管,其中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,关闭乙管开丙管,又经过一段时间,关闭甲管开乙管.则 能正确反映水池蓄水 量y(立方米)随时间t(小时)变化的图象是( )16.己知关于x 的分式方程12++x a =1的解是非正数,则a 的取值范围是( ) A .a≤-l B .a≤-2 C .a≤1且a≠-2 D .a≤-1且a≠-217.如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD ,若∠A=50°,则∠COD 的度数为( )A .40°B .50°C .60°D .80°18.如图,已知直线AC 与反比例函数图象交于点A ,与x 轴、y 轴分别交于点C 、E ,E 恰为线段AC 的中点,S △EOC =1,则反比例函数的关系式为( )ABCDA .x y 4=B .x y 4-=C .x y 2=D .xy 2-= 19.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有( )A .6种B .7种C .8种D .9种20.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE ;⑤AB=HF,其中正确的有( )A .2个B .3个C .4个D .5个三、解答题(满分60分) 21.(本题满分5分) 先化简,再求代数式2122121a a a a a a +-÷+--+的值,其中6tan 602a =- 22.(本题满分6分)每个小方格都是边长为1个单位长度的小正方形,△OAB 在平面直 角坐标系中的位置如图所示.(1)将△OAB 先向右平移5个单位,再向上平移3个单位,得 到△O 1A 1B 1,请画出△O 1A 1B 1并直接写出点B 1的坐标;(2)将△OAB 绕原点O 顺时针旋转90º,得到△OA 2B 2,请画出 △OA 2B 2,并求出点A 旋转到A 2时线段OA 扫过的面积.23.(本题满分6分)如图:抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点OB=OC ,连接BC ,抛物线的顶点为D .连结B 、D 两点.(1)求抛物线的解析式. (2)求∠CBD 的正弦值.第18题图第17题图第20题图24.(本题满分7分)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.25.(本题满分8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系,根据图像回答以下问题:(1)请在图中的()内填上正确的值,并写出两车的速度和.(2)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接写出两车之间的距离不超过15km的时间范围.26.(本题满分8分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.EEBCh图①图②图③27.(本题满分10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择那种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)28.(本题满分10分)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.(答案写在此卷上无效!)2018牡丹江管理局北斗星协会一模考试数学参考答案一、填空题(每小题3分,满分30分)1、8×1013; 2、x ≥0且x ≠1; 3、AB=DC 等(答案不唯一); 4、32; 5、a ≤1; 6、21; 7、6.2; 8、2π;9、10226或;(答对1个给2分,多答或含有错误答案不得分) 10、⎪⎪⎭⎫⎝⎛-n n n 21212, 二、选择题(每小题3分,满分30分)11.D 12.B 13.B 14.B 15.D 16.D 17.D 18.B 19.D 20.B 三、解答题(满分60分) 21.(本小题满分5分)解:原式=12a +,-------------------------------------------------------(3分) ∵6tan 602a =-=2-36------------------------------------------(1分) ∴原式=183.------------------------------------------------------(1分) (本小题满分6分)23.(本小题满分6分)解:(1)设y =a(x+1)(x-3)把C(0,-3)代入得a=1-------(1分)所以抛物线的解析式为:y=x 2-2x-3--------------(1分) (2)所以抛物线顶点坐标为D (1,-4)过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F. B(3,0)、C(0,-3)在Rt △BOC 中,OB=3,OC=3, ∴ 182=BC .C(0,-3)、D (1,-4)在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1, ∴ 22=CD .D (1,-4)、E(1,0)、B(3,0)在Rt △BDE 中,DE=4,BE=OB-OE=3-1=2, ∴ 202=BD .2y∴ 222BD CD BC =+, 故△BCD 为直角三角形. ------------------------(3分) 所以sin ∠CBD=1010--------------------------------------------------(1分) 12(2)900÷12=75km ∕h ; 225-75=150km ∕h ; 900÷150=6h ;225×(6-4)=450km ;∴C (6,450)--------------------------------------------------------(2分) 设y BC =kx+b ,由B (4,0);C (6,450)得:y BC =225x-900(4≤x ≤6)-----------------------------------------------(2分) (3)15611559≤≤x . --------------------------------------------------------(2分) 26.(本小题满分8分)解:(1)图②结论:AF=CD+CF. -------------------------------------------------(2分) 证明:作DC ,AE 的延长线交于点G.∵四边形ABCD 是矩形, ∴∠G=∠EAB.∵∠AFD=2∠EAB=2∠G=∠FAG+∠G , ∴∠G=∠FAG. ∴AF=FG=CF+CG.由E 是BC 中点,可证△CGE ≌△BAE ,∴CG=AB=CD.∴AF=CF+CD. ---------------------------------------------------(4分)(2)图③结论:AF=CD+CF. ------------------------------------------------(2分)27.(本小题满分10分)解:(1)设甲种材料每千克x 元,乙种材料每千克y 元, x+y=60 x=252x+3y=155 解得 y=35 ---------------------------------------(2分)G答:甲种材料每千克25元,乙种材料每千克35元 ------------------------(1分) (2)设生产B 产品m 件,则生产A 产品(60-m )件,(25×4+35×1)(60-m )+(35×3+25×3)m ≤9900m ≥38 ------------------------------------------------------------(2分)解得38≤m ≤40------------------------------------------------------(1分)∵m 为整数,∴m 的值为38、39、40共三种方案。
2018黑龙江省牡丹江市中考数学模拟试题 (2)
2018黑龙江省牡丹江市中考数学模拟试题一、选择题:(3´×12=36´)1.下列运算中,正确的是( )A 222)(b a b a -=-B 1)1)(1(2-=--+-a a a C a a a 2)2(2=÷ D 3313a a aa -=⨯÷- 2.在下列平面图形中,是中心对称图形的是( )3.某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为( )A 、2:1B 、1:2C 、2:3D 、3:24.如图,已知菱形ABCD 的对角线AC BD 、的长分别为12cm 、16cm ,AE BC ⊥于点E ,则AE 的长是( )A 、53cmB 、25cmC 、485cm D 、245cm 5.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是32,则黄球的个数为( )A 、2B 、3C 、4D 、56.由一些大小相同的小正方体搭成的几何体的主视图与俯视图如图所示,则搭成该几何体的方式有( )种A 1B 2C 3D 47.如图,矩形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE △,延长BG 交CD 于点F ,若12CF FD ==,,则BC 的长为( ) A 、32 B 、26 C 、25 D 、238.如图,在ABCD 中,E 为AD 的三等分点,AD AE 32=,连接BE ,交AC 于点F ,AC =12,则AF 为( ) A 、4 B 、4.8 C 、5.2 D 、69.如图,AB 是⊙O 的直径,AB ⊥CD 于点E ,若CD =8,AE =2,则OE 长为( ) A 、3 B 、4 C 、5 D 、610.是直线( )A 、x =1 B 、x =2 C 、x =3 D 、x =-1 11.菱形AOBC 如图放置,A (3,4),先将菱形向左平移9个单位长度,再向下平移1个单位长度,然后沿x 轴翻折,最后绕坐标原点O 旋转90°得到点C 的对应点为点P ,则点P 的坐标为 ( )A.(-3,-1)B.(3,1)C.(3,1)(-3,-1)D.(-3,1)(3,-1)12.如图,在Rt ABC △中,90AB BC ABC =∠=,°,点D 是AB 的中点,DACBE O第11题图BA OC xy第6题图 主视图 俯视图连结CD ,过点B 作BG ⊥CE ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下五个结论:①AG FGAB FB=;②ADF CDB ∠=∠;③点F 是GE的中点;④AF AB =;⑤5ABC BDF S S =△△,其中正确结论的个数是( )A 、3B 、4C 、5D 、2 二、填空题:(3´×8=24´)13.神舟九号飞船发射成功,一条相关的微博被转发了3 570 000次.3 570 000这个数用科学记数法表示为 .14.一组数据1,1,2,3,x 的平均数是3,则这组数据的众数是 .15.如图,BC = EC ,∠1 =∠2,要使△ABC ≌△DEC ,则应添加的一个条件为 (答案不惟一,只需填一个)16.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a 元后,再次下调了20%,现在的收费标准是每分钟b 元,则原收费标准是 .17.在半径为5的⊙O 中,弦AB =CD ,且AB ⊥CD 于H ,若OH =32,则线段BH 长为 . 18.抛物线1-2bx ax y +=经过点(2,7),则代数式50-3121222b ab a ++的值是 . 19.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为 .20.在△ABC 中,AH ⊥BC ,垂足为H ,∠ABC 为锐角,且∠ABH =∠CAH ,若AH =26,BC =10,则AC 边长为 .三、解答题:1. (本小题满分5分)先化简:121a a a a a --⎛⎫÷- ⎪⎝⎭,并任选一个你喜欢的数a 代入求值. 2. (本小题满分6分)如图二次函数2y x b x c =++的图象经过()1A -,0和()30B ,两点,且交y 轴于点C . (1)试确定b 、c 的值;(2)过点C 作CD x ∥轴交抛物线于点D ,点M 为此抛物线的顶点,试确定M C D △的形状.E B12C AD3.(本小题满分6分)在边长为4和6的矩形中作等腰三角形,使等腰三角形的一条边是矩形的一条边,第三个顶点在矩形的边上,求所作三角形的面积.(注:形状相同的三角形按一种计算.)4.(本小题满分7分)5.(本小题满分8分)业务员小李从A县城出发,骑自行车到B村送货,途中遇到A县城中学的学生刘可从B村步行返校.小李在B村完成送货工作后,返回A县城途中又遇到刘可,便用自行车载上刘可,一起到达A县城,结果小李比预计时间晚到1分钟.二人与A县城间的距离S(千米)和小李从A县城出发后所用的时间t(分)之间的函数关系如图所示,假设二人之间交流的时间忽略不计.(1)小李和刘可第一次相遇时,距A县城多少千米?(直接写出答案)(2)求小李从A县城出发到返回A县城所用的时间;(3刘可从B村到A县城共用多长时间?2s (千米)t(分)803020166. 如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN是等边三角形.(1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB=2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.7. (本小题满分10分)某市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济.环保的沼气能源。
黑龙江省牡丹江市管理局2018-2019学年九年级(上)期末数学试卷解析版
黑龙江省牡丹江市管理局2018-2019学年九年级(上)期末数学试卷一、填空题(每小题3分,共30分)1.(3分)袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为.3.(3分)抛物线y=4x2﹣3x与y轴的交点坐标是.4.(3分)已知a2﹣5a﹣1=0,则5(1+2a)﹣2a2=.5.(3分)如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.6.(3分)如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.7.(3分)如图,在平行四边形ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若弧EF的长为,则AB=.8.(3分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O 为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为.9.(3分)摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是.10.(3分)如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B外切,那么⊙A由图示位置需向右至少平移个单位.二、选择题(每小题3分,共30分)11.(3分)下列一元二次方程中没有实数根的方程是()A.(x﹣1)2=1B.x2+2x﹣10=0C.x2+4=7D.x2+x+1=012.(3分)已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()A.B.C.D.13.(3分)在同一平面直角坐标系内,将函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A.(﹣3,﹣6)B.(1,﹣4)C.(1,﹣6)D.(﹣3,﹣4)14.(3分)如图,O为线段AB的中点,AB=4cm,P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,下列四点中能与A、B构成直角三角形的顶点是()A.P1B.P2C.P3D.P415.(3分)如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D,若=80°,=60°,则∠ADC的度数为()A.80°B.85°C.90°D.95°16.(3分)有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.B.C.D.17.(3分)在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.18.(3分)若x1和x2为一元二次方程x2+2x﹣1=0的两个根.则x12x2+x1x22值为()A.4B.2C.4D.319.(3分)如图,向一个半径为3m,容积为36m3的球形容器内注水,则能够反映容器内水的体积y与水深x间的函数关系的图象可能是()A.B.C.D.20.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个三、解答题(共60分)21.(6分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=0.22.(6分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC绕O点逆时针旋转90°得到△A1B1C1,请画出△A1B1C1.(2)在x轴上求作一点P,使△PA1C1的周长最小,并直接写出P的坐标.23.(6分)已知抛物线y=﹣x2+bx+c与直线y=﹣x+m相交于第一象限内不同的两点A(4,n),B(1,4),(1)求此抛物线的解析式.(2)抛物线上是否存点P,使直线OP将线段AB平分?若存在直接求出P点坐标;若不存在说明理由.24.(7分)家庭过期药品属于“国家危险废物”处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查.设计调查方式:(1)有下列选取样本的方法①在市中心某个居民区以家庭为单位随机抽取②在全市医务工作者中以家庭为单位随机抽取③在全市常住人口中以家庭为单位随机抽取.其中最合理的一种是.(只需填上正确答案的序号)收集整理数据:本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如下表:描述数据:(2)此次抽样的样本数为1000户家庭,请你绘制条形统计图描述各种处理过期药品方式的家庭数;分析数据:(3)根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?说明你的理由;(4)家庭过期药品的正确处理方式是送回收点,若该市有500万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.25.(7分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.26.(8分)如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.27.(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?28.(10分)如图,矩形OABC在平面直角坐标系中,若x2﹣2x+2=0的两根是x1、x2,且OC =x1+x2,OA=x1x2(1)求B点的坐标.(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BD的解析式.(3)在平面上是否存在点P,使D、C、B、P四点形成的四边形为平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(每小题3分,共30分)1.解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为:.2.解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故答案为:﹣1.3.解:在y=4x2﹣3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0).4.解:∵a2﹣5a﹣1=0,∴a2﹣5a=1,∴原式=5+10a﹣2a2=﹣2(a2﹣5a)+5=﹣2×1+5=3.故答案为3.5.解:由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得m=3,故答案为:3.6.解:连接OQ,∵AC=BC,∠ACB=90°,∴∠BAC=∠B=45°,由旋转的性质可知:△AQC≌△BOC,∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,∴∠OQC=45°,∵BO:OA=1:,设BO=1,OA=,∴AQ=1,则tan∠AQO==,∴∠AQO=60°,∴∠AQC=105°.7.解:如图所示,连接AC,∵CD与⊙A相切,∴CD⊥AC,在平行四边形ABCD中,∵AB=DC,AB∥CD,AD∥BC,∴BA⊥AC,∵AB=AC∴∠ACB=∠B=45°,∵AD∥BC∴∠FAE=∠B=45°,∠DAC=∠ACB=45°=∠FAE,∴=,∴的长度==,解得R=2,即AB=2.故答案是:2.8.解:设Q是AB的中点,连接DQ,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵AB=AC=2,O为AC中点,∴AQ=AO,在△AQD和△AOE中,,∴△AQD≌△AOE(SAS),∴QD=OE,∵点D在直线BC上运动,∴当QD⊥BC时,QD最小,∵△ABC是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD是等腰直角三角形,∴QD=QB,∵QB=AB=1,∴QD=,∴线段OE的最小值是为.故答案为.9.解:根据题意列出的方程是x(x﹣1)=182.10.解:根据题意,得要使两圆外切,则AB=2+1=3.结合图形,知AB=5,至少要平移2个单位.故答案为2.二、选择题(每小题3分,共30分)11.解:A、(x﹣1)2=1,x﹣1=±1,即方程有两个实数根,故本选项不符合题意;B、x2+2x﹣10=0,△=22﹣4×1×(﹣10)=44>0,方程有两个实数根,故本选项不符合题意;C、x2+4=7,x2=3,x=,方程有两个实数根,故本选项不符合题意;D、x2+x+1=0,△=12﹣4×1×1=﹣3<0,方程无实数根;故选:D.12.解:观察发现,只有是中心对称图形,∴旋转的牌是.故选:A.13.解:函数y=2x2+4x﹣3的图象向右平移2个单位,再向下平移1个单位得到图象y=2(x﹣2)2+4(x﹣2)﹣3﹣1,即y=2(x﹣1)2﹣6,顶点坐标是(1,﹣6),故选:C.14.解:∵O为线段AB的中点,AB=4cm,∴AO=BO=2cm,∵P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,∴OP2=2cm,∴OP2=AB,∴P1、P2、P3、P4四点中能与A、B构成直角三角形的顶点是P2,故选:B.15.解:设圆心为O,连接OA、OC,∵=80°,=60°,∴∠AOC=140°,∠ACB=40°,∵OA=OC,∴∠OAC=20°,∵直线l与圆相切于点A,∴OA⊥l,∴∠OAD=90°,∴∠CAD=70°,∵CD平分∠ACB,∴∠ACD=∠ACB=20°,∴∠ADC=180°﹣∠CAD﹣∠ACD=90°,故选:C.16.解:用列表法表示(a,b)所有可能出现的结果如下:由树状图知,共有9种等可能结果,其中点(a,b)在第一象限的有4种结果,所以点(a,b)在第一象限的概率为,故选:D.17.解:A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x==>0,则对称轴应在y轴右侧,与图象不符,故A选项错误;B.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,开口方向朝下,与图象不符,故B选项错误;C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x==<0,则对称轴应在y轴左侧,与图象不符,故C选项错误;D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x==>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.故选:D.18.解:∵x1,x2是一元二次方程x2+2x﹣1=0的两个根,∴x1+x2=﹣2,x1x2=﹣1,x12x2+x1x22=x1x2(x1+x2)=2.故选:B.19.解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<3时,y增量越来越大,当3<x<6时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.20.解:(1)正确.∵﹣=2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选:B.三、解答题(共60分)21.解:(1)∵3x(x+3)=2(x+3),∴(x+3)(3x﹣2)=0,∴x+3=0或3x﹣2=0,∴x1=﹣3,x2=;(2)∵2x2﹣4x﹣3=0,∴a=2,b=﹣4,c=﹣3,∴b2﹣4ac=40>0,∴x==.22.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求,设直线A1C′解析式为y=kx+b,将点A1(﹣1,1)、C′(﹣4,﹣3)代入得:,解得:,则直线A1C′解析式为y=x+,当y=0时,x+=0,解得:x=﹣,所以点P的坐标为(﹣,0).23.解:(1)把B(1,4)代入y=﹣x+m得,m=5,∴直线的解析式为:y=﹣x+5,∴A(4,1),把A(4,1),B(1,4)代入y=﹣x2+bx+c得,,解得:,∴抛物线解析式为:y=﹣x2+4x+1;(2)存在,设P点坐标为(m,﹣m2+4m+1),∵线段AB的中点E的坐标为(,),∴直线OP的解析式为:y=x,∴m=﹣m2+4m+1,解得:m=或m=,∴P点坐标为(,)(,).24.解:(1)其中最合理的一种是③在全市常住人口中以家庭为单位随机抽取,故答案为:③;(2)A的数量为1000×8%=80、B的数量为1000×51%=510、C的数量为1000×10%=100,D的数量为1000×20%=200、E的数量为1000×6%=60、F的数量为1000×5%=50,补全图形如下:(3)根据调查数据,利用样本估计总体可知,该市市民处理过期药品常见方式是直接丢弃;(4)样本中直接送回收点为10%,根据样本估计总体,送回收点的家庭约为:500×10%=50万户.25.解:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为=.26.解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=,在Rt△ACD中,由勾股定理得:BD==2,∴DE=BD﹣BE=2﹣;(2)∵FE⊥CE,∴∠CEF=90°,∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,∵∠FBE=∠CDE=45°,BE=BC=CD,∴△FEB≌△ECD,∴BF=DE=2﹣;(3)延长GE交AB于F,由(2)知:DE=BF=2﹣,由(1)知:BE=BC=,∵四边形ABCD是正方形,∴AB∥DC,∴△DGE∽△BFE,∴=,∴=,解得:DG=3﹣4.27.解:(1)S=y(x﹣40)=(x﹣40)(﹣10x+1200)=﹣10x2+1600x﹣48000;(2)S=﹣10x2+1600x﹣48000=﹣10(x﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.28.解:(1)x2﹣2x+2=0的两根是x1、x2,∴x1+x2=2,x1x2=2,∵OC=x1+x2,OA=x1x2,∴OC=2,OA=2,∴B(2,2);(2)在矩形OABC中BC=2 AB=2,∴tan∠BAC===,∴∠BAC=30°,由翻转变换的性质可知,∠B′AC=∠BAC=30°,∴∠B′AO=30°,∴AD=DC,∴AD=2﹣DO,在Rt△AOD中,AD2=OD2+OA2,即(2﹣DO)2=OD2+22,解得,OD=,则点D的坐标为(,0)设直线BD的解析式为y=kx+b(k≠0,k、b为常数),则,解得,,∴直线BD的解析式为y=x﹣1;(3)存在,如图,由平行四边形的性质可知,点P的坐标为(,2),点P′的坐标为(,﹣2),AP′'=AB+CD=,∴点P′′的坐标为(,2),综上所述,点D、C、B、P四点形成的四边形为平形四边形时,点P点坐标为(,2)或(,﹣2)或(,2).。
2018年黑龙江省牡丹江市中考数学试卷
2018年黑龙江省牡丹江市中考数学试卷一.选择题(将正确选项填在相应的位置上,每小题3分,满分36分)1. 下列图形中,既是轴对称图形又是中心对称图形的有()个.A.0B.1C.2D.3【答案】C【考点】轴对称图形中心对称图形【解析】根据轴对称图形与中心对称图形的概念分别分析得出答案.【解答】等边三角形是轴对称图形,不是中心对称图形,正五边形,是轴对称图形,不是中心对称图形,正方形和正六边形既是轴对称图形又是中心对称图形,2. 下列运算正确的是()A.2a−3⋅a4=2a−12B.(−3a2)3=−9a6=a2 D.a⋅a3+a2⋅a2=2a4C.a2÷a×1a【答案】D【考点】同底数幂的除法负整数指数幂分式的乘除运算同底数幂的乘法单项式乘单项式幂的乘方与积的乘方【解析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案.【解答】解:A.2a−3⋅a4=2a,故此选项错误;B.(−3a2)3=−27a6,故此选项错误;=1,故此选项错误;C.a2÷a×1aD.a⋅a3+a2⋅a2=2a4,正确.故选D.体的俯视图是()A. B.C. D.【答案】A【考点】简单组合体的三视图由三视图判断几何体【解析】结合主视图、左视图可知俯视图中右上角有2层,其余1层,由此即可解决问题;【解答】结合主视图、左视图可知俯视图中右上角有2层,其余1层,4. 在函数y=√x+3中,自变量x的取值范围是()A.x≤−3B.x≥−3C.x<−3D.x>−3【答案】B【考点】函数自变量的取值范围【解析】直接利用二次根式的定义得出x的取值范围.【解答】在函数y=√x+3中,x+3≥0,解得:x≥−3,故自变量x的取值范围是:x≥−3.5. 一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A.3,2B.2,2C.2,3D.2,4【答案】C【考点】众数算术平均数中位数【解析】根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.∵ 一组数据4,2,x ,3,9的平均数为4,∴ (4+2+x +3+9)÷5=4,解得,x =2,∴ 这组数据按照从小到大排列是:2,2,3,4,9,∴ 这组数据的众数是2,中位数是3,6. 如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为( )A.35B.45C.55D.65【答案】B【考点】二元一次方程的应用二元一次方程组的应用——行程问题【解析】设小长方形的长为x ,宽为y ,观察图形可得出关于x 、y 的二元一次方程组,解之即可求出x 、y 的值,再利用阴影部分的面积=大矩形的面积−5×小矩形的面积,即可求出结论.【解答】设小矩形的长为x ,宽为y ,根据题意得:{x +2y =15x =3y, 解得:{x =9y =3, ∴ S 阴影=15×12−5xy =45.7. 如图,△ABC 内接于⊙O ,若sin ∠BAC =13,BC =2√6,则⊙O 的半径为( )A.3√6B.6√6C.4√2D.2√2【答案】A【考点】圆周角定理三角形的外接圆与外心解直角三角形【解析】连接OB ,OC .作OD ⊥BC 于D ,根据同弧所对圆心角是圆周角的两倍,可得∠BOC =2∠A ,根据等腰三角形的性质,可得CD =√6,∠COD =∠A ,根据锐角三角函数可得【解答】解:如图:连接OB,OC.作OD⊥BC于D∵OB=OC,OD⊥BC∴CD=12BC,∠COD=12∠BOC又∵∠BOC=2∠A,BC=2√6∴∠COD=∠A,CD=√6∵sin∠BAC=13∴sin∠COD=CDOC =13∴OC=3√6,故选A.8. 如图,△ABC三个顶点的坐标分别是A(1, −1),B(2, −2),C(4, −1),将△ABC绕着原点O旋转75∘,得到△A1B1C1,则点B1的坐标为()A.(√2, √6)或(−√6, −√2)B.(√6, √2)或(−√6, −√2)C.(−√2, −√6)或(√6, √2)D.(−√2, −√6)或(√2, √6)【答案】C【考点】坐标与图形变化-旋转【解析】根据题意只研究点B的旋转即可,OB与x轴夹角为45∘,分别按顺时针和逆时针旋转75∘后,与y轴负向、x轴正向分别夹角为30∘,由此计算坐标即可.【解答】由点B坐标为(2, −2)则OB=√2,且OB与x轴、y轴夹角为45∘当点B绕原点逆时针转动75∘时,OB1与x轴正向夹角为30∘则B1到x轴、y轴距离分别为√2,√6,则点B1坐标为(√6, √2);同理,当点B绕原点顺时针转动75∘时,OB1与y轴负半轴夹角为30∘,则B1到x轴、y轴距离分别为√6,√2,则点B1坐标为(−√2, −√6);9. 将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线与直线y=3的交点坐标是()A.(0, 3)或(−2, 3)B.(−3, 0)或(1, 0)C.(3, 3)或(−1, 3)D.(−3, 3)或(1, 3)【答案】D【考点】二次函数图象的平移规律二次函数图象与几何变换二次函数图象上点的坐标特征【解析】先把y=x2+2x+3向下平移得到y=x2+2x,再求其与y=3的交点即可.【解答】解:将抛物线y=x2+2x+3向下平移3个单位长度后,所得到的抛物线为y=x2+2x,当该抛物线与直线y=3相交时,x2+2x=3,解得:x1=−3,x2=1,则交点坐标为:(−3, 3)(1, 3).故选D.10. 如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A.6B.5C.4D.3【答案】B【考点】矩形的性质翻折变换(折叠问题)【解析】设CD=x,则AE=x−1,证明△ADE≅△FCD,得ED=CD=x,根据勾股定理列方程可得CD的长.【解答】设CD=x,则AE=x−1,由折叠得:CF=BC=3,∵四边形ABCD是矩形,∴AD=BC=3,∠A=90∘,AB // CD,∴∠AED=∠CDF,∵∠A=∠CFD=90∘,AD=CF=3,∴△ADE≅△FCD,∴ED=CD=x,Rt△AED中,AE2+AD2=ED2,(x−1)2+32=x2,∴CD=5,11. 如图,直线y=kx−3(k≠0)与坐标轴分别交于点C,B,与双曲线y=−2x(x<0)交于点A(m, 1),则AB的长是()A.2√5B.√13C.2√3D.√26【答案】A【考点】函数的综合性问题【解析】作AD⊥y轴,由点A(m, 1)在y=−2x上知A(−2, 1),即AD=2、OD=1,由y=kx−3可得B(0, −3),即BO=3、BD=4,再根据勾股定理求解可得.【解答】如图,过点A作AD⊥y轴于点D,∵点A(m, 1)在y=−2x上,∴−2m=1,解得:m=−2,即A(−2, 1),则AD=2、OD=1,由y=kx−3可得B(0, −3),即BO=3,∴BD=4,则AB=√AD2+BD2=√22+42=2√5,12. 如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:①FG=2AO;②OD // HE;③BHEC =AMMD;④20E2=AH⋅DE;⑤GO+BH=HC正确结论的个数有()A.2B.3C.4D.5【答案】B【考点】全等三角形的性质线段垂直平分线的性质正方形的性质相似三角形的性质与判定【解析】①作辅助线,构建三角形全等,证明△ADE≅△GKF,则FG=AE,可得FG=2AO;②证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;③设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得HO=√5x,AH=5x2,所以BHCE=12xx=12,根据AR // CD,得AMMD=x2x=12,则BH CE =AMMD=12;④证明△HAE∽△ODE,可得AHOD =AEDE,等量代换可得OE2=AH⋅DE;⑤分别计算HC、OG、BH的长,可得结论.【解答】①如图,过G作GK⊥AD于K,∴∠GKF=90∘,∵四边形ABCD是正方形,∴∠ADE=90∘,AD=AB=GK,∴∠ADE=∠GKF,∵AE⊥FH,∴∠AOF=∠OAF+∠AFO=90∘,∵∠OAF+∠AED=90∘,∴∠AFO=∠AED,∴△ADE≅△GKF,∴FG=AE,∵FH是AE的中垂线,∴AE=2AO,∴FG=2AO,故①正确;②∵FH是AE的中垂线,∴AH=EH,∴∠HAE=∠HEA,∵AB // CD,∴∠HAE=∠AED,Rt△ADE中,∵O是AE的中点,∴OD=12AE=OE,∴∠ODE=∠AED,∴∠HEA=∠AED=∠ODE,当∠DOE=∠HEA时,OD // HE,∴OE>DE,即∠DOE≠∠HEA,∴OD与HE不平行,故②不正确;③设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,∴AE=√5x,AO=√5x2,易得△ADE∽△HOA,∴ADDE =HOAO,∴2xx =√5x2,∴HO=√5x,Rt△AHO中,由勾股定理得:AH=(√2)=5x2,∴BH=AH−AB=5x2−2x=x2,∴BHCE =12xx=12,延长CM、BA交于R,∵RA // CE,∴∠ARO=∠ECO,∵AO=EO,∠ROA=∠COE,∴△ARO≅△ECO,∴AR=CE,∵AR // CD,∴AMMD =ARDC,∴AMMD =x2x=12,∴BHCE =AMMD=12,故③正确;④由①知:∠HAE=∠AEH=∠OED=∠ODE,∴△HAE∽△ODE,∴AHOD =AEDE,∵AE=20E,OD=OE,∴OE⋅20E=AH⋅DE,∴20E2=AH⋅DE,故④正确;⑤由③知:HC=√(2x)2+(12x)2=√174x,∵AE=2AO=OH=√5x,tan∠EAD=DEAD =OFAO=12,√5∴OF=√54x,∵FG=AE=√5x,∴OG=√5x−√54x=3√54x,∴OG+BH=3√54x+12x,∴OG+BH≠HC,故⑤不正确;本题正确的有;①③④,3个,二.填空题(将正确的答案填在相应的横线上,每小题3分,满分24分)从党的“十八大”到“十九大”经历43800小时,我国的“天宫、蛟龙、天眼、悟空、墨子、大飞机”等各项科技创新成果“井喷”式发展,这些记录下了党的极不平凡的壮阔进程,请将数43800用科学记数法表示为________【答案】4.38×104【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将43800用科学记数法表示为:4.38×104.如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是________.【答案】∠A=∠B【考点】全等三角形的性质【解析】根据全等三角形的判定解答即可.【解答】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B(答案不唯一).同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是________.【答案】12【考点】列表法与树状图法【解析】列举出所有情况,看一枚硬币正面向上,一枚硬币反面向上的情况数占总情况数的多少即可.【解答】画树形图得:由树形图可知共4种情况,一枚硬币正面向上,一枚硬币反面向上的情况数有2种,所以概率是24=12.一列数1,4,7,10,13,……按此规律排列,第n个数是________【答案】3n−2【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】观察依次为1,4,7,…,的一列数,分析找出规律,据此求出第n个数.【解答】通过观察得出:依次为1,4,7,…,的一列数是首项为1,公差为3的等差数列,所以第n个数为:1+(n−1)×3=3n−2,小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为________元.【答案】160【考点】一元一次方程的应用——打折销售问题【解析】等量关系为:标价×0.8=标价−40,依此列出方程,解方程即可.【解答】解:设这双鞋的标价为x元,根据题意,得0.8x=x−40,x=200.200−40=160(元).故答案为:160.为________.【答案】2【考点】圆锥的计算【解析】设圆锥底面的半径为r ,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,则2πr =240π×3180,然后解方程即可.【解答】设圆锥底面的半径为r ,根据题意得2πr =240π×3180,解得r =2,矩形ABCD 中,AB =6,AD =8,点M 在对角线AC 上,且AM:MC =2:3,过点M 作EF ⊥AC 交AD 于点E ,交BC 于点F .在AC 上取一点P ,使∠MEP =∠EAC ,则AP 的长为________.【答案】74或254 【考点】相似三角形的性质与判定矩形的性质【解析】根据题意可得AC =10,由AM:MC =2:3可得AM =4,根据三角函数求EM =3,根据∠MEP =∠EAC ,则tan ∠PEM =tan ∠DAC =34,可求PM 的长,即可求AP 的长. 【解答】如图:∵ 矩形ABCD ,∴ AB =CD =6,AD =BC =8,∴ AC =10;∵ AM:MC =2:3,∴ AM =4,MC =6;∵ tan ∠DAC =CD AD =EM AM ,∴ 68=EM4,∴ EM =3;若P 在线段AM 上,∵ ∠EAC =∠PEM ,∴ tan ∠PEM =tan ∠DAC =PM ME =MEAM ,∴PM3=34,∴PM=94,∴AP=AM−PM=74;若P在线段MC上,∵∠EAC=∠PEM,∴tan∠PEM=tan∠DAC=PMME =MEAM,∴PM3=34,∴PM=94,∴AP=AM+PM=254,∴AP的长为74254.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=−1,下列结论中:①abc<0;②9a−3b+c<0;③b2−4ac>0;④a>b,正确的结论是________(只填序号)【答案】②③④【考点】二次函数图象与系数的关系二次函数y=ax^2+bx+c (a≠0)的图象和性质【解析】根据抛物线开口方向,对称轴为直线x=−1,与y轴的交点,可得abc>0,则可判断①,根据图象可得x=−3时y<0,代入解析式可判断②,根据抛物线与x轴的交点个数可判断③.根据a−b=−a>0,可判断④【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为x=−1,∴b−2a=−1,∴b=2a<0,∵抛物线与y轴交点在y轴正半轴,∴c>0∴abc>0,故①错误;∵由图象得x=−3时y<0,∴9a−3b+c<0,故②正确;∵图象与x轴有两个交点,∴Δ=b2−4ac>0,故③正确;∵a−b=a−2a=−a>0,∴a>b,故④正确.故答案为:②③④.三.解答题(满分60分)先化简,再求值:x2−1x2−2x+1⋅1x+1−1x,其中x=2.【答案】原式=(x+1)(x−1)(x−1)2⋅1x+1−1x=1x−1−1x=xx(x−1)−x−1x(x−1)=1x(x−1),当x=2时,原式=12×1=12.【考点】分式的化简求值【解析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】原式=(x+1)(x−1)(x−1)2⋅1x+1−1x=1x−1−1x=xx(x−1)−x−1x(x−1)=1x(x−1),当x=2时,原式=12×1=12.如图,在⊙O中,AB̂=2AĈ,AD⊥OC于D.求证:AB=2AD.【答案】证明:延长AD交⊙O于E,∵OC⊥AD,∴AÊ=2AĈ,AE=2AD,∵AB̂=2AĈ,∴AÊ=AB̂,∴AB=AE,∴AB=2AD.【考点】圆心角、弧、弦的关系垂径定理【解析】延长AD交⊙O于E,利用圆心角、弧、弦的关系证明即可.【解答】证明:延长AD交⊙O于E,∵OC⊥AD,∴AÊ=2AĈ,AE=2AD,∵AB̂=2AĈ,∴AÊ=AB̂,∴AB=AE,∴AB=2AD.如图,抛物线y=−x2+bx+c经过A(−1, 0),B(3, 0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:(1)求抛物线的解析式及顶点D的坐标;(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为________.(注:抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=−b2a,顶点坐标为(−b2a , 4ac−b24a)【答案】∵ 抛物线y =−x 2+bx +c 过点A(−1, 0),B(3, 0)∴ {−1−b +c =0−9+3b +c =0解得{b =2c =3∴ 所求函数的解析式为:y =−x 2+2x +3y =−x 2+2x +3=−(x −1)2+4∴ 顶点D(1, 4) √13【考点】二次函数的性质二次函数图象上点的坐标特征待定系数法求二次函数解析式轴对称——最短路线问题【解析】(1)把已知两点的坐标代入,求出b 、c 的值,就可以确定抛物线的解析式,配方或用公式求出顶点坐标(2)根据B 、D 两点的坐标确定中点H 的坐标,作出H 点关于y 轴的对称点点H′,连接H′D 与y 轴交点即为P ,求出H′D 即可【解答】∵ 抛物线y =−x 2+bx +c 过点A(−1, 0),B(3, 0)∴ {−1−b +c =0−9+3b +c =0解得{b =2c =3∴ 所求函数的解析式为:y =−x 2+2x +3y =−x 2+2x +3=−(x −1)2+4∴ 顶点D(1, 4)∵ B(3, 0),D(1, 4)∴ 中点H 的坐标为(2, 2)其关于y 轴的对称点H′坐标为(−2, 2)连接H′D 与y 轴交于点P ,则PD +PH 最小且最小值为:√(12+(4−2)2=√13∴ 答案:√13在四边形ABCD 中,∠B =∠C =90∘,AB =3,BC =4,CD =1.以AD 为腰作等腰△ADE ,使∠ADE =90∘,过点E 作EF ⊥DC 交直线CD 于点F .请画出图形,并直接写出AF 的长.【答案】如图1中,作AN ⊥CF 于N ,DM ⊥AB 于M .∵∠B=∠C=∠DMB=90∘,∴四边形BCDM是矩形,易证四边形AMDN是矩形,∴CD=BM=1,AM=AB−BM=2,DM=BC=AN=4,DN=AM=2,∵∠AMD=∠DFE,∠ADM=∠FDE,DA=DE,∴△ADM≅△EDF,∴DF=DM=4,∴FN=DF−DN=2,在Rt△AFN中,AF=√42+22=2√5.如图2中,作AN⊥FD交FD的延长线于N.易证AN=BC=4,△ADN≅△DEF,∴DF=AN=4,DN=CN−CD=2,∴FN=6,在Rt△AFN中,AF=√42+62=2√13.【考点】全等三角形的性质勾股定理等腰直角三角形作图—复杂作图【解析】分两种情形画出图形,分别求解即可解决问题;【解答】如图1中,作AN⊥CF于N,DM⊥AB于M.∵∠B=∠C=∠DMB=90∘,∴四边形BCDM是矩形,易证四边形AMDN是矩形,∴CD=BM=1,AM=AB−BM=2,DM=BC=AN=4,DN=AM=2,∵∠AMD=∠DFE,∠ADM=∠FDE,DA=DE,∴△ADM≅△EDF,∴DF=DM=4,∴FN=DF−DN=2,在Rt△AFN中,AF=√42+22=2√5.如图2中,作AN⊥FD交FD的延长线于N.易证AN=BC=4,△ADN≅△DEF,∴DF=AN=4,DN=CN−CD=2,∴FN=6,在Rt△AFN中,AF=√42+62=2√13.某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了________名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是________度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【答案】60设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60−18−6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:36=288人.最喜欢烈士陵园的人数约有720×2460【考点】用样本估计总体扇形统计图条形统计图【解析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360∘乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】本次活动调查的学生人数为18÷30%=60人,故答案为:60;设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60−18−6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:=36∘,在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360∘×660故答案为:36;=288人.最喜欢烈士陵园的人数约有720×2460在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)请写出甲的骑行速度为________米/分,点M 的坐标为________;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回A 地之前,经过多长时间两人距C 地的路程相等.【答案】240,(6, 1200)设MN 的解析式为:y =kx +b(k ≠0),∵ y =kx +b(k ≠0)的图象过点M(6, 1200)、N(11, 0),∴ {6k +b =120011k +b =0, 解得{k =−240b =2640, ∴ 直线MN 的解析式为:y =−240x +2640;即甲返回时距A 地的路程y 与时间x 之间的函数关系式:y =−240x +2640;设甲返回A 地之前,经过x 分两人距C 地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵ AB =1200,AC =1020,∴ BC =1200−1020=180,分5种情况:①当0<x ≤3时,1020−240x =180−60x ,x =143>3,此种情况不符合题意;②当3<x <214−1时,即3<x <174,甲、乙都在A 、C 之间,∴ 1020−240x =60x −180,x =4,③当214<x ≤6时,甲在B 、C 之间,乙在A 、C 之间,∴ 240x −1020=60x −180,x =143<214,此种情况不符合题意;④当x =6时,甲到B 地,距离C 地180米,乙距C 地的距离:6×60−180=180(米),即x =6时两人距C 地的路程相等,⑤当x >6时,甲在返回途中,当甲在B 、C 之间时,180−[240(x −1)−1200]=60x −180,x =6,此种情况不符合题意,当甲在A 、C 之间时,240(x −1)−1200−180=60x −180,x =8,综上所述,在甲返回A 地之前,经过4分钟或6分钟或8分钟时两人距C 地的路程相等.【考点】一次函数的应用【解析】(1)根据路程和时间可得甲的速度,根据甲去和返回时的时间共计11分,休息了一分,所以一共用了10分钟,可得M 的坐标;(2)利用待定系数法求MN 的解析式;(3)先根据总路程1200米,时间为20分,计算乙的速度,根据A ,C ,B 三地在同一直线上,计算B 、C 之间的路程,分情况讨论:设甲返回A 地之前,经过x 分两人距C 地的路程相等,①因为乙从B 地到C 地一共需要3小时,所以第一个时间为0<x ≤3,即乙在B 、C 之间时,列方程可知不符合题意;②3<x <6,根据两人距C 地的路程相等列方程可得结论;③计算甲到B 地时,符合条件;④计算乙走过C 地,即乙在A 、C 之间时,列方程,注意此时甲用了(x −1)分.【解答】由题意得:甲的骑行速度为:1020(214−1)=240(米/分),240×(11−1)÷2=1200(米),则点M 的坐标为(6, 1200),故答案为:240,(6, 1200);设MN 的解析式为:y =kx +b(k ≠0),∵ y =kx +b(k ≠0)的图象过点M(6, 1200)、N(11, 0),∴ {6k +b =120011k +b =0, 解得{k =−240b =2640, ∴ 直线MN 的解析式为:y =−240x +2640;即甲返回时距A 地的路程y 与时间x 之间的函数关系式:y =−240x +2640;设甲返回A 地之前,经过x 分两人距C 地的路程相等,乙的速度:1200÷20=60(米/分),如图1所示:∵ AB =1200,AC =1020,∴ BC =1200−1020=180,分5种情况:①当0<x ≤3时,1020−240x =180−60x ,x =143>3,此种情况不符合题意;②当3<x <214−1时,即3<x <174,甲、乙都在A 、C 之间,∴ 1020−240x =60x −180,x =4,③当214<x ≤6时,甲在B 、C 之间,乙在A 、C 之间,∴ 240x −1020=60x −180,x =143<214,此种情况不符合题意;④当x=6时,甲到B地,距离C地180米,乙距C地的距离:6×60−180=180(米),即x=6时两人距C地的路程相等,⑤当x>6时,甲在返回途中,当甲在B、C之间时,180−[240(x−1)−1200]=60x−180,x=6,此种情况不符合题意,当甲在A、C之间时,240(x−1)−1200−180=60x−180,x=8,综上所述,在甲返回A地之前,经过4分钟或6分钟或8分钟时两人距C地的路程相等.在等腰△ABC中,∠B=90∘,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135∘.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan∠BEM=√3,AN=√2+1,则BM=________,CF=________.【答案】(1)证明:由题意得∠BMN=135∘,即∠BME+∠EMN=135∘.∵∠EMF=135∘,即∠NMF+∠EMN=135∘,∵MN⊥AC,∴∠MNF=90∘=∠B,∴∠BME=∠NMF,∵BM=NM,∴△NMF≅△BME(ASA),∴BE=NF,BM=MN,∵在Rt△MNC中,∠C=45∘,∴CN=NM,∵FN+CF=CN,∴BE+CF=BM;(2)证明:题图中②中,BE−CF=BM;题图③中,BE+BM=CF.1,1+√33【考点】几何变换综合题【解析】本题是几何变换综合题,主要考查了等腰直角三角形的性质,角平分线定理,勾股定理,锐角三角函数,全等三角形的判定和性质,判断出BE=NF是解本题的关键.【解答】(1)证明:由题意得∠BMN=135∘,即∠BME+∠EMN=135∘.∵∠EMF=135∘,即∠NMF+∠EMN=135∘,∵MN⊥AC,∴∠MNF=90∘=∠B,∴∠BME=∠NMF,∵BM=NM,∴△NMF≅△BME(ASA),∴BE=NF,BM=MN,∵在Rt△MNC中,∠C=45∘,∴CN=NM,∵FN+CF=CN,∴BE+CF=BM;(2)证明:题图中②中,BE−CF=BM;题图③中,BE+BM=CF.(3)故答案为:1;1+√33某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y 套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.【答案】根据题意得购进丙种图书(20−x−y)套,则有500x+400y+250(20−x−y)= 7700,x+18;所以解析式为:y=−53x+18≥1,根据题意得:−53解得:x≤101,5又∵x≥1,∴1≤x≤101,5因为x,y,(20−x−y)为整数,∴x=3,6,9,即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(不是正整数,不符合题意),若按方案一:则有13a−4a=20,解得a=209若按方案二:则有8a−6a=20,解得a=10(符合题意),若按方案三:则有3a−8a=20,解得a=−4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a=10.【考点】二元一次方程组的应用——行程问题一元一次不等式的运用一次函数的应用【解析】(1)根据题意列出函数解析式即可;(2)根据题意列出不等式,进而解答即可;(3)根据(2)中解集得出购买方案.【解答】根据题意得购进丙种图书(20−x−y)套,则有500x+400y+250(20−x−y)= 7700,x+18;所以解析式为:y=−53x+18≥1,根据题意得:−53解得:x≤101,5又∵x≥1,∴1≤x≤101,5因为x,y,(20−x−y)为整数,∴x=3,6,9,即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(不是正整数,不符合题意),若按方案一:则有13a−4a=20,解得a=209若按方案二:则有8a−6a=20,解得a=10(符合题意),若按方案三:则有3a−8a=20,解得a=−4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a=10.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2−9x+18= 0的两根,请解答下列问题:(1)求点D的坐标;(2)若反比例函数y=kx(k≠0)的图象经过点H,则k=________;(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】x2−9x+18=0,(x−3)(x−6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四边形ABCD是菱形,∴AC⊥BD,AE=EC=√62−32=3√3,∴∠DCA=30∘,∠EDC=60∘,Rt△DEM中,∠DEM=30∘,∴DM=12DE=32,∵OM⊥AB,∴S菱形ABCD =12AC⋅BD=CD⋅OM,∴12×6√3×6=60M,OM=3√3,∴D(−32, 3√3);9√3①∵DC=BC,∠DCB=60∘,∴△DCB是等边三角形,∵H是BC的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30∘,∴∠ABF=∠ABC−∠CBF=120∘−30∘=90∘,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30∘,AB=6,∴FB=2√3=CP,∴P(92, √3);②如图2,∵四边形QPFC是平行四边形,∴CQ // PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60∘,∴∠BQC=30∘,∴CQ=6√3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6√3,∴∠QAC=∠QCA=60∘,∠CAB=30∘,∴∠QAB=90∘,∴Q(−92, 6√3),由①知:F(32, 2√3),由F到C的平移规律可得P到Q的平移规律,则P(−92−3, 6√3−√3),即P(−152, 5√3);③如图3,四边形CQFP是平行四边形,同理知:Q(−92, 6√3),F(32, 2√3),C(92, 3√3),∴P(212, −√3);综上所述,点P的坐标为:(92, √3)或(−152, 5√3)或(212, −√3).【考点】反比例函数综合题【解析】(1)先解方程可得CD 和DE 的长,根据直角三角形的性质可得∠DCA =30∘,分别计算AC 、BD 、DM 的长,根据菱形面积的两种计算方法可得高OM 的长,得D 的坐标;(2)根据(1)中的结论可得B 和C 的坐标,根据中点坐标公式可得H 的坐标,代入反比例函数可得k 的值;(3)分三种情况:①以CF 为边时,在CF 的上方,②以CF 为边,在CF 的下方,③以CF 为对角线时,分别根据平移规律求点P 的坐标.【解答】x 2−9x +18=0,(x −3)(x −6)=0,x =3或6,∵ CD >DE ,∴ CD =6,DE =3,∵ 四边形ABCD 是菱形,∴ AC ⊥BD ,AE =EC =√62−32=3√3,∴ ∠DCA =30∘,∠EDC =60∘,Rt △DEM 中,∠DEM =30∘,∴ DM =12DE =32, ∵ OM ⊥AB ,∴ S 菱形ABCD =12AC ⋅BD =CD ⋅OM ,∴ 12×6√3×6=60M ,OM =3√3, ∴ D(−32, 3√3);∵ OB =DM =32,CM =6−32=92,∴ B(32, 0),C(92, 3√3),∵ H 是BC 的中点,∴ H(3, 3√32), ∴ k =3×3√32=9√32; 故答案为:9√32;①∵ DC =BC ,∠DCB =60∘,∴△DCB是等边三角形,∵H是BC的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30∘,∴∠ABF=∠ABC−∠CBF=120∘−30∘=90∘,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30∘,AB=6,∴FB=2√3=CP,∴P(92, √3);②如图2,∵四边形QPFC是平行四边形,∴CQ // PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60∘,∴∠BQC=30∘,∴CQ=6√3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6√3,∴∠QAC=∠QCA=60∘,∠CAB=30∘,∴∠QAB=90∘,∴Q(−92, 6√3),由①知:F(32, 2√3),由F到C的平移规律可得P到Q的平移规律,则P(−92−3, 6√3−√3),即P(−152, 5√3);③如图3,四边形CQFP是平行四边形,同理知:Q(−92, 6√3),F(32, 2√3),C(92, 3√3),∴P(212, −√3);综上所述,点P的坐标为:(92, √3)或(−152, 5√3)或(212, −√3).。
2018年黑龙江省牡丹江市中考数学试卷(含答案)
2018年黑龙江省牡丹江市中考数学试卷一、选择题(每小题3分,共36分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.正五边形C.矩形D.平行四边形2.下列计算正确的是()A.2a3•3a2=6a6B.a3+2a3=3a6C.a÷b×=a D.(﹣2a2b)3=﹣8a6b33.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最少是()A.8 B.9 C.10 D.114.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≤1 D.x≥15.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.6.在平面直角坐标系中,直线y=2x﹣6不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.58.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.109.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C.3D.210.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.8911.如图,在平面直角坐标系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为()A.(4,0)B.(5,0)C.(4,0)或(﹣4,0)D.(5,0)或(﹣5,0)12.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC 交于点M,以下结论:=1;④CE=AF;⑤EG2=FG•DG,①FH=2BH;②AC⊥FH;③S△ACF其中正确结论的个数为()A.2 B.3 C.4 D.5二、填空题(每小题3分,满分24分)13.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为______.14.如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是______.15.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件______元.16.若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为______.17.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=______度.18.已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=______.19.如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC=______.20.在矩形ABCD中,对角线AC,BD相交于点O,AC+BD=40,AB=12,点E是BC边上一点,直线OE交CD边所在的直线于点F,若OE=2,则DF=______.三、解答题(满分60分)21.先化简,再求值:÷(x﹣),其中x=﹣2.22.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).(1)求抛物线的解析式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)23.在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,BC=6,CD=5,过点A作AE ⊥AD且AE=AD,过点E作EF垂直于AC边所在的直线,垂足为点F,连接DF,请你画出图形,并直接写出线段DF的长.24.为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表进球数(个)人数0 11 22 x3 y4 45 2(1)求这个班级的男生人数;(2)补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;(3)该校共有学生1880人,请你估计全校进球数不低于3个的学生大约有______人.25.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.26.在▱ABCD中,点P和点Q是直线BD上不重合的两个动点,AP∥CQ,AD=BD.(1)如图①,求证:BP+BQ=BC;(2)请直接写出图②,图③中BP、BQ、BC三者之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,若DQ=1,DP=3,则BC=______.27.某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A 种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.28.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程x2﹣3x+2=0的两个根(OA >OC).(1)求点A,C的坐标;(2)直线AB与直线CD交于点E,若点E是线段AB的中点,反比例函数y=(k≠0)的图象的一个分支经过点E,求k的值;(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.2018年黑龙江省牡丹江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.正五边形C.矩形D.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;B、正五边形是轴对称图形,不是中心对称图形.故本选项错误;C、矩形是轴对称图形,是中心对称图形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选C.2.下列计算正确的是()A.2a3•3a2=6a6B.a3+2a3=3a6C.a÷b×=a D.(﹣2a2b)3=﹣8a6b3【考点】整式的混合运算;分式的乘除法.【分析】A、原式利用单项式乘单项式法则计算得到结果,即可作出判断;B、原式不能合并,错误;C、原式利用乘除法则计算得到结果,即可作出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=6a5,错误;B、原式=3a3,错误;C、原式=a××=,错误;D、原式=﹣8a6b3,正确,故选D3.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最少是()A.8 B.9 C.10 D.11【考点】由三视图判断几何体.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:综合主视图和俯视图,底层最少有5个小立方体,第二层最少有3个小立方体,第三层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是9个,故选B.4.在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≤1 D.x≥1【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故选:D.5.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于5的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是:.故选C.6.在平面直角坐标系中,直线y=2x﹣6不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据k,b的符号判断直线所经过的象限,然后确定必不经过的象限.【解答】解:∵由已知,得:k=2<0,b=﹣6<0,∴图象经过第一、三、四象限,∴必不经过第二象限.故选:B.7.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.8.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】抛物线y=x2﹣1向下平移8个单位长度后的到的新的二次函数的解析式为y=x2﹣9,令x2﹣9=0求其解即可知道抛物线与x轴的交点的横坐标,两点之间的距离随即可求.【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为69.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=6,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C.3D.2【考点】解直角三角形.【分析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【解答】解:∵AC=6,∠C=45°,∴AD=AC•sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选:A.10.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.89【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,进而得出答案.【解答】解:第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第8个图形共有小正方形的个数为:9×9+8=89.故选D.11.如图,在平面直角坐标系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先将四边形ABCD沿x轴翻折,再向右平移8个单位长度,向下平移1个单位长度后,得到四边形A1B1C1D1,最后将四边形A1B1C1D1,绕着点A1旋转,使旋转后的四边形对角线的交点落在x轴上,则旋转后的四边形对角线的交点坐标为()A.(4,0)B.(5,0)C.(4,0)或(﹣4,0)D.(5,0)或(﹣5,0)【考点】坐标与图形变化-旋转;坐标与图形变化-对称;坐标与图形变化-平移.【分析】根据题意画出图形,发现有两种情况:①对角线交点落在x轴正半轴上,②对角线交点落在x轴负半轴上;先求平移后的四边形A1B1C1D1对角线交点E1的坐标,求OE1的长,从而求出结论.【解答】解:由题意得:A1(0,0),C1(6,8),根据四个点的坐标可知:四边形ABCD是平行四边形,∴对角线交点E1是A1C1的中点,∴E1(3,4),由勾股定理得:A1E1==5,当对角线交点落在x轴正半轴上时,对角线的交点坐标为(5,0),当对角线交点落在x轴负半轴上时,对角线的交点坐标为(﹣5,0),故选D.12.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC 交于点M,以下结论:=1;④CE=AF;⑤EG2=FG•DG,①FH=2BH;②AC⊥FH;③S△ACF其中正确结论的个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;③可以直接求出FC的长,计算S≠1,错误;△ACF④根据正方形边长为2,分别计算CE和AF的长得结论正确;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,所以⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S=CF•AD≠1,△AFC所以选项③不正确;④AF===2,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤在Rt△FEC中,EG⊥FC,∴EG2=FG•CG,cos∠FCE=,∴CG===1,∴DG=CG,∴EG2=FG•DG,故选项⑤正确;本题正确的结论有4个,故选C.二、填空题(每小题3分,满分24分)13.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为 1.62×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16200用科学记数法表示为:1.62×104.故答案为:1.62×104.14.如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是AE=CE.【考点】全等三角形的判定.【分析】由题意得,BE=DE,∠AEB=∠CED(对顶角),可选择利用AAS、SAS进行全等的判定,答案不唯一.【解答】解:添加AE=CE,在△ABE和△CDE中,∵,∴△ABE≌△CDE(SAS),故答案为:AE=CE.15.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件150元.【考点】一元一次方程的应用.【分析】设该商品的标价为每件为x元,根据八折出售可获利20元,可得出方程:80%x﹣100=20,再解答即可.【解答】解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.16.若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为17或18.【考点】中位数.【分析】根据中位数的定义得出第二个数和第三个数的和是8,再根据这四个数是不相等的正整数,得出这两个数是3和5,再根据这些数都是正整数得出第一个数是2或1,再把这四个数相加即可得出答案.【解答】解:∵中位数是4,最大的数是8,∴第二个数和第三个数的和是8,∵这四个数是不相等的正整数,∴这两个数是3和5,∴这四个数是1,3,5,8或2,3,5,8,∴这四个数的和为17或18;故答案为:17或18.17.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【考点】圆周角定理.【分析】连接AC,首先根据直径所对的圆周角为直角得到直角三角形,然后根据直角三角形的两边利用锐角三角函数确定∠A的度数,然后利用圆周角定理确定答案即可.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.18.已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=﹣3.【考点】二次函数图象上点的坐标特征.【分析】将点(﹣2,4)代入y=ax2﹣3x+c(a≠0),即可求得4a+c的值,进一步求得4a+c ﹣1的值.【解答】解:把点(﹣2,4)代入y=ax2﹣3x+c,得4a+6+c=4,∴4a+c=﹣2,∴4a+c﹣1=﹣3,故答案为﹣3.19.如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC=5.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到BF=CF=BC,由AB的垂直平分线交AB于点E,得到BD=AD=4,设DF=x,根据勾股定理列方程即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∴BF=CF=BC,∵AB的垂直平分线交AB于点E,∴BD=AD=4,设DF=x,∴BF=4+x,∵AF2=AB2﹣BF2=AD2﹣DF2,即16﹣x2=36﹣(4+x)2,∴x=1,∴CD=5,故答案为:5.20.在矩形ABCD中,对角线AC,BD相交于点O,AC+BD=40,AB=12,点E是BC边上一点,直线OE交CD边所在的直线于点F,若OE=2,则DF=18或30.【考点】矩形的性质.【分析】作ON⊥BC于N,由矩形的性质得出∠ABC=90°,AD∥BC,CD=AB=12,OA=OC= AC,OB=OD=BD,AC=BD,得出OB=OC,AC=BD=20,由勾股定理求出BC,由等腰三角形的性质得出BN=CN=BC=8,由三角形中位线定理得出ON=AB=6,再由勾股定理求出EN,分两种情况:①求出CE的长,由平行线得出△DMF∽△CEF,得出对应边成比例,即可得出结果;②求出CE的长,由平行线证出△ONE∽△FCE,得出对应边成比例求出CF,即可得出DF的长.【解答】解:作ON⊥BC于N,∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,CD=AB=12,OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∵AC+BD=40,∴AC=BD=20,∴BC===16,∵ON⊥BC,∴BN=CN=BC=8,∴ON=AB=6,∴EN===2,∴CE=CN+EN=10,分两种情况:①如图1所示:∵AD∥BC,OB=OD,∴DM:BE=OD:OB=1,△DMF∽△CEF,∴DM=BE=BC﹣CE=6,,即,解得:DF=18;②如图2所示:由①得:CE=CN﹣EN=6,∵CD⊥BC,ON⊥BC,∴ON∥CD,∴△ONE∽△FCE,∴,即,解得:CF=18,∴DF=CD+CF=12+18=30;故答案为:18或30.三、解答题(满分60分)21.先化简,再求值:÷(x﹣),其中x=﹣2.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=﹣2时,原式==﹣.22.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(﹣1,8)并与x轴交于点A,B两点,且点B坐标为(3,0).(1)求抛物线的解析式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,)【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)将已知点的坐标代入二次函数的解析式,解关于b 、c 的二元一次方程组即可;(2)过点P 作PH ⊥Y 轴于点H ,过点B 作BM ∥y 轴交直线PH 于点M ,过点C 作CN ⊥y 轴叫直线BM 于点N ,则S △CPB =S 矩形CHMN ﹣S △CHP ﹣S △PMB ﹣S △CNB【解答】i 解:(1)∵抛物线y=x 2+bx +c 经过点(﹣1,8)与点B (3,0),∴解得:∴抛物线的解析式为:y=x 2﹣4x +3(2)∵y=x 2﹣4x +3=(x ﹣2)2﹣1,∴P (2,﹣1)过点P 作PH ⊥Y 轴于点H ,过点B 作BM ∥y 轴交直线PH 于点M ,过点C 作CN ⊥y 轴叫直线BM 于点N ,如下图所示:S △CPB =S 矩形CHMN ﹣S △CHP ﹣S △PMB ﹣S △CNB=3×4﹣×2×4﹣﹣=3即:△CPB 的面积为323.在Rt △ABC 中,∠ACB=90°,点D 为斜边AB 的中点,BC=6,CD=5,过点A 作AE ⊥AD 且AE=AD ,过点E 作EF 垂直于AC 边所在的直线,垂足为点F ,连接DF ,请你画出图形,并直接写出线段DF 的长.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.【分析】分两种情况:①点E 在CF 上方,根据直角三角形的性质得出AC=8,作DG ⊥AC 可得AG=4、DG=3,再证△EAF ≌△ADG 可得AF=DG=3,即GF=7,由勾股定理即可得答案;②点E 在AC 下方时,与①同理可得.【解答】解:①如图1,当点E 在CF 上方时,∵点D为斜边AB的中点,BC=6,CD=5,∴CD=AD=DB=AB=5,∴AB=10,AC=8,过点D作DG⊥AC于G,∴AG=CG=AC=4,DG=BC=3,∠EFA=∠AGD=90°,∴∠EAF+∠AEF=90°,又∵AE⊥AD,∴∠EAF+∠DAG=90°,∴∠AEF=∠DAG,在△EAF和△ADG中,∵,∴△EAF≌△ADG(AAS),∴AF=DG=3,∴在Rt△DFG中,DF===;②如图2,当点E在AC下方时,作DH⊥AC于H,与①同理可得△DAH≌△AEF,∴AF=DH=3,∴FH=AH﹣AF=1,则DF===,综上,DF的长为或.24.为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表进球数(个)人数0 11 22 x3 y4 45 2(1)求这个班级的男生人数;(2)补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;(3)该校共有学生1880人,请你估计全校进球数不低于3个的学生大约有1160人.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据进球数为3个的人数除以占的百分比求出男生总人数即可;(2)求出进球数为4个的人数,以及进球数为2个的圆心角度数,补全条形统计图即可;(3)求出进球数不低于3个的百分比,乘以1880即可得到结果.【解答】解:(1)这个班级的男生人数为6÷24%=25(人),则这个班级的男生人数为25人;(2)男生进球数为4个的人数为25﹣(1+2+5+6+4)=7(人),进2个球的扇形圆心角度数为360°×=72°;补全条形统计图,如图所示:(3)根据题意得:1880×=1160(人),则全校进球数不低于3个的学生大约有1160人.故答案为:116025.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.【考点】一次函数的应用;待定系数法求一次函数解析式.【分析】(1)根据路程与相应的时间,求得快车与慢车的速度;(2)先求得点C的坐标,再根据点D的坐标,运用待定系数法求得CD的解析式;(3)分三种情况:在两车相遇之前;在两车相遇之后;在快车返回之后,分别求得时间即可.【解答】解:(1)快车速度:180×2÷()=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.26.在▱ABCD中,点P和点Q是直线BD上不重合的两个动点,AP∥CQ,AD=BD.(1)如图①,求证:BP+BQ=BC;(2)请直接写出图②,图③中BP、BQ、BC三者之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,若DQ=1,DP=3,则BC=2或4.【考点】四边形综合题.【分析】(1)根据平行四边形的性质证明△ADP≌△CBQ,得BQ=PD,由AD=BD=BC得:BC=BD=BP+PD=BP+BQ;(2)图②,证明△ABP≌△CDQ,得PB=DQ,根据线段的和得结论;图③,证明△ADP≌△CBQ,得PD=BQ,同理得出结论;(3)分别代入图①和图②条件下的BC,计算即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵AP∥CQ,∴∠APQ=∠CQB,∴△ADP≌△CBQ,∴DP=BQ,∵AD=BD,AD=BC,∴BD=BC,∵BD=BP+DP,∴BC=BP+BQ;(2)图②:BQ﹣BP=BC,理由是:∵AP∥CQ,∴∠APB=∠CQD,∵AB∥CD,∴∠ABD=∠CDB,∴∠ABP=∠CDQ,∵AB=CD,∴△ABP≌△CDQ,∴BP=DQ,∴BC=AD=BD=BQ﹣DQ=BQ﹣BP;图③:BP﹣BQ=BC,理由是:同理得:△ADP≌△CBQ,∴PD=BQ,∴BC=AD=BD=BP﹣PD=BP﹣BQ;(3)图①,BC=BP+BQ=DQ+PD=1+3=4,图②,BC=BQ﹣BP=PD﹣DQ=3﹣1=2,∴BC=2或4.27.某绿色食品有限公司准备购进A和B两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:(1)求A,B两种蔬菜每吨的进价;(2)该公司计划用14万元同时购进A,B两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A 种蔬菜的资金a(万元)之间的函数关系式;(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.【考点】一次函数的应用;分式方程的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设每吨A种蔬菜的进价为x万元,每吨B种蔬菜的进价为(x+0.5)万元,根据用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,可列分式方程求解;(2)根据所获利润W=A种蔬菜出售所获利润+B种蔬菜出售所获利润,列出函数解析式并化简即可;(3)先根据A种蔬菜的吨数不低于B种蔬菜的吨数,求得a的取值范围,再根据一次函数W=﹣a+7的性质,求得最大利润,最后根据电脑的价格判断购买电脑的方案数量.【解答】解:(1)设每吨A种蔬菜的进价为x万元,则每吨B种蔬菜的进价为(x+0.5)万元,依题意得,解得x=1.5,经检验:x=1.5是原方程的解,∴x+0.5=2,∴每吨A种蔬菜的进价为1.5万元,每吨B种蔬菜的进价为2万元;(2)根据题意得,W=(2﹣1.5)×+(3﹣2)×=﹣a+7,∴所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式为:W=﹣a+7;(3)当≥时,a≥6,∵在一次函数W=﹣a+7中,W随着a的增大而减小,∴当a=6时,W有最大值,W的最大值为﹣1+7=6(万元),设购买甲种电脑a台,购买乙种电脑b台,则2100a+2700b=60000,∵a和b均为整数,∴有三种购买方案.28.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b与坐标轴交于C,D两点,直线AB与坐标轴交于A,B两点,线段OA,OC的长是方程x2﹣3x+2=0的两个根(OA >OC).(1)求点A,C的坐标;(2)直线AB与直线CD交于点E,若点E是线段AB的中点,反比例函数y=(k≠0)的图象的一个分支经过点E,求k的值;(3)在(2)的条件下,点M在直线CD上,坐标平面内是否存在点N,使以点B,E,M,N为顶点的四边形是菱形?若存在,请直接写出满足条件的点N的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)利用分解因式法解一元二次方程x2﹣3x+2=0即可得出OA、OC的值,再根据点所在的位置即可得出A、C的坐标;(2)根据点C的坐标利用待定系数法即可求出直线CD的解析式,根据点A、B的横坐标结合点E为线段AB的中点即可得出点E的横坐标,将其代入直线CD的解析式中即可求出点E的坐标,再利用待定系数法即可求出k值;(3)假设存在,设点M的坐标为(m,﹣m+1),分别以BE为边、BE为对角线来考虑.根据菱形的性质找出关于m的方程,解方程即可得出点M的坐标,再结合点B、E的坐标即可得出点N的坐标.【解答】解:(1)x2﹣3x+2=(x﹣1)(x﹣2)=0,∴x1=1,x2=2,∵OA>OC,∴OA=2,OC=1,∴A(﹣2,0),C(1,0).(2)将C(1,0)代入y=﹣x+b中,得:0=﹣1+b,解得:b=1,∴直线CD的解析式为y=﹣x+1.∵点E为线段AB的中点,A(﹣2,0),B的横坐标为0,∴点E的横坐标为﹣1.∵点E为直线CD上一点,∴E(﹣1,2).将点E(﹣1,2)代入y=(k≠0)中,。
黑龙江省农垦牡丹江管理局中考数学真题试题(含解析)
黑龙江省农垦牡丹江管理局2014年中考数学真题试题一、选择题(每题3分,共30分)1.(3分)(2014年黑龙江牡丹江)下列运算正确的是()A.2x+6x=8x2B.a6÷a2=a3C.(﹣4x3)2=16x6 D.(x+3)2=x2+9分析:根据合并同类项,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据完全平方公式,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平和加积的2倍,故D错误;故选:C.点评:本题考查了幂的运算,根据法则计算是解题关键.2.(3分)(2014年黑龙江牡丹江)如图,由高和直径相同的5个圆柱搭成的几何体,其左视图是()A.B.C. D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)(2014年黑龙江牡丹江)某公司去年的营业额为四亿零七百万元,这个数据用科学记数法可表示为()A. 4.07×107元B.4.07×108元C.4.07×109元D.4.07×1010元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:四亿零七百万=4 0700 0000=4.07×108,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014年黑龙江牡丹江)下列对称图形中,是轴对称图形,但不是中心对称图形的有()A.1个B.2 个C.3 个 D. 4个考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:①此图形不是中心对称图形,是轴对称图形,故此选项正确;②此图形是中心对称图形,也是轴对称图形,故此选项错误;③此图形是中心对称图形,不是轴对称图形,故此选项错误;④此图形不是中心对称图形,是轴对称图形,故此选项正确.故是轴对称图形,但不是中心对称图形的有2个.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.5.(3分)(2014年黑龙江牡丹江)为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:月用水量(m3) 4 5 6 8 9户数 4 5 7 3 1则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6m3B.平均数是5.8m3C.众数是6m3D.极差是6m3考点:极差;加权平均数;中位数;众数.分析:根据极差、众数、平均数和中位数的定义和计算公式分别对每一项进行分析即可.解答:解:A、把这20户的用水量从小到大排列,最中间的数是第10、11个数的平均数,则中位数是:(6+6)÷2=6(m3),故本选项正确;B、平均数是:(4×4+5×5+6×7+8×3+9×1)÷2=5.8m3,故本选项正确;C、6出现了7次,出现的次数最多,则众数是6m3,故本选项正确;D、极差是:9﹣4=5m3,故本选项错误;故选D.点评:此题考查了极差、众数、加权平均数和中位数,掌握极差、众数、平均数和中位数的定义和计算公式是本题的关键;求极差的方法是用一组数据中的最大值减去最小值;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)(2014年黑龙江牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC 上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)考点:坐标与图形变化-旋转;坐标与图形变化-平移.专题:几何变换.分析:先观察△ABC和△A′B′C′得到把△AB C向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(﹣x,y+2),即为P′点的坐标.解答:解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选B.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.7.(3分)(2014年黑龙江牡丹江)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM 是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()A.30°B.40°C.50° D.60°考点:翻折变换(折叠问题).分析:根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,从而求得答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,∴AM=MC=BM,∴∠A=∠MCA,∵将△ACM沿直线CM折叠,点A落在点D处,∴CM平分∠ACD,∠A=∠D,∴∠ACM=∠MCD,∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°.故选:A.点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.(3分)(2014年黑龙江牡丹江)如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,8.有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是()A. 3 B. 4 C. 1 D. 2考点:菱形的性质;全等三角形的判定与性质;等腰三角形的判定;等边三角形的判定与性质.分析:首先连接BD,易证得△ADE≌△△BDF,然后可证得DE=DF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.解答:解:连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,,∴△ADE≌△△BDF(ASA),∴DE=DF,∵∠EDF=60°,∴△EDF是等边三角形,∴②正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°﹣∠A=120°,∴∠ADE=∠BEF;故④正确.∵∠ADE=∠BDF,同理:∠BDE=∠CDF,但∠ADE不一定等于∠BDE,∴AE不一定等于BE,故①错误;∵△ADE≌△△BDF,∴AE=BF,同理:BE=CF,但BE不一定等于BF.故③错误.故选D.点评:此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握数形结合思想的应用.9.(3分)(2014年黑龙江牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:先根据一次函数图象与系数的关系得到k的范围,然后根据k的范围判断反比例函数图象的位置.解答:解:A、对于y=kx+1经过第一、三象限,则k>0,所以反比例函数图象应该分布在第二、四象限,所以A选项错误;B、一次函数y=kx+1与y轴的交点在x轴上方,所以B选项错误;C、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以C选项错误;D、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以D选项正确.故选D.点评:本题考查了反比例函数图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.10.(3分)(2014年黑龙江牡丹江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π考点:扇形面积的计算;勾股定理;垂径定理.分析:求出CE=DE,OE=BE=1,得出S△BED=S△OEC,所以S阴影=S扇形BOC.解答:解:如图,CD⊥AB,交AB于点E,∵AB是直径,∴CE=DE=CD=,又∵∠CDB=30°∴∠COE=60°,∴OE=1,OC=2,∴BE=1,∴S△BED=S△OEC,∴S阴影=S扇形BOC==.故选:D.点评:本题考查了垂径定理、扇形面积的计算,图形的转化是解答本题的关键.二、填空题(每题3分,共30分)11.(3分)(2014年黑龙江牡丹江)计算|1﹣|+(﹣1)0﹣()﹣1= 3 .考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负整数指数幂、绝对值得性质四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1+1﹣3=﹣3,故答案为:3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.12.(3分)(2014年黑龙江牡丹江)在函数中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围.解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2014年黑龙江牡丹江)已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为y=x﹣2 .考点:待定系数法求一次函数解析式.专题:计算题.分析:根据题意找出函数图象上两点坐标,代入计算求出k与b的值,即可确定出解析式.解答:解:将(0,﹣2)与(2,1)代入y=kx+b得:,解得:k=,b=﹣2,则函数解析式为y=x﹣2,故答案为:y=x﹣2.点评:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.14.(3分)(2014年黑龙江牡丹江)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为 2.3 m.考点:相似三角形的应用.专题:应用题.分析:先根据同一时刻物高与影长成正比求出MN的影长,再根据此影长列出比例式即可.解答:解:解:过N点作ND⊥PQ于D,∴,又∵AB=2,BC=1.6,PM=1.2,NM=0.8,∴QD==1.5,∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木竿PQ的长度为2.3米.点评:在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.15.(3分)(2014年黑龙江牡丹江)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则tan∠EAF的值= .考点:翻折变换(折叠问题).专题:计算题.分析:先根据矩形的性质得CD=AB=8,AD=BC=10,再根据折叠的性质得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=BC﹣BF=4,设EF=x,则DE=x,CE=CD﹣DE=8﹣x,在Rt△CEF中,根据勾股定理得到42+(8﹣x)2=x2,解得x=5,即EF=5,然后在Rt△AEF中根据正切的定义求解.解答:解:∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC﹣BF=4,设EF=x,则DE=x,CE=CD﹣DE=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+(8﹣x)2=x2,解得x=5,即EF=5,在Rt△AEF中,tan∠EAF===.故答案为.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.16.(3分)(2014年黑龙江牡丹江)如图,在等腰△A BC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于12 cm.考点:勾股定理;三角形的面积;等腰三角形的性质.分析:根据三角形的面积求得=,根据勾股定理求得AB2=BC2+36,依据这两个式子求出AB、BC的值,即可求得周长.解答:解:∵AD是BC边上的高,CE是AB边上的高,∴AB•CE=BC•AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2﹣BD2=AD2,∴AB2=BC2+36,∴=,整理得;BC2=,解得:BC=,∴AB=×BC=×=,∴△ABC的周长=2AB+BC=2×+=12.故答案为12.点评:本题考查了三角形的面积以及勾股定理的应用,找出AB与BC的数量关系是本题的关键.17.(3分)(2014年黑龙江牡丹江)如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是 2 cm.考点:圆锥的计算.分析:易求得扇形的弧长,除以2π即为圆锥的底面半径.解答:解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.点评:考查了扇形的弧长公式;圆的周长公式;圆锥的体积公式,用到的知识点为:圆锥的弧长等于底面周长.18.(3分)(2014年黑龙江牡丹江)现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0 .考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.解答:解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.点评:本题考查了由实际问题抽象出一元二次方程的知识,对于面积问题应熟记各种图形的面积公式.另外,要学会通过图形求出面积.19.(3分)(2014年黑龙江牡丹江)已知二次函数y=kx2+(2k﹣1)x﹣1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:①当x=﹣2时,y=1;②方程kx2+(2k﹣1)x﹣1=0有两个不相等的实数根x1,x2;③x2﹣x1=.其中正确的结论有①②(只需填写序号即可).考点:抛物线与x轴的交点.分析:直接根据抛物线与x轴的交点问题、根与系数的关系对各小题进行逐一分析即可.解答:解:①当x=﹣2时,y=4k﹣2×(2k﹣1)﹣1=4k﹣4k+2﹣1=1,故本小题正确;②∵抛物线x轴交点的横坐标为x1、x2(x1<x2),∴方程kx2+(2k﹣1)x﹣1=0有两个不相等的实数根x1、x2,故本小题正确;③∵二次函数y=kx2+(2k﹣1)x﹣1与x轴交点的横坐标为x1、x2(x1<x2),∴x1+x2=,x1•x2=﹣∴x2﹣x1====,故本小题错误,故答案为:①②.点评:本题考查的是抛物线与x轴的交点问题,熟知二次函数与一元二次方程的关系、一元二次方程根与系数的关系是解答此题的关键.20.(3分)(2014年黑龙江牡丹江)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A2014到x轴的距离是.考点:全等三角形的判定与性质;规律型:点的坐标;正方形的性质.分析:根据勾股定理可得正方形A1B1C1D1的边长为=,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2014个正方形和第2014个正方形的边长,进一步得到点A2014到x轴的距离.解答:解:如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△1CE1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2014E4016=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴=,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为为=,∴D1F=,∴A1F=,∵A1E∥D1E1,∴=,∴A1E=3,∴=,∴点A2014到x轴的距离是×=点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.三、解答题(本题共8道题,满分60分)21.(5分)(2014年黑龙江牡丹江)化简求值:(﹣)÷,其中x=﹣.考点:分式的化简求值.专题:计算题.分析:先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解得到原式=•,然后约分后把x的值代入计算即可.解答:解:原式=•=•=,当x=﹣时,原式==﹣8.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.22.(6分)(2014年黑龙江牡丹江)如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求:直径AB的长.考点:切线的性质.分析:先求出∠COD,根据切线的性质∠OCD,求出∠D,根据含30度角的直角三角形性质求出OC,即可求出答案.解答:解:∵∠A=30°,OC=OA,∴∠ACO=∠A=30°,∴∠COD=60°,∵DC切⊙O于C,∴∠OCD=90°,∴∠D=30°,∵OD=30cm,∴OC=OD=15cm,∴AB=2OC=30cm.点评:本题考查了切线的性质,含30度角的直角三角形性质,等腰三角形性质,三角形外角性质的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.23.(6分)(2014年黑龙江牡丹江)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:解答下列问题:(1)图②中“D:5.2以上”所在的扇形的圆心角度数为36°;(2)该市共抽取了多少名九年级学生?(3)若该市共有10万名九年级学生,请你估计该市九年级视力5.2以上的学生大约有多少人?考点:折线统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)先计算出D类所占的百分比,然后用360°乘以这个百分比即可得到“D:5.2以上”所在的扇形的圆心角度数;(2)从折线统计图中得到2014年A类有800人,从扇形统计图中得到A类占40%,然后用800除以40%得到所抽取的所有九年级的人数;(3)用10万乘以10%得到该市九年级视力5.2以上的学生人数.解答:解:(1)图②中“D:5.2以上”所在的扇形的圆心角度数=360°×(1﹣40%﹣30%﹣20%)=36°;故答案为36°;(2)800÷40%=2000(人),所以该市共抽取了2000名九年级学生;(3)100000×(1﹣40%﹣30%﹣20%)=10000(人),所以估计该市九年级视力5.2以上的学生大约有10000人.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了样本估计整体和扇形统计图.24.(6分)(2014年黑龙江牡丹江)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.考点:列表法与树状图法;一次函数图象与系数的关系.专题:计算题.分析:(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b的图象经过一、二、四象限的情况,即可求出所求的概率.解答:解:(1)列表如下:﹣1 ﹣23﹣1(﹣1,﹣1)(﹣2,﹣1)(3,﹣1)﹣2(﹣1,﹣2)(﹣2,﹣2)(3,﹣2)3(﹣1,3)(﹣2,3)(3,3)4(﹣1,4)(﹣2,4)(3,4)所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.25.(7分)(2014年黑龙江牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)总费用除以单价即为数量,设乙种图书的单价为x元,则甲种图书的单价为1.5x元,根据两种图书数量之间的关系列方程;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据“投入的经费不超过1050元,甲种图书数量不少于乙种图书的数量”列出不等式组解决问题.解答:解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15共5种方案.点评:此题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.26.(10分)(2014年黑龙江牡丹江)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;全等三角形的判定与性质;平行四边形的判定与性质;菱形的判定.分析:(1)先求出四边形BECD是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=B D,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)当∠A=45°时,四边形B°ECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.27.(10分)(2014年黑龙江牡丹江)某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.考点:二次函数的应用;一次函数的应用.分析:(1)利用待定系数法将图中点的坐标求出一次函数解析式即可;(2)根据利润=(售价﹣成本)×销售量列出函数关系式;(3)令函数关系式Q=600,解得x,然后得出销售单价x的范围.解答:解:(1)设y=kx+b,根据题意得解得:k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)利润W与销售单价x之间的函数关系式为:Q=(x﹣50)(﹣x+120)=﹣x2+170x﹣6000;Q=﹣x2+170x﹣6000=﹣(x﹣85)2+1225;所以当试销单价定为85元时,该商店可获最大利润,最大利润是1225元.(3)当600=﹣x2+170x﹣6000,解得:x1=60,x2=90,∵获利不得高于40%,∴最高价格为50(1+50%)=75,故60≤x≤75的整数.故答案为:60≤x≤75的整数.点评:本题主要考查二次函数的应用,根据利润=(售价﹣成本)×销售量列出函数关系式,运用二次函数解决实际问题,比较简单.28.(10分)(2014年黑龙江牡丹江)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由.(3)当t为何值时,△CPQ为等腰三角形?考点:相似形综合题;一元二次方程的应用;等腰三角形的性质;勾股定理;相似三角形的判定与性质.专题:综合题.分析:(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长.(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用S△CPQ:S△ABC=9:100建立t的方程,解方程即可解决问题.(3)可分三种情况进行讨论:由CQ=CP可建立关于t的方程,从而求出t;由PQ=PC或QC=QP 不能直接得到关于t的方程,可借助于等腰三角形的三线合一及三角形相似,即可建立关于t的方程,从而求出t.解答:解:(1)如图1,∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BC•AC=AB•CD.∴CD===4.8.∴线段CD的长为4.8.(2)①过点P作PH⊥AC,垂足为H,如图2所示.由题可知DP=t,CQ=t.则CP=4.8﹣t.∵∠ACB=∠CDB=90°,∴∠HCP=90°﹣∠DCB=∠B.∵PH⊥AC,∴∠CHP=90°.∴∠CHP=∠ACB.∴△CHP∽△BCA.∴.∴.∴PH=﹣t.∴S△CPQ=CQ•PH=t(﹣t)=﹣t2+t.②存在某一时刻t,使得S△CPQ:S△ABC=9:100.∵S△ABC=×6×8=24,且S△CPQ:S△ABC=9:100,∴(﹣t2+t):24=9:100.整理得:5t2﹣24t+27=0.即(5t﹣9)(t﹣3)=0.解得:t=或t=3.∵0≤t≤4.8,∴当t=秒或t=3秒时,S△CPQ:S△ABC=9:100.(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴.∴.解得;t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.点评:本题考查了相似三角形的判定与性质、等腰三角形的性质、一元二次方程的应用、勾股定理等知识,具有一定的综合性,而利用等腰三角形的三线合一巧妙地将两腰相等转化为底边上的两条线段相等是解决第三小题的关键.。
最新-2018牡丹江市中考数学试卷(word版) 精品
2018年牡丹江市课程改革实验区初中毕业学业考试数学试卷考生注意:1.考试时间120分钟.2.全卷共三道大题,总分120分. 一、填空题(每小题3分,满分30分) 1.我国陆地面积居世界第三位,约为9597300平方千米,用科学记数法可表示为 平方千米(结果保留三个有效数字). 2.函数21x y x +=-中,自变量x 的取值范围是 . 3.从1,2,3这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是 .4.如图,已知矩形ABCD 中()AD AB >,EF 经过对角线的交点O ,且分别交AD BC ,于E F ,,请你添加一个条件: ,使四边形EBFD 是菱形.5.某商店老板将一件进价为800元的商品先提价50%,再打8折卖出,则卖出这件商品所获利润是 元.6.抛物线2y ax bx c =++过点(10)A ,,(30)B ,,则此抛物线的对称轴是直线x = . 7.有一人患了流感,经过两轮传染后,共有121人患了流感,若设每轮传染中平均每人传染了x 人,那么可列方程为 .8.如图,等腰直角三角形ABC 直角边长为1,以它的斜边上的高AD 为腰做第一个等腰直角三角形ADE ;再以所做的第一个等腰直角三角形ADE 的斜边上的高AF 为腰做第二个等腰直角三角形AFG ;……以此类推,这样所做的第n 个等腰直角三角形的腰长为 .9.如图,分别是由若干个完全相同的小正方体组成的一个物体的主视图和俯视图,则组成这个物体的小正方体的个数是 个.10.已知Rt ABC △中,90C =∠,6AC =,8BC =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于E ,交斜边于F ,则tan CDE ∠的值为 .二、单选选择题(每小题3分,满分30分) 11.下列运算中,正确的是( )(第4题)A BCDE FO(第8题) A B C D EFG主视图 俯视图 (第9题)A .233255+=B .842a a a -÷=- C .236(3)27a a =D .2242()a b a b -=-12.在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积v 时,气体的密度ρ也随之改变,ρ与v 在一定范围内满足mvρ=,当7kg m =时,它的函数图象是( )13.一组数据由五个正整数组成,中位数是3,且唯一众数是3,则这五个正整数的平均数是( ) A .4 B .5 C .6 D .814.下列图形中,既是轴对称图形又是中心对称图形的是( ) 15.如图,在等腰梯形ABCD 中,AD BC ∥,3AD =,5BC =,AC BD ,相交于O 点,且60BOC =∠,顺次连结等腰梯形各边中点所得四边形的周长是( )A .24B .20C .16D .12 16.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度(cm)h 与注水时间(min)t 的函数图象大致为( )17.若关于x的分式方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >-B .1m ≠C .1m >且1m ≠-D .1m >-且1m ≠18.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品:大绳,A . O 3(m )v 3(kg /m )ρB . O3(m )v3(kg /m )ρ C . O3(m )v3(kg /m )ρ D . O3(m )v3(kg /m )ρA .B .C .D .(第15题) A B C DO(第16题)A .O (min)t(cm)h B .O (min)t(cm)h C .O (min)t(cm)h D .O (min)t(cm)h小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,小绳的买法共有( ) A .9种 B .8种 C .6种 D .5种19.如图,已知ABCD 中,E 是AB 边的中点,DE 交AC 于点F ,AC DE ,把ABCD 分成的四部分的面积分别为1S ,2S ,3S ,4S ,下面结论: ①只有一对相似三角形②:1:2EF ED =③1234:::1:2:4:5S S S S = 其中正确的结论是( ) A .①③ B .③ C .①D .①②20.已知半径为5的O 中,弦52AB =,弦5AC =,则BAC ∠的度数是( ) A .15B .210C .105或15D .210或30三、解答题(满分60分) 21.(本小题满分5分)先化简,再求值:2443x x xx x--÷+,其中0(21)x =-.22.(本小题满分6分)如图,方格纸中,每个小正方形的边长都是单位1.ABC △与111A B C △关于O 点成中心对称.(1)画出将111A B C △沿直线DE 方向向上平移5个单位得到222A B C △; (2)画出将222A B C △绕点O 顺时针旋转180得到333A B C △; (3)求出四边形312CC C C 的面积.23.(本小题满分6分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小(第19题)A BCDEF1S 2S3S4S(第22题) ABC EO D 1C1A 1B强计算这块菜地的面积(结果保留根号). 24.(本小题满分7分)九年级一班的两位学生对本班的一次数学成绩(分数取整数,满分为100分)进行了一次初步统计.看到80分以上(含80分)有17人,但没有满分.也没有低于30分的.为更清楚了解本班考试情况,他们分别用两种方式进行了统计分析,如图1和图2所示,请根据图中提供的信息回答下列问题:(1)班级共有多少名学生参加了考试? (2)填上两个图中的空缺部分;(3)问85分到89分的学生有多少人?25.(本小题满分8分)已知:甲、乙两车分别从相距300千米的A B ,两地同时出发相向而行,其中甲到B 地后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象. (1)求甲车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了92小时,求乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量的取值范围; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.人数 分数 2 3 5 10 11 29.5 39.5 49.5 59.5 69.5 79.5 89.5 99.5 (第24题图1) (第24题图2) 85分~100分60分以下60分~85分62%20% % 图中的各部分都只含最低分不含最高分 O ()y 千米()x 小时 2743300 甲 乙 甲26.(本小题满分8分)已知四边形ABCD 中,A B A D ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如题图1),易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.27.(本小题满分10分)下岗职工王阿姨利用自己的一技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元. (1)问服装厂有哪几种生产方案? (2)该服装厂怎样生产获得利润最大?(3)在(1)的条件下,40套服装全部售出后,服装厂又生产6套服装捐赠给某社区低保户,这样服装厂仅获利润25元钱.请直接写出服装厂是按哪种方案生产的. 28.(本小题满分10分)如图,在平面直角坐标系中,已知点(36)A -,,点B ,点C 分别在x 轴的负半轴和正半轴上,OB OC ,的长分别是方程2430x x -+=的两根()OB OC <.(第26题图1) AB C D EF MN (第26题图2) ABCD E F MN (第26题图3)ABC D E F M N(1)求B C ,两点的坐标.(2)在坐标平面内是否存在点Q 和点P (点P 在直线AC 上),使以O P C Q ,,,为顶点的四边形是正方形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由. (3)若平面内有(12)M -,,D 为线段OC 上一点,且满足DMC BAC =∠∠,求直线AD 的解析式.(第28题)yxAB OD C M。
2018年农垦牡丹江管理局中考数学试卷及答案解析版
C、利用单项式除单项式法则计算得到结果,即可作出判断;
D、利用平方根的定义化简得到结果,即可作出判断.
解答:
解:A、2a﹣2= ,本选项错误;
B、2a•3b=6ab,本选项错误;
C、3a2÷a2=3,本选项正确;
D、 =4,本选项错误,
故选C
点评:
3.(3分)(2018•牡丹江)小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )
A.
B.
C.
D.
考点:
概率公式.
分析:
在十张数字卡片中,恰好能被4整除的有4,8,共2个;求抽到的数能被4整除的可能性个数,进而得出答案.
解答:
解:1﹣10中的数有:4、8,共2个,就有10张卡片,
解答:
解:圆锥的侧面积=2π×6×9÷2=54π.
故选C.
点评:
本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.
7.(3分)(2018•牡丹江)如图,反比例函数 的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是( )
A.
B.
C.
D.
考点:
简单组合体的三视图.
分析:
主视图是从图形的正面看所得到的图形,根据小正方体的摆放方法,画出图形即可.
解答:
解:主视图有3列,从左往右分别有3,1,2个小正方形,
故选:C.
点评:
此题主要考查了简单几何体的三视图,关键是掌握主视图是从物体的正面看得到的视图.
5.(3分)(2018•牡丹江)若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2018﹣a﹣b的值是( )
2018-2019学年黑龙江省牡丹江市管理局九年级(上)期末数学试卷(解析版)
2018-2019学年黑龙江省牡丹江市管理局九年级(上)期末数学试卷一、填空题(每小题3分,共30分)1.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.2.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根0,则a值为.3.抛物线y=4x2﹣3x与y轴的交点坐标是.4.已知a2﹣5a﹣1=0,则5(1+2a)﹣2a2=.5.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为.6.如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=.7.如图,在平行四边形ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若弧EF的长为,则AB=.8.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为.9.摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是.10.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A的半径为1,⊙B的半径为2,要使⊙A与静止的⊙B外切,那么⊙A由图示位置需向右至少平移个单位.二、选择题(每小题3分,共30分)11.下列一元二次方程中没有实数根的方程是( )A .(x ﹣1)2=1B .x 2+2x ﹣10=0C .x 2+4=7D .x 2+x +1=012.已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是( )A .B .C .D .13.在同一平面直角坐标系内,将函数y =2x 2+4x ﹣3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是( )A .(﹣3,﹣6)B .(1,﹣4)C .(1,﹣6)D .(﹣3,﹣4)14.如图,O 为线段AB 的中点,AB =4cm ,P 1、P 2、P 3、P 4到点O 的距离分别是1cm 、2cm 、2.8cm 、1.7cm ,下列四点中能与A 、B 构成直角三角形的顶点是( )A .P 1B .P 2C .P 3D .P 415.如图,圆上有A 、B 、C 三点,直线l 与圆相切于点A ,CD 平分∠ACB ,且与l 交于点D ,若=80°,=60°,则∠ADC 的度数为( )A .80°B .85°C .90°D .95°16.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a 的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.B.C.D.17.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.18.若x1和x2为一元二次方程x2+2x﹣1=0的两个根.则x12x2+x1x22值为()A.4B.2C.4D.319.如图,向一个半径为3m,容积为36m3的球形容器内注水,则能够反映容器内水的体积y与水深x间的函数关系的图象可能是()A.B.C.D.20.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x。
黑龙江省农垦牡丹江管理局中考数学真题试题(含解析)
黑龙江省农垦牡丹江管理局2014年中考数学真题试题一、选择题(每题3分,共30分)1.(3分)(2014年黑龙江牡丹江)下列运算正确的是()A.2x+6x=8x2B.a6÷a2=a3C.(﹣4x3)2=16x6 D.(x+3)2=x2+9分析:根据合并同类项,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据完全平方公式,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平和加积的2倍,故D错误;故选:C.点评:本题考查了幂的运算,根据法则计算是解题关键.2.(3分)(2014年黑龙江牡丹江)如图,由高和直径相同的5个圆柱搭成的几何体,其左视图是()A.B.C. D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)(2014年黑龙江牡丹江)某公司去年的营业额为四亿零七百万元,这个数据用科学记数法可表示为()A. 4.07×107元B.4.07×108元C.4.07×109元D.4.07×1010元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:四亿零七百万=4 0700 0000=4.07×108,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014年黑龙江牡丹江)下列对称图形中,是轴对称图形,但不是中心对称图形的有()A.1个B.2 个C.3 个 D. 4个考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:①此图形不是中心对称图形,是轴对称图形,故此选项正确;②此图形是中心对称图形,也是轴对称图形,故此选项错误;③此图形是中心对称图形,不是轴对称图形,故此选项错误;④此图形不是中心对称图形,是轴对称图形,故此选项正确.故是轴对称图形,但不是中心对称图形的有2个.故选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.5.(3分)(2014年黑龙江牡丹江)为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:月用水量(m3) 4 5 6 8 9户数 4 5 7 3 1则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6m3B.平均数是5.8m3C.众数是6m3D.极差是6m3考点:极差;加权平均数;中位数;众数.分析:根据极差、众数、平均数和中位数的定义和计算公式分别对每一项进行分析即可.解答:解:A、把这20户的用水量从小到大排列,最中间的数是第10、11个数的平均数,则中位数是:(6+6)÷2=6(m3),故本选项正确;B、平均数是:(4×4+5×5+6×7+8×3+9×1)÷2=5.8m3,故本选项正确;C、6出现了7次,出现的次数最多,则众数是6m3,故本选项正确;D、极差是:9﹣4=5m3,故本选项错误;故选D.点评:此题考查了极差、众数、加权平均数和中位数,掌握极差、众数、平均数和中位数的定义和计算公式是本题的关键;求极差的方法是用一组数据中的最大值减去最小值;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)(2014年黑龙江牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC 上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(﹣x,y﹣2)B.(﹣x,y+2)C.(﹣x+2,﹣y)D.(﹣x+2,y+2)考点:坐标与图形变化-旋转;坐标与图形变化-平移.专题:几何变换.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(﹣x,y+2),即为P′点的坐标.解答:解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).故选B.点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.7.(3分)(2014年黑龙江牡丹江)已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM 是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A的度数是()A.30°B.40°C.50° D.60°考点:翻折变换(折叠问题).分析:根据折叠的性质可知,折叠前后的两个三角形全等,则∠D=∠A,∠MCD=∠MCA,从而求得答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,∴AM=MC=BM,∴∠A=∠MCA,∵将△ACM沿直线CM折叠,点A落在点D处,∴CM平分∠ACD,∠A=∠D,∴∠ACM=∠MCD,∵∠A+∠B=∠B+∠BCD=90°∴∠A=∠BCD∴∠BCD=∠DCM=∠MCA=30°∴∠A=30°.故选:A.点评:本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.(3分)(2014年黑龙江牡丹江)如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,8.有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是()A. 3 B. 4 C. 1 D. 2考点:菱形的性质;全等三角形的判定与性质;等腰三角形的判定;等边三角形的判定与性质.分析:首先连接BD,易证得△ADE≌△△BDF,然后可证得DE=DF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.解答:解:连接BD,∵四边形ABCD是菱形,∴AD=AB,∠ADB=∠ADC,AB∥CD,∵∠A=60°,∴∠ADC=120°,∠ADB=60°,同理:∠DBF=60°,即∠A=∠DBF,∴△ABD是等边三角形,∴AD=BD,∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,∴∠ADE=∠BDF,∵在△ADE和△BDF中,,∴△ADE≌△△BDF(ASA),∴DE=DF,∵∠EDF=60°,∴△EDF是等边三角形,∴②正确;∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°﹣∠A=120°,∴∠ADE=∠BEF;故④正确.∵∠ADE=∠BDF,同理:∠BDE=∠CDF,但∠ADE不一定等于∠BDE,∴AE不一定等于BE,故①错误;∵△ADE≌△△BDF,∴AE=BF,同理:BE=CF,但BE不一定等于BF.故③错误.故选D.点评:此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度较大,注意掌握数形结合思想的应用.9.(3分)(2014年黑龙江牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:先根据一次函数图象与系数的关系得到k的范围,然后根据k的范围判断反比例函数图象的位置.解答:解:A、对于y=kx+1经过第一、三象限,则k>0,所以反比例函数图象应该分布在第二、四象限,所以A选项错误;B、一次函数y=kx+1与y轴的交点在x轴上方,所以B选项错误;C、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以C选项错误;D、对于y=kx+1经过第二、四象限,则k<0,所以反比例函数图象应该分布在第一、三象限,所以D选项正确.故选D.点评:本题考查了反比例函数图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.10.(3分)(2014年黑龙江牡丹江)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π考点:扇形面积的计算;勾股定理;垂径定理.分析:求出CE=DE,OE=BE=1,得出S△BED=S△OEC,所以S阴影=S扇形BOC.解答:解:如图,CD⊥AB,交AB于点E,∵AB是直径,∴CE=DE=CD=,又∵∠CDB=30°∴∠COE=60°,∴OE=1,OC=2,∴BE=1,∴S△BED=S△OEC,∴S阴影=S扇形BOC==.故选:D.点评:本题考查了垂径定理、扇形面积的计算,图形的转化是解答本题的关键.二、填空题(每题3分,共30分)11.(3分)(2014年黑龙江牡丹江)计算|1﹣|+(﹣1)0﹣()﹣1= 3 .考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负整数指数幂、绝对值得性质四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1+1﹣3=﹣3,故答案为:3.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值等考点的运算.12.(3分)(2014年黑龙江牡丹江)在函数中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x 的取值范围.解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2014年黑龙江牡丹江)已知函数y=kx+b(k≠0)的图象与y轴交点的纵坐标为﹣2,且当x=2时,y=1.那么此函数的解析式为y=x﹣2 .考点:待定系数法求一次函数解析式.专题:计算题.分析:根据题意找出函数图象上两点坐标,代入计算求出k与b的值,即可确定出解析式.解答:解:将(0,﹣2)与(2,1)代入y=kx+b得:,解得:k=,b=﹣2,则函数解析式为y=x﹣2,故答案为:y=x﹣2.点评:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.14.(3分)(2014年黑龙江牡丹江)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为 2.3 m.考点:相似三角形的应用.专题:应用题.分析:先根据同一时刻物高与影长成正比求出MN的影长,再根据此影长列出比例式即可.解答:解:解:过N点作ND⊥PQ于D,∴,又∵AB=2,BC=1.6,PM=1.2,NM=0.8,∴QD==1.5,∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(米).答:木竿PQ的长度为2.3米.点评:在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.15.(3分)(2014年黑龙江牡丹江)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则tan∠EAF的值= .考点:翻折变换(折叠问题).专题:计算题.分析:先根据矩形的性质得CD=AB=8,AD=BC=10,再根据折叠的性质得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=BC﹣BF=4,设EF=x,则DE=x,CE=CD﹣DE=8﹣x,在Rt△CEF中,根据勾股定理得到42+(8﹣x)2=x2,解得x=5,即EF=5,然后在Rt△AEF中根据正切的定义求解.解答:解:∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC﹣BF=4,设EF=x,则DE=x,CE=CD﹣DE=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+(8﹣x)2=x2,解得x=5,即EF=5,在Rt△AEF中,tan∠EAF===.故答案为.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.16.(3分)(2014年黑龙江牡丹江)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则△ABC的周长等于12 cm.考点:勾股定理;三角形的面积;等腰三角形的性质.分析:根据三角形的面积求得=,根据勾股定理求得AB2=BC2+36,依据这两个式子求出AB、BC的值,即可求得周长.解答:解:∵AD是BC边上的高,CE是AB边上的高,∴AB•CE=BC•AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2﹣BD2=AD2,∴AB2=BC2+36,∴=,整理得;BC2=,解得:BC=,∴AB=×BC=×=,∴△ABC的周长=2AB+BC=2×+=12.故答案为12.点评:本题考查了三角形的面积以及勾股定理的应用,找出AB与BC的数量关系是本题的关键.17.(3分)(2014年黑龙江牡丹江)如图,如果从半径为3cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是 2 cm.考点:圆锥的计算.分析:易求得扇形的弧长,除以2π即为圆锥的底面半径.解答:解:扇形的弧长为:=4πcm,圆锥的底面半径为:4π÷2π=2cm,故答案为:2.点评:考查了扇形的弧长公式;圆的周长公式;圆锥的体积公式,用到的知识点为:圆锥的弧长等于底面周长.18.(3分)(2014年黑龙江牡丹江)现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0 .考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.解答:解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.点评:本题考查了由实际问题抽象出一元二次方程的知识,对于面积问题应熟记各种图形的面积公式.另外,要学会通过图形求出面积.19.(3分)(2014年黑龙江牡丹江)已知二次函数y=kx2+(2k﹣1)x﹣1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:①当x=﹣2时,y=1;②方程kx2+(2k﹣1)x﹣1=0有两个不相等的实数根x1,x2;③x2﹣x1=.其中正确的结论有①②(只需填写序号即可).考点:抛物线与x轴的交点.分析:直接根据抛物线与x轴的交点问题、根与系数的关系对各小题进行逐一分析即可.解答:解:①当x=﹣2时,y=4k﹣2×(2k﹣1)﹣1=4k﹣4k+2﹣1=1,故本小题正确;②∵抛物线x轴交点的横坐标为x1、x2(x1<x2),∴方程kx2+(2k﹣1)x﹣1=0有两个不相等的实数根x1、x2,故本小题正确;③∵二次函数y=kx2+(2k﹣1)x﹣1与x轴交点的横坐标为x1、x2(x1<x2),∴x1+x2=,x1•x2=﹣∴x2﹣x1====,故本小题错误,故答案为:①②.点评:本题考查的是抛物线与x轴的交点问题,熟知二次函数与一元二次方程的关系、一元二次方程根与系数的关系是解答此题的关键.20.(3分)(2014年黑龙江牡丹江)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A2014到x轴的距离是.考点:全等三角形的判定与性质;规律型:点的坐标;正方形的性质.分析:根据勾股定理可得正方形A1B1C1D1的边长为=,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2014个正方形和第2014个正方形的边长,进一步得到点A2014到x轴的距离.解答:解:如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△1CE1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2014E4016=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴=,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为为=,∴D1F=,∴A1F=,∵A1E∥D1E1,∴=,∴A1E=3,∴=,∴点A2014到x轴的距离是×=点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.三、解答题(本题共8道题,满分60分)21.(5分)(2014年黑龙江牡丹江)化简求值:(﹣)÷,其中x=﹣.考点:分式的化简求值.专题:计算题.分析:先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解得到原式=•,然后约分后把x的值代入计算即可.解答:解:原式=•=•=,当x=﹣时,原式==﹣8.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.22.(6分)(2014年黑龙江牡丹江)如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求:直径AB的长.考点:切线的性质.分析:先求出∠COD,根据切线的性质∠OCD,求出∠D,根据含30度角的直角三角形性质求出OC,即可求出答案.解答:解:∵∠A=30°,OC=OA,∴∠ACO=∠A=30°,∴∠COD=60°,∵DC切⊙O于C,∴∠OCD=90°,∴∠D=30°,∵OD=30cm,∴OC=OD=15cm,∴AB=2OC=30cm.点评:本题考查了切线的性质,含30度角的直角三角形性质,等腰三角形性质,三角形外角性质的应用,主要考查学生的推理和计算能力,题目比较好,难度适中.23.(6分)(2014年黑龙江牡丹江)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:解答下列问题:(1)图②中“D:5.2以上”所在的扇形的圆心角度数为36°;(2)该市共抽取了多少名九年级学生?(3)若该市共有10万名九年级学生,请你估计该市九年级视力5.2以上的学生大约有多少人?考点:折线统计图;用样本估计总体;扇形统计图.专题:计算题.分析:(1)先计算出D类所占的百分比,然后用360°乘以这个百分比即可得到“D:5.2以上”所在的扇形的圆心角度数;(2)从折线统计图中得到2014年A类有800人,从扇形统计图中得到A类占40%,然后用800除以40%得到所抽取的所有九年级的人数;(3)用10万乘以10%得到该市九年级视力5.2以上的学生人数.解答:解:(1)图②中“D:5.2以上”所在的扇形的圆心角度数=360°×(1﹣40%﹣30%﹣20%)=36°;故答案为36°;(2)800÷40%=2000(人),所以该市共抽取了2000名九年级学生;(3)100000×(1﹣40%﹣30%﹣20%)=10000(人),所以估计该市九年级视力5.2以上的学生大约有10000人.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了样本估计整体和扇形统计图.24.(6分)(2014年黑龙江牡丹江)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.考点:列表法与树状图法;一次函数图象与系数的关系.专题:计算题.分析:(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b的图象经过一、二、四象限的情况,即可求出所求的概率.解答:解:(1)列表如下:﹣1 ﹣23﹣1(﹣1,﹣1)(﹣2,﹣1)(3,﹣1)﹣2(﹣1,﹣2)(﹣2,﹣2)(3,﹣2)3(﹣1,3)(﹣2,3)(3,3)4(﹣1,4)(﹣2,4)(3,4)所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.25.(7分)(2014年黑龙江牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)总费用除以单价即为数量,设乙种图书的单价为x元,则甲种图书的单价为1.5x元,根据两种图书数量之间的关系列方程;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据“投入的经费不超过1050元,甲种图书数量不少于乙种图书的数量”列出不等式组解决问题.解答:解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15共5种方案.点评:此题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.26.(10分)(2014年黑龙江牡丹江)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;全等三角形的判定与性质;平行四边形的判定与性质;菱形的判定.分析:(1)先求出四边形BECD是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即C E∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)当∠A=45°时,四边形B°ECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴四边形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.27.(10分)(2014年黑龙江牡丹江)某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.考点:二次函数的应用;一次函数的应用.分析:(1)利用待定系数法将图中点的坐标求出一次函数解析式即可;(2)根据利润=(售价﹣成本)×销售量列出函数关系式;(3)令函数关系式Q=600,解得x,然后得出销售单价x的范围.解答:解:(1)设y=kx+b,根据题意得解得:k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)利润W与销售单价x之间的函数关系式为:Q=(x﹣50)(﹣x+120)=﹣x2+170x﹣6000;Q=﹣x2+170x﹣6000=﹣(x﹣85)2+1225;所以当试销单价定为85元时,该商店可获最大利润,最大利润是1225元.(3)当600=﹣x2+170x﹣6000,解得:x1=60,x2=90,∵获利不得高于40%,∴最高价格为50(1+50%)=75,故60≤x≤75的整数.故答案为:60≤x≤75的整数.点评:本题主要考查二次函数的应用,根据利润=(售价﹣成本)×销售量列出函数关系式,运用二次函数解决实际问题,比较简单.28.(10分)(2014年黑龙江牡丹江)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,说明理由.(3)当t为何值时,△CPQ为等腰三角形?考点:相似形综合题;一元二次方程的应用;等腰三角形的性质;勾股定理;相似三角形的判定与性质.专题:综合题.分析:(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长.(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用S△CPQ:S△ABC=9:100建立t的方程,解方程即可解决问题.(3)可分三种情况进行讨论:由CQ=CP可建立关于t的方程,从而求出t;由PQ=PC或QC=QP 不能直接得到关于t的方程,可借助于等腰三角形的三线合一及三角形相似,即可建立关于t的方程,从而求出t.解答:解:(1)如图1,∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BC•AC=AB•CD.∴CD===4.8.∴线段CD的长为4.8.(2)①过点P作PH⊥AC,垂足为H,如图2所示.由题可知DP=t,CQ=t.则CP=4.8﹣t.∵∠ACB=∠CDB=90°,∴∠HCP=90°﹣∠DCB=∠B.∵PH⊥AC,∴∠CHP=90°.∴∠CHP=∠ACB.∴△CHP∽△BCA.∴.∴.∴PH=﹣t.∴S△CPQ=CQ•PH=t(﹣t)=﹣t2+t.②存在某一时刻t,使得S△CPQ:S△ABC=9:100.∵S△ABC=×6×8=24,且S△CPQ:S△ABC=9:100,∴(﹣t2+t):24=9:100.整理得:5t2﹣24t+27=0.即(5t﹣9)(t﹣3)=0.解得:t=或t=3.∵0≤t≤4.8,∴当t=秒或t=3秒时,S△CPQ:S△ABC=9:100.(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴.∴.解得;t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.点评:本题考查了相似三角形的判定与性质、等腰三角形的性质、一元二次方程的应用、勾股定理等知识,具有一定的综合性,而利用等腰三角形的三线合一巧妙地将两腰相等转化为底边上的两条线段相等是解决第三小题的关键.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省农垦牡丹江管理局2018年中考数学试卷
一、选择题(每题3分,共30分)
1.(3分)(2018•牡丹江)下列运算正确的是()
A.B.2a•3b=5ab C.3a2÷a2=3D.
考点:整式的除法;算术平方根;单项式乘单项式;负整数指数幂.
专题:计算题.
分析:A、利用负指数幂法则计算得到结果,即可作出判断;
B、利用单项式乘单项式法则计算得到结果,即可作出判断;
C、利用单项式除单项式法则计算得到结果,即可作出判断;
D、利用平方根的定义化简得到结果,即可作出判断.
解答:解:A、2a﹣2=,本选项错误;
B、2a•3b=6ab,本选项错误;
C、3a2÷a2=3,本选项正确;
D、=4,本选项错误,
故选C
点评:此题考查了整式的除法,算术平方根,单项式乘单项式,以及负指数幂,熟练掌握运算法则是解本题的关键.
2.(3分)(2018•牡丹江)下列既是轴对称又是中心对称图形的是()
A.B.C.D.
考点:中心对称图形;轴对称图形.
分析:根据轴对称图形与中心对称图形的概念对各选项分析判断后利用排除法求解.
解答:解:A、既是轴对称又是中心对称图形,故本选项准确;
B、是轴对称,不是中心对称图形,故本选项错误;
C、是轴对称,不是中心对称图形,故本选项错误;
D、不是轴对称,是中心对称图形,故本选项错误.
故选A.
点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3.(3分)(2018•牡丹江)小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是()
A.B.C.D.
考点:概率公式.。