第四章 数学公式

合集下载

高考数学一轮复习 第四章 三角函数 4.1 三角函数的概念、同角三角函数的关系及诱导公式课件 文

高考数学一轮复习 第四章 三角函数 4.1 三角函数的概念、同角三角函数的关系及诱导公式课件 文
2
∴sin
α= 13 ,则sin α
9
2

=-cos
α= 1
sin2α
= 2 2 3
.
(2)由 sin
α

cos
α

1 5
,
sin2α cos2α 1,
消去cos α整理,得
25sin2α-5sin α-12=0,
解得sin α= 4 或sin α=- 3 .
高考文数
第四章 三角函数
§4.1 三角函数的概念、同角三角函数的关系及诱导公式
知识清单
考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.象限角
2.终边相同的角
3.弧度制 (1)角度制与弧度制的互化

1°=① 180
180
rad;1 rad=② ° .
(2)弧长及扇形面积公式 弧长公式:③ l=|α|r .
例1 已知角θ的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边
在直线y=2x上,则cos 2θ= ( B )
A.- 4 B.- 3 C. 2 D. 3
5
5
3
4
解题导引
方法一:在角θ的终边上任取一点P,根据直线方程
设出点P的坐标 根据三角函数定义分别
求出sin θ与cos θ 利用二倍角公式求出cos 2θ
5
5


-


2
5 5


=- 3 .
5
综上可得,cos 2θ=- 3 ,故选B.
5
解法二:因为该直线的斜率k=2=tan θ,
所以cos
2θ= ccooss22θθ

高考数学大一轮复习第四章三角函数解三角形第3讲两角和与差的正弦余弦和正切公式

高考数学大一轮复习第四章三角函数解三角形第3讲两角和与差的正弦余弦和正切公式

(教材习题改编)已知
cos
α=-35,α
是第三象限角,则
π cos(4
+α)为( )
A.
2 10
C.7102
B.-
2 10
D.-7102
解析:选 A.因为 cos α=-35,α 是第三象限的角, 所以 sin α=- 1-cos2α=- 1-(-35)2=-45, 所以 cos(π4+α)=cos π4cos α-sin π4sin α= 22·(-35)- 22·(-45) = 102.
又 sin2α+cos2α=1,所以 sin α=255,cos α= 55,则 cosα-π4
=cos αcos π4+sin αsin π4= 55× 22+255× 22=31010.
答案:3
10 10
三角函数公式的直接应用
(1)已知 α∈π2,π,sin α=153,则 tanα+π4=(
2.若 α+β=34π,则(1-tan α)(1-tan β)的值是________. 解析:-1=tan34π=tan(α+β)=1t-antaαn+αttaannββ, 所以 tan αtan β-1=tan α+tan β. 所以 1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:2
三角函数公式的活用 (高频考点) 三角函数公式的活用是高考的热点,高考多以选择题或填空题 的形式出现,研究三角函数的性质和解三角形常应用三角函数 公式.主要命题角度有: (1)两角和与差公式的逆用及变形应用; (2)二倍角公式的活用.
角度一 两角和与差公式的逆用及变形应用
(1)已知 sin α+cos α=13,则 sin2(π4-α)=(

第四章 三角恒等变换(知识点总结梳理)-高中数学北师大版(2019)必修第二册

第四章 三角恒等变换(知识点总结梳理)-高中数学北师大版(2019)必修第二册

2019新教材北师大版数学必修第二册第四章知识点清单目录第四章三角恒等变换§1 同角三角函数的基本关系§2 两角和与差的三角函数公式§3 二倍角的三角函数公式第四章 三角恒等变换 §1 同角三角函数的基本关系一、同角三角函数的基本关系式 1. 平方关系:sin 2α+cos 2α=1. 2. 商数关系:tan α= sin αcos α.3. 公式的常见变形(1)sin 2α=1-cos 2α;cos 2α=1-sin 2α.(2)sin α=±√1−cos 2α;cos α=±√1−sin 2α. (3)cos αtan α=sin α.(4)(sin α+cos α)2=1+2sin αcos α;(sin α-cos α)2=1-2sin αcos α. (5)1+tan 2α=1cos 2α;1+1tan 2α=1sin 2α二、由一个三角函数值求其他三角函数值1. 已知角的正弦、余弦、正切中的一个值,利用同角三角函数的基本关系式可以“知一求二”.2. 若题目中没有指出角终边所在的象限,则必须根据条件推断该角可能是第几象限角,再分情况加以讨论.三、利用同角三角函数的基本关系化简、求值、证明 1. 利用同角三角函数的基本关系化简或证明时常用的方法(1)化切为弦,即把正切函数化成正弦、余弦函数,从而达到化简的目的. (2)对于含有根号的三角函数式,常把根号下的式子化成完全平方式,然后去根号,达到化简的目的.(3)对于含高次的三角函数式,往往借助因式分解,或构造出“sin 2α+cos 2α”的形式,以降低次数,达到化简的目的.四、关于sin α,cos α的齐次式的求值问题1. 关于sin α,cos α的齐次式是指式子中的每一项都是关于sin α或cos α的式子,且每一项的次数相等,通常为一次齐次式、二次齐次式.2. 当齐次式为分式时,可将分子与分母同除以cos α的n(n为齐次式的次数)次幂,此时分式的分子与分母都可化为关于tan α的式子,代入tan α的值即可求得式子的值.3. 当二次齐次式为整式时,可将其视为分母为1的式子,然后将分母1用sin2α+cos2α替换,这时再将式子的分子与分母同时除以cos2α,即可化为关于tan α的式子,代入tan α的值即可求得式子的值.五、利用sin α±cos α与sin αcos α之间的关系求值1. 若已知sin α±cos α,sin αcos α 中的一个,则可以利用方程思想进一步求得sin α, cos α 的值,从而解决相关问题. 常涉及的三角恒等式有:(1)(sin α+cos α)2=1+2sin αcos α;(2)(sin α-cos α)2=1-2sin αcos α;(3)(sin α+cos α)2+(sin α-cos α)2=2;(4)(sin α-cos α)2=(sin α+cos α)2-4sin α·cos α.2. 求sin α+cos α,sin α-cos α,sin αcos α的值时,要注意结合角的范围进行符号判断.§2 两角和与差的三角函数公式一、两角和与差的三角函数公式二、知识拓展 1. 公式的记忆方法:(1)公式C α+β,C α-β可记为“同名相乘,符号反”. (2)公式S α+β,S α-β可记为“异名相乘,符号同”.(3)公式T α+β,T α-β的结构特征可记为“分子为正切的和或差,分母为1与正切的积的差或和”,符号规律可记为“分子同,分母反”.2. 两角和与差的正切公式的变形:(1)tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β). (2)1-tan αtan β=tan α+tan βtan(α+β),1+tan αtan β=tan α−tan βtan(α−β).(3)1+tan α1−tan α=tan π4+tan α1−tan π4⋅tan α=tan (π4+α),1−tan α1+tan α=tan π4−tan α1+tan π4⋅tan α=tan (π4−α).以上式子中各角应保证各式有意义.三、三角函数的叠加公式1:asin α+bcos α=√a 2+b 2sin(α+φ),其中sin φ=√a 2+b2,cos φ=√a 2+b 2,a ,b不同时为0.公式2:asin α+bcos α=√a 2+b 2cos(α-φ),其中sin φ=√a 2+b 2,cos φ=√a 2+b 2,a ,b不同时为0.四、积化和差与差化积公式 1. 积化和差公式(1)cos αcos β=12 [cos(α+β)+cos(α-β)].(2)sin αsin β=-12 [cos(α+β)-cos(α-β)]. (3)sin αcos β=12 [sin(α+β)+sin(α-β)].(4)cos αsin β=12 [sin(α+β)-sin(α-β)].2. 和差化积公式 (1)sin x+sin y=2sinx+y 2cos x−y 2.(2)sin x-sin y=2cosx+y 2sinx−y2.(3)cos x+cos y=2cosx+y 2cos x−y2.(4)cos x-cos y=-2sinx+y 2sinx−y 2.五、利用公式解决给角求值问题利用公式解决给角求值问题的关键是通过公式的合理运用,使所求式中的非特殊角转化为特殊角,或使式中出现可以正负抵消的项,或使式中出现分子、分母能约分的项,从而达到化简求值的目的. 具体注意以下几点:(1)看角:把角尽量向特殊角或可化简或可求出值的角转化,合理拆角,化异为同; (2)看名称:把式子中的三角函数的名称尽量化成同一名称,例如可以把正切函数化为正、余弦函数,或把正、余弦函数转化为正切函数,再解决问题;(3)看式子:看式子是否满足两角和与差的正弦、余弦、正切公式,准确选择公式求解.六、利用公式解决给值求值问题给值求值,即由给出的某些角的三角函数值,求另外一些角的三角函数值,其关键在于“变角”,即使“所求角”变为“已知角”,常见的技巧如下:(1)当“已知角”有两个时,“所求角”一般表示为两个已知角的和或差的形式;(2)当“已知角”有一个时,应注意“已知角”与“所求角”的关系,通过诱导公式或引入特殊角,将“所求角”变成“已知角”;(3)配角技巧:①2α=(α+β)+(α-β),②α=(α+β)-β=β-(β-α),③α=(α+π4)-π4=(α−π4)+π4,④α−β2=(α+β2)-(α2+β).七、利用公式解决给值求角问题1. 解决给值求角问题的一般步骤:(1)求角的某一个三角函数值;(2)确定角的范围;(3)根据角的范围写出所求的角.2. 通过求角的某个三角函数值来求角,选取函数是关键,一般遵循以下原则:(1)已知正切函数值,选取正切函数.(2)已知正弦、余弦函数值,选取正弦函数或余弦函数;若角的范围是(0,π2),选正弦函数、余弦函数均可;若角的范围是(0,π),选余弦函数较好;若角的范围是(−π2,π2),选正弦函数较好.八、利用三角函数的叠加研究函数的性质1. 公式的作用:利用三角函数的叠加公式可将形如asin α+bcos α(a,b不同时为0)的三角函数式转化为Asin(α+φ)或Acos(α+φ)的形式,从而达到化简或求值的目的,也有利于研究函数的图象和性质.2. 形式选择:化为正弦还是余弦的形式,要由具体条件而定,一般要求变形后角α的系数为正,这样更有利于研究函数的性质.§3 二倍角的三角函数公式一、二倍角公式二、半角公式1. 半角的正弦公式:sinα2=±√1−cos α2.2. 半角的余弦公式:cosα2=±√1+cos α2.3. 半角的正切公式:tanα2=±√1−cos α1+cosα=sin α1+cosα=1−cos αsinα.三、知识拓展 二倍角公式的变形1. 降幂公式:sin αcos α=12sin 2α;sin 2α=1−cos 2α2;cos 2α=1+cos 2α2.2. 升幂公式:1±sin 2α=(sin α±cos α)2;1+cos 2α=2cos 2α;1-cos 2α=2sin 2α.3. 万能公式:sin 2α=2tan α1+tan 2α;cos 2α=1−tan 2α1+tan 2α.四、半角公式的应用利用半角公式求值的思路(1)看角:看已知角与待求角的二倍关系.(2)明范围:求出相应半角的范围,为定符号做准备. (3)选公式:涉及正切时,常利用tan α2=sin α1+cos α=1−cos αsin α进行计算;涉及正弦、余弦时,常利用sin 2α2=1−cos α2,cos 2α2=1+cos α2进行计算.(4)下结论:结合(2)求值. 五、三角函数公式的综合应用三角函数公式在三角函数式的化简、求值以及研究与三角函数有关函数的图象与性质等方面具有重要作用,尤其是研究与三角函数有关函数的图象与性质时,需要先对函数解析式进行化简,化简的过程就是运用公式的过程. 通常情况下,需要先对解析式降幂,变为一次式,再利用三角函数的叠加公式将函数解析式化为y=Asin(ωx+φ)+k 或y=Acos(ωx+φ)+k 的形式,最后研究函数的图象与性质.。

高中数学-第四章-三角函数、解三角形-第二节-同角三角函数的基本关系与诱导公式

高中数学-第四章-三角函数、解三角形-第二节-同角三角函数的基本关系与诱导公式

第二节同角三角函数的基本关系与诱导公式[基本知识] 1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tan α=sin αcos α()α≠kπ+π2,k∈Z.2.同角三角函数基本关系式的应用技巧一、判断题(对的打“√”,错的打“×”)(1)若α,β为锐角,则sin2α+cos2β=1.()(2)若α∈R,则tan α=sin αcos α恒成立.()答案:(1)×(2)×二、填空题1.已知α∈()π2,π,sin α=35,则tan α=________.解析:∵α∈()π2,π,sin α=35,∴cos α=-45,于是tan α=-34.答案:-342.已知tan α=2,则sin α+cos αsin α-cos α的值为________.解析:原式=tan α+1tan α-1=2+12-1=3.答案:3[全析考法]考法一知弦求弦、切或知切求弦利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.[例1] (1)(2019·成都龙泉中学月考)设cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2k B .-1-k 2k C.k 1-k 2D .-k1-k 2 (2)(2019·甘肃诊断)已知tan x =43,且角x 的终边落在第三象限,则cos x =( )A.45 B .-45C.35D .-35[解析] (1)∵cos(-80°)=cos 80°=k ,∴sin 80°=1-cos 280°=1-k 2, ∴tan 100°=-tan 80°=-1-k 2k.故选B. (2)因为角x 的终边落在第三象限,所以cos x <0,因为tan x =43,所以⎩⎪⎨⎪⎧sin 2x +cos 2x =1,sin x cos x =43,cos x <0,解得cos x =-35,故选D.[答案] (1)B (2)D [易错提醒]知弦求弦、切或知切求弦时要注意判断角所在的象限,不要弄错切、弦的符号. 考法二 知切求f (sin α、cos α)的值[例2] (2019·保定三校联考)已知tan(3π+α)=3,则3sin α-cos α2sin α+3cos α=( )A.13B.89C.23D .2[解析] ∵tan(3π+α)=3,∴tan α=3,∴3sin α-cos α2sin α+3cos α=3tan α-12tan α+3=3×3-12×3+3=89.故选B.[答案] B [方法技巧]利用“切弦互化”的技巧(1)弦化切:把正弦、余弦化成切的结构形式,统一为“切”的表达式,进行求值.常见的结构有: ①sin α,cos α的二次齐次式(如a sin 2α+b sin αcos α+c cos 2α)的问题常采用“切”代换法求解; ②sin α,cos α的齐次分式()如a sin α+b cos αc sin α+d cos α的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin αcos α,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧. 考法三 sin α±cos α与sin αcos α关系的应用[例3] (1)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12B .±12C .-14D .-12(2)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α=( )A.75 B.257 C.725D.2425[解析] (1)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α =1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0, 所以cos α-sin α=-12.(2)∵sin α+cos α=15,∴1+2sin αcos α=125, ∴2sin αcos α=-2425,(cos α-sin α)2=1+2425=4925. 又∵-π2<α<0,∴cos α>0>sin α,∴cos α-sin α=75,∴1cos 2α-sin 2α=1(cos α+sin α)(cos α-sin α)=115×75=257. [答案] (1)D (2)B [方法技巧]正弦、余弦“sin α±cos α,sin α·cos α”的应用sin α±cos α与sin α·cos α通过平方关系联系到一起,即(sin α±cos α)2=1±2sin αcos α,sin αcos α=(sin α+cos α)2-12,sin αcos α=1-(sin α-cos α)22.因此在解题中已知1个可求另外2个.[集训冲关]1.[考法一]已知α∈(0,π),cos α=-35,则tan α=( )A.34 B .-34C.43D .-43解析:选D ∵cos α=-35且α∈(0,π),∴sin α=1-cos 2α=45,∴tan α=sin αcos α=-43.故选D.2.[考法三]已知sin α+cos α=13,则sin αcos α的值为________.解析:∵sin α+cos α=13,∴(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+2sin αcos α=19,解得sin αcos α=-49.答案:-493.[考法二]已知tan α=-43,求:(1)sin α-4cos α5sin α+2cos α的值; (2)1cos 2α-sin 2α的值; (3)sin 2α+2sin αcos α的值.解:(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×()-43+2=87.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α=()-432+11-()-432=-257. (3)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=169-83169+1=-825. 突破点二 三角函数的诱导公式[基本知识]一、判断题(对的打“√”,错的打“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍、偶数倍,变与不变指函数名称是否变化.( )答案:(1)× (2)√ 二、填空题1.已知cos(π+α)=-35,则sin ()3π2+α等于________.解析:cos(π+α)=-cos α=-35,则cos α=35,sin ()3π2+α=-sin ()π2+α=-cos α= -35.答案:-352.已知sin ()α+π6=45,则sin ()α+7π6等于________.解析:sin ()α+7π6=sin []()α+π6+π=-sin ()α+π6=-45.答案:-453.已知tan ()π6-α=33,则tan ()5π6+α=________.解析:tan ()5π6+α=tan ()π-π6+α=tan [ π-( π6-α ) ] =-tan ()π6-α=-33.答案:-331.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角为终了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.[典例感悟](2019·武威六中第一次阶段性检测)已知f (α)=[]sin ()π2-αtan (π+α)-cos (π-α)2-14sin ()3π2+α+cos (π-α)+cos (2π-α).(1)化简f (α);(2)若-π3<α<π3,且f (α)<14,求α的取值范围.解:(1)f (α)=(cos αtan α+cos α)2-1-4cos α-cos α+cos α=(sin α+cos α)2-1-4cos α=2sin αcos α-4cos α=-12sin α.(2)由已知得-12sin α<14,∴sin α>-12,∴2k π-π6<α<2k π+7π6,k ∈Z.∵-π3<α<π3,∴-π6<α<π3.故α的取值范围为()-π6,π3.[方法技巧]应用诱导公式化简求值的常见问题及注意事项(1)已知角求值问题.关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)对给定的式子进行化简或求值问题.要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.[针对训练]1.(2018·玉林陆川中学期中)sin 570°的值是( ) A .-12B.12C.32D .-32解析:选A sin 570°=sin(720°-150°)=-sin 150°=-12.故选A.2.(2019·湖北八校联考)已知sin(π+α)=-13,则tan ()π2-α=( )A .2 2B .-22 C.24D .±22解析:选D ∵sin(π+α)=-13,∴sin α=13,∴tan ()π2-α=cos αsin α=±22,故选D.3.(2019·南充模拟)设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数.若f (2 019)=-1,则f (2 020)=( )A .1B .2C .0D .-1解析:选A ∵f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=-a sin α-b cos β=-1,∴a sin α+b cos β=1,∴f (2 020)=a sin(2 020π+α)+b cos(2 020π+β)=a sin α+b cos β=1.故选A.4.化简:sin 2(α+π)·cos (π+α)·cos (-α-2π)tan (π+α)·sin 3()π2+α·sin (-α-2π)=________.解析:原式=sin 2α·(-cos α)·cos αtan α·cos 3α·(-sin α)=sin 2αcos 2αsin 2αcos 2α=1.答案:1[课时跟踪检测][A 级 基础题——基稳才能楼高]1.(2019·新疆普通高中学业水平考试)已知x ∈()-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43D .-43解析:选B 因为x ∈()-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34.故选B. 2.(2019·淮南十校联考)已知sin ()α-π3=13,则cos ()α+π6的值是( )A .-13B.13C.223D .-223解析:选A ∵sin ()α-π3=13,∴cos ()α+π6=cos []π2+()α-π3=-sin ()α-π3=-13,故选A.3.(2019·重庆一模)log 2()cos 7π4的值为( )A .-1B .-12C.12D.22解析:选B log 2()cos 7π4=log 2()cos π4=log 222=-12.故选B.4.(2019·遵义模拟)若sin ()π2+α=-35,且α∈( π2,π ),则sin(π-2α)=( )A .-2425B .-1225解析:选A ∵sin ()π2+α=cos α=-35,α∈()π2,π,∴sin α=45,∴sin(π-2α)=sin 2α=2sin αcos α=2×45×()-35=-2425.故选A.5.(2019·沈阳模拟)若1+cos αsin α=2,则cos α-3sin α=( ) A .-3 B .3 C .-95D.95解析:选C ∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2α=1,∴sin 2α+(2sin α-1)2=1,5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),∴cos α-3sin α=-sin α-1=-95.故选C.6.(2019·庄河高中期中)已知sin ()α-π12=13,则cos ()α+17π12等于( )A.13B.223C .-13D .-223解析:选A cos ()α+17π12=cos []3π2+()α-π12=sin ()α-π12=13.故选A. [B 级 保分题——准做快做达标]1.(2019·宝鸡金台区质检)已知sin 2α=23,则tan α+1tan α=( )A. 3B.2 C .3D .2解析:选C tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=2sin 2α=223=3.故选C.2.(2019·常德一中月考)已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:选C 因为sin α+2cos α=102,sin 2α+cos 2α=1,解得⎩⎪⎨⎪⎧sin α=31010,cos α=1010或⎩⎪⎨⎪⎧sin α=-1010,cos α=31010.所以tan α=3或-13.所以tan 2α=2tan α1-tan 2α=2×31-32=-34或tan 2α=2tan α1-tan 2α=2×()-131-()-132=-34.故选C.3.(2019·株洲醴陵二中、四中期中联考)已知2sin α-cos α=0,则sin 2α-2sin αcos α的值为( ) A .-35B .-125解析:选A 由已知2sin α-cos α=0得tan α=12,所以sin 2α-2sin αcos α=sin 2α-2sin αcos αsin 2α+cos 2α=tan 2α-2tan αtan 2α+1=-35.故选A. 4.(2019·大庆四地六校调研)若α是三角形的一个内角,且sin ()π2+α+cos ()3π2+α=15,则tan α的值是( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ()π2+α+cos ()3π2+α=15,得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴α∈()π2,π,∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43,故选A.5.(2019·平顶山、许昌联考)已知sin α+3cos α3cos α-sin α=5,则cos 2α+12sin 2α的值是( )A.35 B .-35C .-3D .3解析:选A 由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,解得tan α=2,∴cos 2α+12sin 2α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+222+1=35. 6.(2019·河南中原名校联考)已知θ为第二象限角,sin θ,cos θ是关于x 的方程2x 2+(3-1)x +m =0(m ∈R)的两根,则sin θ-cos θ=( )A.1-32B.1+32C. 3D .-3解析:选B ∵sin θ,cos θ是方程2x 2+(3-1)x +m =0(m ∈R)的两根,∴sin θ+ cos θ=1-32,sin θ·cos θ=m2,可得(sin θ+cos θ)2=1+2sin θ·cos θ=1+m =2-32,解得m =-32.∵θ为第二象限角,∴sin θ>0,cos θ<0,即sin θ-cos θ>0,∵(sin θ-cos θ)2=1-2sin θ·cos θ=1-m =1+32,∴sin θ-cos θ= 1+32=1+32,故选B. 7.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55C.255D .1解析:选B 由cos 2α=23,得cos 2α-sin 2α=23,∴cos 2α-sin 2αcos 2α+sin 2α=23,即1-tan 2α1+tan 2α=23,∴tan α=±55, 即b -a 2-1=±55,∴|a -b |=55.故选B.8.(2019·武邑中学调研)已知sin α=13,0<α<π,则sin α2+cos α2=________.解析:()sin α2+cos α22=1+sin α=43,又0<α<π,∴sin α2+cos α2>0,∴sin α2+cos α2=233. 答案:2339.(2019·广西桂林等五市联考)已知sin θ+cos θ=15,θ∈()π2,π,则tan θ=________.解析:∵sin θ+cos θ=15,∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θcos θ=1+2sin θcos θ=125,∴sin θcos θ=-1225,又π2<θ<π,∴sin θ-cos θ>0,∴(sin θ-cos θ)2=sin 2θ+cos 2θ-2sin θcos θ=1-2sin θcos θ=4925,∴sin θ-cos θ=75, 由⎩⎪⎨⎪⎧sin θ+cos θ=15,sin θ-cos θ=75,解得⎩⎪⎨⎪⎧sin θ=45,cos θ=-35.∴tan θ=sin θcos θ=-43.答案:-4310.(2019·浙江名校协作体检测)已知sin ()-π2-α·cos ()-7π2+α=1225,且0<α<π4,则 sin α=________,cos α=________.解析:sin ()-π2-αcos ()-7π2+α=-cos α(-sin α)=sin αcos α=1225.又∵0<α<π4,∴0<sin α<cos α.解⎩⎨⎧sin αcos α=1225,sin 2α+cos 2α=1,得sin α=35,cos α=45.答案:35 4511.(2019·惠安惠南中学月考)已知cos α-sin α=5213,α∈()0,π4. (1)求sin αcos α的值;(2)求sin ()π2-2αcos ()π4+α的值. 解:(1)∵cos α-sin α=5213,α∈()0,π4, 平方可得1-2sin αcos α=50169,∴sin αcos α=119338.(2)sin α+cos α=(sin α+cos α)2=1+2sin αcos α=12213, ∴原式=cos 2αcos ()π4+α=(cos α-sin α)·(cos α+sin α)22(cos α-sin α)=2(cos α+sin α)=2413.12.在△ABC 中,(1)求证:cos 2A +B 2+cos 2C2=1;(2)若cos ()π2+A sin ()3π2+B tan(C -π)<0,求证:△ABC 为钝角三角形. 证明:(1)在△ABC 中,A +B =π-C ,所以A +B 2=π2-C2, 所以cos A +B 2=cos ()π2-C 2=sin C2,所以cos 2A +B 2+cos 2C2=1.(2)因为cos ()π2+A sin ()3π2+B tan(C -π)<0, 所以(-sin A )(-cos B )tan C <0, 即sin A cos B tan C <0.因为在△ABC 中,0<A <π,0<B <π,0<C <π且sin A >0,所以⎩⎨⎧ cos B <0,tan C >0或⎩⎨⎧cos B >0,tan C <0,所以B 为钝角或C 为钝角,所以△ABC 为钝角三角形.。

第四章 数列(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第四章 数列(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)

第四章数列(公式、定理、结论图表)一.数列的概念:1.定义:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式。

2.数列是按一定顺序排列的一列数,记作,,,,321 n a a a a 简记{}n a .3.数列{}n a 的第n 项n a 与项数n 的关系若用一个公式)(n f a n =给出,则这个公式叫做这个数列的通项公式。

4.数列的项为当自变量由小到大依次取值时对应的一列函数值,它的图像是一群孤立的点。

5、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.6、求数列中最大最小项的方法:最大⎩⎨⎧≥≥-+11n n n n a a a a 最小⎩⎨⎧≤≤-+11n n n n a a a a 考虑数列的单调性二、等差数列1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.(2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.通项公式的变形:①()n m a a n m d =+-;②n ma a d n m-=-.通项公式特点:1()n a d n a d =+-),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。

3、等差中项若三个数a ,A ,b 组成等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.即a 、b 、c 成等差数列<=>2a cb +=4、等差数列{}n a 的基本性质),,,(*∈N q p n m 其中(1)q p n m a a a a q p n m +=++=+,则若。

组合数学第四章反演公式

组合数学第四章反演公式

k 0
k 0
(4.1.6)
证明 记列向量
( x) {k ( x)}nk0, ( x) { k ( x)}nk0
第四章 反演公式
命题1 对于多项式的每个正规族Pn,恰存在一个微分算子。
证明 易证每个n次多项式φn(x)都可以唯一地表示为
n ( x) ak Pk ( x) anPn ( x) an P 1 n1( x) a0P0 ( x)
0k n
其中an, an-1, …, a0是常数。事实上,取an为φn(x)中xn的系数除以 Pn(x)中xn的系数所得的商,则φn-1(x)=φn(x)-anPn(x)至多是n-1次的, 再取an-1为φn-1(x)中xn-1的系数除以Pn-1(x)中xn-1的系数所得的商, 接着考虑
( x n 1)[x]n1 (x 1)[x]n1
n[x]n1
第四章 反演公式
展开多项式φ(x)=[x+y]n,并注意到
k (0) n(n 1)(n k 1)[ y]nk
可得二项式公式:
n n
[ x

y ]n

k 0
k
[x]k [ y]nk
Pn ( x) [x]n x( x 1)( x 2)( x n 1) (Pn(0), n≥1)
的Taylor公式。由
(x) (x) (x 1)
定义的(向后差分)算子 , 就是伴随多项式族Pn(x)=[x]n
的微分算子,因为
[x]n [x]n [x 1]n
第四章 反演公式
使用[x]n的Taylor公式展开φ(x)=[x+y]n, Δkφ(0)=n(n-1) …(n-k+1)[y]n-k

2024版新教材高中数学第四章指数函数与对数函数4.3对数4.3.2对数的运算第2课时换底公式课件

2024版新教材高中数学第四章指数函数与对数函数4.3对数4.3.2对数的运算第2课时换底公式课件

题型 3 实际问题中的对数运算
例3 5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+
S
),它表示在受噪音干扰的信道中,最大信息传递速度C取决于信道
N
带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,
S
S
其中 叫做信噪比.当信噪比 比较大时,公式中真数里面的1可以忽
N
N
S
b
将本例条件改为“4 =5 =10”,求 + 的值.

解析:由4a=5b=10,得a=logபைடு நூலகம்10,b=log510,
1
2
1
2
所以 + =
+
=lg 4+2lg 5=lg (4×25)=2.
a
b
log4 10
log5 10

学霸笔记:
利用等式运算性质与换底公式求值的方法
(1)在对数式、指数式的互化运算中,要注意灵活运用定义、性质和
第2课时
换底公式
预学案
共学案
预学案
换底公式❶
1.换底公式
log
log
b=________(a>0,且a≠1;c>0,且c≠1;b>0).
loga
2.对数换底公式的重要推论
1
(1)logaN=
(N>0,且N≠1;a>0,且a≠1).
logN a

m
log an = logab(a>0,且a≠1,b>0).
的值吗?(lg 2,lg 3可利用计算器查得)
(2)把(1)一般化,由对数的定义,你能否用logca,logcb表示logab(a>0,
且a≠1,b>0,c>0,且c≠1)吗?

高考数学一轮复习第四章三角函数5两角和与差的正弦余弦与正切公式课件新人教A版2

高考数学一轮复习第四章三角函数5两角和与差的正弦余弦与正切公式课件新人教A版2

sin110°sin20°
的值为( B )
cos2 155°-sin2 155°
1
1
√3
A.-2
B.2
C. 2
π
√14
2cos2 -1
(2)已知 θ∈ 0, ,且 sin θ-cos θ=- ,则 π =(
4
4
cos 4+
2
4
3
A.
B.
C.
3
3
4
例 2(1)
√3
D.- 2
D )
3
D.
2
(3)在△ABC 中,若 tan Atan B=tan A+tan B+1,则 cos C 的值为
) D
1
D.2
-5知识梳理
双基自测
1
2
3
4
5
3.(2020全国Ⅱ,理2)若α为第四象限角,则( D )
A.cos 2α>0
B.cos 2α<0
C.sin 2α>0
D.sin 2α<0
解析:∵α为第四象限角,∴sin α<0,cos α>0,
∴sin 2α=2sin αcos α<0.故选D.
-6知识梳理
1
定义可得 sin β=sin α=3,cos β=-cos α,因此,cos(α-β)=cos αcos β+ sin
αsin β=-
2√2
3
2
+
1 2 7
=-9.
3
(方法二)由角 α 与角 β 的终边关于 y 轴对称可得 β=(2k+1)π-α,k
∈Z,
则 cos(α-β)=cos[2α-(2k+1)π]=-cos

新人教A版必修高中数学第四章《空间两点间的距离公式》

新人教A版必修高中数学第四章《空间两点间的距离公式》

分别为y轴、z轴、x轴建立如图所示的空间直角坐标系.
由题意可得∠PEB=120°,∠PEO=180°-120°=60°.
又等边三角形PAD的边长等于2,
所以AE=ED=1,PE=3 .
12
2021/6/20
所以在 Rt△POE 中,OE=PE·cos 60°= 3 ,PO=PE·sin 60°= 3 .
8
2021/6/20
3.已知△ABC 的三个顶点分别为 A(0,0,0),B(0,2,0),C(1,1, 2 ),则△ABC 的形状
是( A )
(A)正三角形 (B)锐角三角形 (C)直角三角形 (D)钝角三角形
解析:由于|AB|=2,|AC|=2,|BC|= 12 12 2 2 =2,所以△ABC 为正三角形.故选 A.
6
2021/6/20
(2)空间任意两点 P1(x1,y1,z1),P2(x2,y2,z2)间的距离|P1P2|=
x1 x2 2 + y1 y2 2 z1 z2 2 .
特别地,空间任意一点 P(x,y,z)与原点 O 间的距离|OP|= x2 y2 z2 .
7
2021/6/20
自我检测(教师备用)
9
2021/6/20
4.点P(-3,2,-1)关于平面xOy的对称点是
.
答案:(-3,2,1)
5.设A(3,3,1),B(1,0,5),C(0,1,0),则AB的中点M到点C的距离|CM|= .
答案: 5 3
2
10
2021/6/20
课堂探究
题型一 空间中点的坐标的确定
【例1】 如图所示,已知四棱锥P-ABCD,PB⊥AD,侧面PAD为边长等于2的等 边三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°,G是 棱PB的中点,请建立适当的空间直角坐标系,求出点P,A,B,C,D,G的坐标.

新教材高中数学第4章三角恒等变换3二倍角的三角函数公式 二倍角公式课件北师大版必修第二册

新教材高中数学第4章三角恒等变换3二倍角的三角函数公式 二倍角公式课件北师大版必修第二册

=4sin
30°cos 10°-cos 30°sin 2sin 10°cos 10°
10°=4ssiinn2200°°=4.
(5)原式=2sin
20°·cos 20°·cos 40°·cos 2sin 20°
80°
=2sin
40°·cos 4sin
40°·cos 20°
80°=2sin88s0in°·2s0in°80°=s8isnin16200°°=18.
关键能力•攻重难
题型探究
题型一
利用二倍角公式给角求值问题
例 1 求下列各式的值:
(1)sin
π 12cos
1π2;(2)1-2sin2750°;(3)1-2tatnan125105°0°;
(4)sin110°-cos 130°;(5)cos 20°cos 40°cos 80°.
[分析] 观察角的特点 → 寻求角的联系 → 选择公式 → 化简求值
第四章 三角恒等变换
§3 二倍角的三角函数公式
3.1 二倍角公式
课程标准
核心素养
通过推导二倍角公式以及三角恒等 能从两角和的正弦公式推导出倍角
变换,重点提升数学抽象、逻辑推 的正弦、余弦、正切公式.
理、数学运算素养.
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识 知识点1 二倍角的正弦、余弦及正切公式
思考2:如何证明“缩角升幂公式”? 提示:因为sin2α+cos2α=1, 所以cos 2α=cos2α-sin2α =cos2α-(1-cos2α)=2cos2α-1; cos 2α=cos2α-sin2α =(1-sin2α)-sin2α=1-2sin2α.
基础自测

高等数学 第四章 第4节 泰勒公式(中央财经大学)

高等数学 第四章 第4节 泰勒公式(中央财经大学)

微分带皮亚诺余项的
泰勒公式
带拉格朗日余项的拉格朗日中值定理泰勒公式
还有带其它余项的
泰勒公式
带皮亚诺余项的马克劳林公式
带皮亚诺余项的泰勒公式的产生 带皮亚诺余项的泰勒公式的产生0
x x x −=∆
带拉格朗日余项的马克劳林公式
带拉格朗日余项的泰勒公式的产生 带拉格朗日余项的泰勒公式的产生, )(U , )( U )( 00x x x x f ∈∀则内可微在设满足拉格朗日中值上或在 )( ] ,[ ] ,[ 00x f x x x x 定理条件)
)(()()(00x x f x f x f −′+=ξ
. 0))(( , 00→−′→x x f x x ξ时则
记 , ))(()( 00x x f x R −′=ξ)
()()(00x R x f x f +=称为零阶带拉格朗日余项的泰勒公式.
仿照以上的做法, 继续进行下去, 可得到一般的带拉格朗日余项的n阶泰勒公式.





R
)
(2x

解。

第四章数列求通项公式专题课件-高二下学期数学人教A版(2019)选择性必修第二册

第四章数列求通项公式专题课件-高二下学期数学人教A版(2019)选择性必修第二册

由已知 an+1=3an+4 ,得 2r =4, 即 r =2.
∴ an+1+2=3(an+2), 令bn an 2, 则bn1 3bn ,
又 a1 2 3 0, an 2 0
bn1 3. bn
∴数列{bn}是首项为b1=a1+2=3,公比为3的等比数列.
∴ bn=an+2=3×3n-1 ∴ an=3n+1-2. 5. 形如an1 pan q ,利用待定系数法构造等比数列:
足 a1 4, Sn Sn1
5
5
3 an1 3 (Sn1
又 S1 a1 4,
Sn
5
3
),
an1
,
求 an.
谁简单化掉谁
故数列{Sn } 是首项为 4, 公比为 4 的等比数列,
Sn 4 4n1 4n ,
当 n 2 时, an Sn Sn1 4n 4n1 3 4n1 ,
n n
3 2
1 2
1
1 (n 2). n
a1
1满足 上式,
an
1 n
.
求数列通项常用方法—5.待定系数法
例5.已知数列{an}, an+1=3an+4, 且a1=1. 求an. 解:设a证n+明1+数r =列3(a{na+n+r)2,}则是等an+比1=数3a列n+,2r并. 求出an.
1,



1 2




列,
bn
2
(
1 2
)n1
,
bn
2
1 n1 2
2n 1 2n1

第四章数列求和微专题课件-高二上学期数学人教A版(2019)选择性必修第二册

第四章数列求和微专题课件-高二上学期数学人教A版(2019)选择性必修第二册

五、倒序相加法
(1)倒序相加法是推导等差数列的前n项和公式时所用的方法, 就是将一个数列倒过来排列(反序),再把它与原数列相加,就 可以得到n个(a1+an). (2)如果一个数列{an},首末两端等“距离”的两项的和相等, 那么求其和可以用倒序相加法.
典例分析
例5 已知函数y=f(x)满足f(x) + f(1-x) =1,若数列{an}满足
=2·n-2 1+(-2n+1)=-n. 当n为偶数时, Sn=(-1+3)+(-5+7)+…+[(-2n+3)+(2n-1)]=2·n2=n.
∴Sn=(-1)n·n (n∈N*).
巩固练习
5.求和:Sn=x+2x2+3x3+…+nxn(x≠0). 解:当 x=1 时,Sn=1+2+3+…+n=nn+2 1;
这些奇数组成等差数列,首项为1,公差为2,
故该数列的前n项和 Sn=nn2+1×1+12×nn2+1×nn2+1-1×2 =nn2+1+nn2+1nn2+1-1
=nn2+12=n2n+ 4 12.
巩固练习
2.求和:Sn
(x
1 )2 x
(x2
1 x2
)2
(xn
1 xn
)2( x
0).
解: (1)当x=±1时,Sn=4n. (2)当x≠±1时,Sn=x+1x2+x2+x122+…+xn+x1n2
巩固练习
6.求和:22-1 1+32-1 1+42-1 1+…+n2-1 1,n≥2,n∈N*. 解 ∵n2-1 1=n-11n+1=12n-1 1-n+1 1,
∴原式=121-13+12-41+13-15+…+n-1 1-n+1 1 =121+12-n1-n+1 1 =34-2n2nn++11(n≥2,n∈N*).

高中数学第4章三角恒等变换2两角和与差的三角函数公式 积化和差与和差化积公式课件北师大版必修第二册

高中数学第4章三角恒等变换2两角和与差的三角函数公式 积化和差与和差化积公式课件北师大版必修第二册
第四章 三角恒等变换
§2 两角和与差的三角函数公式
2.4 积化和差与和差化积公式
课程标准
核心素养
通过证明及应用积化和差与和差化
能运用积化和差与和差化积公式进
积公式,提升数学抽象、逻辑推理、
行简单的恒等变换.
数学运算素养.
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
知识点1 积化和差公式
2255°°=__3_3__.
[解析]
35°+25° 35°-25°
ቤተ መጻሕፍቲ ባይዱ
原式=2sin35°+2 25°cos35°-2 25°=tan
30°=
3 3.
2cos 2 cos 2
4.cos512πsin1π2=_12_-___4_3_.
[解析] cos51π2sin1π2= 12sin51π2+1π2-sin51π2-1π2 =12sinπ2-sin3π =12- 43.
∵sinα-2 β≠0, ∴由①②得-tanα+2 β=-32, ∴tanα+2 β=32.
[归纳提升] (1)对于给值求值问题, 一般思路是先对条件化简,之后 看能否直接求结果;若不满足,再对所求式化简,直到找到两者的联系为 止.
(2)积化和差与和差化积公式中的“和差”与“积”都是指三角函数 值之间的关系,并不是指角的关系.
【对点练习】❷ 13
已知 sin(α+β)=23,sin(α-β)=15,则 sin αcos β=
__3_0__.
[解析] 因为 sin(α+β)=23,sin(α-β)=15,
所以 sin(α+β)+sin(α-β)
=2sin αcos β=23+15=1135,
所以 sin αcos β=1330.

指数函数与对数函数(公式、定理、结论图表)高考数学必背知识手册

指数函数与对数函数(公式、定理、结论图表)高考数学必背知识手册

第四章指数函数与对数函数(公式、定理、结论图表)一.根式及相关概念(1)a 的n 次方根定义如果x n=a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)a 的n 次方根的表示n 的奇偶性a 的n 次方根的表示符号a 的取值范围n 为奇数n aR n 为偶数±n a[0,+∞)(3)根式式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.二.根式的性质(n >1,且n ∈N *)(1)n 为奇数时,n a n=a .(2)n 为偶数时,n a n =|a |=a ,a ≥0,-a ,a <0.(3)n0=0.(4)负数没有偶次方根.思考:(na )n中实数a 的取值范围是任意实数吗?提示:不一定,当n 为大于1的奇数时,a ∈R ;当n 为大于1的偶数时,a ≥0.三.分数指数幂的意义分数指数幂正分数指数幂规定:a m n =na m (a >0,m ,n ∈N *,且n >1)负分数指数幂规定:a -m n =1a m n =1na m (a >0,m ,n ∈N *,且n >1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义思考:在分数指数幂与根式的互化公式a m n =n a m中,为什么必须规定a >0?提示:①若a =0,0的正分数指数幂恒等于0,即na m=a mn =0,无研究价值.②若a <0,a m n =n a m 不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a >0.四.有理数指数幂的运算性质(1)a r a s=ar +s(a >0,r ,s ∈Q ).(2)(a r )s =a rs(a >0,r ,s ∈Q ).(3)(ab )r=a r b r(a >0,b >0,r ∈Q ).五.无理数指数幂一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.六.指数函数的概念一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .七.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域R 值域(0,+∞)过定点(0,1),即当x =0时,y =1单调性在R 上是增函数在R 上是减函数奇偶性非奇非偶函数对称性函数y =ax与y =a -x的图象关于y轴对称思考1:指数函数y =a x (a >0且a ≠1)的图象“升”“降”主要取决于什么?提示:指数函数y =a x (a >0且a ≠1)的图象“升”“降”主要取决于字母a .当a >1时,图象具有上升趋势;当0<a <1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律?提示:指数函数值随自变量的变化规律.八.对数(1)指数式与对数式的互化及有关概念:(2)底数a 的范围是a >0,且a ≠1.九.常用对数与自然对数十.对数的基本性质(1)负数和零没有对数.(2)log a 1=0(a >0,且a ≠1).(3)log a a =1(a >0,且a ≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N (a >0且a ≠1),则总有N >0,所以转化为对数式x =log a N 时,不存在N ≤0的情况.十一.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n=n log a M (n ∈R ).思考:当M >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立?提示:不一定.十二.对数的换底公式若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c blog c a .十三.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).思考1:函数y =2log 3x ,y =log 3(2x )是对数函数吗?提示:不是,其不符合对数函数的形式.十四.对数函数的图象及性质a 的范围0<a <1a >1图象定义域(0,+∞)值域R性质定点(1,0),即x =1时,y =0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数思考2:对数函数的“上升”或“下降”与谁有关?提示:底数a 与1的关系决定了对数函数的升降.当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.十五.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=logax(a>0且a≠1)互为反函数.十六、三种函数模型的性质y=a x(a>1)y=logax(a>1)y=kx(k>0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行保持固定增长速度增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y =kx(k>0)的增长速度,y=logax(a>1)的增长速度越来越慢;②存在一个x,当x>x时,有a x>kx>logax十七.函数的零点对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.思考1:函数的零点是函数与x轴的交点吗?提示:不是.函数的零点不是个点,而是一个数,该数是函数图象与x轴交点的横坐标.十八.方程、函数、函数图象之间的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.十九.函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.思考2:该定理具备哪些条件?提示:定理要求具备两条:①函数在区间[a,b]上的图象是连续不断的一条曲线;②f(a)·f(b)<0.二十.二分法的定义对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考:若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.二十一.二分法求函数零点近似值的步骤(1)确定零点x的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f (c ),并进一步确定零点所在的区间:①若f (c )=0(此时x 0=c ),则c 就是函数的零点;②若f (a )f (c )<0(此时x 0∈(a ,c )),则令b =c ;③若f (c )f (b )<0(此时x 0∈(c ,b )),则令a =c .(4)判断是否达到精确度ε:若|a -b |<ε,则得到零点近似值a (或b );否则重复步骤(2)~(4).二十二.常用函数模型常用函数模型(1)一次函数模型y =kx +b (k ,b 为常数,k ≠0)(2)二次函数模型y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)(3)指数函数模型y =ba x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1)(4)对数函数模型y =m log a x +n (m ,a ,n 为常数,m ≠0,a >0且a ≠1)(5)幂函数模型y =ax n +b (a ,b 为常数,a ≠0)(6)分段函数模型y =ax +b (x <m ),cx +d (x ≥m )思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:<解题方法与技巧>1.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.典例1:(1)若x <0,则x +|x |+x 2x=________.(2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值.[思路点拨](1)由x <0,先计算|x |及x 2,再化简.(2)结合-3<x <3,开方、化简,再求值.(1)-1[∵x <0,∴|x |=-x ,x 2=|x |=-x ,∴x +|x |+x 2x=x -x -1=-1.](2)[解]x 2-2x +1-x 2+6x +9=(x -1)2-(x +3)2=|x -1|-|x +3|,当-3<x ≤1时,原式=1-x -(x +3)=-2x -2.当1<x <3时,原式=x -1-(x +3)=-4.-2x -2,-3<x ≤1,-4,1<x <3.2.根式与分数指数幂互化的规律(1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.典例2:将下列根式化成分数指数幂的形式:(1)a a (a >0);(2)13x (5x 2)2;(3)4b -23-23(b >0).[解](1)原式=a ·a 12=a 32=a 3212=a 34.(2)原式=13x ·(x 25)2=13x ·x 45=13x 95=1x 9513=1x 35=x -35.(3)原式=b -2314-23=b -23×14×-23=b 19.3.指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.典例3:化简求值:4.解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.(2)在利用整体代入的方法求值时,要注意完全平方公式的应用.典例4:已知a 12+a -12=4,求下列各式的值:(1)a +a -1;(2)a 2+a -2.[思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值[解](1)将a 12+a -12=4两边平方,得a +a -1+2=16,故a +a -1=14.(2)将a +a -1=14两边平方,得a 2+a -2+2=196,故a 2+a -2=194.5.判断一个函数是否为指数函数,要牢牢抓住三点:(1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x的系数必须为1.典例5:(1)下列函数中,是指数函数的个数是()①y =(-8)x;②y =2x 2-1;③y =a x;④y =2·3x.A.1B.2C.3D.0(2)已知函数f (x )为指数函数,且-32=39,则f (-2)=________.(1)D(2)19[(1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数;④中3x前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x (a >0且a ≠1),由-32=39得a -32=39,所以a =3,又f (-2)=a-2,所以f (-2)=3-2=19.]6.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.典例6:(1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是()A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0(2)函数y=a x-3+3(a>0,且a≠1)的图象过定点________.(1)D(2)(3,4)[(1)由于f(x)的图象单调递减,所以0<a<1,又0<f(0)<1,所以0<a-b<1=a0,即-b>0,b<0,故选D.(2)令x-3=0得x=3,此时y=4.故函数y=a x-3+3(a>0,且a≠1)的图象过定点(3,4).]7.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论.典例7:比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a1.1与a0.3(a>0且a≠1).[解](1)1.52.5,1.53.2可看作函数y=1.5x的两个函数值,由于底数1.5>1,所以函数y =1.5x在R上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y=0.6x的两个函数值,因为函数y=0.6x在R上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1.(4)当a>1时,y=a x在R上是增函数,故a1.1>a0.3;当0<a<1时,y=a x在R上是减函数,故a1.1<a0.3.8.利用指数函数的单调性解不等式(1)利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.(2)解不等式a f (x )>a g (x )(a >0,a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即af (x )>ag (x )⇔f (x )>g (x ),a >1,f (x )<g (x ),0<a <1.典例8:(1)解不等式123x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.[解](1)∵2=12,∴原不等式可以转化为12x -112.∵y =12在R 上是减函数,∴3x -1≥-1,∴x ≥0,故原不等式的解集是{x |x ≥0}.(2)分情况讨论:①当0<a <1时,函数f (x )=a x (a >0,a ≠1)在R 上是减函数,∴x 2-3x +1>x +6,∴x 2-4x -5>0,根据相应二次函数的图象可得x <-1或x >5;②当a >1时,函数f (x )=a x(a >0,a ≠1)在R 上是增函数,∴x 2-3x +1<x +6,∴x 2-4x -5<0,根据相应二次函数的图象可得-1<x <5.综上所述,当0<a <1时,x <-1或x >5;当a >1时,-1<x <5.9.函数y =a f (x )(a >0,a ≠1)的单调性的处理技巧(1)关于指数型函数y =a f (x )(a >0,且a ≠1)的单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性,它由两个函数y =a u,u =f (x )复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y =f (u ),u =φ(x ),通过考查f (u )和φ(x )的单调性,求出y =f (φ(x ))的单调性.典例9:判断f (x 132-2x的单调性,并求其值域.[思路点拨]令u =x 2-2x ―→函数u (x )的单调性―→函数y =13u的单调性――→函数f (x )的单调性[解]令u =x 2-2x ,则原函数变为y =13u.∵u =x 2-2x =(x -1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y =13u在(-∞,+∞)上递减,∴y =132-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =(x -1)2-1≥-1,∴y =13,u ∈[-1,+∞),∴0<13u ≤13-1=3,∴原函数的值域为(0,3].10.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.典例10:将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log 1232=-5;(3)lg 1000=3;(4)ln x =2.[解](1)由2-7=1128,可得log 21128=-7.(2)由log 1232=-5,可得12=32.(3)由lg 1000=3,可得103=1000.(4)由ln x =2,可得e 2=x .11.求对数式log a N (a >0,且a ≠1,N >0)的值的步骤(1)设log a N =m ;(2)将log a N =m 写成指数式a m =N ;(3)将N 写成以a 为底的指数幂N =a b,则m =b ,即log a N =b .典例11:求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x;(4)-ln e 2=x .[解](1)x =(64)-23=(43)-23=4-2=116.(2)x 6=8,所以x =(x 6)16=816=(23)16=212= 2.(3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2,所以x =-2.12.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.典例12:已知3a =5b =c ,且1a +1b=2,求c 的值.[思路点拨]3a=5b=c ――――→指对互化求1a ,1b――――→1a +1b=2求c 的值[解]∵3a=5b=c ,∴a =log 3c ,b =log 5c ,∴1a =log c 3,1b =logc 5,∴1a +1b=log c 15.由log c 15=2得c 2=15,即c =15.13.求对数型函数的定义域时应遵循的原则(1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.典例13:求下列函数的定义域:(1)f (x )=1log 12x +1;(2)f (x )=12-x+ln(x +1);(3)f (x )=log (2x -1)(-4x +8).[解](1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).x +1>0,2-x >0,x >-1,x <2,解得-1<x <2,故函数的定义域为(-1,2).-4x +8>0,2x -1>0,2x -1≠1,x <2,x >12,x ≠1.故函数y =log (2x -1)(-4x +8)的定义域x|12<x <2,且x ≠114.函数图象的变换规律(1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.典例14:(1)当a >1时,在同一坐标系中,函数y =a -x与y =log a x 的图象为()A B C D(2)已知f (x )=log a |x |,满足f (-5)=1,试画出函数f (x )的图象.[思路点拨](1)结合a >1时y =a -x =1a x及y =log a x 的图象求解.(2)由f (-5)=1求得a ,然后借助函数的奇偶性作图.(1)C[∵a >1,∴0<1a <1,∴y =a -x是减函数,y =log a x 是增函数,故选C.](2)[解]∵f (x )=log a |x |,∴f (-5)=log a 5=1,即a =5,∴f (x )=log5|x |,∴f (x )是偶函数,其图象如图所示.15.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.典例15:比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54.16.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解;(3)形如log a x >log b x 的不等式,可利用图象求解.典例16:已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f (x )≤g (x )中x 的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x 的取值集合.(2)分a >1和0<a <1求解不等式得答案.[解]x -1>0,6-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a >11<x <3,x -1≤6-2x ,解得1<x ≤73;②当0<a <11<x <3,x -1≥6-2x ,解得73≤x <3.综上可得,当a >1时,不等式的解集为1,73;当0<a <1时,不等式的解集为73,317.常见的函数模型及增长特点(1)线性函数模型线性函数模型y =kx +b (k >0)的增长特点是直线上升,其增长速度不变.(2)指数函数模型指数函数模型y =a x(a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y =log a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.典例17:(1)下列函数中,增长速度最快的是()A.y =2019x B.y =2019C.y =log 2019xD.y =2019x(2)下面对函数f (x )=log 12x ,g (x 12与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是()A.f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢B.f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快C.f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变D.f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快(1)A(2)C[(1)指数函数y =a x,在a >1时呈爆炸式增长,并且随a 值的增大,增长速度越快,应选A.(2)观察函数f (x )=log 12x ,g (x 12与h (x )=-2x 在区间(0,+∞)上的图象(如图)可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象递减速度不变.]18.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.典例18:函数f (x )=2x和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f 3232f (2019)与g (2019)的大小.[解](1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.(2)∵f(1)=g(1),f(2)=g(2)从图象上可以看出,当1<x<2时,f(x)<g(x),∴f 32<g32当x>2时,f(x)>g(x),∴f(2019)>g(2019).19.函数零点的求法(1)代数法:求方程f(x)=0的实数根.(2)几何法:对于不能用求根公式的方程f(x)=0,可以将它与函数y=f(x)的图象联系起来.图象与x轴的交点的横坐标即为函数的零点.典例19:(1)求函数f(x x2+2x-3,x≤0,-2+ln x,x>0的零点;(2)已知函数f(x)=ax-b(a≠0)的零点为3,求函数g(x)=bx2+ax的零点.[解](1)当x≤0时,令x2+2x-3=0,解得x=-3;当x>0时,令-2+ln x=0,解得x=e2.所以函数f(x x2+2x-3,x≤0-2+ln x,x>0的零点为-3和e2.(2)由已知得f(3)=0即3a-b=0,即b=3a.故g(x)=3ax2+ax=ax(3x+1).令g(x)=0,即ax(3x+1)=0,解得x=0或x=-1 3 .所以函数g(x)的零点为0和-1 3 .20.判断函数零点所在区间的三个步骤(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.典例20:(1)函数f(x)=ln(x+1)-2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)(2)根据表格内的数据,可以断定方程e x-x-3=0的一个根所在区间是()x-10123e x0.371 2.727.3920.08 x+323456 A.(-1,0)B.(0,1)C.(1,2)D.(2,3)(1)C(2)C[(1)因为f(1)=ln2-21<0,f(2)=ln3-1>0,且函数f(x)在(0,+∞)上单调递增,所以函数的零点所在区间为(1,2).故选C.(2)构造函数f(x)=e x-x-3,由上表可得f(-1)=0.37-2=-1.63<0,f(0)=1-3=-2<0,f(1)=2.72-4=-1.28<0,f(2)=7.39-5=2.39>0,f(3)=20.08-6=14.08>0,f(1)·f(2)<0,所以方程的一个根所在区间为(1,2),故选C.]21.判断一个函数能否用二分法求其零点的依据是:其图象在零点附近是连续不断的,且该零点为变号零点.因此,用二分法求函数的零点近似值的方法仅对函数的变号零点适合,对函数的不变号零点不适合.典例21:已知函数f(x)的图象如图所示,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4D.4,3D[图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以用二分法求解的个数为3,故选D.]22.函数拟合与预测的一般步骤:(1)根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出拟合直线或拟合曲线.(3)求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.典例22:某企业常年生产一种出口产品,自2015年以来,每年在正常情况下,该产品产量平稳增长.已知2015年为第1年,前4年年产量f(x)(万件)如下表所示:x 1234f (x )4.005.587.008.44(1)画出2015~2018年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量变化的函数模型,并求出函数解析式;(3)2019年(即x =5)因受到某国对我国该产品反倾销的影响,年产量减少30%,试根据所建立的函数模型,确定2019年的年产量为多少?[思路点拨]描点――→依散点图选模――→待定系数法求模――→误差验模→用模[解](1)画出散点图,如图所示.(2)由散点图知,可选用一次函数模型.设f (x )=ax +b (a a +b =4,3a +b =7,a =1.5,b =2.5,∴f (x )=1.5x +2.5.检验:f (2)=5.5,且|5.58-5.5|=0.08<0.1,f (4)=8.5,且|8.44-8.5|=0.06<0.1.∴一次函数模型f (x )=1.5x +2.5能基本反映年产量的变化.(3)根据所建的函数模型,预计2019年的年产量为f (5)=1.5×5+2.5=10万件,又年产量减少30%,即10×70%=7万件,即2019年的年产量为7万件.。

2019版高考数学一轮复习 第四章 三角函数、解三角形 第五节 两角和与差的正弦、余弦和正切公式

2019版高考数学一轮复习 第四章 三角函数、解三角形 第五节 两角和与差的正弦、余弦和正切公式

解析:∵cosπ6-x=cos
π 6cos
x12sin x=12(sin x+ 3cos x)=12×65=35.
答案:35
课 堂 考点突破
自主研、合作探、多面观、全扫命题题点
考点一 三角函数公式的基本应用
[题组练透]
1.已知 sinα+π6+cos α=- 33,则 cosπ6-α=(
2
·1ta-n2tαa+n2α1+
2 2
= 22×322×+31+ 2×312-+312+ 22=0.
答案:0
考点三 角的变换
[典例引领]
已知 0<β<π2<α<π,且 cosα-β2=-19,sinα2-β=23, 求 cos(α+β).
解:∵0<β<π2<α<π,∴-π4<α2-β<π2,π4<α-β2<π,
)
A.-2 3 2
B.2
2 3
C.-13
D.13
解析:由 sinα+π6+cos α=- 33,
展开化简可得 sinα+π3=-13,
所以 cosπ6-α=cos π2-α+π3 =sinα+π3=-13.
答案:C
2.已知函数 f(x)=sin x-cos x,且 f′(x)=12 f(x),则 tan 2x 的
3
C. 3
D.2 2-1
解析:
4cos
50°-tan
40°=4sin
40°-csions
40° 40°
=4sin
40°cos 40°-sin cos 40°
40°=2sin
80°-sin cos 40°
40°
=2sin120°-40°-sin 40°= 3cos 40°+sin 40°-sin 40°

高中数学第四章三角恒等变换2.4积化和差与和差化积公式课件北师大版必修第二册

高中数学第四章三角恒等变换2.4积化和差与和差化积公式课件北师大版必修第二册
解析2sin 10°cos 8°=sin(10°+8°)+sin(10°-8°)=sin 18°+sin 2°.
答案C
激趣诱思
知识点拨
二、三角函数的和差化积公式
+
在积化和差公式中,令 α+β=x,α-β=y,则 α=
2
-
,β=
2
.
所以由积化和差公式得出的下面4个式子
sin(α+β)+sin(α-β)=2sin αcos β;
sin(α+β)-sin(α-β)=2cos αsin β;
cos(α+β)+cos(α-β)=2cos αcos β;
cos(α+β)-cos(α-β)=-2sin αsin β,
+
可变为 sin x+sin y=2sin
+
sin x-sin y=2cos
cos x-cos y=-2sin
同理由两角和与差的正弦公式
sin(α+β)=sin αcos β+cos αsin β,
sin(α-β)=sin αcos β-cos αsin β,
1
可得 sin αcos β=2[sin(α+β)+sin(α-β)],
1
cos αsin β=2[sin(α+β)-sin(α-β)].
名师点析积化和差公式可以将两个三角函数的积化为另两个三角
6+2
(4)sin 6x-sin 2x=2cos
=2cos 4xsin 2x.
2
sin
6-2
2
=-2sin
探究一
探究二
当堂检测
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


tabular , ,
array
eqnarray
eqnarray eqnarray eqnarray eqnarray
array eqnarray
, , array
array
, array , , ,
array eqnarray , array array eqnarray

1 i n i6 j
\sum_{1<i<n \atop i\neq j}
H
3
{n+1 \choose k}
array eqnarray
3 d
n
k
C 1e
I
<< =
\big
!¡1.5£ ¨ © ¤ ¥ ¦ § ¢

( ) [ ]
j=nfgkbcdehi "#l*+m
x c x ~ w ~ c y y w h i x c x ~ w ~ c c c w w w c y y w ( ) x c c c c c c y x c c y ~ w w w w w w w w w w ~ w w ~ w w w
\underbrace
C b C ¡{z ¡ C b Cc ¡ }
20
z
m
}|
{
p \stackrel{ p{
{
\atop \choose
}{
}
\vvec{x}\stackrel{\mathrm{def}}{=}(x_1,\dots,x_n)3
} }
~ def @x1; : : : ; xn A x a
array eqnarray
\usepackage{latexsym,bm} \usepackage{amsmath,amssymb}

array eqnarray
italic , TEX ( : ) , ( )
\displaystyle 3 \textstyle 3 \scriptstyle 3 \scriptscriptstyle 3
+
£
=
=
<
>
(
)
[
]
j
:
0
!
:

:
f g
:::
¡¡¡
. . .
..
.
\{ \} \ldots \cdots \vdots \ddots \colon
: \quad, \qquad, \ , \hspace, \phantom, \, 3 3=18 \quad
\; 3 5=18 \quad \: 3 4=18 \quad \! 3 3=18 \quad
i
: latexsym,bm,amsmath,amssymb 数学符号 \usepackage{latexsym} 数学黑体字体 \usepackage{bm} \usepackage{amsmath} \usepackage{amssymb}
\usepackage{latexsym,bm,amsmath,amssymb}
,

\setcounter{equation}{
, } , 1 }3 } equation
\label{ \ref{
array eqnarray
\begin{eqnarray*}
¡¡¡ ¡¡¡
\end{eqnarray*} \begin{eqnarray}
¡¡¡ ¡¡¡
\end{eqnarray}
P48
\imath 3 { \jmath 3 |
d \widehat{abc} 3 abc g \widetilde{abc} 3 abc
array eqnarray
p \overline,
\underline
" a 2 C ab C b 2
p \overbrace,
a |
array eqnarray
\Big
!2 h i F G n o j k l m ! !2.50 1 & ' " # $ %

\bigg

2 3 4 5 D E @ A 6789 B C x c x ~ c c c w c c c w c c c w c y y w
: \surd , \mathstrut
P45
array eqnarray
p
| | |
array eqnarray
3
\sum :
3
\int
, :
\limits \nolimits
上下限在符号的头顶和脚下 上下限在符号的右侧
\,
s
d
2
\mathrm{d}
\oint 3
p \usepackage{wasysym}
书 62-65页
i i i i i i
array eqnarray
; ¢; : !; Ta; : 3; 2; A;
:
¦ §
; ;
; ::: &; : : : @ A ; ::: : ; ; ; :::
¤
:
V
; W;
|
;

; ::: :::
: sin; cos; lim; max;
!

i 1
=
i2
\left.\frac{\partial f}{\partial x}\right|_{x=0}
array eqnarray
!
@f @ x x =0

i
: array
\begin{array}[ \\ \\ ¡¡¡ n \end{array}
][
]
array eqnarray

array eqnarray
\\
( : \\[
) ]
eqnarray
eqnarray eqnarray
, \nonumber(注意:在换行符之前插入) & & , : & equation , , \\
array eqnarray
eqnarray
:
i

3

array eqnarray
( , )
\mbox{
}
i
\begin{math} \( \) $ $
¡¡¡ ¡¡¡ 3
:
¡¡¡
\end{math}
$ aˆ2 + bˆ2 = cˆ2 $
i
array eqnarray
ห้องสมุดไป่ตู้
对于很短的公式,大多数人喜欢用简化的标记;但对于很长的行内公式建议使用环境标记。
i i i
array eqnarray
\mathrm, \mathit, \mathtt \mathsf, \mathbf, \mathcal bm
:
(数学花体,只能用于大写的拉丁字母)
,
:R
书60页
; ; ; : : : ; ; ¡; : : :
pxfont
: \boldmath, \unboldmath , : \boldsymbol { }

|
: , ,
(优点之一)
\begin{displaymath}
¡¡¡ ¡¡¡
\end{displaymath} \[ ¡ ¡ ¡ \] \begin{equation}
¡¡¡ ¡¡¡
\end{equation}
$$
array eqnarray
¡¡¡
$$
\leqno
,
\eqno
equation
equation
: \ˆ{¡ ¡ ¡ };
: \_{¡ ¡ ¡ }
7pt, 5pt , $ xˆ{\mbox{\scriptsize : \prime }} $
array eqnarray
i i

:$(x+y)/2 $
$ \frac{ ,
}{
}$
:
\sqrt[n]{¡ ¡ ¡ } \sqrt{¡ ¡ ¡ }, 开高次方: 开平方:
( amsmath
\varint 3 \iint 3 \iiint 3 \varoint 3 \oiint 3
array eqnarray
)
b
:
a
f (x )d x
\hat{a} 3 a \dot{a} 3 a \tilde{a} 3 a ~
|
\bar{a} 3 a " \ddot{a} 3 a \vec{a} 3 ~ a
array eqnarray
\Bigg
!3
i
\left.
: \left, \right
\riht.只需在公式一侧有自动变化大小的定界
符,那么只要用英文句号(即小圆点)代替另一侧那个不出现的定 2 3 界符即可,打印时这个小圆点不会出现 n
\left(\sum_{i=1}ˆn iˆ2\right)
相关文档
最新文档